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Abstract

We study the limitations of steganography when the sender is not using any properties of the
underlying channel beyond its entropy and the ability to sample from it. On the negative side,
we show that the number of samples the sender must obtain from the channel is exponential in
the rate of the stegosystem. On the positive side, we present the first secret-key stegosystem
that essentially matches this lower bound regardless of the entropy of the underlying chan-
nel. Furthermore, for high-entropy channels, we present the first secret-key stegosystem that
matches this lower bound statelessly (i.e., without requiring synchronized state between sender
and receiver).

1 Introduction

Steganography’s goal is to conceal the presence of a secret message within an innocuous-looking
communication. In other words, steganography consists of hiding a secret hiddentext message
within a public covertext to obtain a stegotext in such a way that any observer (except, of course,
the intended recipient) is unable to distinguish between a covertext with a hiddentext and one
without.

The first rigorous complexity-theoretic formulation of secret-key steganography was provided
by Hopper, Langford and von Ahn [HLvA02]. In this formulation, steganographic secrecy of a
stegosystem is defined as the inability of a polynomial-time adversary to distinguish between ob-
served distributions of unaltered covertexts and stegotexts. (This is in contrast with many previous
works, which tended to be information-theoretic in perspective; see, e.g., [Cac98] and other refer-
ences in [HLvA02, Cac98|.)

The model of [HLvA02], which we adopt with slight changes, assumes that the two communi-
cating parties have some underlying channel C of covertext documents that the adversary expects
to see. They also share a secret key (public-key steganography is addressed in [vAH04, BC04]). The
sender is allowed to draw documents from C; the game for the sender is to alter C imperceptibly for
the adversary, while transmitting a meaningful hiddentext message to the recipient. Conversely,
the game for the (passive) adversary is to distinguish the distribution of transmitted messages from

C.

1.1 Desirable Characteristics of a Stegosystem

Black-Box. In order to obtain a stegosystem of broad applicability, one would like to make
as few assumptions as possible about the understanding of the underlying channel. Indeed, as



Hopper et al. [HLvAO02] point out, the channel (such as human email traffic or images of various
scenes) may well be very complex and not easily described. For example, if the parties are using
photographs of city scenes as covertexts, it is reasonable to assume that the sender can obtain such
photographs, but unreasonable to expect the sender and the recipient to know a polynomial-time
algorithm that can construct such photographs from uniformly distributed random strings. In this
work, we therefore concentrate on the study of black-box steganography. Namely, the sender and
the recipient need not know anything about the underlying channel distribution (beyond a lower
bound on its min-entropy). The sender’s only access to the channel is via an oracle that draws a
random sample from the channel distribution. The recipient need not access the channel at all.

Efficient and Secure. Stegosystems have several performance characteristics. First, of course,
it is desirable that the encoding algorithm of sender and the decoding algorithm of the receiver be
efficient. A particularly important characteristic of the efficiency of the sender is the number of
samples that the sender is required to draw from C. In fact, in all proposed black-box stegosystems,
sender computation is proportional to the number of samples drawn, with actual computation per
sample being quite minimal. Because most real-life channels are quite complex, the drawing of the
samples is likely to dominate the running time of an actual implementation.

Another important performance measure is the transmission rate of the stegosystem, which is
the number of hiddentext bits transmitted per single stegotext document sent (a document is the
value returned by a single request to the channel sampling oracle—e.g., a photograph). Transmis-
sion rate is tied to reliability, which is the probability of successful decoding of an encoded message
(correspondingly, unreliability is one minus reliability). The goal is to construct stegosystems that
are reliable and transmit at a high rate (it is, of course, easier to transmit at a high rate if reliability
is low and the recipient will not understand much of what is transmitted).

Finally, even a most efficient stegosystem is useless if not secure. Quantitatively, insecurity is
defined as the adversary’s advantage in distinguishing stegotext from C (and security as one minus
insecurity). Naturally, we are interested in stegosystems with insecurity as close to 0 as possible.

The efficiency and security of a stegosystem, even if it is black-box, may depend on the channel
distribution. In particular, we will be interested in the dependence on the channel min-entropy h.
Ideally, a stegosystem would work well even for low-min-entropy channels.

Stateless. It is desirable to construct stateless stegosystems, so that the sender and the recipient
need not maintain synchronized state in order to communicate long messages. Indeed, the need for
synchrony may present a particular problem in steganography in case messages between sender and
recipient are dropped or arrive out of order. Unlike in counter-mode symmetric encryption, where
the counter value can be sent along with the ciphertext in the clear, here this is not possible: the
counter itself would also have to be steganographically encoded to avoid detection, which brings us
back to the original problem of steganographically encoding multibit messages.

1.2 Owur Contributions

We study the optimal efficiency achievable by black-box steganography, and present secret-key
stegosystems that are nearly optimal. Specifically, we demonstrate the following results:

e A lower bound, which states that a secure and reliable black-box stegosystem with rate of w
bits per document sent requires the encoder to take at least ¢2* samples from the channel
per w bits sent, for some constant c. The value of ¢ depends on security and reliability, and



tends to 1/(2e) as security and reliability approach 1. This lower bound applies to secret-key
as well as public-key stegosystems.

o A stateful black-box secret-key stegosystem STF that transmits w bits per document sent,
takes 2% samples per w bits, has unreliability of 27"*% per document, and negligible insecurity,
which is independent of the channel.

e A stateless black-box secret-key stegosystem STL that transmits w bits per document sent,
takes 2% samples per w bits, has unreliability 2*6(2h), and insecurity negligibly close to
1227h+2w for lw bits sent.

Note that for both stegosystems, the rate vs. number of samples tradeoff is very close to the lower
bound—in fact, for channels with sufficient entropy, the optimal rate allowed by the lower bound
and the achieved rate differ by log, 2e < 2.5 bits (and some of that seems due to slack in the bound).
Thus, our bound is quite tight, and our stegosystems quite efficient. The proof of the lowerbound
involves a surprising application of the huge random objects of [GGNO03], specifically of the truthful
implementation of a boolean function with interval-sum queries. The lowerbound demonstrates
that significant improvements in stegosystem performance must come from assumptions about the
channel.

The stateless stegosystem STL can be used whenever the underlying channel distribution has
sufficient min-entropy h for the insecurity to be acceptably low. It is extremely simple, requiring
just evaluations of a pseudorandom function for encoding and decoding, and very reliable.

If the underlying channel does not have sufficient min-entropy, then the stateful stegosystem
STF can be used, because its insecurity is independent of the channel. While it requires shared
synchronized state between sender and receiver, the state information is only a counter of the
number of documents sent so far. If min-entropy of the channel is so low that the error probability of
27+ i too high for the application, reliability of this stegosystem can be improved through the use
of error-correcting codes over the 2%-ary alphabet (applied to the hiddentext before stegoencoding),
because failure to decode correctly is independent for each w-bit block. Error-correcting codes can
increase reliability to be negligibly close to 1 at the expense of reducing the asymptotic rate from w
to w — (h+2)27 "+, Finally, of course, the min-entropy of any channel can be improved from h to
nh by viewing n consecutive samples as a single draw from the channel; if h is extremely small to
begin with, this will be more efficient than using error-correcting codes (this improvement requires
both parties to be synchronized modulo n, which is not a problem in the stateful case).

This stateful stegosystem STF also admits a few variants. First, the logarithmic amount of
shared state can be eliminated at the expense of adding a linear amount of private state to the
sender and reducing reliability slightly (as further described in 4.1), thus removing the need for
synchronization between the sender and the recipient. Second, under additional assumptions about
the channel (e.g., if each document includes time sent, or has a sequence number), STF can be
made completely stateless.

1.3 Relation to Prior Work

The bibliography on the subject of steganography is extensive; we do not review it all here, but
rather recommend references in [HLvA02].

There have been only two black-box secret-key stegosystems proposed so far in the complexity-
theoretic model of [HLvA02]: namely, Constructions 1 and 2 of [HLvA02] . Construction 1

!Construction 2, which, strictly speaking, is not presented as a black-box construction in [HLvAO2], can be made



is stateful and, like our stateful construction STF, boasts negligible insecurity regardless of the
channel. However, it can transmit only 1 bit per document, and its reliability is limited by 1/2 4
1/4(1 — 27") per document sent, which means that, regardless of the channel, each hiddentext bit
has probability at least 1/4 of arriving incorrectly (thus, to achieve high reliability, error-correcting
codes with expansion factor of at least 1/(1 — H2(1/4)) ~ 5 are needed). In contrast, STF has
reliability that is exponentially (in the min-entropy) close to 1, and thus works well for any channel
with sufficient entropy. Furthermore, it can transmit at rate w for any w < h, provided the encoder
has sufficient time for the 2 samples required. It can be seen as a generalization of Construction
1.

Construction 2 of [HLvAO02] is stateless. Like the security of our stateless construction STL, its
security depends on the min-entropy of the underlying channel. While no exact analysis is provided
in [HLvA02], the insecurity of Construction 2 seems to be roughly v/12(="+%)/2 (due to the fact that
the adversary sees [ samples either from C or from a known distribution with bias roughly 2(~+w)/2
caused by a public extractor; see Appendix E), which is higher than the insecurity of STL (unless
[ and w are so high that h < 3w + 3logl, in which case both constructions are essentially insecure,
because insecurity is higher than the inverse of the encoder’s running time [2*). Reliability of
Construction 2, while not analyzed in [HLvA02], seems close to the reliability of STL. The rate of
Construction 2 is lower (if other parameters are kept the same), due to the need for randomized
encryption of the hiddentext, which necessarily expands the number of bits sent.

It is important to note that the novelty of STL is not the construction itself, but rather its
analysis. Specifically, its stateful variant appeared as Construction 1 in the Extended Abstract of
[HLvAO02], but the analysis of the Extended Abstract was later found to be flawed by [KMRO02].
Thus, the full version of [HLvA02] included a different Construction 1. We simply revive this old
construction, make it stateless, generalize it to w bits per document, and, most importantly, provide
a new analysis for it.

As far as we know, our lower bound on the efficiency of black-box stegosystems appears to be
the first in the literature. It should be noted that non-black-box stegosystems can be much more
efficient—see [HLvA02, vAHO4, Le03, LKO03].

2 Definitions

2.1 Steganography

The definitions here are essentially those of [HLvA02]. We modify them in three ways. First, we
view the channel as producing documents (symbols in some, possibly very large, alphabet) rather
than bits. This simplifies notation and makes min-entropy of the channel more explicit. Second,
we consider stegosystem reliability as a parameter rather than a fixed value. Third, we make the
length of the adversary’s description (and the adversary’s dependence on the channel) more explicit
in the definition.

The Channel. Let ¥ be an alphabet; we call the elements of 3 documents. A channel C is
a map that takes a history H € X* as input and produces a probability distribution Dy €
3. A history H = si189...s, is legal if each subsequent symbol is obtainable given the previ-
ous ones, i.e., Prp, . . [si] > 0. Min-entropy of a distribution D is defined as Hx(D) =

black-box through the use of extractors (such as universal hash functions) in place of unbiased functions, as shown
in [vAHO04].



mingep{—logy Prpls|}. Min-entropy of C is the miny Hoo (D), where the minimum is taken over
legal histories H.

Our stegosystems will make use of a channel sampling oracle M, which, on input H, outputs a
symbol s according to Dy.

Definition 1. A black-box secret-key stegosystem is a pair of probabilistic polynomial time algo-
rithms S = (SE, SD) such that, for a security parameter ,

1. SE has access to a channel sampling oracle M for a channel C and takes as input a randomly
chosen key K € {0,1}", a string m € {0,1}* (called the hiddentext), and the channel history
H. It returns a string of symbols sys2...s; € X* (called the stegotext)

2. SD takes as input a key K € {0,1}", a stegotext sis2...s; € £* and a channel history H,
and returns a hiddentext m € {0,1}*.

We further assume that the length [ of the stegotext output by SE depends only on the length of
hiddentext m but not on its contents.

Stegosystem Reliability. The reliability of a stegosystem S with security parameter s for a
channel C and messages of length [ is defined as

_ : M _
Rels(x)ci = me%,lﬁz,w{ Keﬁf1}~[SD<K ,SEY (K, m, H), H) =m]}.

Unreliability (as a parallel to insecurity) is defined as UnRelg(,)c; = 1 — Relg) .-

The Adversary. We consider only passive adversaries who mount a chosen hiddentext attack
on S (stronger adversarial models for steganography have also been considered, see e.g. [HLvA02,
vAHO04, BC04]). The goal of such an adversary is to distinguish whether it is seeing encodings of
the hiddentext it supplied to the encoder, or simply random draws from the channel. To this end,
define an oracle O(-, H) that produces random draws from the channel starting with history H as
follows: on input m € {0,1}*, O computes the length [ of the stegotext that SE™(K,m) would
have output, and outputs si1ss...s; where each s; is drawn according to Dyos,sq...5; ;-

Definition 2. W? is a (t,d, q,1) passive adversary for stegosystem S if

1. W runs in expected time ¢ (including the running time needed by the stegoencoder to answer
its queries) and has description of length d (in some canonical language).

2. W has access to C via the sampling oracle M(-).

3. W can make an expected number of ¢ queries of combined length [ bits to an oracle which is
cither SEM(K,-,-) or O(-, ).

4. W outputs a bit indicating whether it was interacting with SE or with O.

2The adversary in the context of steganography is sometimes referred to as the “warden.” The idea of the adversary
as a warden and the use of W to designate it is a consequence of original problem formulation in [Sim83].



Stegosystem Security. The advantage Adv>S (here SS stands for “Steganographic Secrecy) of
W against S with security parameter x for a channel C is defined as

AV (W) =| Pr [WMSEYES) —q) _ pry MO = q
Vs(ﬁ),c( ) K<—{or,1}ﬂ[ ] r[ ]

For a given (t,d, q,1), the insecurity of a stegosystem S with respect to channel C is defined as

InSecg%ﬂ)ﬂ(t, d,q,l) = max {Adv%%n)yc(W)},
(t,d,q,l) adversary w

and security Sec as 1 — InSec.

Note that the adversary’s algorithm can depend on the channel C, subject to the restriction
on the algorithm’s total length d. In other words, the adversary can possess some description of
the channel in addition to the black-box access provided by the channel oracle. This is a mean-
ingful strengthening of the adversary: indeed, it seems imprudent to assume that the adversary’s
knowledge of the channel is limited to whatever is obtainable by black-box queries (for instance,
the adversary has some idea of a reasonable email message or photograph should look like). It does
not contradict our focus on black-box steganography: it is prudent for the honest parties to avoid
relying on particular properties of the channel, while it is perfectly sensible for the adversary, in
trying to break the stegosystem, to take advantage of whatever information about the channel is
available.

2.2 Pseudorandom Functions

We use pseudorandom functions [GGMS86] as a tool. Because the adversary in our setting has access
to the channel, any cryptographic tool used must be secure even given the information provided
by the channel. Thus, our underlying assumption is the existence of pseudorandom functions
that are secure given the channel oracle, which is equivalent [HILL99] to the existence of one-way
functions that are secure given the channel oracle. Thus is the minimal assumption needed for
steganography [HLvA02].

Let F = {Fced }scedefo,1}+ be a family of functions, all with the same domain and range. For a
probabilistic adversary A, and channel C with sampling oracle M, the PRF-advantage of A over F
is defined as

Adv() o(A4) = seedf{ro,l}"[AMfSCCd(.) =1- Pgr[AMvg(') =1
where g is a random function with the same domain and range. For a given (¢,d, q), the insecurity
of a pseudorandom function family F with respect to channel C is defined as

InSectRE L(t,d, q,1) = max Adv A},
Fm ) (t.d,q,l) adversary A{ FmelA)}

where the maximum is taken over all adversaries that run in expected time ¢, whose description
size is at most d, and that make an expected number of ¢ queries to their oracles.

3 The Lower Bound

Now we set out to prove that a reliable stegosystem with black-box access to the channel with rate
w, must make roughly [2¥ queries to the channel to send a message of length [w. Intuitively, this



should be true because each block carries w bits of information on average, but since the encoder
knows nothing about the channel, it must keep on sampling until it gets the encoding of those w
bits, which amounts to 2% samples on average.

In particular, it suffices for the purposes of this lower bound to consider a restricted class of
channels: the distribution of the sample depends only on the length of the history (not on its
contents). We will write Dy, Do, ..., D;, ..., instead of Dy, where i is the length of the history H.
Furthermore, it will suffice for us to consider only distributions D; that are uniform on a subset of
Y. We will identify the distribution with the subset (as is often done for uniform distributions).

Let |D;| = H = 2" and |¥| = S. Because the encoder receives the min-entropy h of the channel
as input, if H = S, then encoder knows the channel completely (it’s simply uniform on ¥), and our
lower bounds do not hold, because no sampling from the channel is necessary. Thus, we require
that h be smaller than log, S. Let R =1/(1 — H/S).

Our proof proceeds in two parts. First, we consider a stegoencoder SE that does not output
anything that it did not receive as a response from the channel-sampling oracle. To be reliable,
such an encoder has to make many queries, as shown in Lemma 1. Second, we show that to be
secure, a black-box SE cannot output anything it did not receive from the channel-sampling oracle.

The second half of the proof is somewhat complicated by the fact that we want to assume
security only against bounded adversaries: namely, ones whose description size and running time
are polynomial in the description size and running time of the encoder (in particular, polynomial
in log S rather than S). This requires us to come up with pseudorandom subsets D; of ¥ that have
concise descriptions and high min-entropy, and whose membership is impossible for the stegoencoder
to predict. In order to do that, we utilize techniques from the truthful implementation of a boolean
function with interval-sum queries of [GGNO03] (truthfulness is important because min-entropy has
to be high unconditionally).

3.1 Lower Bound When Only Query Results Are Output

We consider the following channel: if Dy, Do, ... are subsets of X, we write D = D1 x Dy x ...
to denote the channel that, on history length 4, outputs an uniformly random element of D;; if
|Dy| = |Ds| = ... = 2" then we say that D is a flat h-channel. Normally, one would think of the

channel sampling oracle for D as making a fresh random choice from D; when queried on history
length ¢. Instead, we will think of the oracle as having made all its choices in advance. Imagine
that the oracle already took “enough” samples:

8171, 81,25+ -+ SLj’ ... from Dl,
82,1y §2,25+ 352,45+ from DQ,
PN

Si 1y Si,25 -5 855, from Dz’

We will denote the string containing all these samples by S, and refer to it as a draw-sequence
from the channel. We will give our stegoencoder access to an oracle (also denoted by S) that, each
time it’s queried with ¢, returns the next symbol from the sequence s;1,5;2,...,5;;,.... Choosing
S € ¥** at random and giving the stegoencoder access to it is equivalent to giving the encoder
access to the usual channel-sampling oracle M for our channel D.

Assume SES(K7 m,H) =t =tity...t;, where t; € ¥. Note that ¢; is an element of the sequence
8i1,8i25---55ij,-... If t;is the j-th element of this sequence, then it took j queries to produce
it. We will denote by weight of t with respect to S, the number of queries it took to produce t:



W(t,S) = Zle min{j | s;; = y;}. In the next lemma, we prove (by looking at the decoder) that
for any S, most messages have high weight.

Lemma 1. Let F': ¥* — {0,1}* be an arbitrary (possibly unbounded) deterministic stegodecoder
that takes a sequence t € X! and outputs a message m of length lw bits.

Then the probability that a random lw-bit message has an encoding of weight significantly less
than (1/e)I2", is small. More precisely, for any S € ¥** and any N € N:

N l
Pr,,cqo1yw (3t € S)(F () =m A W(t,S) < N)] < (2,%3 < (ZZ—S)

Proof. Simple combinatorics show that the number of different sequences ¢ that have weight less
than N (and hence the number of messages that have encodings of weight less than N) is at most
(]y ): indeed, it is simply the number of positive integer solutions to 1 + ...+ x; < N, which is the
number of ways to put [ bars among N — [ stars (the number of stars to the right of the i-th bar
corresponds to x; — 1), or, equivalently, the number of ways choose [ positions out of N. The total

number of messages is 2/, The last inequality follows from (];[) < (#)l O

Observe that taking the probability over a random [w-bit message, as we do above, is meaningful.
Indeed, if the distribution of messages encoded is not uniform, then compression could reduce their
size and thus improve the efficiency of the stegosystem, rendering our bound pointless. Our lower
bound applies when the designer of the stegosystem assumes that the messages are distributed
uniformly. (For any other distribution, data compression should be applied before stegoencoding.)

3.2 Secure Stegosystems Almost Always Output Query Answers

The next step is to prove that the encoder of a secure black-box stegosystem must output only
what it gets from the oracle, with high probability. Assume D is a flat h-channel chosen uniformly
at random. Then it is easy to demonstrate that, if the encoder outputs in position ¢ a symbol
s; € X that it did not receive as a response to a query to D;, the chances that s; is in the support of
D; are H/S. Tt can then be shown that, if the stegoencoder has insecurity €, then it cannot output
something it did not receive as response to a query with probability higher than ¢/(1 — H/S).

The problem with the above argument is the following: it assumes that the adversary can test
whether s; the support of D;. This is not possible if we assume D; is completely random and the
adversary’s description is small compared to S = |X|. However, it does serve as a useful warm-up,
and leads to the following theorem when combined with the results of the previous section.

Theorem 1. Let (SE, SD) be a black-boz stegosystem with insecurity € against an adversary who
has an oracle for testing membership in the support of C, unreliability p and rate w for an alphabet
Y of size S. Then for there exists a channel with min-entropy h = logy, H such that the probability
that the encoder makes at most N queries to send a random message of length lw, is upper bounded

by
Ne\'
<12—w> —G—p—l—eR,

and the expected number of queries per stegotext symbol is therefore at least

2w /1
= (1-r)

where R=1/(1—H/S).



Proof. See Appendix A. O

We now want to establish the same lower bound without making such a strong assumption
about the security of the stegosystem. Namely, we do not want to assume that the insecurity
€ is low unless the adversary’s description size and running time are small (“small,” when made
rigorous, will mean some fixed polynomials in the description size and running time, respectively,
of the stegoencoder, and a security parameter for a function that is pseudorandom against the
stegoencoder). Recall that our definitions allow the adversary to depend on the channel; thus, our
goal is to construct channels that have short descriptions for the adversary but look like random
flat h-channels to the black-box stegoencoder. In other words, we wish to replace a random flat
h-channel with a pseudorandom one.

We note that the channel is pseudorandom only in the sense that it has a short description, so as
to allow the adversary to be computationally bounded. The min-entropy guarantee, however, can
not be replaced with a “pseudo-guarantee”: else the encoder is being lied to, and our lower bound
is no longer meaningful. Thus, a simpleminded approach, such as using a pseudorandom predicate
with bias H/S applied to each symbol and history length to determine whether the symbol is in
the support of the channel, will not work here: because S is constant, eventually (for some history
length) the channel will have lower than guaranteed min-entropy (moreover, we do not wish to
assume that S is large in order to demonstrate that this is unlikely to happen; our lower bound
should work for any alphabet). Rather, we need the pseudorandom implementation of the channel
to be truthful® in the sense of [GGNO03], and so rely on the techniques developed therein.

The result is the following theorem.

Theorem 2. There exist polynomials p,q and constants c1, co with the following property. Let S(k)
be a black-box stegosystem with description size §, insecurity InSec%%KLC(t, d,q,l), unreliability p,
rate w and running time T for an alphabet ¥ of size S. Assume there exists a pseudorandom
function family F(n) with insecurity InSec?&f) (t,d,q). Then there exists a channel C with min-
entropy h = logy H such that the probability that the encoder makes at most N queries to send a

random message of length lw, is upper bounded by

Ne\' »
<l2—“’> +p+ RInSec%%K%c(q(T), n+cy, L lw)+ (R+1) (InSec;P({nF) (p(1),8 + ¢,p(T)) + 2 > )

and the expected number of queries per stegotext symbol is therefore at least

2w /1
~ <§ —p— RInSec%%Hw(q(T), n+ci, 1,lw) — (R+1) (InSec;P({nF) (p(1),0 4+ ¢,p(T)) + 2—n>> :

where R=1/(1 - H/S).

Proof. See Appendix B. O

4 The Stateful Construction STF

The construction STF relies on a pseudorandom function family F. In addition to the security
parameter k (the length of the PRF key K), it depends on the rate parameter w. Because it is
stateful, both encoder and decoder take a counter ctr as input.

3In this case, truthfulness implies that for each history length, the support of the channel has exactly H elements.



Our encoder is similar to the rejection-sampler-based encoder of [HLvA02] generalized to w
bits: it simply samples elements from the channel until the pseudorandom function evaluated on
the element produces the w-bit symbol being encoded. The crucial difference of our construction
is the following: to avoid introducing bias into the channel, if the same element is sampled twice,
the encoder simply flips a random coin to decide whether to output that element with probability
27" This way (assuming F is truly random rather than pseudorandom) each sample from the
channel has probability 27 of being output, independent of anything else. Of course, it introduces
unreliability, which is related to the probability of drawing the same element from Dy twice.

Procedure STF.SE(K,w, m,H, ctr): Procedure STF.SD(K,w, s, ctr):
Let m = my ... m;, where m; is w bits long. Let s =s1...5;, where s; € &
fori«+ 1tol: fori=1tol

j—0;f«0; ctr—ctr+1 ctr «— ctr +1

repeat : m; «— Fg(ctr,s;)
j—J+1 output m = mime---my
Sij M(H)

if 3]/ < j s.t. Sij = Si 5
let c € {0,1}"; if c=m,; then f — 1
else if Fi/(ctr,s;;) =m; then f « 1
until f =1
si < sij; H — Hl|ls;
output s = s189...5;

Theorem 3. The stegosystem STF has insecurity InSecg%F(mw) (t,d,l,lw) = InSec?({,f) (t+0(1),d+
0O(1),12"). For each i, the probability that s; is decoded incorrectly is 2_h+w+InSec§%§) (2¥,0(1),2v),
and unreliability is at most (27" 4 InSec]P_-%f) (2*,0(1),2™)).

Proof. Insecurity bound is apparent from the fact that if F were truly random, then the system
would be perfectly secure, because its output is distributed identically to C (simply because the
encoder samples from the channel, and independently at random decides which sample to output,
because the random function is never applied more than once to the same input). Hence, any
adversary for the stegosystem would distinguish F from random.

The reliability bound per symbol can be demonstrated as follows. Assuming F is random, the
probability that s; = s;; is (1 —27%)77127%_ If that happens, the probability that 3;' < j such
that s;; = s; 5 is at most (j — 1)27". Summing up and using standard formulas for geometric
series, we get

i(j —1)27 (1 —27w) T — g i ((1 — 2wy (iu - 2‘”)’“)) < w-h,
: ~

j=1 k=0
O

Note that errors are independent for each symbol, and hence error-correcting codes over alphabet
of size 2% can be used to increase reliability: one simply encodes m before feeding it to SE. Observe
that, for a truly random F, if an error occurs in position ¢, the symbol decoded is uniformly
distributed among all elements of {0,1}* — {m;}. Therefore, the stegosystem creates a 2"-ary
symmetric channel with error probability 2¥~(1 — 27%) = 27"(2¥ — 1) (this comes from more
careful summation in the above proof). Its capacity is w — H[l —27"(2¥ — 1),27h 27" ... 27h]
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(where H is Shannon entropy of a distribution) [McE02, p. 58]. This is equal to w + (2% —
D2 " log 27"+ (1-27"(2% —1)) log(1—27"(2¥ —1)). Assuming error probability 27"(2% —1) < 1/2
and using log(1 —z) > —2z for 0 < z < 1/2, we get that the capacity of the channel created by the
encoder is at least w +27"(2% — 1)(—h —2) > w — (h+2)27"**. Thus, as | grows, we can achieve
rates close to w — (h + 2)27"% with near perfect security and reliability (independent of h).

4.1 Stateless Variants of STF

Our stegosystem STF is stateful because we need F' to take ctr as input, to make sure we never apply
the pseudorandom function more than once to the same input. This will happen automatically,
without the need for ctr, if the channel C has the following property: for any histories H and
‘H' such that H is the prefix of H’, the supports of Dy and Dy do not intersect. For instance,
when documents have monotonically increasing sequence numbers or timestamps, no shared state
is needed.

To remove the need for shared state for all channels, we can do the following. We remove
ctr as an input to F', and instead provide STF.SFE with the set Q of all values received so far as
answers from M. We replace the line “if 35/ < j s.t. s;; = s;,;7 with “if s, ; € Q” and add the
line “Q «— Q U {s;;}" before the end of the inner loop. Now shared state is no longer needed for
security, because we again get fresh coins on each draw from the channel, even if it collides with a
draw made for a previous hiddentext symbol. However, reliability suffers, because the larger [ is,
the more likely a collision will happen. A careful analysis, omitted here, shows that unreliability is
1227w (plus the insecurity of the PRF).

Unfortunately, this variant requires the encoder to store the set () of all the symbols ever
sampled from C. Thus, while it removes shared state, it requires a lot of private state. This storage
can be reduced somewhat by use of Bloom filters [Blo70] at the expense of introducing potential
false collisions and thus further decreasing reliability. An analysis utilizing the bounds of [BMO02]
(omitted here) shows that using a Bloom filter with (h —w —logl)/In 2 bits per entry will increase
unreliability by only a factor of 2, while potentially reducing storage significantly (because the
symbols of 3 require at least h bits to store, and possibly more if the Dy is sparse).

5 The Stateless Construction STL

The stateless construction STL is simply STF without the counter and collision detection (and is a
generalization to rate w of the construction that appeared in the extended abstract of [HLvA02]).
Again, we emphasize that the novelty is not in the construction but in the analysis. The construction
requires a reliability parameter k, to make sure that expected running time of the encoder does not
become infinite due a low-probability event of infinite running time.

Procedure STL.SE(K,w, k,m,H): Procedure STL.SD(K, w, s):
Let m = my ... m;, where m; is w bits long. Let s = s1...s;, where s; € X
fori«< 1tol: fori=1tol

J<0 m; — Fx(s;)

repeat : output m = mymsa - - My
j—i+1
sij — M(H)

until FK(SZ"J) =mjorj==k
si + 8ij; H < Hl|s;
output s = s189...5]
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Theorem 4. The stegosystem STL has insecurity
InSecdyy iy et dillw) € O 41e ") + InSeci ¥ (t + O(1),d + O(1),12").
More precisely,

Insecgiuw wclt:d, 1 lw) <

_ 1\"
27" (101 + 1)2% — (1 + 3)2" +21) + 21 (1 — 27;) +InSeci () (t +1,d + O(1),12").

Proof. The proof of Theorem 4 consists of a hybrid argument. The first step in the hybrid argument
is to replace the pseudorandom function F' with a random function G, which accounts for the term
InSec?aF) (t+ O(1),d+ O(1),12"). Then, rather than consider directly the statistical difference
between C and the output of SE on an [w-bit message, we bound it via a series of steps involving
related stegoencoders (these are not encoders in the sense defined in Section 2, as they do not have
corresponding decoders; they are simply related procedures that help in the proof).

We now describe these encoders SE1, SEo, SE3, and SE4. SE; is the same as SE except that
it uses a truly random G instead of pseudorandom F'. SEs is the same as SE1, except that it
maintains a set @ of all answers received from M so far. After receiving an answer s; ; «— M (H),
it checks if s;; € @; if so, it aborts and outputs “Fail”; else, it adds s; ; to @. It also aborts
and outputs “Fail” if j ever reaches k during an execution of the inner loop. SEj is the same as
SEs, except that instead of thinking of random function G as being fixed before hand, it creates
G “on the fly” by repeatedly flipping coins to decide the w-bit value assigned to s; ;. Since, like
SEs, it aborts whenever a collision between strings of covertexts occurs, the function will remain
consistent. Finally, SE, is the same as SE3, except that it never aborts with failure.

In a sequence of lemmas, we bound the statistical difference between the outputs of SE; and
SE9; show that it is the same as the statistical difference between the outputs of SE3 and SFEy;
and show that the outputs of SE5 and SFE3 are distributed identically. Finally, observe that SFE4
does nothing more than sample from the channel and then randomly and obliviously to the sample
keep or discard it. Hence, its output is distributed identically to the channel. The details of the
proof are contained in Appendix C O

Theorem 5. The stegosystem STL has unreliability
SS w —2w— —w— w
UnRelSTL(&w’k)’C’l <l (2 exp [—2h 2 1] + exp [—2 lk]) + InSec?&S (t,d,127).

where t and d are the expected running time and description size, respectively, of the stegoencoder
and the stegodecoder combined.

Proof. See Appendix D. O
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A  Proof of Theorem 1

Define the set E = {(D,S) | D = D1 xDyx... is a flat h-channel; sij € Di}. Fory=wyi...y € ¥*,
we will use notation y € D to mean that y; is in the support of D;. For an algorithm F' we define
Q(F') to be the set of responses to the oracle queries of F'; and @; C @ to be the set of responses
to queries with input i.

In the following lemma we prove that any procedure that tries to reproduce the behaviour of
a randomly chosen flat h-channel, must output only what it samples. This is meaningful, because
the encoder must reproduce the behaviour of the channel, to satisfy the security.

Lemma 2. Consider any (possibly randomized) procedure F' that is given oracle access to a random
flat h-channel ﬁ, whose goal is to output an element from the support of D. Provided that h is
sufficiently smaller than log S, if F outputs something it did not get from the oracle, then its
probability of success is low.

More precisely, let FS : {0,1}* — ¥* (the input to F is its randomness). Define the following
two events, each a subset of E x {0,1}*:

e non queried: Nq = {((13,5),7") | (3DFS(r); ¢ Qs(FS(r)) A |FS(r)| =1}
e in support: Ins = {((D,S),r) | FS(r) e D A |FS(r)| =1}

Then:

Pr

H
(5,$)€E,T€{0,1}*[Ins A Ngq] < g

Proof. Let A; = {(D,S,7) | (FS(r)); ¢ Qi}, fori e {1,...,1}. Now B; = A;\ (A1 U... A;_1) is the
set of all (D,S,r) for which the i-th coordinate F(r) is not sampled, but coordinates 1, ...,i — 1
are. Clearly, B; are disjoint and U§:1 B; = A where A = Ui=1 A;. Now the probability we are
interested in can be upper bounded by

= 1
Y Prly=F3(r) €Dy x...x (D;\ Qi) x...x Dy | (D,S,r) € Bj]-Pr[By] | - 5
1<i<l ~ r[A]
- ()
To bound (%) for some i, fix everything but the i-th component of D:
S—IQi\—l)
s (jo-)  H-1Q) _H
Prrandom flat h—channelDi[F (T) €Dy x...x (Dl\Qz) X ... X Dl] = (S—\Qi|) = g ’Q’ < g
H—|Qil '

Since this quantity is independent of other coordinates of 5, as well as of s and r, we have that
(x) < % Finally, since the disjoint union over of B; forms the whole space of interest to us, we

have that Pi(By
> ) g S

|

O

We are now ready to prove Theorem 1 by combining observations of Lemmas 1 and 2. We define
the following events, which are all subsets of E x {0,1}* x {0, 1} x {0,1}> (below v denotes the
randomness of SE):
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e “SE makes fewer than N queries to encode m under K”7: Few = {]j, S, K,m,v | SES(K,m;v))
makes fewer than N queries}

e “SE outputs a Correct encoding of m under K”: Corr = {D, S, K, m,v | SD(K, SES(K,m;v)) =
m}

e “m has an encoding t under K, and this encoding has low weight”: Lw = {Z_j, S, K,m,v(3t) |
SD(K,t)=m AN W(t,S) < N}

e Ins and Nq as in Lemma 2, but as subsets of F x {0,1}*{0, 1}'* x {0, 1}*>

Suppose that SE outputs a correct encoding of a message m. In that case, the probability that it
made at most N queries to the channel, is upper bounded by the probability that: (i) there exists
an encoding of m of weight at most N, or (ii) SE output something it did not query. In other
words,

Pr[Few | Corr] < Pr[Lw | Corr] + Pr[Nq | Corr].

Now we have

Pr[Few] = Pr[Few N Corr|+ Pr[Few N Corr]
< Pr[Fewn Corr] + Pr[Corr]
= Pr[Few | Corr] - Pr[Corr] + Pr[Corr]
< (Pr[Lw | Corr] + Pr[Ngq | Corr]) - Pr[Corr] + Pr[Corr]
= Pr[Lw N Corr] + Pr[Ng N Corr] + Pr[Corr]
< Pr[Lw] + Pr[Ng] + Pr[Corr].

But because the reliability is at least 1 — p, we have that
Pr[Few] < Pr[Lw| 4+ Pr[Nq] + p. (1)

Now notice that, if the encoder outputs something not in 5, then it must have not queried it,
i.e. Ins C Nq. Because of this, we have that Pr[Ins | Ng] = Pr[Ins]/Pr[Ng] and so Pr[Nq| =
Pr[Ins|/Pr[Ins | Nq|, but because the insecurity is €, it holds that

Pr[Nq] < ¢/Pr[Ins | Nq|.
By Lemma 2 we know that Pr[Ins | N¢] < H/S and so

€
< —
PriNd = =75

Finally, by Lemma 1 we have

Pr[Lw] < (—)l : (3)

12w
Now by combining (1), (2) and (3) we get that

Ne\' €
Pr|F <|— P a———
r| ew]_<l2w> +p+1—H/S

Note that the probability is taken, in particular, over a random choice of D. Therefore, it holds
for at least one flat h-channel. y
The expected number of queries follows from the fact that Efg] = >, Prjz > N] = 11\2,:66(1 -

Prlg < NJ) = 2% — [/ (58)" + p+ =775 ) AV,
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B Proof of Theorem 2

The main challenge lies in formulating the analogue of Lemma 2 under computational restrictions.
Lemma 2 relies heavily on: (i) the inability of the encoder to predict the behaviour of the channel
(because the channel is random) and (ii) the ability of the adversary to test if a given string is in
the support of the channel (which the adversary has because it is unbounded). We need to mimic
this in the computationally bounded case. We do so by constructing a channel whose support
(i) appears random to a bounded encoder, but (i) has an efficient test of membership that the
adversary can perform given only the short advice. As already mentioned, we wish to replace a
pseudorandom channel with a random one and give the short pseudorandom seed to the adversary,
while keeping the min-entropy guarantee truthful.

Given the work of [GGNO3], it would be straightforward to specify the channel as a random
object (random subset D of ¥ of size H) admitting two types of queries: “sample” and “test
membership.” But another small wrinkle is that a pseudorandom implementation of such an object
would also replace random sampling with pseudorandom sampling, whereas in a stegosystem the
encoder is guaranteed a truly random sample from D (indeed, without such a guarantee, the min-
entropy guarantee is no longer meaningful). Therefore, we need to construct a slightly different
random object, implement it pseudorandomly, and add random sampling on top of it. We specify
the random object as follows. Recall that S = |%|, h is the min-entropy, and H = 2".

Definition 3 (Specification of a flat h-channel). Let M, be a probabilistic Turing machine
with an infinite random tape w. On input (S, H,t,a,b) € N>, M,, does the following:

e divides w into consecutive substrings y1,ys, . .. of length .S each;

e identifies among them the substrings that have exactly H ones; let y be the t-th such substring
(with probability one there are infinitely many such substrings, of course);

e returns the number of ones in y between, and including, positions a and b in y (on ill-formed
inputs, it returns some error symbol)

In what way does M = M, specify a flat h-channel? To see that, identify ¥ with {1,...,S},
and let D; be the subset of 3 indicated by the ones in y. Then D; has cardinality H and testing
membership in D; can be realized using a single query to M:

insuppM (¢, a):
return M(S,H,t,a,a)

Obviously, D, are selected uniformly at random, and independently of each other.

Thus, this object specifies the correct channel and allows membership testing. We now use this
object to allow for random sampling of D;. Outputting a random element of D; can be realized via
log S queries to M, using the following procedure (essentially, binary search):

rndelt™ (¢):
return random-element-in-range™ (S, H,t 1,5)

random-element-in-range™ (S, H,t,a,b) :
if a =0b then return a and terminate
m«— |(a+b)/2]
total — M (S, H,t,a,b)
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left — M(S,H,t,a,m)
r& {1,... total}
if r <left then
random-element-in-range™ (S, H,t,a, m)
else
random-element-in-range™ (S, H,t,m + 1,b)

We can implement this random object pseudorandomly using techniques of [GGN03]%. The
supports D1, Dy, ... will be selected pseudorandomly, and allow for efficient membership testing
given short advice (pseudorandom seed, essentially) — but they will still have the requisite min-
entropy h. Furthermore the sampling procedure rndelt(t) will still select a truly random element
from D;. Therefore, it is valid to expect proper performance of the encoder on the channel specified
by an implementation. However, the adversary will be able to test membership in the channel using
only the short seed used by the pseudorandom implementation.

Let us now introduce some notation that will allow us to state the claim about existence of
pseudo-implementations of flat h-channels.

Consider M1, an implementation of a flat h-channel with random tape w. How should we
denote that “a machine A has access to a channel given by M1I,”? For sake of consistency with
the computationally unbounded case, we do not let A interact directly with rndelt’ but rather
give it access to a fixed string — a draw sequence. Similarly to the computationally unbounded
case, we define:

DPRY = {a | insupp™ (t,a) = 1}

DPR® = DPRY x DPRY x ...
EPR, ={(w,S) | |w| =n,s;; € DPR?}.

Like for the unbounded case, we write y € DPR” to mean y1 € DPRY, ..., y), € DPRT;l; and, for
an algorithm F', we define Q(F') to be the set of responses to the oracle queries of F', and @Q; C @
to be the set of responses to queries with input «.

Clearly, for given n, picking at random (w,S) € EPR,, amounts to picking at random a channel
given by M1, and then a random draw sequence from that channel. Hence, to describe an experi-
ment in which A takes samples from a random channel given by M1, (Jw| = n) and where we are
interested in A’s outcome being equal to 1, we write Pr(, s)cgpr,, [A%(z) = 1].

In the following claims, we assume existence of a family of pseudorandom functions F with
insecurity InSecff({Tg (t,d,q) (recall InSec is a bound on the distinguishing advantage of any adver-
sary running in time at most ¢ of description size at most d making at most ¢ queries). To simplify
notation, we will omit the adversary’s description size d (it is not important, because this PRF
needs to be secure only in the standard model, not in the model with channel oracles; throughout,

In fact, we only slightly modify one of their constructions, namely that of interval sums of random boolean func-
tions. The authors [GGNO3] give a construction of a truthful pseudo-implementation of a random object determined
by a random boolean function f : {1,...,S} — {0,1} that accepts queries of the form (a,b) € N? and answers
Z?:a f(2). Roughly, their construction is as follows. Imagine a full binary tree of depth log S, whose leaves contain
values f(1), f(2),...,f(S). Any other node in the tree contains the sum of leaves reachable from it. Given access
to such tree, we can compute any sum f(a) + f(a+ 1) + ...+ f(b) in time proportional to logS. Moreover, such
trees need not be stored fully, but can be evaluated dynamically. The value in the root (i.e. the sum of all leaves)
has binomial distribution, and can be filled in pseudorandomly. Other nodes have more complex distributions, but
can too be filled in pseudorandomly and consistently, so that they contain the sums of their leaves. We refer the
reader to [GGNO3] for details. The modification that we make, is simply fixing the value in the root to H, so that
fO+f2)+...+ f(S)=H.
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the description size d will be equal to the description size of the stegosystem plus O(1), because
the stegosystem ultimately will be the distinguisher) and upperbound ¢ by t. We will then write
tprr(n,t) instead of InSecJ,PF_I({TB (t,d,q)

The following claim establishes that our pseudorandom channels can be implemented, and
follows from [GGNO03].

Claim 1. There is a polynomial p and a machine M 1,, with random tape w of length n which runs
in time polynomial in n and log S, such that: for oracle machine A, with input 1¥ and random tape
r running in time T, and for any S, H e N, H < S

Pr(w,S)eE,re{O,l}T [A}Sﬂ(lk) =1] - Pr(w,S)EEPRn,re{O,l}T [Ai(1k> =1]| <wprr(n,p(r)) +7-27",

Note that the second argument to tprpr does not depend on S (it depends on S only to the
extent that 7 does, whose dependence can be logarithmic); this is important, because we want to
keep the second argument to tprr as low a possible so that tprp is as low as possible.

Finally we are ready to state the lemma crucial for establishing the lower bound on the number
of queries in the computationally bounded case. Speaking loosely, we prove: any sampler that with
high probability outputs elements of the support of a pseudorandom flat hA-channel, must with high
probability output only what it had queried. More precisely, for a sampler F,. with random tape r
and running time 7 we define the following two families of events, indexed by n, the security of the
pseudo-implementation of the channel.

e InsPR, = {((w,S),r) € EPR,, x {0,1}7®) | y = FS(1¥), (Vt)y; € DPR¥}; this event isolates
the points in the probability space on which the sampler successfully outputs elements from
the support of the channel

e N¢PR, = {((w,S),r) € EPR,, x {0,1}7®) | y = FES(1¥), 3t)y: ¢ Q:(FS(1%))}; this event
isolates the points on which the sampler outputs something it had not queried.

We show that high probability of InsPR,, implies low probability of N¢gPR,,. Formal statement of
the lemma follows. To simplify notation, let R =1/(1 — H/S).

Lemma 3. There exists a polynomial p with the following property. Let F;S be a probabilistic
sampler with running time T and random tape r, and let S, H € N, H < S. If Pr[InsPR,,] < €(n),
then:

Pr[NgPR,] < Re(n) + (R+ 1)(tprr(n,p(T)) +27").

Proof. Let Ins and Nq be as in the proof of Theorem 1. Note that it is easy to construct an
efficient oracle machine that: (i) given oracle M I, runs the sampler and then tests if its output is
in DPRY; (ii) given oracle M, runs the sampler and tests if its output is in D determined by M.
This machine simply selects at random w, then simulates F' and answers its queries using rndelt
with the appropriate oracle. To test that the output is in the support, insupp with the same oracle
is used. Depending on the oracle, this machine either succeeds on InsPR,, or on Ins. A similar
oracle machine for N¢gPR and Ng can be constructed.
By the previous observation and Claim 1, we have that for some polynomial p;:

|Pr[InsPR,) — Pr[Ins]| < tprr(n,p1(7)) +27".
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Therefore Pr[Ins] < e(n) + tprr(n,p1(7)) + 27" It now follows® that Pr[Nq] < R(e(n) +
tprr(n, p1(tau))+27"). Applying Claim 1 again, and taking heed of the observation from the begin-
ning of this proof, we get that for some polynomial po, |Pr[NgPR, | —Pr[Nq|| < tprr(n,p2(7))+27"
and so

Pr[N¢PR,] < R(e(n) + tprr(n,pi(7)) + tprr(n,p2(7)) + (1 + R)27".

Now let p > max(p1, p2). O

We are now ready to prove Theorem 2. Let s be the security parameter for the stegosystem,
and let 7 be the running times of the stego encoder and decoder combined, and let v denote the
randomness used by the encoder. The proof is similar to that of Theorem 1. For n € N we define
the following events, all of them being subsets of EPR,, x {0,1}* x {0,1}“* x {0,1}":

o Few, = {|Q(SE*(K,m;v))| < N}
Corr, = {SD(K,SE*(K,m;v)) = m}
Lw, = {(3t)SD(K,t) =m AN W(s,t) < N}

Ins, = {SE*(K,m;v) € DPR*}
Nan = {(J)(SE*(K,m;v)); € Q(SE*(K,m,v))}

Just like in the proof of 1, one argues that Pr[Few,| < Pr[Lw,]| + Pr[Ng,] + Pr[Corr,| and then
that Pr[Corr,] < p and Pr[Lw,] < (Ne/12%)!. Tt follows that p, < (Ne/12¥)! 4+ p + Pr[Ng,]. It is
left to argue that Pr[Ng,| < v(n) + €R.
Consider an adversary against our stegosystem that contains w as part of its description, gives its
—_—
oracle a random message to encode, and then tests if the output is in DPR*. It can be implemented
to run in ¢(log S, n, ) steps for some polynomial ¢ 6, and has description size n+c for some constant

c. Hence its probability of detecting an stegoencoder output that is not in DPR® cannot be more
than InSec®® logS,n),n+ ¢, 1,lw). In other words,
S(x),DPR® (4(log 5,m) )

Pr[Tns,] < InSec>® log S, n), 1,1w).
r[Ins,] < In ecS(K)’lW(q(og n),n+c,1,lw)

By Lemma 3 we get

Pr[Ng,] < RInSec™ .,
Nan] < S(x),DPR®
for some polynomials p, ¢ and constant c.
Finally, to compute a bound on the expected value, we apply the same method as in the proof
of Theorem 1.

(q(log S,n),n+c, 1,lw) + (R+ 1)(tprr(n,p(T)) +27")

C Details of the Proof Of Theorem 4

For ease of notation, we will denote 2" (the upper bound on the probability of elements of Dy)
by p and 2% by R for the rest of this section. We formally specify SEs9, SE3 and SE4 in Figure 1.
The following proposition serves as a “warm-up” for the proof of the Lemma 4 which follows it.

5The argument is similar to the one found in the proof of Theorem 1. First note that Ins C Ng. Hence,
Pr[Ngq] = Pr[Ins]/Pr[Ins | Ng]. By Lemma 2 we have that Pr[Ins | Nq] < H/S, and we saw that Pr[Ins] <
€(n) + vprr(n,pi(7))

5For each y; it needs to test membership to DPRY, i.e. insupp™ !~ (t,y¢). Since MI runs in time polynomial in n
and log S, then for given w, insupp™’* can be implemented to run for poly(log S, n) steps.
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SEs(K,w, k,mq...my, H): SE3(K,w,k,my...my, H): SEL(K,w, k,mq...my, H):

Q0 Q0
fori«—1tol: fori«—1tol: fori«—1tol:
J=0 J=0 J=0
repeat : repeat : repeat :
Je=g+1 Je=g+1 Je=g+1
sij — M(H) sij — M(H) sij — M(H)
if s;; € Q or j =k + 1 then if s;; € Q or j =k + 1 then
abort and output ”Fail” abort and output ”Fail”
Q — QU {s;;} Q — QU {s;;}
Pick c € {0,1}* Pick c € {0,1}"
until G(s; ;) = m; until c=m; until c=m;
si « si 3 H«— Hl||s; s; « sij; H «— Hl||s; s« 8555 H «— Hl|s;
output s = 5182...8 output § = s182...9; output s = s182...9

Figure 1: “Encoders” SE,, SE3 and SE, used in the proof of Theorem 4

Proposition 1. The statistical difference between the output distributions of SE1 and SEs for a
w-bit hiddentext message m € {0,1}* is at most 2p/(R — 1)? + 2e~*/E That is,

g Pr [SE, (K, w,k,m,H) — s]
G,.M
VseX

- g”]&[SEQ(K,w,k,m,H) — 9]

< 2p(R —1)% 4 2¢7F/R
Proof. Consider the probability that SE9 outputs “Fail” while trying to encode some m € {0, 1}*.
This happens for one of two reasons. First, if after k& attempts to find s; ; such that G(s; ;) = m,
no such s; ; has been drawn. Second, if before SE5 finds a satisfactory s; ;, the same value is return
twice by M: in other words, there is been a collision between the unsuccessful covertext documents.

Let E; denote the event that one of these situations has occurred and n; denote the value of j
at which the event occurs. Then

Pr(E)] < (%YWF<%>32p+...+(%)k_l%_m“(%)k
o () e (%)
(Y S () e (B2

n1=0
R—1\"
= R—1)2 - -
p( )+< 7 )
< p(R—1)2+4 e FE,

Observe that the probability that SEo outputs a specific document s which is not “Fail” can
only be less than the probability that SE; outputs the same element. Since the total decrease over
all such s is at most the probability of failure from above, the total statistical difference is at most
2Pr[E). O
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Lemma 4. The statistical difference between the output of SE1 and SEo when encoding a message
m € {0, 1} is at most

p(I(1+1)R? —1(1 + 3)R +21) + 21 (1— %)k .

Proof. Proposition 1 deals with the case of [ = 1. It remains to extend this line of analysis to the
general case of [ > 1. As in the proof of Proposition 1, let E; denote the event that SE5 outputs
“Fail” while attempting to encode the ith block of m;. Note that F; grows with ¢ because the set
@ grows as more and more blocks are encoded. Also, let n; denote the number of attempts used
by SE> to encode the ith block. To simplify the analysis, we initially ignore the boundary case of
failure on attempt n; = k and treat a failure on this attempt like all others. Let E! denote these
events. Then, we have the following sequence of probabilities.
Recall that for Ff,
Pr[E;] < p(R—1)2.

In the harder case of El,

k
Pr[ES] = Z Pr[Ej|n; draws for bit 1] Pr[ny draws for bit 1]
ni=1
ko k n1+ng—1
D R—1\"
< RZZ<T) (n1+mn2—1)
ni=1no=1
k n1—1 k n k n
p R—1\"™ R—1\" R—1\™
5 () (B ) e 2
ni=1 ng=1 no=1
k n1—1
p (R - 1) ! /
< 2 l—z) (ElEl/p+m(R-1)
R~ \"R
< % (RPr[E|]/p + R2(R - 1))

= p2R-1)(R-1).

Similarly for Ef,

D k k k —-1 ni+ngs+ns—2
/
PI‘[EB] < R_ Z Z Z ( ) (n1 + no 4+ ng — 1)

" /R-1 1 /R-1\™
_ %2( - ) (RPrEQ]/eranZ:l(—) n;(—R ) )
k
< R@g@ 1) (RPr[ES)/p+miR(R—1))
< g(R2Pr[E2]/p+R3(R 1))
= pBR—1)(R—1).
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In general, for E! we have the recurrence,

P F/R—1\MT ,
Pr[E]] < fr <R> (RZ_2 Pr[ES]/p + niR™%(R — 1))

ni=1
< Pr[E_ ] +pR(R-1),

which when solved yields,

Pr[E]] < pliR—1)(R—1).

(2
Now summing up the probability of failure for each of the w-bit blocks of hiddentext gives,
l

gpr[Eg] < 2 (iR—1)
el )
(T

.

Rll:ll l:1>
_ p<(7> I+ 1) - (g) (z+3)z+z> .

Next, we compute the probability of the event that the encoding of block m; fails because there
were k unsuccessful attempts to find a string of n covertexts which evaluates to m; under G, given
that no collisions occurred so far. Call this event E;. Then

Pr[E;] < (%)k

k n1+k—1 - k n1—1
R 1 R—1\™ Pr[E R—1\™ .
PrlEy] < & 3 (T) _ r][R 1] > (T) < Pr[Ey],
R 1 k R _ 1 ni+no+k—2 k k ni1+no—2 R
Pr(Bs] < 25> ). (T) EY Y ( > < Pr[Ey],
ny= 1n1 1

and in general,

Pr[E;] < Pr[F].

) ni+ngt-+n;_1+k—(i—1)

1 k k k R—_1
SDID D I C=
TL1:1 7’L2:1 ni_lzl

So, the sum of the probabilities of the Ejs for i from 1 to [ is just I Pr[E;] =1 (%)k.
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Finally we compute the total probability of failure which is at most the sum of the E and E;
events. That is, the probability that SEs outputs “Fail” while encoding any of the [ w-bit blocks
of m; of m is at most

l
> Pr[E) Z Pr[E!] + Pr|Ej]
=1

< p(<%2) (I+1)l - @) (l+3)l+l> +z<%>k.

The statistical difference is at most just twice this amount.
O

Lemma 5. The statistical difference between the output distributions of SE2 and SEs for a random
function G and hiddentext message m € {0, 1} is zero.

Proof. Both SE5 and SE3 abort and output “Fail” whenever the encoding a block m; fails. This
occurs because either: (1) there are k unsuccessful attempts to find s; j such that G(s; ;) = k; or (2)
the same document is drawn twice, i.e. there is a collision between candidate covertext documents.
Hence, SE5 evaluates G at most once on each element of 3. So, although SEj3 ignores G and
creates its own random function by flipping coins at each evaluation, since no element of > will be
re-assigned a new value, the output distributions of SE5 and SE3 are identical. O

Lemma 6. The statistical difference between the output distributions of SEs and SE4 is equal to
the statistical difference between the output distributions of SE1 and SE9 used to encode the same
message.

Proof. As Lemma 4 shows, the probability that SE9 (and consequently SE3 by Lemma 5) outputs

“Fail” is at most
R? R R—1\F
SRV i -
<<2>(z+ y (2)(z+3)z+z>+z< - )

Note that SE4 has no such element; the probabilities of each output other that “Fail” can only
increase. Hence, the total statistical difference is twice the probability of “Fail.” Il

These three Lemmas, put together, conclude the proof of the Theorem. We can save a factor
of two in the statistical difference by the following observation. Half of the statistical difference
between the outputs of SE1 and SE9, as well as between the outputs of SE3 and SEy, is due to the
probability of "Fail”. Because neither SE1 nor SE4 output “Fail,” the statistical difference between
the distributions they produce is therefore only half of the sum of the statistical differences.

D Proof of Theorem 5

As usual, we consider unreliability if the encoder is using a truly random G then, for a pseudoran-
dom F, the encoder and decoder will act as a distinguisher for F' (because whether something was
encoded correctly can be easily tested by the decoder), which accounts for the InSec” " term.
Now, fix channel history H and w-bit message m, and consider the probability that G(Dy) is
so skewed that the weight of G=1(m) in Dy is less ¢2™% for some constant ¢ < 1 (note that the
expected weight is 27%). Let ¥ = {s1...s,} be the alphabet, and let Prp,,[s;] = p;. Define random
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variable X; as X; = 0 if G(s;) = m and X; = p; otherwise. Then the weight of G~!(m) equals
1 —3"", X;. Note that the expected value of > | X; = 1 — 27", Using Hoeffding’s inequality
(Theorem 2 of [Hoe63]), we obtain

Prl— Y X;<cR] < exp [—2(1—c)222“’/2p?]
i=1 i=1

< exp [—2(1 — 0)22_2w/2_h/zn:pi] — exp [_2(1 . 0)22h—2w} ’
i=1

where the second to last step follows from p; < 27" and the last step follows from Yoy pi=1. If we
now set ¢ = 1/2 and take the union bound over all message m € {0,1}", we get 2 exp [—2"72w~1].
Assuming G(Dy) is not so skewed, the probability of failure is

(1—c27")% <exp [—c27"k] .

The result follows from the union bound over I.

E On Using Public e-Biased Functions

Many stegosystems [HLvA02, vAH04, BC04] (particularly public-key ones) use the following ap-
proach: they encrypt the plaintext using encryption that is indistinguishable from random, and
then use rejection sampling with a public function f : ¥ — {0,1}" to stego-encode the plaintext.

For security, f should have small bias on Dy: i.e., for every ¢ € {0,1}*, Pryep,,[s € f1(c)]
should be close to 27%. It is commonly suggested that a universal hash function with a published
seed (e.g., as part of the public key) be used for f.

Assume the stegosystem has to work with a memoryless channel C, i.e., one for which the
distribution D is the same regardless of history. Let E be the distribution induced on ¥ by the
following process: choose a random ¢ € {0,1}" and then keep choosing s € D until f(s) = c¢. Note
that the statistical difference between D and E is exactly the bias € of f. We are interested in the
statistical difference between D' and E'.

For a universal hash function f that maps a distribution of min-entropy h to {0, 1}*, the bias
is roughly e = 2(-7+®)/2 Ag shown in [Rey04], if | < 1/e (which is reasonable to assume here),
statistical difference between D' and E' is roughly at least v/le.

Hence, the approach based on public hash functions results in statistical insecurity of about
\/Z2(—h+w)/2‘
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