
A preliminary version of this paper appears in Advances in Cryptology – EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, C. Cachin and J. Camenisch ed., Springer-Verlag, 2004.
This is the full version.

Security Proofs for Identity-Based

Identification and Signature Schemes

Mihir Bellare ∗ Chanathip Namprempre † Gregory Neven ‡

May 2004

Abstract

This paper provides either security proofs or attacks for a large number of identity-based identifi-
cation and signature schemes defined either explicitly or implicitly in existing literature. Underlying
these are a framework that on the one hand helps explain how these schemes are derived, and on the
other hand enables modular security analyses, thereby helping to understand, simplify and unify
previous work.

Keywords: Identity-based cryptography, identification schemes, security proofs, random-oracle
model.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grants CCR-0098123, ANR-0129617, CCR-0208842, and an IBM Faculty Partnership Development Award.

† Electrical Engineering Dept., Thammasat University, Klong Luang, Patumtani 12121, Thailand. E-Mail:
cnamprem@engr.tu.ac.th. URL: http://www.engr.tu.ac.th/~nchanath. Supported in part by the above-mentioned
grants of first author and Thailand Research Fund grant MRG4680002.

‡Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee-Leuven, Belgium.
E-Mail: Gregory.Neven@cs.kuleuven.ac.be. URL: http://www.cs.kuleuven.ac.be/~gregory. Supported by Research
Assistantship and travel credit from the Fund for Scientific Research, Flanders (Belgium).

1

mihir@cs.ucsd.edu
mailto:mihir@cs.ucsd.edu
http://www-cse.ucsd.edu/users/mihir
cnamprem@engr.tu.ac.th
mailto:cnamprem@engr.tu.ac.th
http://www.engr.tu.ac.th/~nchanath
Gregory.Neven@cs.kuleuven.ac.be
mailto:Gregory.Neven@cs.kuleuven.ac.be
http://www.cs.kuleuven.ac.be/~gregory

Contents

1 Introduction 3

2 Notation and Standard Definitions 8

3 Definitions for IBI and IBS Schemes 10

4 Certificate-based IBI and IBS 13
4.1 Certificate-based IBI . 13
4.2 Certificate-based IBS . 14
4.3 Discussion of Certificate-based Constructs . 15

5 Transformations 15
5.1 Trapdoor Samplable Relations . 16
5.2 Convertible Schemes and the cSI-2-IBI Transform . 16
5.3 The cSS-2-IBS Transform . 19
5.4 The fs-I-2-S Transform . 20
5.5 The efs-IBI-2-IBS Transform . 21

6 Applying the Framework 23
6.1 Schemes based on Factoring . 24

6.1.1 The FFS and ItR Families . 24
6.1.2 The FF Family . 26

6.2 Schemes based on RSA . 27
6.2.1 The GQ Family . 27
6.2.2 The Sh and Sh∗ Families . 29
6.2.3 The OkRSA Family . 30
6.2.4 The Gir Family . 31

6.3 Schemes based on Pairings . 33
6.3.1 The SOK , Hs and ChCh Families . 34

6.4 A Scheme based on Discrete Logarithms . 36

7 Exceptions: Schemes needing Direct Proofs 39
7.1 Definitions and Lemmas . 39
7.2 The OkDL-IBI and OkDL-IBS Schemes . 40
7.3 The BNN -IBI and BNN -IBS Schemes . 44

A Proof of Theorem 4.2 50

2

1 Introduction

IBI and IBS. In an identity-based identification (IBI) scheme, there is an authority having a master
public key and a master secret key. This authority can provide a user with a secret key based on its
identity. The user, playing the role of a prover, can then identify itself to a verifier in a protocol in
which the verifier begins by knowing only the claimed identity of the prover and the master key of the
authority. An identity-based signature (IBS) scheme is similar except that the user signs messages,
rather than identifying itself, and verification of a signature requires knowledge only of the identity of
the signer and the master public key.

Current state of the area. The late eighties and early nineties saw the proposal of many IBI
and IBS schemes. These include the Fiat-Shamir IBI and IBS schemes [FS86], the Guillou-Quisquater
IBI and IBS schemes [GQ89], the IBS scheme in Shamir’s paper [Sha84] introducing identity-based
cryptography, and others [Bet88, Oka93, Gir90]. Now, new, pairing-based IBS schemes are being
proposed [SOK00, Pat02, Hes03, CC03, Yi03].

Prompted by the renewed interest in identity-based cryptography that has followed identity-based
encryption (IBE) [BF01], we decided to revisit the IBI and IBS areas. An examination of past work
revealed the following.

Although there is a lot of work on proving security in the identification domain, it pertains
to standard rather than identity-based schemes. (For example, security proofs have been provided
for standard identification schemes related to the Fiat-Shamir and Guillou-Quisquater IBI schemes
[FFS88, BP02], but not for the IBI schemes themselves.) In fact, a provable-security treatment of
IBI schemes is entirely lacking: there are no security definitions, and none of the existing schemes is
proven secure. Given the practical importance and usage of IBI schemes, this is an important (and
somewhat surprising) gap.

The situation for IBS is somewhat better. Cha and Cheon provide a definition of security for IBS
schemes and prove their scheme secure [CC03]. Dodis, Katz, Xu, and Yung [DKXY03] define a class
of standard signature (SS) schemes that they call trapdoor, and then present a random-oracle-using
transform (let us call it tSS-2-IBS) that turns any secure trapdoor SS (tSS) scheme into a secure IBS
scheme. Security proofs for several existing IBS schemes, including those of [FS86, GQ89], are obtained
by observing that these are the result of applying tSS-2-IBS to underlying tSS schemes already proven
secure in the literature [OO98, PS00, AABN02]. However, as we will see, there are several IBS schemes
not yet proven secure (one example is Shamir’s IBS scheme [Sha84]), either because they are not the
result of applying tSS-2-IBS to a tSS scheme, or because, although they are, the tSS scheme in question
has not yet been analyzed.

The goal of this paper is to fill the above-mentioned gaps in the IBI and IBS areas.

Definitions. The first step, naturally, is definitions. We extend to the IBI setting the three notions of
security for standard identification (SI) schemes, namely security against impersonation under passive
attacks (imp-pa), active attacks (imp-aa) [FFS88], and concurrent attacks (imp-ca) [BP02]. Our model
allows the adversary to expose user (prover) keys, and to mount either passive, active, or concurrent
attacks on the provers, winning if it succeeds in impersonating a prover of its choice. We remark that
although existing security definitions for other identity-based primitives [BF01, CC03, DKXY03] give
us some guidance as to what adversary capabilities to consider, there are some issues in the definition
for IBI that need thought, for example with regard to capabilities the adversary gets in what stage of
its two-stage attack. See Section 2.

The security notion for SS schemes is the standard unforgeability under chosen-message attack
(uf-cma) [GMR88]. An appropriate extension of it for IBS schemes exists [CC03, DKXY03] and we
refer to it also as uf-cma. These definitions are recalled in Section 2.

3

Name-SI

Name-SS

Name-IBI

Name-IBS

-
cSI-2-IBI

-
cSS-2-IBS

?

fs
-I
-2

-S

?

fs
-I
-2

-S

Figure 1: Family of schemes associated with a cSI scheme Name-SI . If Name-SI is imp-atk secure then
Name-IBI is also imp-atk secure, for all atk ∈ {pa, aa, ca}. If Name-SI is imp-pa secure then Name-IBS
is uf-cma secure. Implicit in drawing the diagram this way is that fs-I-2-S(cSI-2-IBI(Name-SI)) =
cSS-2-IBS(fs-I-2-S(Name-SI)).

Certificate-based IBI and IBS. Before executing the main task of analyzing practical IBI and
IBS schemes, we pause to note a very simply and natural design of an IBI scheme, based on any
given SI scheme. The design is based on the certification paradigm. The authority picks a public and
secret key pair (pk , sk) for a SI scheme, and provides these to prover I along with a certificate cert
consisting of the authority’s signature on I, pk . The prover can now flow pk , cert to the verifier and
then identify itself via the SI scheme under pk . The verifier needs to know only I and the public key
of the authority in order to authenticate the prover. Theorem 4.2 says that this yields a secure IBI
scheme. An analogous result holds in the IBS case.

Although simple, we believe this is worth noting. It highlights the fact that, unlike IBE [BF01], IBI
and IBS are trivial to achieve, and in particular do not require random-oracles. It also enables us to
better understand what the practical schemes are trying to do, namely to beat the trivial certificate-
based schemes in performance. Finally this shows that secure IBI and IBS schemes (in the standard,
not the RO, model) exist if and only if one-way functions exist, answering the main foundational
question with regard to these primitives.

Main contributions and approach. This paper delivers security proofs for a large number of
practical IBI and IBS schemes, including not only the ones mentioned above, but many more that we
surface as having been, with hindsight, implicit in the literature.

We do this in two steps. In the first step, we provide a framework that (in most cases) reduces
proving security of IBI or IBS schemes to proving security of an underlying SI scheme. In a few cases,
we found that the SI schemes in question were already analyzed in the literature, but in many cases
they were not. The second step, where lies the main technical work of the paper, is to provide security
proofs for those SI schemes not already proven secure, and then provide direct security proofs for the
few exceptional IBI or IBS schemes that escape being captured by our framework.

The framework is of value beyond its ability to reduce proving security of IBI and IBS schemes to
proving security of SI schemes. It helps understand how schemes are being derived, and in the process
surfaces the implicit schemes we mentioned above. Overall, the framework contributes to simplifying
and unifying our picture of the area. We now explain the framework, which is based on a set of
transforms, and then summarize the results for specific schemes.

The transforms. We introduce (cf. Definition 5.2) a class of SI schemes that we call convertible.
The idea is that their key-generation process be underlain by a primitive called a trapdoor samplable
relation that we introduce in Definition 5.1. We then present a random-oracle-using transform cSI-2-IBI

that transforms a convertible SI (cSI) scheme into an IBI scheme (cf. Construction 5.3). Theorem 5.4
shows that cSI-2-IBI is security-preserving, meaning that if the starting cSI scheme is imp-atk secure
then so is the resulting IBI scheme (in the random oracle model), for each atk ∈ {pa, aa, ca}. This

4

will be our main tool for proving security of IBI schemes.
It is useful to analogously define convertible standard signature (cSS) schemes and a transform

cSS-2-IBS that turns a uf-cma secure cSS scheme into a uf-cma secure IBS scheme. These extend
[DKXY03] in the sense that any tSS scheme is also a cSS scheme, and cSS-2-IBS coincides with
tSS-2-IBS when the starting scheme is a tSS scheme, but the class of cSS schemes is larger than the
class of tSS schemes.

Now let fs-I-2-S denote the (random-oracle using) Fiat-Shamir transform [FS86] which turns a SI
scheme into a SS scheme. We know that if the former is imp-pa secure then the latter is uf-cma secure
[AABN02]. (Application of the transform and this last result requires that the starting SI scheme be
a three-move public-coin protocol satisfying a certain technical condition, but all this will always be
true for the applications we consider.)

Putting the above together yields Corollary 5.10, which says that, as long as a cSI scheme X is
imp-pa secure, the IBS scheme cSS-2-IBS(fs-I-2-S(X)) is uf-cma secure. This will be our main tool for
proving security of IBS schemes.

We note that fs-I-2-S also transforms a given IBI scheme into an IBS scheme. Furthermore,
cSS-2-IBS(fs-I-2-S(X)) = fs-I-2-S(cSI-2-IBI(X)) for any cSI scheme X. In other words, the diagram of
Figure 1 “commutes.”

As an aside, we remark that the analogue of the result of [AABN02] does not hold for fs-I-2-S
as a transform of IBI schemes to IBS schemes: Proposition 5.11 shows that there exists an imp-pa
secure IBI scheme Y which under fs-I-2-S yields an insecure IBS scheme. This does not contradict
the above since this Y is not the result of cSI-2-IBI applied to a cSI scheme, but it makes things more
difficult in a few exception cases (that we will see later) in which we need to consider an IBS scheme
Z = fs-I-2-S(Y) where Y is an IBI scheme that is not equal to cSI-2-IBI(X) for any cSI scheme X. See
the end of Section 5 for more information.

Scheme families. We seek to explain any IBI scheme Y in the literature by surfacing a cSI scheme
X such that cSI-2-IBI(X) = Y . We seek to explain any IBS scheme Z in the literature by surfacing
a cSI scheme X such that cSS-2-IBS(fs-I-2-S(X)) = Z. We are able to do this for the schemes in
[Sha84, FS86, Bet88, GQ89, Gir90, Hes03, CC03, Yi03] and for the RSA-based IBI scheme in [Oka93].
By Theorem 5.4 and Corollary 5.10, this reduces the task of showing that Y, Z are secure to showing
that X is secure in these cases.

We remark that the above gives rise to numerous schemes that are “new” in the sense that they
were not provided explicitly in the literature. For example, Shamir [Sha84] defined an IBS scheme
but no IBI scheme. (He even says providing an IBI scheme is an open question.) Denoting Shamir’s
IBS scheme by Sh-IBS , we surface the cSI scheme Sh-SI such that cSS-2-IBS(fs-I-2-S(Sh-SI)) =
fs-I-2-S(cSI-2-IBI(Sh-SI)) = Sh-IBS . As a consequence, we surface the IBI scheme Sh-IBI = cSI-2-IBI(
Sh-SI) that is related in a natural way to Sh-IBS , namely by the fact that fs-I-2-S(Sh-IBI) = Sh-IBS .
In an analogous way we surface IBI schemes Hs-IBI and ChCh-IBI underlying the IBS schemes of
[Hes03] and [CC03, Yi03], respectively.

Beside explaining existing IBI or IBS schemes, we are able to derive some new ones. We found
papers in the literature [OO90, OS90, FF02] not defining IBI or IBS schemes, but defining SI schemes
that we can show are convertible. Our transforms then yield new IBI and IBS schemes that we analyze.

We feel that this systematic surfacing of implicit schemes helps to homogenize, unify, and simplify
the area. Figure 1 summarizes the perspective that emerges. We view schemes as occurring in families.
Each family has a family name Name. At the core of the family is a cSI scheme Name-SI . The other
schemes are related to it via Name-IBI = cSI-2-IBI(Name-SI), Name-SS = fs-I-2-S(Name-SI), and
Name-IBS = cSS-2-IBS(Name-SS). If Name-SI is secure, so are all other schemes in the family.

Results for specific schemes. In order to complete the task of obtaining security proofs for

5

Name Origin Name-SI Name-IBI Name-SS Name-IBS

im
p
-p

a

im
p
-a

a

im
p
-c

a

im
p
-p

a

im
p
-a

a

im
p
-c

a

u
f-

cm
a

u
f-

cm
a

FFS IBI,IBS [FS86, FFS88] [FFS88] [FFS88] I I I I [PS00] [DKXY03]
ItR SI, SS [OO90, OS90] [Sch96] [Sch96] U I I U [PS00] [DKXY03]
FF SI,SS [FF02] [FF02] [FF02] [FF02] I I I [FF02] I
GQ IBI, IBS [GQ89] [GQ89] [BP02] [BP02] I I I [PS00] [DKXY03]
Sh IBS [Sha84] P A A I A A I I
Sh∗ SI P P P I I I I I
OkRSA SI, IBI, SS [Oka93] [Oka93] [Oka93] I I I I [PS00] I
Gir SI, IBI [Gir90, SSN98] A A A A A A A A
SOK IBS [SOK00] P A A I A A I I
Hs IBS [Hes03] P P P I I I [Hes03] [DKXY03]
ChCh IBS [CC03, Yi03] P P P I I I [CC03] [CC03]
Beth IBI [Bet88] P U U I U U I I
OkDL IBI [Oka93] I I I P P P I I
BNN SI,IBI I I I P P P I I

Figure 2: Summary of security results. Column 1 is the family name of a family of schemes. Column 2
indicates which of the four member-schemes of the family existed in the literature. (The others we surface.)
In the security columns, a known result is indicated via a reference to the paper establishing it. The marks
I, P, and A all indicate new results obtained in this paper. An I indicates a proof of security obtained by
implication. (If under Name-IBI it means we obtain it via Theorem 5.4, if under Name-IBS it means we obtain
it either via Corollary 5.10 or via our modified fs-I-2-S transform, if elsewhere it means it follows easily from, or
is an easy extension of, existing work.) A P indicates a new security proof, such as a from-scratch analysis of
some SI or IBI scheme. An A indicates an attack that we have found. A U indicates that the security status is
unknown. In all but the last two rows, the SI scheme is convertible. The first set of schemes are factoring based,
the next RSA based, the next pairing based, and the last DL based. For each of the schemes above except for
the last two, Name-IBS is obtained through the fs-I-2-S transform. The schemes OkDL-IBS and BNN -IBS are
obtained through a modified version of the fs-I-2-S transform.

the existing and new IBI and IBS schemes we have discussed, it remains to analyze the cSI schemes
underlying the families in question. This turns out to be a large task, for although in a few cases the
cSI scheme is one already analyzed in the literature, we found (perhaps surprisingly) that in many
cases it is not. Additionally, we need to directly analyze two IBI schemes not underlain by cSI schemes,
namely the DL-based scheme in [Oka93], and a somewhat more efficient Schnorr-based [Sch90] variant
that we introduce.

A summary of our results is in Figure 2. Section 6 and Section 7 provide scheme descriptions
and more precise result statements. Note all security proofs for SS, IBI, and IBS schemes are in the
random-oracle (RO) model of [BR93]. Here, we highlight some of the important elements of these
results.

Cases captured by our framework. Section 6 begins by surfacing SI schemes underlying the
first 12 (i.e. all but the last two) families of Figure 2 and shows that they are convertible, so that the
picture of Figure 1 holds in all these cases and we need only consider security of the cSI schemes. The
analysis of these schemes follows.

Easy cases are FFS , ItR (the iterated-root, also called 2t-th root, family), FF , GQ , and OkRSA
(an RSA-based family from [Oka93]) where the SI schemes are already present and analyzed in the
literature [FFS88, Oka93, Sch96, FF02, BP02].

The Sh-SI scheme turns out to be a mirror-image of GQ -SI , and is interesting technically because

6

we show that it is honest-verifier zero-knowledge (HVZK) even though it might not at first appear
to be so. Based on this, we prove that it is imp-pa (cf. Theorem 6.2), but simple attacks show that
imp-aa and imp-ca do not hold. A slight modification Sh ∗-SI of this scheme however is not only
imp-pa but also proven imp-aa and imp-ca secure under the one-more RSA assumption of [BNPS03]
(cf. Theorem 6.3), so that its security is like that of GQ -SI [BP02].

An attack and a fix for Girault’s IBI scheme [Gir90] were proposed in [SSN98], but we find attacks
on the fixed scheme as well, breaking all schemes in the family.

We prove imp-pa security of the pairing-based SOK -SI , Hs-SI and ChCh-SI schemes under a
computational DH assumption and imp-aa, imp-ca security under a one-more computational DH as-
sumption (cf. Theorems 6.5 and 6.6). We remark that the SOK -IBS scheme defined via our transforms
is not the one of [SOK00], but is slightly different. This suggests the value of our framework, for it
is unclear whether the IBS scheme of [SOK00] can be proved uf-cma secure, whereas Corollary 5.10
implies that SOK -IBS is uf-cma secure.

Since the discrete-log function has no known trapdoor it is not an obvious starting point for IBI
schemes, but some do exist. Beth’s (unproven) IBI scheme [Bet88] is based on ElGamal signatures.
The proof of convertibility of the Beth-SI scheme we surface is interesting in that it exploits the
existential forgeability of ElGamal signatures. Theorem 6.7 says that Beth−SI is imp-pa secure if the
hashed-message ElGamal signature scheme is universally unforgeable under no-message attack in the
random-oracle model.

Exceptions. The last two rows of Figure 2 represent cases where our framework does not apply
and direct analyses are needed. The first such case is an unproven DL-based IBI scheme OkDL-IBI
due to Okamoto [Oka93], who here introduces an interesting SS-based method for constructing IBI
schemes and instantiates it with his own DL-based SS scheme. We were unable to surface any cSI
scheme which under cSI-2-IBI maps to OkDL-IBI . (OkDL-IBI can be “dropped” in a natural way
to a SI scheme OkDL-SI , but the latter does not appear to be convertible.) However, Theorem 7.2
shows that OkDL-IBI is nevertheless imp-pa, imp-aa, and imp-ca secure assuming hardness of the
DL problem. This direct proof is probably the most technical in the paper and uses the security of
Okamoto’s DL-based SS scheme under a weakened notion of non-malleability [SPMLS02], which is
established via an extension of the result of [AABN02] combined with results from [Oka93]. We also
present a new IBI scheme BNN -IBI that is based on the paradigm underlying OkDL-IBI but uses
Schnorr signatures [Sch90] instead of Okamoto signatures. It is slightly more efficient than OkDL-IBI .
Security results are analogous to those above (cf. Theorems 7.3, 7.4).

Proposition 5.11 precludes proving security of the IBS schemes fs-I-2-S(OkDL-IBI) and fs-I-2-S(
BNN -IBI) based merely on the security properties of the IBI schemes. However, we slightly modify
the classical fs-I-2-S transform and obtain a transform that yields a secure uf-cma IBS scheme when
applied to an imp-pa IBI scheme. We can then apply this transform to OkDL-IBI or BNN -IBI to
obtain uf-cma IBS schemes.

Related work. Independent of our work, Kurosawa and Heng [KH04] presented a transform from a
certain class of “zero-knowledge” SS schemes to IBI schemes. However, the IBI scheme resulting from
their transform is only shown to be secure against impersonation under passive attacks.

Consider the IBS scheme efs-IBI-2-IBS(SOK -IBI), obtained by applying our extended Fiat-Shamir
transform to our modified version SOK -IBI of the IBI scheme of [SOK00]. This IBS scheme is different
from the SOK -IBS scheme that we noted we prove secure above, but a proof of security of this scheme
(in the RO model under the CDH assumption) too follows by combining Theorems 6.5 and 5.13.
Interestingly, following our work, Libert and Quisquater [LQ04] show that this scheme has a tight
security reduction from the CDH problem, which seems to be a rather unique feature for IBS schemes.

It might be worth clarifying that there are many SI schemes in the literature that are not cSI and

7

have no IBI or IBS counterparts. These include the Schnorr scheme [Sch90].

2 Notation and Standard Definitions

Notation. We let N = {1, 2, 3, . . .} denote the set of natural numbers. If k ∈ N, then 1k is the string
of k ones. The empty string is denoted ε. If x, y are strings, then |x| is the length of x and x‖y is the
concatenation of x and y. If S is a set, then |S| is its cardinality. If A is a randomized algorithm, then

A(x1, x2, . . . : O1,O2, . . .)

means that A has inputs x1, x2, . . . and access to oracles O1,O2, Also

y
$← A(x1, x2, . . . : O1,O2, . . .)

means that we run the randomized algorithm A on inputs x1, x2, . . . and with access to oracles
O1,O2, . . ., and let y denote the output obtained. The set of all possible outputs is denoted by

[A(x1, x2, . . . : O1,O2, . . .)] .

Provers and verifiers. An interactive algorithm (modeling a party such as prover or verifier in
a protocol) is a stateful algorithm that on input an incoming message Min (this is ε if the party is
initiating the protocol) and state information St outputs an outgoing message Mout and updated state
St ′. The initial state of A contains its initial inputs and optionally a random tape ρ; if no random
tape is explicitly given in the initial state, A is assumed to toss its own coins.

In an interaction between a prover P and verifier V (both modeled as interactive algorithms) we
assume the prover sends the first message and the interaction ends when V enters either an accepting
or rejecting state. We write

(C, d)
$← Run[P(p1, . . . : OP1, . . .)↔V(v1, . . . : OV1, . . .)]

to indicate that we let P (with initial inputs p1, . . . and indicated oracles) interact with V (with initial
inputs v1, . . . and indicated oracles), having provided both P and V with fresh random coins, to get a
conversation transcript C and a boolean decision d with 1 meaning that V accepted and 0 meaning it
rejected. In more detail, the pair (C, d) is the outcome of the following:

Pick random coins ρP for P ; Pick random coins ρV for V

StP ← (p1, . . . , ρP) ; StV ← (v1, . . . , ρV) ; Min ← ε ; C ← ε
While (StV 6∈ {acc, rej}) do

(Mout,StP)← P(Min,StP) ; C ← C‖Mout

(Min,StV)← V(Mout,StV) ; If (StV 6∈ {acc, rej}) then C ← C‖Min

If StV = acc then d← 1 else d← 0
Return (C, d)

Resource usage conventions. We may want to talk of the resources of an adversary, such as
its running time and the number of its oracle queries. The context will be an overlying experiment,
depending on a security parameter k, in which the adversary is executed. We measure its resource
usage as a function of k. We say that the running time of adversary A is at most TA if for every
k, the running time of A in the experiment does not exceed TA(k) steps. Similarly, we say that A

makes at most QO
A

queries to oracle O if for every k, the number of queries made by A to O in
the experiment does not exceed QO

A
(k). These bounds must hold not only for all executions of the

experiment, meaning all coin tosses used, but also across all possible answers to oracle queries. We
always assume that functions such as TA,QO

A
are poly(k) bounded and poly(k) time computable.

8

Oracle Conv()

(C, d)
$← Run[P (sk)↔V (pk)]

Return C

Oracle Prov(s, Min)
If s 6∈ PID then

If atk = aa then PID ← {s}
If atk = ca then PID ← PID ∪ {s}
Pick random coins ρ for P ; StP[s]← (sk , ρ)

(Mout,StP[s])← P(Min,StP[s])
Return Mout

Expimp-atk
SI ,A (k) // atk ∈ {pa, aa, ca}, A = (CV, CP)

(pk , sk)
$← Kg(1k) ; PID ← ∅

If atk = pa then let Or denote Conv else let Or denote Prov

StCP ← CV(1k, pk : Or) ; (C, d)
$← Run[CP(StCP : Or)↔V (pk)]

Return d

Figure 3: Oracles given to adversary attacking SI scheme SI = (Kg, P, V), and experiment used to
define imp-atk security of the scheme.

For a pair of algorithms A = (P, V), we use the shorthand notations TA(k) = TP(k) + TV(k) and
QO

A
= QO

P
+ QO

V
.

Standard identification schemes. A standard identification (SI) scheme is a tuple SI = (Kg, P, V)
where Kg is the randomized polynomial-time key generation algorithm, and P and V are polynomial-
time interactive algorithms called the prover and verifier algorithms, respectively. In an initialization
step, the prover runs Kg(1k), where k is a security parameter, to obtain a key pair (pk , sk), and
publishes the public key pk while keeping the secret key sk private. In the interactive identification
protocol, the prover runs P with initial state sk , and the verifier runs V with initial state pk . The
protocol is initiated by the prover, who sends the first message, and ends when the verifier enters
either the acc or rej state. We require that for all k ∈ N and all (pk , sk) ∈ [Kg(1k)], the decision
taken by the V in the interaction between P (initialized with sk) and V (initialized with pk) is acc

with probability one.

Security of SI schemes. We recall the notions of impersonation under passive (imp-pa), active
(imp-aa) [FFS88], and concurrent (imp-ca) attack [BP02]. Let SI = (Kg, P, V) be a SI scheme,
A = (CV, CP) an adversary (consisting of a cheating verifier CV and a cheating prover CP) and k ∈ N

a security parameter. Consider the experiment of Figure 3. The type of attack atk ∈ {pa, aa, ca} is
a parameter, and the adversary has access to the oracles shown in the same Figure. The imp-atk
advantage of A in attacking SI is

Advimp-atk
SI ,A (k) = Pr

[

Expimp-atk
SI ,A (k) = 1

]

.

We say that SI is an imp-atk-secure SI scheme if Advimp-atk
SI ,A (·) is negligible for every polynomial-

time A.
The cheating verifier CV gets initial inputs 1k, pk . In the case of a passive (pa) attack, CV gets

a conversation oracle, which, upon a query, returns a transcript of the conversation between P (with
initial state sk) and V (with initial state pk), each time generated under fresh coins for both parties.
For an active attack (aa) or concurrent attack (ca), CV gets a prover oracle Prov. Upon a query
(s, M) where s is a session number and M is a message, the Prov oracle runs the prover algorithm
using M as an incoming message and returns the prover’s outgoing message while maintaining the

9

prover’s state associated with the session s across the invocations. (For each new session, Prov uses
fresh random coins to start the prover, initializing it with sk .) The difference between active and
concurrent attacks is that the former allows only a single session to be active at a time. Eventually,
CV halts with some output that is given to CP, and A wins if the interaction between CP and V

(initialized with pk) leads the latter to accept. The advantage of the adversary is the probability that
it wins.

Standard signature schemes. A standard signature (SS) scheme SS is a triple of algorithms
(Kg, Sign, Vf). On input 1k, where k is the security parameter, the randomized key generation algo-
rithm Kg returns a fresh key pair (pk , sk). On input sk and a message M , the possibly randomized
signing algorithm Sign returns a signature σ. On input pk , M , and a signature σ, the deterministic
verification algorithm Vf returns a decision (0 or 1) on whether σ is a valid signature for M relative
to pk . In the random oracle model, the last two algorithms have oracle access to a function H drawn
at random from an appropriate space, with a range that might depend on pk . We require that, for all
k ∈ N, all (pk , sk) ∈ [Kg(1k)] and all messages M , it is the case that Vf(pk , M, Sign(sk , M)) = 1.

Security of SS schemes. We use the standard notion of unforgeability under chosen-message attack
(uf-cma) [GMR88]. Associated with a SS scheme SS = (Kg, Sign, Vf), adversary F and value k of the
security parameter is an experiment in which we begin by running Kg on input 1k to get keys (pk , sk).
Then we run F on input 1k, pk , providing it oracle access to Sign(sk , ·), until it halts with output a
pair (M, σ). We say that F wins if Vf(pk , M, σ) = 1 but M was not queried to Sign(sk , ·). The uf-cma
advantage of F in breaking SS , denoted Advuf-cma

F,SS (k), is the probability that SS wins. We say that

SS is uf-cma secure if Advuf-cma
F,SS (·) is negligible for every polynomial-time adversary F.

3 Definitions for IBI and IBS Schemes

Identity-based identification schemes. An identity-based identification (IBI) scheme is a four-
tuple IBI = (MKg, UKg, P, V) of polynomial-time algorithms. The trusted, key-issuing authority runs
the master-key generation algorithm MKg on input 1k, where k is a security parameter, to obtain
a master public and secret key pair (mpk ,msk). It can then run the user-key generation algorithm
UKg on msk and the identity I ∈ {0, 1}∗ of a user to generate for this user a secret key usk which is
then assumed to be securely communicated to the user in question. In the interactive identification
protocol, the prover with identity I runs interactive algorithm P with initial state usk , and the verifier
runs V with initial state mpk , I.

The first and last messages of the protocol belong to the prover. The protocol ends when V

enters either the acc or rej state. In the random oracle model, UKg, P, V additionally have oracle
access to a function H whose range may depend on mpk . We require that for all k ∈ N, I ∈ {0, 1}∗,
(mpk ,msk) ∈ [MKg(1k)], functions H with appropriate domain and range, and usk ∈ [UKg(msk , I :
H)], the interaction between P (initialized with usk) and V (initialized with mpk , I) is acc with
probability one.

Security of IBI schemes. We first provide the formal definitions and then the explanations. Let
IBI = (MKg, UKg, P, V) be an IBI scheme, A = (CV, CP) an adversary (consisting of a cheating verifier
CV and a cheating prover CP) and k ∈ N a security parameter. Consider the experiment of Figure 4.
The type of attack atk ∈ {pa, aa, ca} is a parameter, and the adversary has access to the oracles shown
in the same Figure. The imp-atk advantage of A in attacking IBI is

Advimp-atk
IBI ,A

(k) = Pr
[

Expimp-atk
IBI ,A

(k) = 1
]

.

We say that IBI is an imp-atk secure IBI scheme if Advimp-atk
IBI ,A

(·) is negligible for every polynomial-

10

Oracle Init(I)
If I ∈ CU ∪HU then return ⊥
usk [I]

$← UKg(msk , I) ; HU ← HU ∪ {I}
Return 1

Oracle Conv(I)
If I 6∈ HU then return ⊥
(C, d)

$← Run[P(usk [I])↔V(mpk , I)]
Return C

Oracle Corr(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I} ; HU ← HU \ {I}
Return usk [I]

Oracle Prov(I, s, Min)
If I 6∈ HU then return ⊥
If (I, s) 6∈ PID then

If atk = aa then PID ← {(I, s)}
If atk = ca then PID ← PID ∪ {(I, s)}
Pick random coins ρ for P

St
P
[I, s]← (usk [I], ρ)

(Mout,St
P
[I, s])← P(Min,St

P
[I, s])

Return Mout

Experiment Expimp-atk
IBI ,A

(k) // atk ∈ {pa, aa, ca}, A = (CV, CP)

(mpk ,msk)
$← MKg(1k) ; HU ← ∅ ; CU ← ∅ ; PID ← ∅

If atk = pa then let Or denote Conv else let Or denote Prov

(Ib,St
CP

)← CV(1k,mpk : Init,Corr,Or)

If Ib 6∈ HU then return 0

HU ← HU \ {Ib} ; CU ← CU ∪ {Ib}
(C, d)

$← Run[CP(St
CP

: Init,Corr,Or)↔V(mpk , Ib)]

Return d

Figure 4: Oracles given to adversary attacking IBI scheme IBI = (MKg, UKg, P, V), and experiment
used to define imp-atk security of the scheme.

time A.
The main difference from the SI experiment is that A can initialize or corrupt identities of its

choice through the Init and Corr oracles. When an identity is initialized, it is issued a secret key
by the authority. When an (honest) identity is corrupted, its secret key is returned to the adversary.
HU is the set of honest users, and CU is the set of corrupted users. In the case of a passive attack
the adversary gets a conversation oracle Conv that, when queried with the identity I of an honest
and initialized user, returns a transcript of a conversation between I (playing the role of prover and
using its issued secret key) and the verifier, each time using fresh coins. In the case of an active or
concurrent attack, the adversary gets access to the prover oracle Prov. Its arguments are an identity,
a session number, and a message that the adversary, playing the role of verifier, sends to I in its role as
a prover. The oracle maintains state for the prover for each active session, but allows only one session
to be active at any point if the attack is an active one rather than a concurrent one. At the end of its
execution, CV transfers its state to CP and outputs an uncorrupted identity Ib. In the second stage,
CP will try to impersonate Ib. An element of this definition worth drawing attention to is that we
have allowed CP to query the same oracles as CV. This allows CP to initialize, corrupt, interact with,
or see conversations involving certain identities depending on the challenge it gets from the verifier.
The only restriction is that CP cannot submit queries involving Ib because otherwise impersonating
Ib would become trivial. The restrictions are all enforced by the oracles themselves. (At the end of
the first stage, Ib is removed from HU and added to CU . One might observe that as a consequence

11

Oracle Init(I)
If I ∈ CU ∪HU then return ⊥
usk [I]

$← UKg(msk , I)
MSG [I]← ∅ ; HU ← HU ∪ {I}
Return 1

Oracle Sign(I, M)
If I 6∈ HU then return ⊥
σ

$← Sign(usk [I], M) ; MSG [I]← MSG [I] ∪ {M}
Return σ

Experiment Expuf-cma
IBS ,F

(k)

(mpk ,msk)
$← MKg(1k) ; HU ← ∅ ; CU ← ∅

(I, M, σ)
$← F(1k,mpk : Init(·),Sign(·, ·),Corr(·))

If (I ∈ HU AND Vf(mpk , I, M, σ) = 1 AND M 6∈ MSG [I]) then return 1 else return 0

Figure 5: Oracles given to adversary attacking IBS scheme IBS = (MKg, UKg, Sign, Vf), and experi-
ment used to define uf-cma security of the scheme. The oracle Corr is the same as that in Figure 4
and thus is not shown here.

we do not allow CP to query Ib to Conv in the imp-pa case. This however is not a restriction because
CV could have made as many such queries as necessary and passed them on to CP as part of the state
information it outputs along with Ib).

Identity-based signature schemes. An identity-based signature (IBS) scheme is a tuple IBS =
(MKg, UKg, Sign, Vf) of polynomial-time algorithms. The first three may be randomized but the last
is not. The trusted, key-issuing authority runs the master-key generation algorithm MKg on input
1k, where k is a security parameter, to obtain a master public and secret key pair (mpk ,msk). It can
then run the user-key generation algorithm UKg on msk and the identity I ∈ {0, 1}∗ thus generating
for the user I a secret key usk which is then assumed to be securely communicated to the user in
question. On input usk and a message M , the signing algorithm Sign returns a signature of M . On
input mpk , I, M, and a signature σ, the verification algorithm Vf returns a decision on whether σ is
valid for I and M . We require that, for all k ∈ N, M ∈ {0, 1}∗, and I ∈ {0, 1}∗,

Pr
[

(mpk ,msk)
$← MKg(1k) ; usk

$← UKg(msk , I) ; σ
$← Sign(usk , M) : Vf(mpk , I, M, σ)=1

]

= 1 .

Security of IBS schemes. We first provide the formal definition following [CC03, DKXY03] and
then the explanations. Let IBS = (MKg, UKg, Sign, Vf) be an IBS scheme, F an adversary, and k ∈ N

a security parameter. Consider the experiment of Figure 5. The adversary has access to the oracles
shown in the same Figure. The uf-cma advantage of F in attacking IBS is

Advuf-cma
IBS ,F

(k) = Pr
[

Expuf-cma
IBS ,F

(k) = 1
]

.

We say that IBS is a uf-cma secure IBS scheme if Advuf-cma
IBS ,F

(·) is negligible for every polynomial-time

adversary F.
Via Init(I), the adversary F can create a user I and give it a secret key denoted usk [I]. Via

Sign(I, M), it can obtain I’s signature on a message M of its choice. Via Corr(I), it can obtain I’s
secret key usk [I]. To win, F must output the identity I of an uncorrupted user, a message M , and a
signature σ such that I did not previously sign M but Vf(mpk , I, M, σ) = 1. Here, HU is the set of
honest users, CU is the set of corrupted users, and MSG [I] is the set of messages that I has signed.
The uf-cma advantage of F is its success probability.

12

4 Certificate-based IBI and IBS

There is a natural way to construct IBI and IBS schemes using certificates. This may sound paradoxical
since the purpose of identity-based cryptography is to avoid certificates, but certification here refers
to a technique, not a PKI. The idea is simply that the authority can issue a certificate, consisting of a
signature of a user’s identity and “public key,” the latter being a value it chooses and provides to the
user along with a matching secret key. Now, to accomplish IBI, a prover can flow this public key and
certificate to the verifier, and then the parties can run a SI protocol based on the public key. Since the
verifier needs to know only the authority public key and identity of the prover, this is identity-based.
Similarly, by adding to a standard signature under pk the value pk itself and its certificate, verification
of this signature becomes possible given only the authority public key and identity of the user, and
hence is identity-based. (Note that no such simple trick works for identity-based encryption, which is
a much harder problem.)

We believe these facts are folklore, but are worth detailing and proving them for several reasons.
One is that they show that IBI and IBS can be achieved without random oracles (all the practical
schemes we consider use random oracles) and thereby enable us to answer the foundational question
of finding the minimal assumptions for the existence of IBI and IBS schemes (cf. Corollaries 4.3
and 4.6). Another reason is that these simple schemes are benchmarks relative to which practical
schemes measure their efficiency. We now provide some details.

4.1 Certificate-based IBI

We show the design of an IBI scheme based on any SI scheme and any SS scheme. Let SI = (Kg, P, V)
be a SI scheme, and let SS = (SKg, Sign, Vf) be a SS scheme. We associate to them an IBI scheme
IBI = (MKg, UKg, P, V) whose constituent algorithms are as follows. The master key generation
algorithm MKg is simply SKg, so that the master secret key msk can be used to produce signatures
verifiable under mpk . To issue a secret key usk to a user with identity I, the authority first runs
Kg(1k) to obtain a public and secret key pair (pk , sk) for the SI scheme. It then creates the certificate
cert ← (pk , Sign(msk , (pk‖I))). It sets usk ← (sk , cert) and sends the latter to I. The interactive
algorithm P, run by I to identify itself, runs P, initializing the latter with sk , and includes cert in
the first flow sent to the verifier. The interactive algorithm V, run by the verifier, has initial input
(mpk , I). In the first move it receives cert along with any information that P has sent on its first
move. It then verifies the signature on the certificate cert by parsing cert as (pk , σ) and running
Vf(mpk , pk‖I, σ). If the certificate is invalid, V halts and rejects. Otherwise, it runs V, initializing the
latter with pk . It accepts if V accepts. We depict this in Figure 6.

Construction 4.1 (Certificate-based IBI) Given a standard identification scheme SI = (Kg, P, V)
and a (standard) signature scheme SS = (SKg, Sign, Vf), we associate to them an IBI scheme IBI =
(MKg, UKg, P, V). The algorithms MKg, UKg are shown in Figure 6, and the algorithms P, V are
depicted there pictorially and described above.

We state the security of the above construction in the following theorem.

Theorem 4.2 (Security of Certificate-based IBI) Let SI be a SI scheme, and SS a uf-cma secure
SS scheme. Let IBI be the corresponding certificate-based IBI scheme as per Construction 4.1. If SI
is imp-atk secure then IBI is imp-atk secure, for any atk ∈ {pa, aa, ca}.

The proof of the above is based on relatively standard ideas, but is complicated by details of the
simulations and models. Accordingly we present it in Appendix A rather than here in the main body.

13

Algorithm MKg(1k)
(mpk ,msk)← SKg(1k)
Return (mpk ,msk)

Algorithm UKg(msk , I; k)
(pk , sk)← Kg(1k)
cert ← (pk , Sign(msk , pk‖I))
usk ← (sk , cert)
Return usk

Prover P Verifier V

M1
-

M2
¾

M3
-

...
Mm
-

Prover P Verifier V

Run P on sk cert‖M1
-

Parse cert as (pk , σ)
If Vf(mpk , pk‖I, σ) 6= 1
Then reject

M2
¾ Run V on pk

M3
-

...
Mm
- Accept if V accepts

Figure 6: A certificate-based IBI scheme IBI = (MKg, UKg, P, V) constructed from a standard iden-
tification scheme SI = (Kg, P, V) and a digital signature scheme SS = (SKg, Sign, Vf). The prover P

and the verifier V are initialized with states (sk , cert) and (mpk , I), respectively.

Corollary 4.3 There exists a secure (imp-pa, imp-aa, or imp-ca) IBI scheme if and only if there exists
a one-way function.

Proof: The existence of one-way functions implies the existence of secure digital signature schemes
[Rom90]. Given a digital signature scheme one can easily construct an imp-ca secure SI scheme
[BFGM01]. (The scheme consists simply of the verifier sending a random challenge which the prover
signs.) This means that we can apply Construction 4.1. So Theorem 4.2 gives us an imp-ca secure
IBI scheme. Since imp-ca security implies imp-pa and imp-aa security, this completes one direction of
the proof.

For the other direction, note that both imp-aa and imp-ca security imply imp-pa security, and it is
easy to see that even the existence of an imp-pa secure IBI scheme implies the existence of a one-way
function, by arguments and results of Impagliazzo and Luby [IL89].

4.2 Certificate-based IBS

Similar ideas and results hold for IBS schemes, and we outline them briefly.

Construction 4.4 (Certificate-based IBS) Given a standard digital signature scheme SS = (SKg,
Sign, Vf), we associate to it an IBS scheme IBS = (MKg, UKg, Sign, Vf) whose constituent algorithms
are depicted in Figure 7.

Theorem 4.5 (Security of Certificate-based IBS) Let SS be a uf-cma secure SS scheme. Let
IBS be the corresponding certificate-based IBS scheme as per Construction 4.4. Then IBS is a uf-cma
secure IBS scheme.

We omit the proof since it is similar to the proof of Theorem 4.2.

14

Algorithm MKg(1k)
(mpk ,msk)← SKg(1k)
Return (mpk ,msk)

Algorithm UKg(msk , I; k)
(pk , sk)← SKg(1k)
cert ← (pk , Sign(msk , pk‖I))
usk ← (sk , cert)
Return usk

Algorithm Sign(usk , M)
Parse usk as (sk , cert)
Return cert‖Sign(sk , M)

Algorithm Vf(mpk , I, M, σ)
Parse σ as cert‖σ1

Parse cert as (pk , σ2)
If Vf(mpk , pk‖I, σ2) 6= 1 then return 0
If Vf(pk , M, σ1) 6= 1 then return 0
Return 1

Figure 7: Algorithms of certificate-based IBS scheme IBS = (MKg, UKg,Sign, Vf) constructed from
digital signature scheme SS = (SKg, Sign, Vf).

Corollary 4.6 There exists a uf-cma secure IBS scheme if and only if there exists a one-way function.

Given that the existence of uf-cma secure digital signature schemes is equivalent to the existence
of one-way functions [Rom90], this follows from Theorem 4.5 and the fact that a SS scheme can be
constructed from an IBS scheme by including an arbitrary identity I in the public key of the SS scheme
and including the user secret key corresponding to I in the secret key.

4.3 Discussion of Certificate-based Constructs

One can obtain fairly efficient constructions of IBI and IBS schemes through the above. The prover of
the IBI scheme of Construction 4.1 is as efficient as the prover of the underlying SI scheme. (However,
the verification cost grows by the cost of verifying one signature, and the communication increases
due to the transmission of the certificate.) Signing in the IBS scheme of Construction 4.4 costs the
same as for the underlying SS scheme. Verification arguably costs the same too if one takes into
account that in a SS scheme one must also verify a certificate. The size of the signature increases
due to inclusion of the certificate, but again one can argue that with a SS scheme one will in practice
transmit a certificate with the signature, making the two comparable again.

We remark that implementing the schemes of Constructions 4.1 and 4.4 with signature schemes
permitting aggregation [BGLS03] will reduce the communication costs. The practical IBI and IBS
schemes that follow attempt to reduce costs below that of even the best instantiations of Construc-
tions 4.1 and 4.4.

Finally, we remark that, while none of the IBI schemes that follow is secure against reset attack
[BFGM01], one can be obtained from Construction 4.1. To do this, use as SI scheme one of the
reset-attack secure SI schemes from [BFGM01].

5 Transformations

We begin by defining trapdoor samplable relations. Then we define convertible SI (cSI) schemes and
related transforms.

15

5.1 Trapdoor Samplable Relations

A relation is a finite set of ordered pairs. We define the range of a relation R, the set of images of x,
and the set of inverses of y, respectively, as

Rng(R) = { y : ∃ x such that (x, y) ∈ R }
R(x) = { y : (x, y) ∈ R }

R−1(y) = { x : (x, y) ∈ R } .

Definition 5.1 (Trapdoor Samplable Relations) A family of trapdoor samplable relations F is a
triplet of polynomial-time algorithms (TDG, Smp, Inv) such that the following properties hold:

• Efficient generation: On input 1k, where k ∈ N is the security parameter, TDG outputs the
description 〈R〉 of a relation R together with its trapdoor information t;

• Samplability: The output of the algorithm Smp on an input 〈R〉 is uniformly distributed over
R;

• Inversion: On input a relation description 〈R〉, the corresponding trapdoor t, and an element
y ∈ Rng(R), the randomized algorithm Inv outputs a random element of R−1(y);

• Regularity: For every relation R in the family, there is an integer d such that |R−1(y)| = d for
all y ∈ Rng(R).

When we refer to the family of relations defined by F we simply mean

{R : ∃k, t such that (〈R〉 , t) ∈ [TDG(1k)] } .

A family of trapdoor one-way permutations, as used by [DKXY03], gives rise to a family of trapdoor
samplable relations in a natural way. Namely, to every member f of the former family corresponds
the relation R consisting of the set of pairs (x, f(x)) for x in the domain of the function f . However,
trapdoor samplable relations are a more general concept, and we will see examples where this greater
generality is needed.

5.2 Convertible Schemes and the cSI-2-IBI Transform

In analogy with the definition of trapdoor signature schemes [DKXY03], we define the concept of
convertible identification schemes and show how to transform these into IBI schemes.

A SI scheme is called convertible if its key-generation process is underlain by a family of trapdoor
samplable relations in the manner specified below.

Definition 5.2 (Convertible SI Schemes) A SI scheme SI = (Kg, P, V) is said to be convertible if
there exists a family of trapdoor samplable relations F = (TDG, Smp, Inv) such that for all k ∈ N the
output of the following is distributed identically to the output of Kg(1k):

(〈R〉 , t) $← TDG(1k) ; (x, y)
$← Smp(〈R〉) ; pk ← (〈R〉 , y) ; sk ← (〈R〉 , x) ; Return (pk , sk)

The following describes the cSI-2-IBI transform of a convertible SI (cSI) scheme into an IBI scheme.
The idea is that to each identity I we can associate a “pseudo-public-key” that is derivable from
the master public key and I and plays the role of a public key for the underlying cSI scheme. This
“pseudo-public-key” is (〈R〉 ,H(I)), where H is a random oracle.

16

Construction 5.3 (The cSI-2-IBI Transform) Let SI = (Kg, P, V) be a cSI scheme, and let F =
(TDG, Smp, Inv) be the family of trapdoor samplable relations that underlies it as per Definition 5.2.
The cSI-2-IBI transform associates to SI the random-oracle model IBI scheme IBI = (MKg, UKg, P, V)
whose components we now describe. The master and user key generation algorithms are defined as

Algorithm MKg(1k)

(〈R〉 , t) $← TDG(1k)
mpk ← 〈R〉 ; msk ← (〈R〉 , t)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
Parse msk as (〈R〉 , t)
x

$← Inv(〈R〉 , t,H(I)) ; usk ← (〈R〉 , x)
Return usk

where H : {0, 1}∗ → Rng(R) is a random oracle. The prover algorithm P is identical to P. The verifier
algorithm V, which takes initial input 〈R〉 , I and oracle H, runs V on initial input (〈R〉 ,H(I)).

The following theorem says that cSI-2-IBI is security-preserving.

Theorem 5.4 (Security of cSI-2-IBI) Let SI be a cSI scheme and let IBI = cSI-2-IBI(SI) be the
associated IBI scheme as per Construction 5.3. For any atk ∈ {pa, aa, ca}, if SI is imp-atk secure then
IBI is imp-atk secure.

Proof: Let A = (CV, CP) be a polynomial time adversary mounting an imp-atk attack on IBI . Say
CV makes at most QH

CV
(·) queries to its H oracle and at most Q Init

CV
(·) to its Init oracle. We construct

a polynomial-time adversary A = (CV, CP) mounting an imp-atk attack on SI such that for all k ∈ N

Advimp-atk
IBI ,A

(k) ≤
[

QH

CV
(k) + Q Init

CV
(k)
]

·Advimp-atk
SI ,A (k) .

The theorem follows.

Algorithms CV and CP are described in Figure 8. These algorithms run CV and CP, replacing their
oracles with subroutines that they themselves define. The subroutines are also shown in Figure 8.

Algorithm CV takes input 1k, pk = (〈R〉 , y) and has access to either a Conv oracle (in the case of a
passive attack) or a Prov oracle (in the case of an active or concurrent attack). It will run CV on
input 1k,mpk = 〈R〉. Its strategy is to guess in advance the identity Ib that CV will try to attack, and
ensure that the hash of this identity equals y. This means that in the second phase, the pseudo-public-
key of Ib, the identity that CP is attacking, is pk , so CP can be used by CP to attack pk . To ensure
that the correspondence between the pseudo-public-key of Ib and pk is accurate, CV will simulate the
conversation or prover oracles for Ib via its own conversation or prover oracles. It will arrange to know
the secret keys corresponding to identities other than Ib and thus simulate the conversation or prover
oracles for these directly.

Guessing an identity from the infinite set {0, 1}∗ is of course infeasible. Instead, CV picks at random
a value qg in the range 1, . . . ,QH

CV
(k) + Q Init

CV
(k), and then views itself as guessing the identity Ig

corresponding to the qg-th hash oracle query made by CV.

CP simply forwards CP’s reply to the same message, answering CP’s oracle queries in the same way
as CV did before.

For the analysis, we begin by noting that the input provided by CV to CV is correctly distributed
because the relation description included in the public key of a convertible SI scheme and the one
included in the master public key mpk of its cSI-2-IBI transform are both generated by the TDG(1k)
algorithm. Let Good be the event that A does not corrupt identity Ig during the attack. We now
explain why A provides a perfect simulation of A’s environment as long as event Good is true.

We first prove that, in the event Good, A’s view follows the same distribution as in a real attack
against IBI . (Since A treats oracle queries made by CV or CP in the same way, we don’t distinguish

17

Subroutine Init-sim(I)
If I ∈ CU ∪HU then return ⊥
temp ← H-sim(I) ; HU ← HU ∪ {I}
Return 1

Subroutine Corr-sim(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I} ; HU ← HU \ {I}
If I = Ig then abort
Return (〈R〉 , USK[I])

Subroutine H-sim(I)
If I 6∈ QU then

QU ← QU ∪ {I}
If |QU | = qg then

Ig ← I ; HT[I]← y

Else (USK[I], HT[I])
$← Smp(〈R〉)

Return HT[I]

Subroutine Conv-sim(I)
If I 6∈ HU then return ⊥
If I = Ig then C ← Or(ε)
Else

pk [I]← (〈R〉 , HT[I]) ; sk [I]← (〈R〉 , USK[I])

(C, d)
$← Run[P(sk [I])↔V(pk [I])]

Return C

Subroutine Prov-sim(I, s, Min)
If I 6∈ HU then return ⊥
If (I, s) 6∈ PID then

If atk = aa then PID ← {(I, s)}
If atk = ca then PID ← PID ∪ {(I, s)}
Pick random coins ρ

P
for P

St
P
[I, s]← ((〈R〉 , USK[I]), ρ

P
)

If I = Ig then Mout ← Or(s, Min)

Else (Mout,St
P
[I, s])← P(Min,St

P
[I, s])

Return Mout

Algorithm CV(1k, pk : Or)
Parse pk as (〈R〉 , y) ; HU ← ∅ ; CU ← ∅ ; QU ← ∅
qg

$← {1, . . . ,QH

CV
(k) + Q Init

CV
(k)} ; mpk ← 〈R〉

If atk = pa then (Ib,St
CP

)
$← CV(1k,mpk : Init-sim,Corr-sim,Conv-sim,H-sim)

Else (Ib,St
CP

)
$← CV(1k,mpk : Init-sim,Corr-sim,Prov-sim,H-sim)

If |QU | < qg or Ib 6= Ig then abort
HU ← HU \ {Ib} ; CU ← CU ∪ {Ib}
StCP ← (St

CP
, 〈R〉 ,HU ,CU ,QU , HT, USK, Ig, qg)

Return StCP

Algorithm CP(Min,StCP)
Parse StCP as (St

CP
, 〈R〉 ,HU ,CU ,QU , HT, USK, Ig, qg)

If atk = pa then (Mout,St
CP

)
$← CP(Min,St

CP
: Init-sim,Corr-sim,Conv-sim,H-sim)

Else (Mout,St
CP

)
$← CP(Min,St

CP
: Init-sim,Corr-sim,Prov-sim,H-sim)

StCP ← (St
CP

, 〈R〉 ,HU ,CU ,QU , HT, USK, Ig, qg)
Return (Mout,StCP)

Figure 8: Algorithms CV and CP constituting adversary A of the proof of Theorem 5.4, and their
subroutines. Above, Or is a conversation oracle if atk = pa and a prover oracle if atk ∈ {aa, ca}.

between CV and CP in this analysis, but rather view A as a single algorithm.) We already argued that
CV’s input is correctly distributed. The initial state of CP is generated by CV as in the real game, and
CP’s incoming protocol messages are correctly distributed because by Construction 5.3 V runs V as a
subroutine. The responses to A’s oracle queries can be seen to be correctly distributed as follows:

• H-sim(I): The regularity of R and the uniform distribution of the output of the Smp algo-
rithm over R imply that the response HT[I] is uniformly distributed over Rng(R) for I 6= Ig.

18

By Definition 5.2, the value y included in the public key of SI is also generated via the Smp

algorithm, and hence y is uniformly distributed over Rng(R) for the same reasons.

• Init-sim(I): The output of the Init-sim oracle is only determined by the sets HU and CU ,
which the Init-sim and Corr-sim subroutines maintain in the exact same way as the Init and
Corr oracles in the real game.

• Conv-sim(I): Simulated conversations for I = Ig are easily seen to be correctly distributed from
Construction 5.12. Due to the regularity of R, the user secret key used to generate conversations
for identity I 6= Ig in a real attack against IBI is uniformly distributed over R−1(H(I)). Since
in the simulation the pair (USK[I], HT[I]) was generated by the Smp algorithm, the user secret
key used for the simulated conversations are distributed identically to the one used in a real
attack, and hence also the output of the P and V algorithms which make up the conversation
are identically distributed.

• Prov-sim(I, s, Min): Just as for the output of the Conv oracle, the perfectness of the simulation
can be seen from Construction 5.3 for I = Ig, and from the identical distribution of user secret
keys for I 6= Ig.

• Corr-sim(I): Since we assume that A does not corrupt Ig, we only need to consider the case
I 6= Ig. The Corr-sim oracle returns USK[I] as the user secret key of identity I, which is
correctly distributed for the same reasons as explained for the Conv-sim and Prov-sim oracles.

So conditioned on the event Good, the simulation of A’s environment is perfect. This means that A’s
impersonation is successful whenever (1) A succeeds (i.e. Expimp-atk

IBI ,A
(k) = 1), (2) A correctly guesses

the identity that A attacks (i.e. |HU | ≥ qg ∧ Ib = Ig), and (3) A doesn’t corrupt identity Ig (i.e. event
Good occurs). The advantage of A can therefore be bounded from below by

Advimp-atk
SI ,A (k) ≥ Pr

[

Expimp-atk
IBI ,A

(k) = 1 ∧ Ib = Ig ∧Good
]

= Pr
[

Expimp-atk
IBI ,A

(k) = 1 ∧ Ib = Ig

]

= Pr
[

Expimp-atk
IBI ,A

(k) = 1
]

· Pr [Ib = Ig]

≥ 1

QH

CV
(k) + Q Init

CV
(k)
·Advimp-atk

IBI ,A
(k) .

The first equality above needs some clarification. In order to be successful, the identity Ib attacked by
A cannot have been previously corrupted by A. So if A is successful and Ib = Ig, this means that Ig

cannot have been corrupted by A, which is exactly the definition of the event Good. Therefore, Good
is implied by the other two conditions and can be removed from the expression without affecting the
probability. The second equality holds because A’s simulation of A’s environment is perfect, and hence
A’s view is independent of A’s choice of Ig.

5.3 The cSS-2-IBS Transform

Convertibility of a standard signature (SS) scheme SS = (Kg, Sign, Vf) is defined by analogy to
Definition 5.2 as shown below.

Definition 5.5 (Convertible SS Schemes) A SS scheme SS = (SKg, Sign, Vf) is said to be con-
vertible if there exists a family of trapdoor samplable relations F = (TDG, Smp, Inv) such that for all
k ∈ N the output of the following is distributed identically to the output of SKg(1k):

19

(〈R〉 , t) $← TDG(1k) ; (x, y)
$← Smp(〈R〉) ; pk ← (〈R〉 , y) ; sk ← (〈R〉 , x) ; Return (pk , sk)

The cSS-2-IBS transform is defined analogously to the cSI-2-IBI transform:

Construction 5.6 (The cSS-2-IBS Transform) To any convertible SS (cSS) scheme SS = (Kg, Sign,
Vf), the cSS-2-IBS transform assocciates an IBS scheme IBS = cSS-2-IBS(SS) = (MKg, UKg, Sign, Vf)
where the master and the user key generators are exactly as in Construction 5.3, and Sign(usk , ·) and
where Vf(mpk , I, ·, · : H) are identical to Sign(usk , ·) and Vf((mpk ,H(I)), ·, ·), respectively.

The proof of the following analogue of Theorem 5.4 is similar to the proof of Theorem 5.4 and is thus
omitted.

Theorem 5.7 (Security of cSS-2-IBS) Let SS be a cSS scheme and let IBS = cSS-2-IBS(SS) be the
associated IBS scheme as defined in Construction 5.6. If SS is uf-cma secure then IBS is also uf-cma
secure.

One can check that any trapdoor SS (tSS) scheme as defined in [DKXY03] is a cSS scheme, and
their tSS-2-IBS transform coincides with cSS-2-IBS in case the starting cSS scheme is trapdoor. Thus,
Theorem 5.7 represents a (slight) extension of their result. However, the extension is important, for
we will see cases of cSS schemes that are not trapdoor and where the extension is needed.

5.4 The fs-I-2-S Transform

So-called canonical SI schemes can be transformed into signature schemes using the Fiat-Shamir trans-
form [FS86], referred to as the fs-I-2-S transform here. A standard identification scheme SI = (Kg, P, V)
is said to be canonical if it follows a three-move structure where the prover initiates the communication
with a “commitment” Cmt distributed uniformly over a set CmtSet(sk) possibly depending on the
secret key; the verifier sends back a “challenge” Ch chosen uniformly from a set ChSet(pk) that pos-
sibly depends on the public key; and the prover replies with a “response” Rsp. The verifier’s decision
to accept or reject is a deterministic function Dec(pk ,Cmt‖Ch‖Rsp) ∈ {0, 1} of the public key and
the communication transcript. We say that SI has commitment length β(·) if |CmtSet(sk)| ≥ 2β(k)

for every k ∈ N and every (pk , sk) ∈ [Kg(1k)]. We say that SI is non-trivial if the function 2−β(k) is
negligible in k.1 All SI schemes considered in this paper are canonical.

Construction 5.8 (The fs-I-2-S Transform [FS86]) Let SI = (Kg, P, V) be a non-trivial canonical
SI scheme with challenge set function ChSet and decision function Dec. The Fiat-Shamir transform
fs-I-2-S associates to it the SS scheme SS = fs-I-2-S(SI) = (Kg, Sign, Vf) whose signing and verification
algorithms are defined as follows:

Algorithm Sign(sk , M : H)

(Cmt ,StP)
$← P(ε, sk)

Ch ← H(Cmt‖M)

(Rsp,StP)
$← P(Ch,StP)

Return Cmt‖Rsp

Algorithm Vf(pk , M, σ : H)
Parse σ as Cmt‖Rsp
Ch ← H(Cmt‖M)
Return Dec(pk ,Cmt‖Ch‖Rsp)

Above, H: {0, 1}∗ → ChSet(pk) is a random oracle.

1 The canonicity definition used here is more restrictive than the one used in [AABN02], which allows Cmt to be
chosen according to any distribution over CmtSet(sk), instead of only the uniform one. This however complicates the
non-triviality condition, requiring β(·) to be defined as the min-entropy of the distribution. Since all schemes treated in
this work have uniformly distributed commitments, we restrict ourselves to the simpler definition here.

20

The following theorem is the special case of [AABN02, Lemma 3.5] for seed length s(k) = 0. It relates
the security of SS to that of the underlying identification scheme.

Theorem 5.9 Let SI be a non-trivial canonical SI scheme, and let SS = fs-I-2-S(SI) be the associated
signature scheme as per Construction 5.8. If SI is imp-pa secure, then SS is uf-cma secure in the
random oracle model.

It is also easy to see that the fs-I-2-S transform of a cSI scheme is a cSS scheme. Combining Theo-
rems 5.9 and 5.7 yields the following, which will be our main tool to prove security of IBS schemes.

Corollary 5.10 Let SI be a non-trivial canonical cSI scheme, and let IBS = cSS-2-IBS(fs-I-2-S(SI)).
If SI is imp-pa secure then IBS is uf-cma secure.

5.5 The efs-IBI-2-IBS Transform

The canonicity definition for SI schemes is easily extended to IBI schemes, the only modification being
that the set from which challenges are drawn may depend on both the master public key mpk and the
user’s identity I, and that the verifier’s decision is a deterministic function Dec((mpk , I),Cmt‖Ch‖Rsp)
of the master public key, the user’s identity and the communication transcript. It is easily seen
that the cSI-2-IBI transform of a canonical cSI scheme is also canonical. One can apply the fs-I-2-S
transform to a canonical IBI scheme to obtain an IBS scheme, and one can check that cSS-2-IBS(
fs-I-2-S(SI)) = fs-I-2-S(cSI-2-IBI(SI)) for any canonical cSI scheme SI . It follows that fs-I-2-S yields a
uf-cma secure IBS scheme if it is applied to a converted IBI scheme, meaning one that is obtained as
the result of applying cSI-2-IBI to some (canonical) cSI scheme. However, one can also apply fs-I-2-S
to a canonical IBI scheme that is not converted and get an IBS scheme, and there will be instances
later where we would like to do this. Unfortunately, the IBS scheme so obtained need not be secure,
in the sense that the analogue of the result of Theorem 5.9 does not hold, as stated below.

Proposition 5.11 Assume there exists an imp-pa secure canonical IBI scheme. Then, there exists
an imp-pa secure canonical IBI scheme IBI such that the IBS scheme given by fs-I-2-S(IBI) is not
uf-cma secure.

Proof: Let Dec′ be the decision function of the given IBI scheme. The new scheme IBI is identical
to the given one, except that the decision function is given by

Dec((mpk , I),Cmt‖Ch‖Rsp) =

{

1 if Dec′((mpk , I),Cmt‖Ch‖Rsp) = 1 or Ch = I
0 otherwise.

In other words, the decision function is relaxed so that the verifier also accepts when the challenge is
equal to the identity being verified.

We first claim that the new IBI scheme IBI inherits the imp-pa security of the given IBI scheme.
We provide the intuition, from which a formal proof by reduction is easy constructed. Namely, an
imp-pa adversary attacking IBI has to commit to an identity Ib in the first phase, before seeing the
challenge issued by the verifier in the second phase. But since the challenge is drawn from a set of
super-polynomial size (this follows from the assumed imp-pa security of the original IBI scheme), the
probability that it equals Ib is negligible. So the adversary is effectively left attacking the original
scheme, but the latter is assumed secure.

Next, we note that the IBS scheme IBS = fs-I-2-S(IBI) is insecure. To forge a signature of a message
M , pick any values Cmt ,Rsp, then compute I = H(Cmt‖M). Then (Cmt ,Rsp) is a valid signature
of M under identity I.

21

We now provide a remedy for the above. We consider the extended Fiat-Shamir transform efs-IBI-2-IBS,
a modified version of the fs-I-2-S transform that hashes the identity of the signer (prover) along with
the commitment and message, rather than merely hashing the commitment and message as in fs-I-2-S.
We show (by an extension of the proof of [AABN02]) that, if this transform is applied to a canonical
imp-pa secure IBI scheme, then the outcome is a uf-cma secure IBS scheme. We apply this in Section 7
to obtain uf-cma secure IBS schemes from the two unconverted IBI schemes we consider, namely
OkDL-IBI and BNN -IBI .

Construction 5.12 (The efs-IBI-2-IBS Transform) Let IBI = (MKg, UKg, P, V) be a non-trivial
canonical IBI scheme with challenge set function ChSet and decision function Dec. The extended
Fiat-Shamir transform efs-IBI-2-IBS associates to it the IBS scheme IBS = efs-IBI-2-IBS(IBI) =
(MKg, UKg′, Sign, Vf) whose last three components are defined as follows:

Algorithm UKg′(msk , I)
usk ← UKg(msk , I)
usk ′ ← (usk , I)
Return usk ′

Algorithm Sign(usk ′, M : H)
Parse usk ′ as (usk , I)

(Cmt ,St
P
)

$← P(ε, usk)
Ch ← H(I‖Cmt‖M)

(Rsp,St
P
)

$← P(Ch,St
P
)

Return Cmt‖Rsp

Algorithm Vf(mpk , I, M, σ : H)
Parse σ as Cmt‖Rsp
Ch ← H(I‖Cmt‖M)
Return Dec((mpk , I),Cmt‖Ch‖Rsp)

Above, H: {0, 1}∗ → ChSet(pk) is a random oracle.

Theorem 5.13 Let IBI be a non-trivial canonical IBI scheme, and let IBS = efs-IBI-2-IBS(IBI) be
the associated IBS scheme as per Construction 5.12. If IBI is imp-pa secure, then IBS is uf-cma
secure in the random oracle model.

Proof Sketch: The proof of Theorem 5.13 follows the approach of [AABN02]. Given a polynomial-
time adversary F attacking IBS using at most QH

F
(·) random oracle queries and QSign

F
(·) signature

queries, we construct a polynomial-time adversary A = (CV, CP) attacking IBI such that for every
k ∈ N

Advuf-cma
IBS ,F

(k) ≤ [1 + QH

F
(k)] ·Advimp-pa

IBI ,A
(k) +

[1 + QH

F
(k) + QSign

F
(k)] ·QSign

F
(k)

2β(k)
, (1)

where β(·) is the commitment length of IBI .

On input a security parameter 1k and master public key mpk , the cheating verifier CV first guesses the
index qg of the random oracle query that will be involved in F’s forgery. Algorithm CV then runs F on
input 1k,mpk , answering F’s Init oracle queries using its own Init oracle, and answering F’s Corr

oracle using its own Corr oracle. If F queries the Sign oracle for a signature of message M under
identity I then CV queries its Conv oracle to retrieve a valid conversation Cmt‖Ch‖Rsp for identity
I. It returns Cmt‖Rsp to F as the signature, and saves Ch as the random oracle value corresponding
to I‖Cmt‖M . (If a value has already been assigned to H(I‖Cmt‖M) during previous random oracle
or signature queries, then CV gives up. This will only happen with negligible probability though, since
Cmt is uniformly distributed over a set of size ≥ 2β(k) and IBI is non-trivial.) If F queries H on a
string x that has no value assigned to it yet, and if this is not the qg-th query to the random oracle,
then CV simply picks a random element from ChSet(mpk , I), assigns this as the value of H(x), and
also returns it to F as the oracle response.

At the qg-th query Ig‖Cmtg‖Mg made by F to H, however, CV indicates that it wants to impersonate
identity Ig in the second phase of the game by outputting Ig, and all the state information it gathered

22

so far, for use by its accomplice CP. (Actually, it might have to initialize identity Ig first if F didn’t
do so before. Also, CV has to query a batch of QSign

F
(k) conversations for identity Ib before it halts

and pass these to CP as well, as CP is not given Conv.) The cheating prover CP immediately sends
Cmtg as the first message of its impersonation attempt, receives the challenge Ch from the honest
verifier, and returns Ch to F as the response to its random oracle query. CP continues the execution
of F, answering its oracle queries in the same way as CV did before, with the following exceptions. For
Sign queries, not having access to Conv, it uses conversations from the batch to generate signatures
for Ig. Also if F corrupts Ig then CP gives up. At the end of its execution, F outputs its forgery
(Ib, M,Cmt‖Rsp). If Ib‖M‖Cmt 6= Ig‖Mg‖Cmtg, then CP gives up, but otherwise it sends Rsp as its
response to the honest verifier. It is clear from Construction 5.12 that this is a valid response if F’s
forgery is valid, and hence A succeeds in impersonating identity Ib.

The analysis establishing Equation (1) closely resembles the analysis in the proof of Theorem 5.9 as
given in [AABN02], and we refer to the latter for more details.

6 Applying the Framework

We now apply the above transform-based framework to prove security of numerous existing and new
IBI and IBS schemes. To do this, we consider numerous (existing and new) SI schemes. We show
that they are convertible, and then analyze their security if this has not already been done. The
implications for the corresponding IBI and IBS schemes, obtained via the transforms discussed above,
follow from Theorem 5.4 and Corollary 5.10.

When proving the security of identification schemes, we will use Bellare and Palacio’s [BP02]
Reset Lemma that upper bounds the success probability of a cheating prover CP in any canonical
identification scheme as a function of the probability of obtaining two accepting conversations in a
resetting experiment. By using the abstract notation StV for the verifier’s initial state, the Reset
Lemma is applicable to both SI and IBI schemes: for SI schemes, StV is simply the public key pk ,
while for IBI schemes, it is a tuple (mpk , I) containing the master public key and the identity.

We say that a canonical SI scheme SI , with challenge set function ChSet and decision function Dec,
has challenge length `(·) if |ChSet(pk)| ≥ 2`(k) for all k ∈ N and all (pk , sk) ∈ [Kg(1k)]. Analogously,
we say that a canonical IBI scheme IBI , with challenge set function ChSet and decision function Dec,
has challenge length `(·) if |ChSet((mpk , I))| ≥ 2`(k) for all k ∈ N, all (mpk ,msk) ∈ [MKg(1k)] and all
I ∈ {0, 1}∗.

Lemma 6.1 (Reset Lemma [BP02]) Let CP be a prover in a canonical SI or IBI scheme with
challenge set ChSet, challenge length ` and decision function Dec. Let StV and StCP be initial states
for the verifier and CP, respectively. Let acc(StCP,StV) be the probability that the verifier accepts on
initial state StV after interacting with CP initiated with StCP, and let res(StCP,StV) be the probability
that the following reset experiment returns 1:

Choose random tape ρ for CP ; (Cmt ,StCP)← CP(ε,StCP, ρ)

Ch1
$← ChSet(StV) ; (Rsp1,St ′

CP
)← CP(Ch1,StCP) ; d1 ← Dec(StV,Cmt‖Ch1‖Rsp1)

Ch2
$← ChSet(StV) ; (Rsp2,St ′

CP
)← CP(Ch2,StCP) ; d2 ← Dec(StV,Cmt‖Ch2‖Rsp2)

If (d1 = 1 and d2 = 1 and Ch1 6= Ch2) then return 1 else return 0

Then,

acc(StCP,StV) ≤ 2−`(k) +
√

res(StCP,StV)

23

Algorithm Kg(1k)

(N, p, q)
$← Kfact(1

k)
For i = 1 . . . t(k) do

xi
$← Z

∗
N

Xi
$← ±xi

−2m(k)

mod N
pk ← ((1k, N), (X1, . . . , Xt(k)))
sk ← ((1k, N), (x1, . . . , xt(k)))
Return (pk , sk)

Prover P Verifier V

y
$← Z

∗
N

Y ← y2m(k)

mod N Y
-

c
¾ c = (c1, . . . , ct(k))

$← Z
t(k)

2m(k)

z ← y
∏t(k)

i=1 xci

i mod N z
-

If Y ≡ ±z2m(k) ∏t(k)
i=1 Xci

i mod N
and Y, z ∈ Z

∗
N

then acc else rej

Figure 9: The ItR -SI and FFS-SI schemes. The scheme is parameterized with a Blum-Williams modulus
generator Kfact, key multiplicity t : N → N and iteration depth m : N → N such that t(k) · m(k) is super-
logarithmic in k. The prover P and verifier V are run on initial states sk = ((1k, N), (x1, . . . , xt)) and pk =
((1k, N), (X1, . . . , Xt)), respectively. The FFS -SI scheme is the special case for m(k) = 1.

When presenting schemes, we always explicitly include membership tests on all messages sent by
the prover to prevent the type of attacks described by Burmester and Desmedt [BD89] sending e.g. zero
as the commitment.

6.1 Schemes based on Factoring

Definitions and assumptions. The key generation algorithms of all factoring-based schemes are
underlain by a modulus generator Kfact. This is a polynomial-time algorithm that on input 1k outputs
a modulus N and two distinct, odd primes p, q such that N = pq and 2k−1 ≤ N < 2k. We assume
that the factoring problem associated to Kfact is hard. This means that the function

Advfact
A,Kfact

(k) = Pr
[

A(1k, N) ∈ {p, q} : (N, p, q)
$← Kfact(1

k)
]

is negligible for any polynomial-time algorithm A. A Blum-Williams generator is a modulus generator
that returns Blum-Williams (BW) moduli N [Wil80, Blu82], meaning that N = pq with p ≡ q ≡
3 mod 4.

Let QRN = {x2 mod N | x ∈ Z
∗
N} be the set of all quadratic residues modulo N , let JacN (x) be

the Jacobi symbol of x with respect to N , and let Z
∗
N [+1] = {x ∈ Z

∗
N | JacN (x) = +1} be the set of

elements of Z
∗
N with Jacobi symbol +1. It is known that if N is a BW modulus, then squaring is a

permutation on QRN , and −1 ∈ Z
∗
N [+1] \QRN .

Scheme modifications. Some of the schemes presented hereafter are slightly altered versions of
the corresponding schemes proposed in the literature. The changes are necessary because of an issue
regarding instantiation of the random oracle related to the cSI-2-IBI and cSS-2-IBS transforms. Using
the original schemes, the random oracle would have to map arbitrary strings to random elements of
QRN . While theoretically one can assume the availability of such an oracle, it is not clear how it can
be implemented in practice without revealing a square root of the hash value during the computation
(because deciding whether an element x ∈ Z

∗
N is a quadratic residue modulo N is assumed to be hard

when the factorization of N is unknown). The depicted schemes overcome this problem, by having
the random oracle map to random elements of Z

∗
N [+1], membership of which can be efficiently tested

without knowledge of the factorization of N .

6.1.1 The FFS and ItR Families

The scheme. The iterated-root scheme ItR -SI depicted in Figure 9 is parameterized with a Blum-

24

Williams generator Kfact, key multiplicity t : N → N and iteration depth m : N → N such that
t(k) · m(k) is a super-logarithmic function in k, i.e. t(k) · m(k) = ω(log k). The Feige-Fiat-Shamir

scheme FFS -IBI is the special case of ItR -SI for m(k) = 1. We use the shorthand notation a
$← ±b

for a
$← {+b,−b}.

The FFS -SI scheme coincides perfectly with the scheme by Feige et al. [FFS88]. The identification
scheme by Fiat and Shamir [FS86] was originally presented as an IBI scheme that almost coincides
with the FFS -IBI = cSI-2-IBI(FFS -SI) scheme, the difference being that the latter is not restricted
to BW moduli and doesn’t have the ± signs. The ItR -SI differs from the Ong-Schnorr scheme [OS90]
in exactly the same way. Another variant by Ohta and Okamoto [OO90] is based on the difficulty of
taking L-th roots with gcd(L, ϕ(n)) > 1.

Convertibility. Since the FFS -SI scheme is a special case of the ItR -SI scheme, it suffices to show
that the latter is convertible. To any Blum-Williams modulus generator Kfact and to any function
m : N → N, we associate a family of trapdoor samplable relations F = (TDG, Smp, Inv) described as
follows:

Algorithm TDG(1k):

(N, p, q)
$← Kfact(1

k)
Return ((1k, N), (p, q))

Algorithm Smp((1k, N)):

For i = 1 . . . t(k) do xi
$← Z

∗
N ; Xi

$← ±x−2m(k)

i mod N
Return ((x1, . . . , xt(k)), (X1, . . . , Xt(k)))

Algorithm Inv((1k, N), (p, q), (X1, . . . , Xt(k))):

For i = 1 . . . t(k) do xi
$← (±Xi)

−1/2m(k)
mod N

Return (x1, . . . , xt(k))

where the notation x
$← (±X)1/2m(k)

mod pq is used to indicate that an element x is chosen uniformly
over all 2m(k)-th roots of X or −X (whichever is a square) modulo N , which can be computed using
the factors p, q. The relation described by (1k, N) is

R = { ((x1, . . . , xt(k)), (X1, . . . , Xt(k))) ∈ (Z∗
N)t(k) × (Z∗

N [+1])t(k) :

x−2m(k)

i ≡ ±Xi mod N for all i = 1 . . . t(k)} .

Obviously, for all x ∈ Z
∗
N , there exist exactly two values of X such that x−2m(k) ≡ ±X mod N , namely

x−2m(k)
and −x−2m(k)

mod N . Since squaring is a permutation over QRN , all X ∈ QRN have exactly
four 2m(k)-th roots in Z

∗
N . Likewise, for all X ∈ Z

∗
N [+1] \ QRN there exist exactly four x ∈ Z

∗
N such

that x−2m(k) ≡ −X mod N , and hence the relation is regular. The output of the Smp algorithm is
uniformly distributed over R due to the random choice of xi and the sign of Xi. The output of the
Inv algorithm is uniformly distributed over R−1((X1, . . . , Xt(k))) since for each Xi all −2m(k)-th roots
are computed and xi is chosen at random from these.

Security. We note that FFS -SI is exactly the scheme in [FFS88], which is known to be imp-pa
and imp-aa secure for super-logarithmic t(k) assuming that the factoring problem related to Kfact is
hard, and this easily extends to imp-ca. By Theorem 5.4, the imp-pa, imp-aa and imp-ca security
of the FFS -IBI = cSI-2-IBI(FFS -SI) scheme follows. Theorem 5.9 and Corollary 5.10 imply that
the FFS -SS = fs-I-2-S(FFS -SI) and FFS -IBS = cSS-2-IBS(FFS -SS) are uf-cma secure, but this was
known [PS00, DKXY03].

The ItR -SI scheme depicted in Figure 9 is a close variant of the Ong-Schnorr SI scheme [OS90],
the only difference being the absence of ± signs in the latter. The Ong-Schnorr scheme is known
to be imp-pa and imp-aa secure for super-logarithmic t(k) ·m(k) if the factoring problem related to
Kfact is hard [Sho99, Sch96]. This results extends to the ItR -SI scheme. Theorem 5.4 implies that

25

Algorithm Kg(1k)

(N, p, q)
$← Kfact(1

k)

g
$← QRN

x1
$← Z2m(k) ; x2

$← Z
∗
N

X
$← ±gx1x2m(k)

2 mod N
pk ← ((1k, N, g), X)
sk ← ((1k, N, g), (x1, x2))
Return (pk , sk)

Prover P Verifier V

y1
$← Z2m(k) ; y2

$← Z
∗
N

Y ← gy1y2m(k)

2 mod N Y
-

c
¾ c

$← Z2m(k)

z1 ← y1 + cx1 mod 2m(k)

z2 ← gb(y1+cx1)/2m(k)cy2x
c
2 mod N z1, z2

-

If gz1z2m(k)

2 ≡ ±Y Xc mod N
and Y, z2 ∈ Z

∗
N and z1 ∈ Z2m(k)

then acc else rej

Figure 10: The FF -SI scheme. The scheme is parameterized with Blum-Williams modulus generator Kfact

and super-logarithmic iteration depth m : N → N. The prover P and verifier V are initialized with states
sk = ((1k, N, g), (x1, x2)) and pk = ((1k, N, g), X), respectively.

ItR -IBI = cSI-2-IBI(ItR -SI) is imp-pa and imp-aa secure assuming factoring moduli generated by
Kfact is hard. Theorem 5.7 and Corollary 5.10 imply that ItR -SS = fs-I-2-S(ItR -SI) and ItR -IBS =
cSS-2-IBS(ItR -SS) are uf-cma secure assuming factoring is hard, but this was known [PS00, DKXY03].
Whether ItR -SI and ItR -IBI are imp-ca secure remains open.

6.1.2 The FF Family

The scheme. To any Blum-Williams modulus generator Kfact and any super-logarithmic iteration
depth m : N → N, we associate the FF -SI scheme as depicted in Figure 10. The scheme is closely
related to a SI scheme introduced by Fischlin and Fischlin [FF02] as a fix to an attack they found on
a scheme in [Oka93]. They did not introduce IBI or IBS schemes. Due to the restriction of the FF -SI
scheme to BW moduli, it is actually a simplified variant of the scheme of [FF02], which also does not
include the ± signs in the key generation and verification algorithms.

Convertibility. Consider the following family of trapdoor samplable relations F = (TDG, Smp, Inv)
associated to Blum-Williams generator Kfact and iteration depth m(k):

Algorithm TDG(1k):

(N, p, q)
$← Kfact(1

k)

g
$← QRN

Return ((1k, N, g), (p, q))

Algorithm Smp((1k, N, g)):

x1
$← Z2m(k) ; x2

$← Z
∗
N

X
$← ±gx1x2m(k)

2 mod N
Return ((x1, x2), X)

Algorithm Inv((1k, N, g), (p, q), X):

x1
$← Z2m(k)

x2
$← (±Xg−x1)1/2m(k)

mod pq
Return (x1, x2).

A tuple (1k, N, g) describes the relation

R = { ((x1, x2), X) ∈ (Z2m(k) × Z
∗
N)× Z

∗
N [+1] : gx1x2m(k)

2 ≡ ±X mod N } .

For each pair (x1, x2) ∈ Z2m(k)×Z
∗
N , there exist exactly two values X ∈ Z

∗
N [+1] such that ((x1, x2), X) ∈

R. Since squaring is a permutation over QRN and JacN (−1) = +1, there exist exactly four val-
ues x2 ∈ Z

∗
N for each X ∈ Z

∗
N [+1] and x1 ∈ Z2m(k) such that ((x1, x2), X). So R is regular with

|R−1(X)| = 4 · 2m(k) for all X ∈ Z
∗
N [+1]. The output of the Smp algorithm above is uniformly dis-

tributed over R by the random choice of x1, x2 and the sign of X. The uniform distribution of the
output of the Inv algorithm follows from the random choice of x1 and of the 2m(k)-th root.

Security. The FF -SI scheme is a slight variation on (a special case of) the scheme of [FF02], the only
difference being the absence of ± signs in the latter. The latter is proven to be imp-pa, imp-aa and

26

imp-ca secure for super-logarithmic exponent m(·) assuming that the factoring problem associated
to Kfact is hard [FF02]. This result easily extends to the FF -SI scheme. Likewise, the FF -SS =
sfs-I-2-S(FF -SI) scheme is closely related to the SS scheme presented in [FF02], and it inherits its
uf-cma security. The imp-pa, imp-aa and imp-ca security of the new FF -IBI = cSI-2-IBI(FF -SI)
scheme and the uf-cma security of the new FF -IBS = cSS-2-IBS(FF -SS) scheme under the factoring
assumption related to Kfact follow from Theorem 5.4 and Corollary 5.10, respectively.

6.2 Schemes based on RSA

Definitions and assumptions. Similarly to the modulus generators used in factoring-based schemes,
we describe all schemes based on RSA in terms of an RSA key generator Krsa that on input 1k out-
puts a modulus N that is the product of two distinct odd primes, and exponents e, d such that
ed ≡ 1 mod ϕ(N) where ϕ(N) = (p− 1)(q− 1) is Euler’s totient function. A prime-exponent RSA key
generator only outputs keys with e prime. Security of schemes is based on either the one-wayness of
the RSA function associated with the key generator, or on the hardness of the so-called one-more RSA
inversion problem [BNPS03]. In particular, for the former, we say that the RSA function associated
with the key generator Krsa is one-way if

Advrsa
Krsa,A(k) = Pr

[

x← A(1k, N, e, y) : (N, e, d)
$← Krsa(1

k) ; y
$← Z

∗
N ; xe ≡ y mod N

]

is negligible in k for all polynomial-time algorithms A. For the latter, the hardness is defined with
respect to the following game:

Experiment Exp1m-rsa
Krsa,A (k) :

(N, e, d)
$← Krsa(1

k)
i← 0 ; n← 0

(x1, . . . , xm)
$← A(1k, N, e : Chall, Inv)

If m = i and n < m and xe
i ≡ yi mod N for all i ∈ {1, . . . , m}

Then return 1 else return 0.

Oracle Chall:

i← i + 1 ; yi
$← Z

∗
N

Return yi

Oracle Inv(y):
n← n + 1 ; x← yd mod N
Return x

The adversary A is given 1k, N, e as input and access to two oracles: a challenge oracle Chall that on
any input returns a new random target point yi ∈ Z

∗
N and an inversion oracle Inv(·) = (·)d mod N .

The adversary’s goal is to invert all target points output by the challenge oracle using strictly fewer
queries to the inversion oracle. We say that the one-more RSA inversion problem associated with Krsa

is hard if the advantage
Adv1m-rsa

Krsa,A (k) = Pr
[

Exp1m-rsa
Krsa,A (k) = 1

]

is negligible in k for any polynomial-time adversary A.

6.2.1 The GQ Family

The scheme. The GQ -SI scheme associated to RSA key generator Krsa and challenge length l(·)
is defined via Figure 11. The schemes originally presented by Guillou and Quisquater [GQ89] are
actually GQ -IBI = cSI-2-IBI(GQ -SI) and GQ -IBS = cSS-2-IBS(fs-I-2-S(GQ -SI)).

Convertibility. To any RSA key generator Krsa, we associate the following family of trapdoor
samplable permutations:

Algorithm TDG(1k):

(N, e, d)
$← Krsa(1

k)
Return ((1k, N, e), d)

Algorithm Smp((1k, N, e)):

x
$← Z

∗
N ; X ← xe mod N

Return (x, X)

Algorithm Inv((1k, N, e), d, X):
x← Xd mod N
Return x.

27

Algorithm Kg(1k)

(N, e, d)
$← Krsa(1

k)

x
$← Z

∗
N

X ← xe mod N
pk ← ((1k, N, e), X)
sk ← ((1k, N, e), x)
Return (pk , sk)

Prover P Verifier V

y
$← Z

∗
N

Y ← ye mod N Y
-

c
¾ c

$← Z2l(k)

z ← xcy mod N z
-

If ze ≡ XcY mod N and Y, z ∈ Z
∗
N

then acc else rej

Figure 11: The GQ -SI scheme. The scheme is parameterized with a prime-exponent RSA key generator Krsa

and a superlogarithmic challenge length l : N → N such that 2l(k) < e for all (N, e, d) ∈ [Krsa(1
k)]. The prover

P and verifier V are initialized with states sk = ((1k, N, e), x) and pk = ((1k, N, e), X), respectively.

Algorithm Kg(1k)

(N, e, d)
$← Krsa(1

k)

x
$← Z

∗
N

X ← xe mod N
pk ← ((1k, N, e), X)
sk ← ((1k, N, e), x)
Return (pk , sk)

Prover P Verifier V

y
$← Z

∗
N

Y ← ye mod N Y
-

c
¾ c

$← Z2l(k)

z ← xyc mod N z
-

If ze ≡ XY c mod N and Y, z ∈ Z
∗
N

then acc else rej

Prover P∗ Verifier V∗

y
$← Z

∗
N

Y ← ye mod N Y
-

c
¾ c

$← {1, . . . , 2l(k)}
If c 6∈ {1, . . . , 2l(k)} then abort
else z ← xyc mod N z

-

If ze ≡ XY c mod N and Y, z ∈ Z
∗
N

then acc else rej

Figure 12: The Sh-SI = (Kg,P,V) and Sh∗-SI = (Kg,P∗,V∗) schemes. Both schemes are specified in
terms of a prime-exponent RSA generator Krsa and super-logarithmic challenge length l(·) such that 2l(k) < e
for all (N, e, d) ∈ [(Krsa(1

k)]. The prover P and verifier V are initialized with states sk = ((1k, N, e), x) and
pk = ((1k, N, e), X), respectively.

The relation described by (1k, N, e) is R = {(x, X) ∈ Z
∗
N ×Z

∗
N |xe ≡ X mod N}. It is regular because

raising to the e-th power is a permutation on the elements of Z
∗
N . The correct distribution of the

output of the Smp algorithm follows from the random choice of x from Z
∗
N , and the Inv algorithm

returns the unique element x ∈ Z
∗
N such that xe ≡ X mod N .

Security. The GQ -SI scheme associated with a prime-exponent RSA key generator Kcg and with
super-logarithmic challenge length l(·) such that 2l(k) < e for all (N, e, d) ← [Krsa(1

k)] is known to
be imp-pa secure assuming the one-wayness of RSA [GQ89], and imp-aa and imp-ca secure assuming
the hardness of the one-more RSA inversion problem [BP02]. According to Theorem 5.4, these results
extend to GQ -IBI . Also, Corollary 5.10 says that GQ -IBS is uf-cma assuming RSA is one-way, but
this was known [DKXY03].

28

6.2.2 The Sh and Sh∗ Families

The scheme. In the same work in which he introduced the concept of identity-based cryptography,
Shamir [Sha84] also proposed the first IBS scheme, but no SI or IBI schemes. He did not give a
security proof for his IBS scheme, and none has been provided until now. We surface the SI scheme
Sh-SI defined via Figure 12. One can check that Sh-IBS = cSS-2-IBS(fs-I-2-S(Sh-SI)) is exactly the
IBS scheme in [Sha84]. The Sh-SI scheme is interesting both historically and technically. It turns out
to be a “mirror-image” of GQ -SI that closely resembles the latter.

Convertibility. Convertibility of Sh-SI follows from the convertibility of GQ -SI since the two
schemes have the same key generation algorithm.

Security. The first question to ask is whether Sh-SI is honest-verifier zero-knowledge (HVZK).
While this was obvious for GQ -SI (and in fact, if true for an SI scheme, is usually obvious), it is
in fact not apparent at first glance for Sh-SI , and one might suspect that the scheme is not HVZK.
However, using a trick involving greatest common divisors, we show that Sh-SI is statistical (not
perfect) HVZK. We also show that it is a proof of knowledge and thereby obtain the following:

Theorem 6.2 The Sh-SI scheme associated with prime-exponent RSA generator Krsa and with super-
logarithmic challenge length l(·) such that 2l(k) < e for all (N, e, d) ∈ [(Krsa(1

k)] is imp-pa secure
assuming that the RSA function associated to Krsa is one-way.

Proof: The Sh-SI scheme is statistical honest-verifier zero-knowledge since the following algorithm
simulates communication transcripts using only the public key:

Algorithm Conv-sim(1k, N, e, X)

c
$← Z2l(k)

Compute a, b ∈ Z such that ac + be = 1 (using extended Euclidean algorithm)

y
$← Z∗

N ; Y ← X−a · ye mod N ; z ← Xb · yc mod N
Return (Y, c, z)

The transcripts generated by Conv-sim are correctly distributed since Y is uniformly distributed over
Z
∗
N , c is uniformly distributed over Z2l(k) and z is the unique element of Z

∗
N such that ze ≡ XY c mod N

because ze ≡ Xbeyec ≡ Xac+beY c mod N . The second line of the algorithm may fail if gcd(c, e) 6= 1.
However, since e is prime with 2l(k) < e, the only problematic value is c = 0, which occurs only with
negligible probability 2−l(k) when the challenge length l is super-logarithmic in the security parameter.

The protocol is also a proof of knowledge of x, since from two valid challenge-response pairs (c1, z1),
(c2, z2) for the same commitment Y , one can extract the secret key x as follows: use the extended
Euclidean algorithm to compute a, b ∈ Z such that a(c1−c2)+be = 1. Because (z1/z2)

e ≡ Y c1−c2 mod
N , it holds that Y ≡ Y a(c1−c2)+be ≡ ((z1/z2)

aY b)
e

mod N , so that we can let y ← (z1/z2)
aY b mod N

and compute x as z1y
−c1 mod N . The extraction does not work if gcd(c1 − c2, e) > 1, but since e is

prime, this only occurs when c1 = c2.

Theorem 5.9 and Corollary 5.10 now imply that the Sh-SS = fs-I-2-S(Sh-SI) and Sh-IBS schemes are
uf-cma secure under the same assumptions. Also, the imp-pa security of the Sh-IBI = cSI-2-IBI(Sh-SI)
scheme now follows from Theorem 5.4.

The Sh-SI scheme is trivially insecure under active attacks however, since the cheating verifier can
learn the secret key by sending a zero challenge. This minor weakness is easily fixed by “removing”
the zero challenge, leading to the Sh∗-SI scheme.

The Sh∗ family. In Figure 12, we define a modified scheme that we denote Sh∗-SI . This scheme
turns out to have security attributes analogous to those of GQ -SI in that we can show the following:

29

Theorem 6.3 The Sh∗-SI scheme associated with prime-exponent RSA generator Krsa and with
super-logarithmic challenge length l(·) such that 2l(k) < e for all (N, e, d) ∈ [(Krsa(1

k)] is imp-pa
secure assuming that the RSA function associated to Krsa is one-way, and is imp-aa and imp-ca secure
assuming that the one-more RSA inversion problem associated to Krsa is hard.

Proof: The imp-pa security of the Sh∗-SI scheme follows from the fact that it is perfect honest-verifier
zero-knowledge and a proof of knowledge of x. Conversations can be simulated by an algorithm similar
to the Conv-sim algorithm in the proof of Theorem 6.2, but drawing c from {1, . . . , 2l(k)}. Extracting
x is done exactly as in the proof of Theorem 6.2.

As one might expect, the proof of imp-aa and imp-ca security are very similar to the corresponding
proofs for the GQ identification scheme [BP02]. Given imp-ca adversary A = (CV, CP) for the Sh∗-SI
scheme, we construct a one-more RSA adversary B as follows. On input (1k, N, e), B queries its chal-
lenge oracle the first time and stores the output as X. It then runs CV on input 1k, pk = ((1k, N, e), X).
When CV requests to interact with a new prover session s, B queries the challenge oracle for a fresh
target point Ys and returns Ys to CV. When confronted with challenge cs 6= 0, B uses the inversion
oracle to compute zs ← Inv(XY cs

s mod N) and returns it to CV. At the end of its execution, CV

outputs initial state StCP for the cheating prover CP.

Algorithm B then runs CP in a reset experiment as in Lemma 6.1 to generate two communication
transcripts (Y, c̃1, z̃1) and (Y, c̃2, z̃2) where challenges c̃1, c̃2 are uniformly distributed over S1. With
probability Pr[res(StCP, pk) = 1] these will both be accepting transcripts and c̃1 6= c̃2. Since e is prime
and 2l(k) < e, we can compute a, b ∈ Z such that a(c̃1 − c̃2) + be = 1 and compute x ∈ Z

∗
N such

that xe ≡ X mod N as in the proof of Theorem 6.2. Inversions of all other target points Ys are either
computed using the inversion oracle for unfinished sessions s, or are computed by applying the gcd
trick again to get a, b such that acs + be = 1 and using the fact that ys ≡ yacs+be

s ≡ (zs/x)aY b mod N .

In summary, B needed one target point and one inversion query for each prover session, but succeeded
in inverting X without the help of the inversion oracle, so it wins the game whenever the rewinding
experiment succeeded. We have

Advimp-ca
Sh∗-SI ,A

(k) = acc(StCP, pk)

≤ 2−l(k) +
√

Pr[res(StCP, pk) = 1]

≤ 2−l(k) +
√

Adv1m-rsa
Krsa,B (k)

by the Reset Lemma.

By Theorem 5.4, the Sh∗-IBI = cSI-2-IBI(Sh∗-SI) scheme is imp-pa secure under the one-wayness of
the RSA function related to Krsa, and is imp-aa and imp-ca secure under the hardness of the one-more
RSA inversion problem associated to Krsa. The uf-cma security of the Sh∗-SS = fs-I-2-S(Sh∗-SI) and
Sh∗-IBS = cSS-2-IBS(Sh∗-SS) under the one-wayness of the RSA function related to Krsa follows from
Theorem 5.9 and Corollary 5.10.

6.2.3 The OkRSA Family

The scheme. Okamoto [Oka93] presented an RSA-based SI scheme and a related RSA-based IBI
scheme. The former is the OkRSA-SI scheme associated to a prime-exponent RSA key genera-
tor Krsa and challenge length l(·) defined in Figure 13, and the latter is exactly OkRSA-IBI =
cSI-2-IBI(OkRSA-SI).

30

Algorithm Kg(1k)

(N, e, d)
$← Krsa(1

k)

g
$← Z

∗
N

x1
$← Ze ; x2

$← Z
∗
N

X ← g−x1x−e
2 mod N

pk ← ((1k, N, e, g), X)
sk ← ((1k, N, e, g), (x1, x2))
Return (pk , sk)

Prover P Verifier V

y1
$← Ze ; y2

$← Z
∗
N

Y ← gy1ye
2 mod N Y

-

c
¾ c

$← Z2l(k)

z1 ← y1 + cx1 mod e

z2 ← gb(y1+cx1)/ecy2x
c
2 mod N z1, z2

-

If Y ≡ gz1ze
2X

c mod N
and Y, z2 ∈ Z

∗
N and z1 ∈ Ze

then acc else rej

Figure 13: The OkRSA-SI scheme. The scheme is parameterized with a prime-exponent RSA generator Krsa

and a challenge length l : N→ N such that 2l(k) < e for any e output by Krsa(1
k). The prover P and verifier V

are initialized with states sk = ((1k, N, e, g), (x1, x2)) and pk = ((1k, N, e, g), X), respectively.

Convertibility. Associated to any RSA key generator Krsa, consider the family of trapdoor sam-
plable relations F = (TDG, Smp, Inv) given by:

Algorithm TDG(1k):

(N, e, d)
$← Krsa(1

k)

g
$← Z

∗
N

Return ((1k, N, e, g), d)

Algorithm Smp((1k, N, e, g)):

x1
$← Ze ; x2

$← Z
∗
N

X ← g−x1x−e
2 mod N

Return ((x1, x2), X)

Algorithm Inv((1k, N, e, g), d, X):

x1
$← Ze

x2 ← (gx1X)−d mod N
Return (x1, x2).

The relation described by (1k, N, e, g) is R = {((x1, x2), X) ∈ (Ze×Z
∗
N)×Z

∗
N | g−x1x−e

2 ≡ X mod N}.
Since raising to the e-th exponent induces a permutation on Z

∗
N , there exists a unique x2 ∈ Z

∗
N for

each X ∈ Z
∗
N and x1 ∈ Ze such that ((x1, x2), X) ∈ R. Obviously, each pair (x1, x2) ∈ Ze × Z

∗
N

uniquely determines X ∈ Z
∗
N such that ((x1, x2), X) ∈ R. Hence, |R−1(X)| = e for all X ∈ Z

∗
N , and

R is regular. As a consequence, the output of the Smp algorithm is uniformly distributed over R due
to the random choice of x1 and x2, and the output of the Inv algorithm is uniformly distributed over
R−1(X) due to the random choice of x1.

Security. Okamoto [Oka93] proved that the OkRSA-SI scheme is imp-pa and imp-aa secure under
the one-wayness of the RSA function associated to Krsa when the scheme is instantiated with super-
logarithmic challenge length l(·) and a prime-exponent RSA key generator Krsa such that 2l(k) < e for
each (N, e, d) ∈ [Krsa(1

k)]. The proof easily extends to imp-ca security as well. The imp-pa, imp-aa
and imp-ca security of the OkRSA-IBI = cSI-2-IBI(OkRSA-SI) scheme follows from the convertibility
of OkRSA-SI and Theorem 5.4, and the uf-cma security of OkRSA-IBS follows from Theorem 5.7.

6.2.4 The Gir Family

The scheme. In [Gir90], Girault proposed an SI scheme that we have defined in Figure 14 and named
Gir -SI . The scheme is inspired by the Schnorr identification scheme [Sch90] and is parameterized with
challenge length l(·) and a Girault-RSA key generator Kgrsa, which is an algorithm that on input 1k

outputs (N, e, d, f) such that N = pq with 2k−1 ≤ |N | < 2k and with p, q of the special form p = 2fp′+1
and q = 2fq′ + 1, where f, p′, q′, p, q are all primes. He also proposed a related IBI scheme. This IBI
scheme did not use hash functions, which lead to an attack and later a fix [SSN98]. The fixed IBI
scheme turns out to be exactly Gir -IBI = cSI-2-IBI(Gir -SI).

Convertibility. Consider the following family of trapdoor samplable relations F = (TDG, Smp, Inv)
associated to Kgrsa:

31

Algorithm Kg(1k)

(N, e, d, f)
$← Krsa(1

k)
Choose g ∈ Z

∗
N of order f

h← ge mod N

s
$← Zf ; S ← g−s mod N

X
$← Z

∗
N ; P ← X−dS mod N

pk ← ((1k, N, e, f, g, h), X)
sk ← ((1k, N, e, f, g, h), (P, s))
Return (pk , sk)

Prover P Verifier V

y
$← Zf

Y ← hy mod N P, Y
-

c
¾ c

$← Z2l(k)

z ← y + sc mod f z
-

If hz(P eX)c ≡ Y mod N
and P, Y ∈ Z

∗
N and z ∈ Zf

then acc else rej

Figure 14: The Gir -SI scheme. The scheme is parameterized with a challenge length l(k) and a Girault-RSA
key generator Kgrsa. The prover P and verifier V are initialized with states sk = ((1k, N, e, f, g, h), (P, s)) and
pk = ((1k, N, e, f, g, h), X), respectively.

Algorithm TDG(1k):

(N, e, d, f)
$← Kgrsa(1

k)
Choose g ∈ Z

∗
N of order f

h← ge mod N
Return ((1k, N, e, f, g, h), d)

Algorithm Smp((1k, N, e, f, g, h)):

s
$← Zf ; P

$← Z
∗
N ; X ← P−eh−s mod N

Return ((P, s), X)

Algorithm Inv((1k, N, e, f, g, h), d, X):

s
$← Zf ; S ← g−s mod N ; P ← X−dS mod N

Return (P, s).

The relation described by (1k, N, e, f, g, h) is R = {((P, s), X) ∈ (Z∗
N × Zf)× Z

∗
N | P e ≡ X−1h−s mod

N}. Each X ∈ Z
∗
N has exactly |R−1(X)| = f inverses, namely one for each s ∈ Zf . On the other

hand, each pair (P, s) ∈ Z
∗
N × Zf uniquely determines X ∈ Z

∗
N such that ((P, s), X) ∈ R. From this,

the regularity of R and the correct output distribution of the Smp and Inv algorithms above follow.
The Gir -SI scheme is convertible with respect to F .

Security. The convertibility does not help here, however, because we found that all schemes in the
family are insecure. In particular, Gir -SI is not even imp-pa secure, and neither is the fixed IBI scheme
Gir -IBI . The signature scheme Gir -IBS = cSS-2-IBS(fs-I-2-S(Gir -IBI)) is not uf-cma secure either.

Theorem 6.4 (Insecurity of the Gir Family) The Gir -SI scheme depicted in Figure 14 and the
Gir -IBI = cSI-2-IBI(Gir -SI) scheme as presented in [Gir90, SSN98] are insecure against impersonation
under passive, active and concurrent attack. The Gir -SS = fs-I-2-S(Gir -SI) and the Gir -IBS =
cSS-2-IBS(Gir -SS) schemes are existentially forgeable under chosen-message attack.

Proof: We attack only the Gir -IBS scheme, since the insecurity of the SI, IBI, and SS schemes then
follows as a consequence. The attack we present is actually a universal forgery under known-message
attack, which is an even stronger attack than what is claimed in the theorem statement. In the Gir -IBS
scheme, a signature of a user I on a message M under the master public key mpk = (1k, N, e, f, g, h)
is a tuple (P, Y, z) such that Y ≡ hz(P e · H1(I))H2(P‖Y ‖M) mod N , where H1 is the random oracle
associated to the cSI-2-IBI transform and H2 is the random oracle associated to the fs-I-2-S transform.
The flaw at the heart of the attack is that in the subgroup generated by g, computing RSA inverses is
easy because the order f of the subgroup is known. Given a valid signature (P1, Y1, z1) for message M1

and identity I, an adversary can forge I’s signature for any message M2 as follows. It first computes
d′ ← e−1 mod f , and then computes S ′ ← (P e

1 ·H1(I))d′ mod N so that

S′ ≡
(

H1(I)−1Se ·H1(I)
)d′

mod N

≡ S mod N.

32

Then, it chooses s2 from Zf and computes P2 ← P1S
′−1g−s2 mod N . Since P2 ≡ H1(I)−dg−s2 mod

N , the pair (P2, s2) might have been output by the UKg algorithm as part of the user secret key
corresponding to identity I. Therefore, any signature the adversary generates using this pair will be
considered valid for identity I. The adversary now follows the normal signing algorithm to compute
the forgery: it chooses y2 from Zq, sets Y2 ← hy2 mod N , computes z2 ← y2+s2H2(P2‖Y2‖M2) mod f .
The forgery is (P2, Y2, z2).

It is natural to consider counteracting the above attack by removing f from the public key. While
this might work for the SI scheme, it does not for the IBI (or IBS) scheme. The reason is that, since f
still has to be included in each user’s secret key, an adversary can easily extract it by corrupting one
identity.

6.3 Schemes based on Pairings

Many recent papers propose pairing-based IBS schemes [SOK00, Pat02, Hes03, CC03, Yi03] (the
schemes independently published by [CC03] and [Yi03] are actually equivalent). Barring [CC03], none
of these papers prove their scheme secure. (Some proofs in weak models were however provided in
[Hes03, Yi03].) However, the first scheme presented in [Hes03] was proven secure in [DKXY03]. A
second scheme of [Hes03] was later found to be insecure [Che02].

None of these papers define SI or IBI schemes. We surface new SI schemes that, through our
transformations, yield exactly the proposed IBS schemes (for the schemes of [Hes03, CC03, Yi03]),
or a close variant thereof (for the scheme of [SOK00]). By analyzing the security of the SI scheme,
we obtain security results for all schemes in the families. The scheme of [Pat02] does not seem to be
related to any convertible SI scheme, leaving its security an open problem.

Definitions and Assumptions A pairing generator is a polynomial-time randomized algorithm
Kpair that on input 1k outputs (〈G1〉 , 〈G2〉 , 〈ê〉 , q, P), where 〈G1〉 , 〈G2〉 are the descriptions of an
additive group G1 and a multiplicative group G2 of the same prime order q such that 2k−1 ≤ q < 2k,
P is a generator of G1, and 〈ê〉 is the description of a non-degenerate computable bilinear map
ê : G1 × G1 → G2 associated to G1 and G2. This means that (1) ê does not map all pairs of
elements in G1 to the identity element of G2; (2) the pairing ê(Q, R) is computable in polynomial time
given descriptions 〈G1〉 , 〈G2〉 , 〈ê〉 for all Q, R ∈ G1; and (3) for all Q, R ∈ G1 and for all a, b ∈ Zq,
ê(aQ, bR) = ê(Q, R)ab. Examples of ê include the Weil and Tate pairings over supersingular elliptic
curves. The computational Diffie-Hellman (CDH) problem in G1 associated to Kpair is said to be hard
if

Advcdh
Kpair,A

(k) = Pr
[

A(1k, 〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, aP, bP) = abP :

(〈G1〉 , 〈G2〉 , 〈ê〉 , q, P)
$← Kpair(1

k) ; a, b
$← Zq

]

is negligible in k for any polynomial-time algorithm A. The assumption that CDH is hard is a weaker
assumption than the bilinear CDH assumption used by Boneh and Franklin [BF01] which states that,
given (aP, bP, cP), computing ê(P, P)abc is hard.

The one-more computational Diffie-Hellman problem [Bol03] in G1 associated to Kpair is defined
through the following experiment:

33

Algorithm Kg(1k)

(〈G1〉 , 〈G2〉 , 〈ê〉 , q, P)
$← Kpair(1

k)

s
$← Zq ; S ← sP

U
$← G1 ; V ← sU

pk ← ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), U)
sk ← ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), V)
Return (pk , sk)

Prover P Verifier V

y
$← Zq

Y ← yP Y
-

C
¾ C

$← G1

Z ← yC + V Z
-

If ê(Z,P) = ê(U, S)ê(C, Y)
and Y,Z ∈ G1

then acc else rej

Prover P Verifier V

y
$← Zq

α← ê(P, P)y α
-

c
¾ c

$← Zq

Z ← yP + cV Z
-

If ê(Z,P) = α · ê(U, S)c

and α ∈ G2 and Z ∈ G1

then acc else rej

Prover P Verifier V

y
$← Zq

Y ← yU Y
-

c
¾ c

$← Zq

Z ← (y + c)V Z
-

If ê(Z,P) = ê(Y + cU, S)
and Y,Z ∈ G1

then acc else rej

Figure 15: The pairing-based IBS schemes as SI schemes. All schemes use the same key generation
algorithm Kg. Presented here are the SOK -SI (upper right), Hs-SI (lower left) and ChCh-SI (lower right)
schemes. The provers P and verifiers V are initialized with states sk = ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), V) and
pk = ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), U), respectively.

Experiment Exp1m-cdh
Kpair,A

(k) :

(〈G1〉 , 〈G2〉 , 〈ê〉 , q, P)
$← Kpair(1

k)

a
$← Zq ; i← 0 ; n← 0

(Q1, . . . , Qm)
$← A(1k, 〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, aP : Chall,Cdh)

If m = i and n < m and Qi ≡ aPi for all i ∈ {1, . . . , m}
Then return 1 else return 0.

Oracle Chall:

i← i + 1 ; Pi
$← G1

Return Pi

Oracle Cdh(P):
n← n + 1 ; Q← aP
Return Q

The adversary A is given 1k, 〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, aP as input and access to two oracles: a challenge
oracle Chall that on any input returns a new random target point Pi ∈ G1 and a CDH oracle
Cdh(·) = a(·). The adversary’s goal is to compute CDH solutions for all target points output by
the challenge oracle using strictly fewer queries to the CDH oracle. We say that the one-more RSA
inversion problem in G1 associated to Kpair is hard if the advantage

Adv1m-cdh
Kpair,A

(k) = Pr
[

Exp1m-cdh
Kpair,A

(k) = 1
]

is negligible in k for any polynomial-time adversary A. This assumption was used before in the proofs
of a group signature scheme [Bol03] and a transitive signature scheme [BN04].

6.3.1 The SOK , Hs and ChCh Families

The schemes. In Figure 15, we associate to a pairing generator Kpair the SOK -SI scheme that we
surface from [SOK00], the Hs-SI scheme that we surface from [Hes03] and the ChCh-SI scheme that
we surface from [CC03, Yi03]. The Hs-IBS = cSS-2-IBS(fs-I-2-S(Hs-SI)) and ChCh-IBS = cSS-2-IBS(
fs-I-2-S(ChCh-SI)) schemes are exactly the original IBS schemes, while SOK -IBS = cSS-2-IBS(fs-I-2-S(
SOK -SI)) slightly differs from the scheme of [SOK00] in the sense that the latter uses H(M) to generate
the challenge when computing a signature, rather than H(Y ‖M).

34

Convertibility. We now show that all these pairing-based SI schemes are convertible. They all
have the same key-generation algorithm, so a common argument applies. For any pairing generator
Kpair, consider the family of samplable trapdoor relations F = (TDG, Smp, Inv):

Algorithm TDG(1k):

(〈G1〉 , 〈G2〉 , q, P)
$← Kgrsa(1

k)

s
$← Zq ; S ← sP

Return ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), s)

Algorithm Smp((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S)):

u
$← Zq ; U ← uP ; V ← uS ; Return (U, V)

Algorithm Inv((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), s, U):
V ← sU ; Return V .

The relation R described by (〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S) is R = { (U, V) ∈ G1×G1 : ê(V, P) = ê(U, S) }.
Since both G1 and G2 are of prime order and since ê is a bilinear map, ê(P, P) is a generator of G2.
Let s, u, v be the unique elements of Zq such that S ≡ sP , U ≡ uP and V ≡ vP . Then the equation
ê(V, P) ≡ ê(U, S) implies that v ≡ us mod q. Since q is prime, for each v ∈ ZQ there exists exactly
one u ∈ ZQ that satisfies this equation. Hence, R is actually a permutation on G1, from which the
regularity of R follows. The output of the Smp algorithm is uniformly distributed of R because by
the random choice of u, U is uniformly uniformly over G1 and V is the only element of G1 such that
(U, V) ∈ R. Since |R−1(V)| = 1 for all V ∈ G1, Inv’s output is trivially correctly distributed.

Security. In the following, we prove that the SOK -SI , Hs-SI and ChCh-SI schemes are imp-pa
secure under the CDH assumption associated to Kpair, and that the Hs-SI and ChCh-SI schemes are
imp-ca secure under the one-more CDH assumption associated to Kpair. Security results for the IBI,
SS and IBS schemes follow through the transforms.

Theorem 6.5 The SOK -SI , Hs-SI and ChCh-SI schemes are imp-pa secure assuming that the com-
putational Diffie-Hellman problem associated with the underlying generator Kpair is hard.

Proof: We prove imp-pa security by showing that all three schemes are honest-verifier zero-knowledge
and proofs of knowledge for V . The former can be seen from the conversation simulators given in
Figure 16. It is easily verified that their outputs are correctly distributed. We demonstrate the proof
of knowledge property by showing how any cheating prover CP can be used to extract the prover’s

secret V . For the SOK -SI scheme, the extractor chooses c
$← Zq upon receiving Y from CP, and sends

C ← cP as the challenge. From CP’s response Z, the extractor computes V as Z − cY . The extractor
of the two other schemes runs the cheating prover in a reset experiment to obtain two responses Z1, Z2

to randomly chosen challenges c1, c2 for the same commitment Y (or α). If both transcripts are valid,
V can be computed as (c1 − c2)

−1(Z1 − Z2). Using the Reset Lemma, we obtain

Advimp-pa
SOK -SI ,A(k) ≤ Advcdh

Kpair,B
(k)

Advimp-pa
SI ,A (k) ≤ 2−k+1 +

√

Advcdh
Kpair,B

(k) for SI ∈ {Hs-SI , ChCh-SI}

as the bounds on the advantage of any imp-pa adversary A.

Theorem 5.4 implies that ChCh-IBI , SOK -IBI and Hs-IBI are imp-pa secure, and Theorem 5.9 im-
plies that ChCh-SS , SOK -SS and Hs-SS are uf-cma secure. Corollary 5.10 implies that ChCh-IBS ,
SOK -IBS and Hs-IBS are uf-cma secure IBS schemes, but of these only the result about SOK -IBS
is new.

Theorem 6.6 The ChCh-SI and Hs-SI schemes are imp-aa and imp-ca secure assuming that the one-
more computational Diffie-Hellman problem associated with the underlying pairing generator Kpair is
hard.

35

Simulator for SOK -SI :

y
$← Zq ; Y ← yS

z
$← Zq ; Z ← zS

C ← y−1(zP − U)
Return (Y,C, Z)

Simulator for Hs-SI :

Z
$← G1

c
$← Zq

α← ê(Z,P)ê(U, S)−c

Return (α, c, Z)

Simulator for ChCh-SI :

z
$← Zq ; Z ← zS

c
$← Zq

Y ← zP − cU
Return (Y, c, Z)

Figure 16: Conversation simulator algorithms for the pairing-based schemes.

Proof: The way to construct a one-more CDH algorithm B out of an imp-aa/ca adversary A =
(CV, CP) is actually very similar for the ChCh-SI and Hs-SI schemes. We present a single construction
here and emphasize the differences. When run on input (1k, 〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, aP), algorithm B lets
S ← aP , queries the challenge oracle a first time to get U ← Chall, and runs CV on input security
parameter 1k and public key pk = ((〈G1〉 , 〈G2〉 , 〈ê〉 , q, P, S), U). Each time CV asks for interaction
with a new prover session i, it queries the the challenge oracle to get Yi ← Chall(ε). This value is
returned to the cheating verifier for the ChCh-SI scheme, while αi ← ê(Yi, S) is returned for the Hs-SI
scheme. Upon receiving challenge ci from CV, the one-more CDH adversary B uses its CDH oracle to
compute Zi ← Cdh(Yi + ciU) and returns it to CV. The validity of this response can be verified by
observing that for the ChCh-SI scheme it holds that ê(Zi, P) = ê(a(Yi + ciU), P) = ê(Yi + ciU, S), and
for the Hs-SI scheme that ê(Zi, P) = ê(a(Yi + ciU), P) = ê(Yi, S)ê(ciU, S) = αi · ê(U, S)ci . When CV

outputs initial state StCP for the cheating prover, B extracts a value V from CP such that V = aU
by running CP in a reset experiment as in the proof of Theorem 6.5. This is the solution to B’s first
challenge, and it can compute solutions to all other challenges as Qi ← Zi − ciV . (The solution for
Yi in unfinished prover sessions can be queried directly from the Cdh oracle.) In summary, if CV

interacted with n different prover sessions, then B succeeded in solving n + 1 challenges using only
n queries to the Cdh oracle, and hence wins the game. Therefore, the advantage of an imp-aa/ca
adversary A for SI ∈ {ChCh-SI , Hs-SI} is bounded by

Adv
imp-aa/ca
SI ,A (k) ≤ 2−k+1 +

√

Adv1m-cdh
Kpair,B

(k) .

due to the Reset Lemma.

Theorem 5.4 implies that the ChCh-IBI and Hs-IBI schemes are imp-aa and imp-ca secure assuming
that the one-more computational Diffie-Hellman problem in the group G1 associated to Kpair is hard.
Thus, we obtain new, pairing-based IBI schemes with proofs of security.

SOK -SI and SOK -IBI are insecure under active or concurrent attacks: upon receiving a commit-

ment Y , an adversary can choose c
$← Zq, submit C ← cP as the challenge, and compute the prover’s

secret key from the response Z as V ← Z − cY .
As indicated above, SOK -IBS , that we prove uf-cma secure, is slightly different from the IBS

scheme in [SOK00]. It is unclear whether the latter can be proved secure, so SOK -IBS might be
preferable to the original one. This highlights a benefit of our framework, namely that we can obtain
provable schemes in a systematic way.

6.4 A Scheme based on Discrete Logarithms

The scheme. A cyclic group generator Kcg is a randomized polynomial-time algorithm that on input
1k returns a tuple (〈G〉 , q, g), where 〈G〉 is the description of a cyclic multiplicative group G of order
q and where g is a generator of G. A prime-order cyclic group generator is a group generator that q is
prime for all (〈G〉 , q, g) ∈ [Kcg(1

k)] for all k ∈ N. We surface the Beth-SI scheme defined in Figure 17

36

Algorithm Kg(1k)

(〈G〉 , q, g)
$← Kcg(1

k)

r
$← Zq ; R← gr

x
$← Zq ; X ← gx

h
$← Zq ; s← r−1(h−Rx) mod q

pk ← ((1k, 〈G〉 , q, g,X), h)
sk ← ((1k, 〈G〉 , q, g,X), (R, s))
Return (pk , sk)

Prover P Verifier V

y
$← Zq

Y ← R−y R, Y
-

c
¾ c

$← Z2l(k)

z ← y + cs mod q z
-

If gch ≡ RzY XcR

and R, Y ∈ G and z ∈ Zq

then acc else rej

Figure 17: The Beth-SI scheme. The scheme is parameterized with a prime-order cyclic group generator
Kcg and super-logarithmic challenge length l : N → N such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)]. The
prover P and verifier V are run on initial states sk = ((1k, 〈G〉 , q, g,X), (R, s)) and pk = ((1k, 〈G〉 , q, g,X), h),
respectively.

from [Bet88]. It is parameterized with a cyclic group generator Kcg and challenge length l(·). The
Beth-IBI = cSI-2-IBI(Beth-SI) scheme is a more efficient variant of the IBI scheme actually presented
in [Bet88]. The scheme of [Bet88] is actually more general, allowing for higher “key multiplicities”,
just as the ItR family. We don’t have any results for the more general scheme though, and limit our
presentation to the special case above.

Convertibility. Consider the following family of trapdoor samplable relations F = (TDG, Smp, Inv)
associated to Kcg:

Algorithm TDG(1k):

(〈G〉 , q, g)
$← Kcg(1

k)

x
$← Zq ; X ← gx

Return ((1k, 〈G〉 , q, g, X), x)

Algorithm Smp((1k, 〈G〉 , q, g, X)):

a, b
$← Zq ; R← Xagb

s← a−1R mod q ; h← bs mod q
Return ((R, s), h)

Algorithm Inv((1k, 〈G〉 , q, g, X), x, h):

r, h
$← Zq ; R← gr ; s← r−1(h− xR) mod q

Return (R, s).

The relation described by (1k, 〈G〉 , q, g, X) is R = {((R, s), h) ∈ (G×Zq)×Zq |gh ≡ RsXR}. For each
pair (R, s) ∈ (G × Zq), there exists exactly one h ∈ Zq such that ((R, s), h) ∈ R, namely the unique
discrete logarithm of RsXR. On the other hand, for each h ∈ Zq, there exist q pairs (R, s) such that
((R, s), h) ∈ R, namely one for each s ∈ Zq. The output of the Smp algorithm is uniformly distributed
over R because s and h are uniformly and independently distributed over Zq due to the random choice
of a and b, respectively, and R is the unique element of G such that ((R, s), h) ∈ R. The output of
the Inv algorithm is also correctly distributed, since we can see s as uniformly distributed over Zq due
to the choice of r, and R as the unique element of G such that ((R, s), h) ∈ R. It can be seen from
the construction of the scheme that the Beth-SI scheme is convertible with respect to this family F .

Assumptions. The way the above sampling algorithm works is closely related to the well-known two-
parameter attack on textbook ElGamal signatures (see e.g. [MvOV96, p. 455]). Our security result is
based on the security of what we call the hashed-message ElGamal signature scheme ElG -SS that is
described by the following algorithms:

37

Algorithm Kg(1k):

(〈G〉 , q, g)
$← Kcg(1

k)

x
$← Zq ; X ← gx

pk ← (G, q, g, X) ; sk ← (G, q, g, x)
Return (pk , sk)

Algorithm Sign(sk , M : H):

r
$← Zq ; R← gr

s← r−1(H(M)− xR) mod q
Return (R, s)

Algorithm Vf(pk , M, σ : H):

If XRRs ≡ gH(M)

then return 1
else return 0.

The only difference with the provably secure Modified ElGamal scheme [PS00] is that the latter
includes R in the argument of the hash function.

Universal unforgeability under no-message attack is a (weak) security notion for signature schemes
in which the forger F, on input 1k, the public key pk and a message M , has to come up with a
valid signature for M , without the help of any signing oracle. We say that a signature scheme
SS = (Kg, Sign, Vf) associated with Kcg is universally unforgeable under no-message attacks if, for
any polynomial-time forger F and for any message M ∈ {0, 1}∗, the advantage of F

Advuuf-nma
SS ,F (k) = Pr

[

(M, σ)
$← F(1k, pk , M) : (pk , sk)

$← Kg(1k) ; Vf(pk , M, σ) = 1
]

is a negligible function in k.

Security. The following theorem proves the imp-pa security of the Beth-SI scheme based on the
universal unforgeability of the ElG -SS scheme under no-message attack in the random oracle model.
While the ElG -SS scheme has never been formally proven secure, we note that no attacks have been
found against it either, and that universal forgery under no-message attack is a very weak security
notion for signature schemes.

Theorem 6.7 The Beth-SI scheme associated with prime-order cyclic group generator Kcg and chal-
lenge length l(·) such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)] is imp-pa secure assuming that
the hashed-message ElGamal signature scheme associated with Kcg is universally unforgeable under
no-message attacks in the random oracle model.

Proof: Given an imp-pa adversary A = (CV, CP), we construct a universal forger F as follows. On

input 1k, pk = (〈G〉 , q, g, X), the forger first chooses r
$← Zq, lets R ← gr and runs CV on input

1k, ((1k, 〈G〉 , q, g, X),H(M)). Note that since H is a random oracle, this public key is correctly dis-
tributed. It answers CV’s conversation queries by each time choosing c and z at random from {0, 1}l(k)

and Zq, respectively, computing Y ← gcH(M)R−zX−cR and returning (Y, c, z) as the transcript. When
CV outputs StCP, the forger runs the cheating prover in a reset experiment as in Lemma 6.1 to get
commitment R̃, Y and responses z1, z2 to challenges c1, c2 chosen at random from {0, 1}l(k). Note that
R̃ does not have to be equal to R. If the reset experiment is successful (meaning that both responses
are valid and c1 6= c2), the forger computes s← (c1 − c2)

−1(z1 − z2) mod q and outputs (R̃, s) as the
signature for M . By dividing the two verification equations of the reset experiment, it is easily seen
that this is a valid signature for M . Due to the Reset Lemma, the imp-pa advantage of A is bounded
by

Advimp-pa
Beth-SI ,A

(k) ≤ 2−l(k) +
√

Advuuf-nma
ElG-SS ,F(k)

which is negligible for any super-logarithmic function l(k), thereby concluding the proof.

Theorem 5.4 implies that Beth-IBI inherits the imp-pa security of Beth-SI , and Theorem 5.9 and
Corollary 5.10 imply that Beth-SS = fs-I-2-S(Beth-SI) and Beth-IBS = cSS-2-IBS(Beth-SS) are
uf-cma secure under the same assumptions. The imp-aa and imp-ca security of Beth-SI remains
an open question.

38

7 Exceptions: Schemes needing Direct Proofs

In this section, we discuss two schemes that escape being captured by our framework, in the sense
that they do not seem to originate from a cSI scheme. The first is the OkDL-IBI scheme, which was
known [Oka93] but never proven secure, the second is the BNN -IBI scheme which is new. We prove
the security of both schemes as IBI schemes directly, rather than by making use of our framework of
transforms.

7.1 Definitions and Lemmas

Assumptions. If G is a cyclic group with generator g and Y ∈ G then dlogG,g(Y) denotes the discrete
logarithm of Y to base g, namely the unique value y ∈ Zq such that gy ≡ Y , where q is the order of
G. Let Kcg be a cyclic group generator. We say that the discrete logarithm problem associated with
Kcg is hard if, for any polynomial-time algorithm A, the function

Advdlog
Kcg,A(k) = Pr

[

A(1k, 〈G〉 , q, g, Y) = dlogG,g(Y) : (〈G〉 , q, g)
$← Kcg(1

k) ; Y
$← G

]

is negligible. The one-more discrete logarithm problem associated with Kcg is defined through the
following game:

Experiment Exp1m-dlog
Kcg,A (k) :

(〈G〉 , q, g)
$← Kcg(1

k)
i← 0 ; n← 0

(y1, . . . , ym)
$← A(1k, 〈G〉 , q, g : Chall,DLog)

If m = i and n < m and gyi ≡ Yi for all i ∈ {1, . . . , m}
Then return 1 else return 0.

Oracle Chall:

i← i + 1 ; Yi
$← G

Return Yi

Oracle DLog(Y):
n← n + 1 ; y ← dlogG,g(Y)

Return y

The adversary A is given 1k, 〈G〉 , q, g as input and access to two oracles: a challenge oracle Chall that
on any input returns a new random target point Yi ∈ Z

∗
N and a discrete logarithm oracle DLog(·) =

dlogG,g(·). The adversary’s goal is to compute the discrete logarithms of all target points output by
the challenge oracle using strictly fewer queries to the inversion oracle. We say that the one-more
discrete logarithm problem associated with Kcg is hard if, for any polynomial-time adversary A, the
advantage

Adv1m-dlog
Kcg,A (k) = Pr

[

Exp1m-dlog
Kcg,A (k) = 1

]

is a negligible function in k.

Semi-strong unforgeability. Both the OkDL-IBI and BNN -IBI schemes are essentially a zero-
knowledge proof of knowledge of a standard signature on the user’s identity. However, standard uf-cma
security of the underlying SS scheme does not seem to be sufficient to prove the security of the IBI
scheme. The notion of strong unforgeability [BN00, ADR02, SPMLS02] (referred to as non-malleability
in [SPMLS02]) would be sufficient for our purposes, but unfortunately the SS schemes in question do
not satisfy it. Therefore, we introduce a new notion that we call semi-strong unforgeability (ss-cma),
which is related to strong unforgeability, but is tailored to SS schemes that are obtained as the fs-I-2-S
transform of a canonical SI scheme.

Let SI be a canonical SI scheme, and let SS = (Kg, Sign, Vf) = fs-I-2-S(SI) be the corresponding
SS scheme as per Construction 5.8. Consider the following experiment:

39

Experiment Expss-cma
SS ,F (k) :

(pk , sk)
$← Kg(1k) ; n← 0

(M,Cmt‖Rsp)
$← F(pk : Sign)

If Vf(pk , M,Cmt‖Rsp) = 1
and 6 ∃ i ∈ {1, . . . n} : (M,Cmt) = (Mi,Cmt i)
then return 1 else return 0.

Oracle Sign(M):
n← n + 1 ; Mn ←M

Cmtn‖Rspn
$← Sign(sk , M)

Return Cmtn‖Rspn

The scheme SS is said to be ss-cma secure if for any polynomial-time adversary F the advantage

Advss-cma
SS ,F (k) = Pr

[

Expss-cma
SS ,F (k) = 1

]

is a negligible function in k.

Lemma 7.1 Let SI be a non-trivial canonical SI scheme, and let SS = fs-I-2-S(SI) as defined by
Construction 5.8. If SI is imp-pa secure, then SS is ss-cma secure in the random oracle model.

Proof Sketch: The description of algorithm A is identical to the impersonator described in the proof
of Lemma 3.5 of [AABN02] (of which our Theorem 5.9 is a special case). In a nutshell, A uses the
forger F as a subroutine to impersonate itself as a prover to an honest verifier V as follows. Algorithm
A uses its conversation oracle to reply to F’s signing and hash queries, except for one hash query
H(Cmt‖M) that it guesses to be the “crucial” query that F will use later in its forgery. When this
query occurs, A sends Cmt as the first move of its identification to V, and returns the challenge it
received from V as the response to F’s hash query. If at the end F indeed outputs a valid forgery
Cmt‖Rsp for message M , then A successfully completes the identification protocol by sending Rsp as
the response to V.

It is important that when the crucial hash query occurs, A is still free to program the hash value that
will be returned to F for Cmt‖M . We can assume without loss of generality that F never queries the
hash oracle on the same argument twice, but the hash value might also have been fixed by a previous
signature query for message M . At this point in the proof, [AABN02] exploits the fact that F is not
allowed to make such query if it later wants to forge a signature on M . Here, we observe here that
even if F retrieved a signature Cmt i‖Rspi for message M from the signing oracle before, then the
value of H(Cmt i‖M) is still undecided as long as Cmt i 6= Cmt , and this is exactly what is enforced
by our definition of semi-strong unforgeability. The rest of the analysis is the same as in [AABN02],
resulting in an almost identical reduction equation.

7.2 The OkDL-IBI and OkDL-IBS Schemes

The scheme. Figure 18 depicts the OkDL-IBI scheme associated to cyclic group generator Kcg and
challenge length l(·). The security of the scheme is equivalent to that of an IBI scheme presented
in [Oka93]. (The scheme in [Oka93] actually uses shorter user secret keys by including h = H(R‖I)
instead of R in usk .) This is the only IBI scheme we found in the literature that is not based on a
convertible SI scheme

Security. No security proof for this scheme was provided in [Oka93]. However, here we prove it
imp-ca secure in the random oracle model under the assumption that the discrete problem associated
to Kcg is hard.

Theorem 7.2 The OkDL-IBI scheme associated to prime-order cyclic group generator Kcg and super-
logarithmic challenge length l : N→ N such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)] is imp-ca secure

40

Algorithm MKg(1k)

(〈G〉 , q, g1)
$← Kcg(1

k)

α
$← Zq ; g2 ← gα

1

x1, x2
$← Zq ; X ← g−x1

1 g−x2
2

mpk ← (1k, 〈G〉 , q, g1, g2, X)
msk ← (〈G〉 , q, g1, g2, x1, x2)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
(〈G〉 , q, g1, g2, x1, x2)← msk

r1, r2
$← Zq ; R← gr1

1 gr2
2

s1 ← −r1 −H(R‖I) · x1 mod q
s2 ← −r2 −H(R‖I) · x2 mod q
usk ← (〈G〉 , q, g1, g2, R, s1, s2)
Return usk

Prover P Verifier V

S ← g−s1
1 g−s2

2

y1, y2
$← Zq ; Y ← gy1

1 gy2

2
R,S, Y

-

c
¾ c

$← Z2l(k)

z1 ← y1 + cs1 mod q

z2 ← y2 + cs2 mod q z1, z2
- If Y ≡ gz1

1 gz2
2 Sc and R ≡ SXH(R‖I)

and h ∈ {0, 1}l(k)and S, Y ∈ G

and z1, z2 ∈ Zq then acc else rej

Figure 18: The OkDL-IBI scheme. The scheme is parameterized by super-logarithmic challenge length l :
N→ N, a random oracle H : {0, 1}∗ → 0, 1`(k) and a prime-order cyclic group generator Kcg such that 2l(k) < q
for all (〈G〉 , q, g) ∈ [Kcg(1

k)]. The prover P and verifier V are run on initial states usk = (〈G〉 , q, g1, g2, R, s1, s2)
and (mpk , I) where mpk = (1k, 〈G〉 , q, g1, g2, X), respectively.

in the random oracle model if the discrete logarithm problem associated with the underlying generator
Kcg is hard.

Proof: A user’s secret key in the OkDL-IBI scheme is essentially a signature of his identity under
a signature scheme that is commonly known as the (classical) Okamoto signature scheme [Oka93],
referred to as the OkCL-SS scheme here. This scheme is the fs-I-2-S transform of the OkCL-SI scheme
associated to cyclic group generator Kcg and challenge length l(·) as depicted in Figure 19. (Note that
the OkCL-SI and OkCL-SS schemes are not known to be convertible, so the corresponding IBI and
IBS schemes are not defined.)

The OkCL-SI scheme with super-logarithmic challenge length l(·) is known to be imp-pa secure if the
discrete logarithm problem associated to the underlying generator Kcg is hard [Oka93]. Since it is also
a non-trivial canonical SI scheme, Lemma 7.1 implies that the OkCL-SS = fs-I-2-S(OkCL-SI) scheme
is semi-strongly unforgeable under the same assumption.

Given a polynomial-time impersonator A breaking OkDL-IBI in a concurrent attack, we construct a
discrete logarithm algorithm B and a forger F such that

Advimp-ca
OkDL-IBI ,A

(k) ≤
√

Advdlog
Kcg,B(k) +

√

Advss-cma
OkCL-SS ,F(k) + 3 · 2−l(k)/2 . (2)

Since l(·) is super-logarithmic and the discrete logarithm problem associated to Kcg is hard, all terms
on the right-hand side are negligible, and the theorem follows.

The discrete logarithm algorithm B operates as follows. Given an imp-ca adversary A = (CV, CP) and
input (1k, 〈G〉 , q, g1, g2), the algorithm B chooses x1, x2 at random from Zq, computes X ← g−x1

1 g−x2
2

and runs CV on input 1k,mpk = (1k, 〈G〉 , q, g1, g2, X). It answers all CV’s oracle queries by running
the real algorithms of the OkDL-IBI scheme (it is able to do so since it knows the master secret

41

Algorithm Kg(1k)

(〈G〉 , q, g1)
$← Kcg(1

k)

α
$← Zq ; g2 ← gα

1

x1, x2
$← Zq ; X ← g−x1

1 g−x2
2

pk ← (1k, 〈G〉 , q, g1, g2, X)
sk ← (〈G〉 , q, g1, g2, x1, x2)
Return (pk , sk)

Prover P Verifier V

y1, y2
$← Zq

Y ← gy1
1 gy2

2
Y
-

c
¾ c

$← Z2l(k)

z1 ← y1 + cx1 mod q

z2 ← y2 + cx2 mod q z1, z2
-

If Y ≡ gz1
1 gz2

2 Xc

and Y ∈ G and z1, z2 ∈ Zq

then acc else rej

Figure 19: The OkCL-SI scheme. The scheme is parameterized with cyclic group generator Kcg and super-
logarithmic challenge length l : N→ N such that 2l(k) < q for all q output by Kcg(1

k). The prover P and verifier
V are run on initial states sk = (〈G〉 , q, g1, g2, x1, x2) and pk = (1k, 〈G〉 , q, g1, g2, X), respectively.

key msk = (1k, 〈G〉 , q, g1, g2, x1, x2), and storing the last three components of the user secret key it
generates for each identity I as (RI , s1,I , s2,I). At the end of its execution, CV outputs the identity
Ib that will be attacked, together with state information St

CP
for the cheating prover. For ease of

notation, we let (R̃, s̃1, s̃2) denote the components (RIb , s1,Ib , s2,Ib) of the user secret key that B stored
for identity Ib, and we let S̃ ← g−s̃1

1 g−s̃2
2 .

Define a verifier algorithm V
′
that, on initial state (mpk , I), only accepts a conversation R‖S‖Y ‖c‖z1‖

z2 if V accepts the conversation on the same initial state and moreover R = R̃. Let acc′(St
CP

, (mpk , Ib))

be the probability that V
′
accepts on initial state (mpk , Ib) after interacting with CP initialized with

St
CP

. Then, by the Reset Lemma (Lemma 6.1), B can extract two such accepting conversations
R‖S‖Y ‖c1‖z11‖z21 and R‖S‖Y ‖c2‖z12‖z22 with c1 6= c2 with probability

res′(St
CP

, (mpk , Ib)) ≥
(

acc′(St
CP

, (mpk , Ib))− 2−l(k)
)2

.

Since R = R̃ and the two conversation transcripts are valid, we also have that S = S̃ ≡ RX−H(R‖Ib).
Algorithm B extracts (s1, s2) such that S ≡ g−s1

1 g−s2
2 as

s1 ← (z11 − z12)/(c1 − c2) mod q

s2 ← (z21 − z22)/(c1 − c2) mod q .

Since A’s view is independent of B’s choice of s̃1, s̃2, with probability 1 − 1/q ≥ 1 − 2−l(k) we have
that (s1, s2) 6= (s̃1, s̃2). From these, B computes the discrete logarithm of g2 relative to g1 as −(s1 −
s̃1)/(s2 − s̃2) mod q. It is easy to see that the simulation of CV’s and CP’s environment is perfect,
since the same algorithms were used as in a real attack against OkDL-IBI . The advantage of B can
be lower bounded by:

Advdlog
Kcg,B(k) ≥ (1− 2−l(k)) · res′(St

CP
, (mpk , Ib))

≥
(

acc′(St
CP

, (mpk , Ib))− 2−l(k)
)2
− 2−l(k) (3)

Now we define the forger F breaking the semi-strong unforgeability of OkCL-SS . Given an imp-ca
adversary A = (CV, CP), input 1k, pk = (1k, 〈G〉 , q, g1, g2, X) and oracle access to a signing ora-
cle Sign(·) and random oracle H(·), F first initiates sets HU , CU and PID to ∅. It then runs

42

Oracle Init-sim(I)
If I ∈ CU ∪HU then return ⊥
RI‖z1,I‖z2,I ← Sign(I)
s1,I ← −z1,I mod q ; s2,I ← −z2,I mod q
HU ← HU ∪ {I}
Return 1

Oracle Corr-sim(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I} ; HU ← HU \ {I}
Return (〈G〉 , q, g1, g2, RI , s1,I , s2,I)

Oracle Prov-sim(I, s, Min)
If I 6∈ HU then return ⊥
If (I, s) 6∈ PID then

PID ← PID ∪ {(I, s)}
Pick random coins ρ for P

St
P
[I, s]← ((〈G〉 , q, g1, g2, RI , s1,I , s2,I), ρ)

(Mout,St
P
[I, s])← P(Min,St

P
[I, s])

Return Mout

Figure 20: Subroutines used by forger F to simulate oracle queries of CV and CP in the proof of
Theorem 7.2.

CV(1k,mpk = (1k, 〈G〉 , q, g1, g2, X) : Init-sim,Corr-sim,Prov-sim,H), simulating CV’s oracles as in-
dicated in Figure 20, until it outputs (St

CP
, Ib). For ease of notation, we again denote (RIb , s1,Ib , s2,Ib)

as (R̃, s̃1, s̃2), and we let S̃ ← g−s̃1
1 g−s̃2

2 . Algorithm F also updates HU ← HU \ {Ib} and CU ←
CU ∪ {Ib}.
Define a verifier algorithm V

′′
that, on initial state (mpk , I), only accepts a conversation R‖S‖Y ‖c‖z1‖z2

if V accepts the conversation on the same initial state and moreover R 6= R̃. Let acc′′(St
CP

, (mpk , Ib))

be the probability that V
′′

accepts on input (mpk , Ib) after interacting with CP initialized with St
CP

(granting CP access to the oracles depicted in Figure 20). Then by the Reset Lemma, F can extract B

can extract two such accepting conversations R‖S‖Y ‖c1‖z11‖z21 and R‖S‖Y ‖c2‖z12‖z22 with c1 6= c2

with probability

res′′(St
CP

, (mpk , Ib)) ≥
(

acc′′(St
CP

, (mpk , Ib))− 2−l(k)
)2

.

From these conversations, F extracts (s1, s2) such that S ≡ g−s1
1 g−s2

2 as

s1 ← (z11 − z12)/(c1 − c2) mod q

s2 ← (z21 − z22)/(c1 − c2) mod q .

Since R ≡ g−s1
1 g−s2

2 XH(R‖Ib), the string σ = R‖−s1 mod q‖−s2 mod q is a valid OkCL-SS signature for
message Ib. The only signature for message Ib output by F’s Sign oracle is R̃‖,−s̃1 mod q‖−s̃2 mod q,
so since R 6= R̃, signature σ is a valid semi-strong forgery. Algorithm F halts and outputs (Ib, σ).

The simulation of CV’s and CP’s environment is perfect, since the same algorithms were used as in a
real attack against OkDL-IBI . The ss-cma advantage of F is lower bounded by

Advss-cma
OkCL-SS ,F(k) ≥ res′′(St

CP
, (mpk , Ib))

≥
(

acc′′(St
CP

, (mpk , Ib))− 2−l(k)
)2

. (4)

Now let E be the event that CP sends R 6= R̃ as part of the first move of its impersonation attempt,
where R̃ is the value that was returned to it as part of the first message in CV’s previous interactions

43

with identity Ib through the Prov oracle. (If CV didn’t interact with Ib, we can make it do a dummy
interaction.) Using the notation

V(·, (mpk , Ib)) accepts CP(ε,St
CP

)

as shorthand for the event that algorithm V, when initialized with state (mpk , Ib), accepts after
interacting with CP initialized with St

CP
, we can upper bound the advantage of A as

Advimp-ca
OkDL-IBI ,A

(k) = Pr
[

V(·, (mpk , Ib)) accepts CP(ε,St
CP

)
]

= Pr
[

V(·, (mpk , Ib)) accepts CP(ε,St
CP

) ∧E
]

+ Pr
[

V(·, (mpk , Ib)) accepts CP(ε,St
CP

) ∧ ¬E
]

≤ acc′(St
CP

, (mpk , Ib)) + acc′′(St
CP

, (mpk , Ib))

≤
√

Advdlog
Kcg,B(k) + 2−l(k) + 2−l(k) +

√

Advss-cma
OkCL-SS ,F(k) + 2−l(k)

≤
√

Advdlog
Kcg,B(k) +

√

Advss-cma
OkCL-SS ,F + 3 · 2−l(k)/2

which is exactly Equation (2), thereby proving the theorem. In the one but last step above, we used
Equations 3 and 4. In the last step, we used the fact that

√
x + y ≤ √x +

√
y for all x, y ≥ 0, and the

fact that 2−l(k) ≤ 2−l(k)/2 for l(k) ≥ 0.

As already noted in Section 5.5, the uf-cma security of the IBS scheme obtained as fs-I-2-S(OkDL-IBI)
scheme is not implied by Corollary 5.10 since it does not originate from a convertible SI scheme.
However, since OkDL-IBI is easily seen to be canonical and non-trivial, Theorem 5.13 implies that
OkDL-IBS = efs-IBI-2-IBS(OkDL-IBI) scheme is uf-cma secure in the random oracle model under
the discrete logarithm assumption associated to Kcg.

7.3 The BNN -IBI and BNN -IBS Schemes

In Figure 21, we introduce a new IBI scheme associated to any prime-order cyclic group generator Kcg

and challenge length l(·) called BNN -IBI . The scheme can be viewed as the single-generator variant
of the OkDL-IBI scheme.

Security. Just like the OkDL-IBI scheme, the BNN -IBI scheme does not seem to originate from
a cSI scheme, so we have to prove its security directly as an IBI scheme.

Theorem 7.3 The BNN -IBI scheme associated with super-logarithmic challenge length l(·) and
prime-order cyclic group generator Kcg such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)] is imp-pa
secure in the random oracle model if the discrete logarithm problem associated with Kcg is hard.

Proof: The user secret key of the BNN -IBI scheme is actually a Schnorr signature [Sch90] on
the user’s identity. The Schnorr -SI scheme associated with prime-order cyclic group generator Kcg

and challenge length l(·) is depicted in Figure 22. The Schnorr signature scheme is referred to as
Schnorr -SS = fs-I-2-S(Schnorr -SI) here.

The Schnorr -SI scheme is a non-trivial canonical SI scheme, and is imp-pa secure under the discrete
logarithm assumption associated with Kcg when instantiated with super-logarithmic challenge length
l(·) such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)] [Sch90]. By Lemma 7.1, the Schnorr -SS scheme is
semi-strongly unforgeable under chosen-message attack under the same assumptions.

44

Algorithm MKg(1k)

(〈G〉 , q, g)
$← Kcg(1

k)

x
$← Zq ; X ← gx

mpk ← (1k, 〈G〉 , q, g,X)
msk ← (〈G〉 , q, g, x)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
(〈G〉 , q, g, x)← msk

r
$← Zq ; R← gr

s← r + H(R‖I) · x mod q
usk ← (G, q, g, R, s)
Return usk

Prover P Verifier V

S ← gs ; y
$← Zq ; Y ← gy R,S, Y

-

c
¾ c

$← Z2l(k)

z ← y + cs mod q z
-

If gz ≡ Y Sc and S ≡ RXH(R‖I)

and S, Y ∈ G and z1, z2 ∈ Zq

then acc else rej

Figure 21: The BNN -IBI scheme. The scheme is parameterized by super-logarithmic challenge length
l : N → N, a random oracle H : {0, 1}∗ → {0, 1}`(k) and a prime-order cyclic group generator Kcg such that
2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1

k)]. The prover P and verifier V are run on initial states usk = (〈G〉 , q, g, R, s)
and (mpk , I) where mpk = (1k, 〈G〉 , q, g,X), respectively.

Algorithm Kg(1k)

(〈G〉 , q, g)
$← Kcg(1

k)

x
$← Zq ; X ← gx

pk ← (〈G〉 , q, g, X)
sk ← (〈G〉 , q, g, x)
Return (pk , sk)

Prover P Verifier V

y
$← Zq

Y ← gy Y
-

c
¾ c

$← Z2l(k)

z ← y + cx mod q z
-

If gz ≡ Y Xc

and Y ∈ G and z ∈ Zq

then acc else rej

Figure 22: The Schnorr -SI scheme. The scheme is parameterized by prime-order cyclic group generator Kcg

and super-logarithmic challenge length l : N→ N such that 2l(k) < q for all (〈G〉 , q, g) ∈ [Kcg(1
k)]. The prover

P and verifier V are run on initial states sk = (〈G〉 , q, g, x) and pk = (〈G〉 , q, g,X), respectively.

We prove the theorem by showing that if there exists a polynomial-time imp-pa impersonator A =
(CP, CV) attacking BNN -IBI , then there exist a discrete logarithm algorithm B and a forger algorithm
F such that

Advimp-pa

BNN -IBI ,A
(k) ≤

√

Q Init

CV
(k) ·Advdlog

Kcg,B(k) +
√

Advss-cma
Schnorr -SS ,F(k) + 2 · 2−l(k) . (5)

The latter is a straightforward adaptation of algorithm F in the proof of Theorem 7.2, the former
requires a bit more explanation.

On input (1k, 〈G〉 , q, g, S̃), algorithm B computes s̃ = dlogG,g(S̃) as follows. It chooses x
$← Zq, com-

putes X ← gx and runs CV on input 1k,mpk = (1k, G, q, g, X). It also chooses qg
$← {1, . . . ,Q Init

CV
(k)},

hoping that the identity Ig initialized in CV’s qg-th Init query will be the one under attack in the
second phase of the game. All CV’s Init(·), Conv(·) and Corr(·) oracle queries are simulated us-
ing the real protocol algorithms, except for queries involving identity Ig. At the initialization of Ig,

45

B chooses h̃
$← {0, 1}l(k) and computes R̃ ← S̃X−h̃. It also programs the random oracle so that

H(R̃‖Ig) = h̃. (If CV queried H(R̃‖Ig) before, then B gives up. Because up to that point CV’s view
is independent of R̃, this happens only with probability 2−l(k).) Conversations for Ig are generated

by choosing c
$← {0, 1}l(k), z

$← Zq and by computing Y ← gzS̃−c. The returned conversation is
R̃‖S̃‖Y ‖c‖z. If CV decides to corrupt identity Ig, then B gives up.

With probability 1/Q Init

CV
(k), algorithm CV outputs (Ib,St

CP
) with identity Ib = Ig. Let V

′
be a

verifier algorithm that only accepts a conversation R‖S‖Y ‖c‖z if V accepts and if moreover R = R̃,

and let acc′(St
CP

, (mpk , Ib)) be CP’s probability of making V
′
accept. Then by the Reset Lemma, with

probability res′(St
CP

, (mpk , Ib)) algorithm B can generate two accepting conversations R‖S‖Y ‖c1‖z1

and R‖S‖Y ‖c2‖z2 with c1 6= c2. Since R = R̃, we also have that S = S̃ ≡ RXH(R‖Ib). Finally,
algorithm computes s̃ ← (z1 − z2)/(c1 − c2) mod q and outputs s̃ as the discrete logarithm of S̃.
Overall, B’s advantage is at least

Advdlog
Kcg,B(k) ≥ 1

Q Init

CV
(k)
· res′(St

CP
, (mpk , Ib))

≥ 1

Q Init

CV
(k)
·
(

acc′(St
CP

, (mpk , Ib))− 2−l(k)
)2

. (6)

Combining Equation (6) with F’s advantage through an analysis similar to that in the proof of
Theorem 7.2, we obtain Equation (5). Since all terms on the righthand side of Equation (5) are
negligible, the theorem follows.

The uf-cma security of the BNN -IBS = efs-IBI-2-IBS(BNN -IBI) scheme under the hardness of
the discrete logarithm problem associated with Kcg follows from Theorem 7.3 and Theorem 5.13.

It is unknown if the BNN -IBI is also secure against impersonation under active and concurrent
attacks under the plain discrete logarithm assumption. A proof does exist however under the stronger
one-more discrete logarithm assumption.

Theorem 7.4 The BNN -IBI scheme associated with super-logarithmic challenge length l(·) and

prime-order cyclic group generator Kcg such that 2l(k) < q for all (〈G〉 , q, g)
$← Kcg(1

k) is imp-ca
secure in the random oracle model if the one-more discrete logarithm problem associated with Kcg is
hard.

Proof: Given a polynomial-time impersonator A breaking BNN -IBI under concurrent attack, we
show how to build a one-more discrete logarithm algorithm B and a forger F such that

Advimp-ca
BNN -IBI ,A

(k) ≤
√

Adv1m-dlog
Kcg,B (k) +

√

Advss-cma
Schnorr -SS ,F(k) + 2 · 2−l(k) . (7)

The description of algorithm F is identical to that in the proof of Theorem 7.3, but using the user
secret keys to simulate interactive prover protocols, rather than generating conversations. Since the
one-more discrete logarithm assumption implies the discrete logarithm assumption, the second term
on the righthand side of Equation (7) is negligible.

Algorithm B, on input 〈G〉 , q, g, chooses x
$← Zq, computes X ← gx and runs CV on input 1k,mpk =

(1k, 〈G〉 , q, g, X). When CV initializes identity I, it uses the challenge oracle to produce SI ← Chall,

it chooses hI
$← Zq and computes RI ← SX−h. It programs the random oracle so that H(RI‖I) = hI ,

or gives up if H(RI‖hI) was queried before. Simulation of an interactive prover session s for identity
I is done by querying YI,s ← Chall and sending RI , SI , YIas the first message. The response for

46

challenge cI,s is computed as zI,s ← DLog(YI,sS
cI,s

I). When CV asks to corrupt identity I, algorithm
B calls its discrete logarithm oracle for sI ← DLog(SI) and returns (RI , sI).

In the second phase of the game, CP will impersonate an uncorrupted identity Ib. With a probabil-
ity given by the Reset Lemma, algorithm B extracts two accepting conversations R‖S‖Y ‖c1‖z1 and
R‖S‖Y ‖c2‖z2 with (R, S) = (RI , SI) and c1 6= c2. From these, B computes sIb as (z1 − z2)/(c1 −
c2) mod q and uses it to compute discrete logarithms of all values YIb,s as yIb,i ← zIb,i−sIbcIb,s mod q.
For all other initialized identities I 6= Ib, algorithm B simply queries sI ← DLog(SI) itself and
computes the discrete logarithms yI,s ← zI,s − sIcI,s mod q.

Let n be the number of identities initialized by A, and let nI be the number of prover sessions initiated
for identity I. Then for each identity I, B calculated the discrete logarithm of nI +1 target points (all
YI,s and SI) using nI + 1 queries to the DLog oracle (one for each prover session, and an additional
one at the end of the game), except for identity Ib where the discrete logarithms of nIb + 1 target
points were computed using only nIb queries to the DLog oracle. So in total, B saved one DLog

query and wins the game.

Again, an analysis similar to that in the proof of Theorem 7.2 yields Equation (7), thereby concluding
the proof.

Acknowledgments

We thank Marc Fischlin for pointing out that the Sh-SI scheme is zero-knowledge. We also would like
to thank Bart De Decker, Ann Haegemans, Kenneth G. Paterson, Frank Piessens and Bart Preneel
for their valuable comments on earlier versions of this work.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identifi-
cation to signatures via the Fiat-Shamir transform: Minimizing assumptions for security
and forward-security. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 418–433. Springer-Verlag, April 2002. (Cited on page 3, 5, 7, 20, 21, 22, 23, 40.)

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and
encryption. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages
83–107, 2002. (Cited on page 39.)

[BD89] Mike Burmester and Yvo Desmedt. Remarks on soundness of proofs. Electronics Letters,
25(22):1509–1511, 1989. (Cited on page 24.)

[Bet88] Thomas Beth. Efficient zero-knowledged identification scheme for smart cards. In C. Gun-
ther, editor, EUROCRYPT 1988, volume 330 of LNCS, pages 77–86. Springer-Verlag, May
1988. (Cited on page 3, 5, 6, 7, 37.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer-Verlag,
August 2001. (Cited on page 3, 4, 33.)

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Identification protocols
secure against reset attacks. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 268–286. Springer-Verlag, May 2001. (Cited on page 14, 15.)

47

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 416–432. Springer-Verlag, 2003. (Cited on page 15.)

[Blu82] Manuel Blum. Coin flipping by telephone. In A. Gersho, editor, Advances in Cryptology:
A Report on CRYPTO 81, University of California, Santa Barbara, Department of ECE
Report No 82-04, pages 11–15, 1982. (Cited on page 24.)

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In T. Okamoto, editor, ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer-Verlag, December 2000.
(Cited on page 39.)

[BN04] Mihir Bellare and Gregory Neven. Transitive signatures: New schemes and proofs. Cryp-
tology ePrint Archive, Report 2004/215, 2004. http://eprint.iacr.org/. (Cited on
page 34.)

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme.
J. Cryptology, 16(3):185–215, 2003. (Cited on page 7, 27.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, January 2003. (Cited on page 33,
34.)

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of
security against impersonation under active and concurrent attack. In M. Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer-Verlag, August 2002.
(Cited on page 3, 6, 7, 9, 23, 28, 30.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM, editor, Proc. of the 1st CCS, pages 62–73. ACM Press,
November 1993. (Cited on page 6.)

[CC03] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman
groups. In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 18–30. Spring-
er-Verlag, January 2003. (Cited on page 3, 5, 6, 12, 33, 34.)

[Che02] Jung Hee Cheon. A universal forgery of Hess’s second ID-based signature against
the known-message attack. Cryptology ePrint Archive, Report 2002/028, 2002.
http://eprint.iacr.org/2002/028. (Cited on page 33.)

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-insulated
signature schemes. In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages
130–144. Springer-Verlag, January 2003. (Cited on page 3, 5, 6, 12, 16, 20, 25, 26, 28,
33.)

[FF02] Marc Fischlin and Roger Fischlin. The representation problem based on factoring. In
B. Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 96–113. Springer-Verlag,
February 2002. (Cited on page 5, 6, 26, 27.)

48

http://eprint.iacr.org/
http://eprint.iacr.org/2002/028

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. J. Cryptology,
1(2):77–94, 1988. (Cited on page 3, 6, 9, 25.)

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. Odlyzko, editor, CRYPTO 1986, volume 263 of LNCS,
pages 186–194. Springer-Verlag, August 1986. (Cited on page 3, 5, 6, 20, 25.)

[Gir90] Marc Girault. An identity-based identification scheme based on discrete logarithms mod-
ulo a composite number. In I. Damg̊ard, editor, EUROCRYPT 1990, volume 473 of LNCS,
pages 481–486. Springer-Verlag, May 1990. (Cited on page 3, 5, 6, 7, 31, 32.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, April 1988.
(Cited on page 3, 10.)

[GQ89] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In S. Goldwasser, editor, CRYPTO 1988, volume
403 of LNCS, pages 216–231. Springer-Verlag, August 1989. (Cited on page 3, 5, 6, 27,
28.)

[Hes03] Florian Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg
and H. Heys, editors, Selected Areas in Cryptography, SAC 2002, pages 310–324. Springer-
Verlag, 2003. (Cited on page 3, 5, 6, 33, 34.)

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In IEEE, editor, Proc. of the 30th FOCS, pages 230–235, Research
Triangle Park, North Carolina, October 1989. IEEE Computer Society Press. (Cited on
page 14.)

[KH04] Kaoru Kurosawa and Swee-Huay Heng. From digital signature to ID-based identifica-
tion/signature. In F. Bao, R. Deng, and J. Zhou, editors, PKC 2004, volume 2947 of
LNCS, pages 248–261. Springer-Verlag, 2004. (Cited on page 7.)

[LQ04] Benôıt Libert and Jean-Jacques Quisquater. The exact security of an identity based
signature and its applications. Cryptology ePrint Archive, Report 2004/102, 2004.
http://eprint.iacr.org/2004/102. (Cited on page 7.)

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996. (Cited on page 37.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In E. Brickell, editor, CRYPTO 1992, volume 740 of LNCS, pages
31–53. Springer-Verlag, August 1993. (Cited on page 3, 5, 6, 7, 26, 30, 31, 39, 40, 41.)

[OO90] Kazuo Ohta and Tatsuaki Okamoto. A modification of the Fiat-Shamir scheme. In
S. Goldwasser, editor, CRYPTO 1988, volume 403 of LNCS, pages 232–243. Springer-
Verlag, August 1990. (Cited on page 5, 6, 25.)

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived
from identification. In H. Krawczyk, editor, CRYPTO 1998, volume 1462 of LNCS, pages
354–370. Springer-Verlag, August 1998. (Cited on page 3.)

49

http://eprint.iacr.org/2004/102

[OS90] H. Ong and Claus-Peter Schnorr. Fast signature generation with a Fiat-Shamir–like
scheme. In I. Damg̊ard, editor, EUROCRYPT 1990, volume 473 of LNCS, pages 432–440.
Springer-Verlag, May 1990. (Cited on page 5, 6, 25.)

[Pat02] Kenneth G. Paterson. ID-based signatures from pairings on elliptic curves. Cryptology
ePrint Archive, Report 2002/004, 2002. http://eprint.iacr.org/. (Cited on page 3,
33.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361–396, 2000. (Cited on page 3, 6, 25, 26, 38.)

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In ACM, editor, Proc. of the 22nd ACM STOC, pages 387–394, Baltimore, Maryland,
May 14–16 1990. ACM Press. (Cited on page 14, 15.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smartcards. In G. Brassard,
editor, CRYPTO 1989, volume 435 of LNCS, pages 239–252. Springer-Verlag, August
1990. (Cited on page 6, 7, 8, 31, 44.)

[Sch96] Claus-Peter Schnorr. Security of 2t-root identification and signatures. In N. Koblitz,
editor, CRYPTO 1996, volume 1109 of LNCS, pages 143–156. Springer-Verlag, August
1996. (Cited on page 6, 25.)

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G.R. Blakely and
D. Chaum, editors, CRYPTO 1984, volume 196 of LNCS, pages 47–53. Springer-Verlag,
1984. (Cited on page 3, 5, 6, 29.)

[Sho99] Victor Shoup. On the security of a practical identification scheme. J. Cryptology,
12(4):247–260, 1999. (Cited on page 25.)

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing.
In SCIS 2000, Okinawa, Japan, January 2000. (Cited on page 3, 6, 7, 33, 34, 36.)

[SPMLS02] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in ap-
plying proof methodologies to signature schemes. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 93–110. Springer-Verlag, 2002. (Cited on page 7, 39.)

[SSN98] Shahrokh Saeednia and Reihaneh Safavi-Naini. On the security of Girault’s identification
scheme. In H. Imai and Y. Zheng, editors, PKC 1998, volume 1431 of LNCS, pages
149–153. Springer-Verlag, 1998. (Cited on page 6, 7, 31, 32.)

[Wil80] Hugh C. Williams. A modification of the RSA public-key encryption procedure. IEEE
Trans. Inf. Theory, 26(6):726–729, 1980. (Cited on page 24.)

[Yi03] Xun Yi. An identity-based signature scheme from the Weil pairing. IEEE Communications
Letters, 7(2):76–78, 2003. (Cited on page 3, 5, 6, 33, 34.)

A Proof of Theorem 4.2

Let A = (CV, CP) be a polynomial-time imp-atk adversary against IBI = (MKg, UKg, P, V). The
intuition is as follows. Let pk Ib

denote the public key (of the SI scheme) assigned by Init to Ib, the

identity that CV outputs as the one CP will impersonate. Let cert = (pk , σ) be the certificate sent by

50

http://eprint.iacr.org/

Subroutine Init-sim(I)
If I ∈ CU ∪HU then return ⊥
(pk I , sk I)← Kg(1k) ; certI ← (pk I ,Sign(pk I‖I)) ; usk [I]← (sk I , certI) ; HU ← HU ∪ {I}
Return 1

Algorithm F(1k,mpk : Sign(·))
HU ← ∅ ; CU ← ∅ ; PID ← ∅
If atk = pa then (Ib,St

CP
)

$← CV(1k,mpk : Init-sim,Corr,Conv)

Else (Ib,St
CP

)
$← CV(1k,mpk : Init-sim,Corr,Prov)

HU ← HU \ {Ib} ; CU ← CU ∪ {Ib}
If atk = pa then (Mout,St

CP
)

$← CP(ε,St
CP

: Init-sim,Corr,Conv)

Else (Mout,St
CP

)
$← CP(ε,St

CP
: Init-sim,Corr,Prov)

Parse Mout as cert‖M ′ ; Parse cert as (pk , σ)
Return (pk‖Ib, σ)

Figure 23: The adversary F against the standard signature scheme SS = (SKg, Sign, Vf) with access
to a signing oracle Sign(·) = Sign(msk , ·), for the proof of Theorem 4.2.

CP to V as part of its first flow in the identification protocol. If A wins, there are two possibilities.
Either pk 6= pk Ib

, in which case σ is a forgery under the master public key mpk of message pk‖Ib, or

pk = pk Ib
, in which case CP succeeded in identifying itself under pk Ib

in the underlying SI protocol.
The first possibility is ruled out by the security of SS and the second by the security of SI .

We now proceed to the actual proof. Assume the number of queries CV makes to Init is at most
Q Init

CV
(·). We construct polynomial-time adversaries F attacking SS = (SKg, Sign, Vf) and A = (CV, CP)

attacking SI = (Kg, P, V), such that for every k ∈ N

Advimp-atk
IBI ,A

(k) ≤ Advuf-cma
SS ,F (k) + Q Init

CV
(k) ·Advimp-atk

SI ,A (k) . (8)

The theorem follows. We now describe F, A in turn.
Adversary F (attacking SS) is depicted in Figure 23. It takes input the security parameter 1k and

a public key mpk of the SS scheme, and has access to the signing oracle Sign(·) = Sign(msk , ·) where
msk is the secret key corresponding to mpk . It will run CV, CP as subroutines, itself providing answers
to their oracle queries. It answers a query to Init by running the subroutine also shown in the same
Figure. It can do this even though it does not have msk via its access to the Sign oracle. In this way,
F knows the secret keys of all initiated users, and can thus easily execute the code for all the other
oracles, by simply following Figure 4. (Thus, these other oracles are simply shown as provided to CV

in the figure.) Eventually CV outputs some identity Ib and state information St
CV

. Now F obtains
from CP the first message Mout of its interaction with V. (It does this by running CP with inputs
ε,St

CV
, simulating its oracles just as above, to get the message Mout and updated state information

St
CP

.) It parses Mout as cert‖M1, and parses cert as (pk , σ). F is betting that pk is not pk Ib
, the

“real” public key of Ib, but a value chosen by A, and thus the certificate is forged. Accordingly it will
output (pk , σ) as its forgery.

Adversary A = (CV, CP) (attacking SI) is depicted in Figure 24. The cheating verifier component
CV gets input security parameter 1k and a public key pk , and has access to a conversation oracle (if
atk = pa) or a prover oracle (if atk = aa or atk = ca). It will run CV as a subroutine, itself providing
answers to CV’s oracle queries. It begins by running the key-generation algorithm SKg of the signature
scheme SS on input 1k to get back a master public key mpk and matching secret key msk . (This gives

51

Subroutine Init-sim(I)
If I ∈ CU ∪HU then return ⊥
HU ← HU ∪ {I}
If |HU | = qg

then Ig ← I ; upk [I]← pk ; sk [I]← ⊥
else (upk [I], sk [I])

$← Kg(1k)
cert [I]← (upk [I], Sign(msk , upk [I]‖I))
usk [I]← (sk [I], cert [I])
Return 1

Subroutine Corr-sim(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I} ; HU ← HU \ {I}
If I = Ig then abort
Return usk [I]

Subroutine Conv-sim(I)
If I 6∈ HU then return ⊥
If I = Ig then C ← cert [I]‖Or(ε)

Else (C, d)
$← Run[P(usk [I])↔V(mpk , I)]

Return C

Subroutine Prov-sim(I, s, Min)
If I 6∈ HU then return ⊥
If (I, s) 6∈ PID then

If atk = aa then PID ← {(I, s)}
If atk = ca then PID ← PID ∪ {(I, s)}
If I = Ig then

Mout ← cert [I]‖Or(s, Min)
Return Mout

Pick random coins ρ
P

for P

St
P
[I, s]← (usk [I], ρ

P
)

If I = Ig

then Mout ← Or(s, Min)

else (Mout,St
P
[I, s])← P(Min,St

P
[I, s])

Return Mout

Algorithm CV(1k, pk : Or)

(mpk ,msk)
$← SKg(1k) ; HU ← ∅ ; CU ← ∅ ; PID ← ∅ ; qg

$← {1, . . . ,Q Init

CV
(k)}

If atk = pa then (Ib,St
CP

)
$← CV(1k,mpk : Init-sim,Corr-sim,Conv-sim)

Else (Ib,St
CP

)
$← CV(1k,mpk : Init-sim,Corr-sim,Prov-sim)

If |HU | < qg or Ib 6= Ig then abort
HU ← HU \ {Ib} ; CU ← CU ∪ {Ib} ; StCP ← (St

CP
,HU ,CU , usk [·], Ib)

Return (Ib,StCP)

Algorithm CP(Min,StCP)
Parse StCP as (St

CP
,HU ,CU , usk [·], Ib)

If atk = pa then (Mout,St
CP

)
$← CP(Min,St

CP
: Init-sim,Corr-sim,Conv-sim)

Else (Mout,St
CP

)
$← CP(Min,St

CP
: Init-sim,Corr-sim,Prov-sim)

StCP ← (St
CP

,HU ,CU , usk [·], Ib)
Return (Mout,StCP)

Figure 24: Adversary A = (CP, CV) attacking SI scheme SI = (Kg, P, V), and its subroutines, for
the proof of Theorem 4.2. Above, Or is a conversation oracle if atk = pa and a prover oracle if
atk ∈ {aa, ca}.

it the ability to create certificates and thus simulate the Init oracle.) It also guesses an identity Ig

that it hopes equals the identity Ib of the prover that A will eventually impersonate. (Since this is a
string in {0, 1}∗ and the number of possible values for it is a priori infinite, CV cannot guess it directly.
Instead, it picks at random the index qg of Ib in the sequence of queries made to Init, eventually
assigning Ig a value while simulating this oracle, as shown in the Figure). Now CV runs CV on input

52

1k,mpk , simulating its oracles in such a way that the public key corresponding to Ig is pk . To do this,
it invokes its own oracle (conversation if atk = pa or prover if atk = aa or atk = ca) to answer queries
to the corresponding oracles of CV when the identity queried is Ig, appropriately inserting a certificate
for Ig in the flows. For identities other than Ig, it follows the scheme IBI , generating secret keys via
its knowledge of msk and then using them. It aborts if asked to answer a query of Ig to the Corr

oracle, since in this case it does not know the corresponding secret key. If CV correctly guesses Ib,
then CP uses CP, the latter playing the role of Ib, to interact with V and try to convince V to accept.

For the analysis, consider Expimp-atk
IBI ,A

(k). Let pk denote the public key assigned by Init to Ib,

and let cert = (pk Ib
, σ) be the certificate sent by CP to V as part of its first flow in the identification

protocol. Let E be the event that pk = pk Ib
. If event E does not happen, then pk Ib

‖Ib was never a

query of F to its Sign(sk , ·) oracle. Thus, if A was successful, so is F. Thus:

Advuf-cma
SS ,F (k) ≥ Pr

[

¬E ∧Expimp-atk
IBI ,A

(k) = 1
]

. (9)

Let G be the event that |HU | ≥ qg and Ig = Ib in Expimp-atk
SI ,A (k). If this event happens and A succeeds

then Ig cannot have been queried to Corr, and thus A’s simulation of the environment of A is perfect.
In that case, A succeeds whenever A succeeds and event E happens, for in that case it is attacking the
public key pk . So we have

Advimp-atk
SI ,A (k) ≥ Pr

[

G ∧E ∧Expimp-atk
IBI ,A

(k) = 1
]

= Pr [G] · Pr
[

E ∧Expimp-atk
IBI ,A

(k) = 1
]

≥ 1

Q Init

CV
(k)
· Pr

[

E ∧Expimp-atk
IBI ,A

(k) = 1
]

. (10)

Using Equations (9) and (10) we get

Advimp-atk
IBI ,A

(k) = Pr
[

Expimp-atk
IBI ,A

(k) = 1
]

= Pr
[

¬E ∧Expimp-atk
IBI ,A

(k) = 1
]

+ Pr
[

E ∧Expimp-atk
IBI ,A

(k) = 1
]

≤ Advuf-cma
SS ,F (k) + Q Init

CV
(k) ·Advimp-atk

SI ,A (k) ,

which is Equation (8) as desired.

53

	Introduction
	Notation and Standard Definitions
	Definitions for IBI and IBS Schemes
	Certificate-based IBI and IBS
	Certificate-based IBI
	Certificate-based IBS
	Discussion of Certificate-based Constructs

	Transformations
	Trapdoor Samplable Relations
	Convertible Schemes and the cSI-2-IBI Transform
	The cSS-2-IBS Transform
	The fs-I-2-S Transform
	The efs-IBI-2-IBS Transform

	Applying the Framework
	Schemes based on Factoring
	The FFS and ItR Families
	The FF Family

	Schemes based on RSA
	The GQ Family
	The Sh and Sh* Families
	The OkRSA Family
	The Gir Family

	Schemes based on Pairings
	The SOK, Hs and ChCh Families

	A Scheme based on Discrete Logarithms

	Exceptions: Schemes needing Direct Proofs
	Definitions and Lemmas
	The OkDL-IBI and OkDL-IBS Schemes
	The BNN-IBI and BNN-IBS Schemes

	Proof of Theorem 4.2

