
 Asynchronous Proactive RSA
Ruishan Zhang and Kefei Chen

(Department of Computer Science and Engineering, Shanghai Jiaotong University, 1954 Hua
Shan Road, Shanghai 200030, People’s Republic of China)
E-mail: zhang-rs@cs.sjtu.edu.cn
Abstract:

Nowadays, to model practical systems better, such as the Internet network and ad hoc
networks, researchers usually regard these systems as asynchronous networks. Meanwhile,
proactive secret sharing schemes are often employed to tolerate a mobile adversary. Considering
both aspects, an asynchronous proactive threshold signature scheme is needed to keep computer
systems secure.

So far, two asynchronous proactive secret sharing schemes have been proposed. One is
proposed by Zhou in 2001, which is for RSA schemes. The other scheme is proposed by Cachin
in 2002, which is a proactive secret sharing scheme for discrete-log schemes. There exist several
drawbacks in both schemes. In Zhou’s scheme, the formal security proof of this scheme is
missing. Furthermore, Zhou’s scheme needs to resort to the system administrator as the trusted
third party for further run when some Byzantine errors occur. In Cachin’s scheme, the building
block is based on the threshold RSA scheme proposed by Shoup. However, how to proactivize
Shoup’s scheme is omitted in Cachin’s scheme, so this scheme is incomplete.

In this paper, we present a complete provably secure asynchronous proactive RSA scheme
(APRS). Our paper has four contributions. Firstly, we present a provably secure asynchronous
verifiable secret sharing for RSA schemes (asynchronous verifiable additive secret sharing,
AVASS), which is based on a verifiable additive secret sharing over integers. Secondly, we
propose an asynchronous threshold RSA signature scheme that is based on the AVASS scheme
and the random oracle model, and is capable of being proactivized. Thirdly, we present a
provably secure threshold coin-tossing scheme on the basis of the above threshold RSA scheme.
Fourthly, we propose an asynchronous proactive secret sharing based on the threshold RSA
scheme and the coin-tossing scheme. Finally, combining the proactive secret sharing scheme and
the threshold RSA scheme, we achieve a complete provably secure asynchronous proactive RSA
scheme.
Keywords: asynchronous networks, threshold RSA signature, provably secure,
asynchronous verifiable secret sharing, asynchronous proactive secret sharing scheme,
threshold coin-tossing scheme

1. Introduction
The idea of threshold signature is to distribute the power of the signing operation of a single

party to a group of n parties, such that an adversary who corrupts up to t parties can not break the
whole system. However, when a threshold cryptosystem operates over a longer time period, the
threshold cryptosystem needs to tolerate a mobile adversary [1], which may move from party to
party and eventually corrupt every party in the system. Proactive secret sharing schemes address
this problem by operating in phases; they can tolerate the corruption of up to t different parties
during every phase [2].

Most distributed computing protocols, such as threshold signature schemes, assume a
synchronous network with a broadcast channel connecting all parties. This assumption may lead
to some vulnerability in practice. For example, when deployed in a distributed system over a
wide-area network with only loosely synchronized clocks, such systems are vulnerable to timing
attacks. Recently, researchers begin to model computer systems as asynchronous networks when
constructing practical distributed computing schemes. A long term research project Malicious-
and Accidental-Fault Tolerance for Internet Applications (MAFTIA) of the department of
information security and cryptography of the IBM Zurich research lab assumes an asynchronous
network model, and researchers in IBM Zurich research lab proposed many asynchronous

mailto:zhang-rs@cs.sjtu.edu.cn

schemes, such as non-interactive threshold signature [3], asynchronous Byzantine agreement
[4][5], asynchronous secret sharing and proactive secret sharing scheme [6], asynchronous
protocol for distributed computation of RSA inverses[7], etc. Meanwhile, other researchers also
do a lot works in this field. In 2000, Castro proposed an asynchronous replication algorithm for
the Internet network based on asynchronous Byzantine agreement [8]. In 2001, Zhou proposed an
online certification authority scheme for the Internet, which is also modeled as asynchronous
networks [9][10]. Furthermore, Zhou considers ad hoc networks as asynchronous networks too
[11] and present some ideas for constructing proactive secret sharing for ad hoc networks.

When considering proactive secret sharing in asynchronous networks, asynchronous proactive
secret sharing schemes and asynchronous threshold signature schemes are needed. In this paper,
we present a complete provably secure asynchronous proactive threshold RSA signature scheme
to tolerate a mobile adversary in asynchronous networks.

1.1 Related work
Let’s see synchronous proactive signature first. While many synchronous proactive signature

schemes for discrete-log schemes were presented and well studied [12, 13, 14], the work on
secure proactive RSA schemes progressed more slowly. The difficulty appeared because the
parties need to be able to keep re-sharing the private key d, even if no single party is allowed to
know the secret modulus)(Nφ (recall that)(Nφ enables computation of the private key d from
the public key e). Firstly, Frankel et al. proposed two proactive RSA schemes [12, 13]. Then,
Rabin proposed a simplified protocol using similar ideas [14]. Recently, Jarecki presented a more
efficient proactive RSA scheme based on Rabin’s scheme. The above schemes are similar in two
aspects. They all use secret sharing “in two levels” to make the shares in the top level backed-up
in the secondary level. For example, party knows a number such that .

Meanwhile, each is a verifiable secret shared among the parties. Furthermore, all these
schemes require some form of additive rather than polynomial secret-sharing in the solutions that
tolerate an optimal adversarial threshold. From synchronous proactive RSA schemes, we learn
that the additive secret sharing and backing up shares are very important in constructing proactive
RSA schemes. Our asynchronous proactive RSA scheme is built on these two techniques.

iP id ∑ = ddi

id

 In addition the above proactive RSA scheme, Luo et al also proposed a proactive RSA scheme
for ad hoc networks, which built on polynomial secret sharing[15,16,17]. Unfortunately, due to
lack of a formal proof, though this scheme has been studied for several years, this scheme has
been proved faulty in two recent papers [18][19]. It seems that how to proactivize RSA schemes
using polynomial secret sharing is still a great challenge. In addition, a formal proof of security of
proactive RSA scheme seems to be necessary.

In 1999, Shoup proposed a non-interactive threshold RSA signature which could be used in
asynchronous networks [3]. However, there are still no asynchronous discrete-log threshold
signature schemes now. So far, two asynchronous proactive secret sharing schemes are presented.
One is proposed by Zhou in 2001, which is a proactive secret sharing scheme for RSA schemes
and based on Rabin’s RSA signature scheme. The other scheme is proposed by Cachin in 2002,
which is a proactive secret sharing scheme for discrete-log schemes. There exist several
drawbacks in both schemes. In Zhou’s scheme, the formal security proof of this scheme is
missing. Furthermore, Zhou’s scheme needs to resort to the system administrator to act as a
trusted third party for further run when some Byzantine errors occur. In Cachin’s scheme, though
Cachin’s asynchronous proactive scheme is for discrete-log schemes, the building block is based
on Shoup’s threshold RSA scheme. However, how to proactivize Shoup’s scheme is omitted in
Cachin’s scheme. Furthermore, there are still no corresponding asynchronous discrete-log
signature schemes for asynchronous proactive schemes. Considering both aspects, Cachin’s
scheme is incomplete now.
 1.2 Our contributions

 In this paper, we present a complete provably secure asynchronous proactive RSA (APR)
scheme. Our paper has four contributions.

Firstly, we present a provably secure asynchronous verifiable secret sharing for RSA schemes
(asynchronous verifiable additive secret sharing, AVASS), which is based on a verifiable additive
secret sharing over integers. Secondly, we propose an asynchronous threshold RSA signature
scheme that is based on the AVASS scheme and the random oracle model, and is capable of
being proactivized. Thirdly, we present a provably secure threshold coin-tossing scheme on the
basis of the above threshold RSA scheme. Fourthly, we propose an asynchronous proactive secret
sharing based on the threshold RSA scheme and the coin-tossing scheme. Finally, combining the
proactive secret sharing scheme and the threshold RSA scheme, we achieve a complete provably
secure asynchronous proactive RSA scheme.
1.3 Discussion of techniques used
 To describe the techniques used clearly, we first see the whole layered architecture of our
asynchronous proactive RSA scheme in Figure 1.
 The lowest layer is the broadcast primitive, and Bracha’s broadcast scheme [20] is used in this
layer. The second layer is the asynchronous verifiable secret sharing scheme, and our AVASS
scheme is used in this layer. Similar to Rabin’s scheme, the AVASS scheme has two-levels, and
is based on the additive secret sharing over integers. However, unlike Rabin’s scheme, which
back up an additive secret share by a polynomial secret sharing, the AVASS back up an additive
secret shares at several parties in a redundant way. The third layer is the asynchronous RSA
signature, and our proposed asynchronous RSA scheme is used in this layer. Like Rabin’s scheme,
our RSA scheme is based on the additive secret sharing. However, our scheme employs a
technique of Shoup’s scheme to prove the robustness of the scheme, while Rabin’s scheme
employs a different technique. The fourth layer is the threshold coin-tossing scheme, and we
implement such a scheme on the basis of our RSA scheme. The fifth layer is the Byzantine
agreement, and we use Toueg’s Byzantine agreement and replace the Rabin dealer in his scheme
with our coin-tossing scheme. The sixth layer is the validated Byzantine agreement, and we use
Cachin’s validated Byzantine agreement and replace the Byzantine agreement in his scheme with
the modified Touge’s scheme. Finally, the top level is the asynchronous refresh scheme, and we
implement such scheme based on the AVASS scheme and validated Byzantine agreement. Our
refresh scheme adopts the similar idea with Rabin’s scheme except that it uses validated
Byzantine agreement to replace broadcast channel in synchrotrons networks.
 Combining all these, we obtain a complete asynchronous proactive secret sharing scheme and
asynchronous proactive RSA scheme. Our whole asynchronous proactive RSA scheme either
employ other schemes directly (e.g. validated Byzantine agreement), or construct new similar
schemes based on other schemes (e.g. the AVASS scheme and the asynchronous refresh scheme).
So does our proof of the security of the whole scheme.

Asynchronous refresh

Validated Byzantine
agreement

Byzantine agreement

Threshold coin-tossing
Asynchronous threshold

RSA

Asynchronous verifiable secret sharing

Asynchronous broadcast

 Figure 1 The whole layered architecture of the asynchronous proactive RSA scheme

1.4 Outline

The paper is organized as follows. Section 2 presents the system model and the cryptographic
assumptions used. An asynchronous verifiable secret sharing scheme is presented in Section 3,
and an asynchronous threshold RSA scheme is presented in Section 4. Then a threshold coin-
tossing scheme is proposed in Section 5. In Section 6, an asynchronous proactive secret sharing
scheme is presented. In Appendix A, B, C, the proof of the AVASS scheme, the asynchronous
RSA scheme and the asynchronous refresh scheme are described, respectively.
 2. System model and cryptographic assumptions

2.1Asynchronous system model
We work in one of the several standard models of threshold cryptography and distributed

systems, known in short as asynchronous, secure links, trusted dealer, static but proactive
adversary model. This system model is as same as that of [4, 5]. We can only give a brief
overview here; for the details, see [4,5] .
 The network consists of n parties , which are linked by a secure asynchronous
channel that provides privacy and authenticity with scheduling determined by the adversary. The
scheme these parties run aims at tolerating a presence of the so-called “mobile”, which is strictly
stronger than “threshold”, adversary who is a probabilistic polynomial time algorithm, and who
can statically (i.e., at the beginning of the life time of the scheme) schedule up to t arbitrarily
malicious faults among any n of the parties, for any t < n/3, independently in every update round.

npp ,...,1

A single time signal or clock tick is used to activate parties to inform the start of every phase
locally. The adversary may corrupt up to t servers who are in the same local phase. Furthermore,
for simplicity, we assume that secure channels in the proactive model guarantee that messages are
delivered in the same local phase in which they are sent. More precisely, a message sent in some
local phase of the sender arrives when the receiver is in the same local phase or it is invariably
lost. Under these restrictions, we leave all scheduling up to the adversary (See [6] for more
discussion about this topic). In practice, such proactive secure channels might be implemented by
re-keying every point-to-point link when a phase change occurs, as discussed our asynchronous
refresh scheme in Section 6.
 We also assume a trusted dealer who initializes the distributed scheme (picks the RSA key and
shares the private key among the parties) before the adversary can corrupt any of the parties.

2.2 Cryptographic assumptions
The RSA modulus is pqN = , where p and q are random two large primes of equal

length(512 bit, say), and ,1'2 += pp 1'2 += qq ,with , themselves prime. Let .
The public key is . The private key

'p 'q '' qpM =
),(eNPK =)(NZd Φ∈ should be an even number. Denote

by the subgroup of squares in . Clearly, is cyclic of order M. Choose at
random, which generates since this happens with all but negligible probability.

NQ *
NΖ NQ NQv∈

NQ
3. An asynchronous verifiable secret sharing scheme

In this section, we propose an asynchronous verifiable secret sharing (AVSS) scheme for RSA
schemes, which is employed to build the asynchronous RSA scheme in Section 4.

3.1 Definition of the AVSS scheme
A scheme to share a secret s consists of a sharing stage and a reconstruction stage as follows.

Sharing stage. The sharing stage starts when a party initializes the scheme. In this case, we say
the party initializes a sharing. There is a special party , called the dealer, which is activated
additionally on an input message of the form (in, share, s). If this occurs, we say shares s
among the group. A party is said to complete the sharing when it generates an output of the form

dp

dp

(out, shared).
Reconstruction stage. After a party has completed the sharing, it may be activated on a message
(in, reconstruct). In this case, we say the party starts the reconstruction. At the end of the
reconstruction stage, every party should output the shared secret. A party terminates the
reconstruction stage by generating an output of the form (out, reconstructed,). In this case, we
say reconstructs .

ip

iz

ip iz
The definition of our AVSS is adopted from [6].

Definition 1. A scheme for asynchronous verifiable secret sharing satisfies the following
conditions for any adversary:
Liveness: If the adversary initializes all honest parties on a sharing, delivers all associated
messages, and the dealer is honest throughout the sharing stage, then all honest parties
complete the sharing, except with negligible probability.

dP

Agreement: Provided the adversary initializes all honest parties on a sharing and delivers all
associated messages, the following holds: If some honest party completes the sharing ,
then all honest parties complete the sharing and if all honest parties subsequently start the
reconstruction, then every honest party reconstructs some , except with negligible
probability.

ip iz

Correctness: Once t + 1 honest parties have completed the sharing, there exists a fixed value z
such that the following holds except with negligible probability:
1. If the dealer has shared d and is honest throughout the sharing stage, then d = s.
2. If an honest party reconstructs , then ip iz zzi = .
Privacy: If an honest dealer has shared d and less than t + 1 honest parties have started the
reconstruction, the adversary’s view is statistically independent of d.

3.2 Implementation of the AVASS scheme
Now we describe our asynchronous verifiable secret sharing scheme (asynchronous verifiable

additive secret sharing, AVASS) with computational security. The AVASS scheme adopts the
similar ideas of Rabin’s scheme and Zhou’s scheme. There are two levels in the AVASS scheme.
The lower level is an additive secret sharing (ASS) over integers, and the top level is the AVASS
scheme.

 We outline the whole scheme informally first.
Let’s see the ASS scheme, which is a scheme, where . The shared secret

 and d is an even number. The dealer chooses and hands value

 for such that is an even number. Then the dealer sets

and computes a commitment array C with

),(ll)(n
tl =

)(NZd Φ∈ ip

]..[22 lNlNd Ri −∈ li ≤≤1 id

∑ =
−= n

i ipublic ddd 1 publicdC =0 ,

for and . NvC id
i mod= li ≤≤1 d

l vC =+1
Now, we consider how to construct the AVASS scheme on the basis of the ASS scheme. In

order that up to t corrupted parties cannot reconstruct the secret, we need to consider all kinds of
combination of t parties of n, which constitutes a set of , such that each element

contains exactly t parties. Include secret share in , the share set for a party p, if and only

if p is not in corresponding . That is, for any party p, share set equal

. Note that, by not assigning to any party in , we ensure that parties
in do not together have all l shares to reconstruct the secret. Also, for any party p, construct

},...,{ 1 lPP

iP id pS

iP pS
}1|{ ii Pplid ∉∧≤≤ id iP

iP

an index set }1|{ ip PpliiI ∉∧≤≤= . Obviously, we have }|{ pip SdiI ∈=
and . The index sets provide a sharing-independent description of the
share-set construction. Figure 2 illustrates a (i.e., n = 4 and t = 1) AVASS example

based on a ASS

}|{ pip IidS ∈=
)2,4(

(4,4
1
4

,
1
4

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛) { }4321 ,,, dddd . The share set for each party

consists of all shares except . The index sets are also shown.

ip

id

party(p) Share set)(pS Index set)(pI

1p },,{ 432 ddd {2,3,4}

2p },,{ 431 ddd {1,3,4}

3p },,{ 421 ddd {1,2,4}

4p },,{ 321 ddd {1,2,3}

 Figure 2 An Example of the AVASS scheme.
In the ASS scheme, the secret d is shared among l shares, and shares are single values.

However, in the AVASS scheme, shares are sets of values, called shares sets, which are kept by
parties. Shares in share sets implement an additive secret sharing. In the AVASS scheme,
there is l shares and a size

1+t
)(|| tlS p −= of shares for party p.

The AVASS scheme uses exactly the same communication pattern as the asynchronous
broadcast primitive proposed by Bracha [20].There are four steps in the AVASS scheme, and the
details of these steps are describes as follows.
(1) The dealer computes an ASS by choosing a sharing with

 for such that and is an even number.

The corresponding witness is C that . Then the dealer computes the

commitment array C with , for

),(ll }...,,{ ,21 lddd

∑ =
−= l

i ipublic ddd 1 li ≤≤1]...[22 lNlNd Ri −∈ id

NC id
i modv=

publicdC =0 NvC id
i mod= li ≤≤1 and . NvC d

l mod1 =+

 Then in the send messages, the dealer sends to every party p share set and the
commitment array C, respectively.

pS

(2) When they receive the send message from the dealer, the parties use verify-share (, C)

to check if the share is valid, where
id

id pi Sd ∈ . If all shares of are valid, then the parties
send the share set in which their share set overlap to each other in an echo message. For example,

sends an echo message containing C, share set

pS

ip
jiji ppp SSS I∈

,
 to every party . jp

 (3) Upon receiving ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages that agree on C and contain valid shares

checked by using verify-share() , every party computes its share set from the received share sets
(agree on C means Cs in the received echo messages are the same).

For example, computes its shares set = where jp
jpS U

k

i
p ji

S
, ⎥⎥

⎤
⎢⎢
⎡ ++

=
2

1tnk and is

share set sent by . (In case the dealer is honest, the resulting share set is the same as that in the

jipS
,

ip

send message.) Then sends a ready message containing C, share set

to every party .

jp
mjmj ppp SSS I∈

,

jp

It is also possible that a party receives ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 valid ready messages that agree on C and

contain valid shares, but has not yet received ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 valid echo messages. In this case, the

party computes its share set from the ready messages and sends its own ready message to all
parties as above.
4. Once a party receives a total of 12 +t ready messages that agree on C and contain valid
shares, it completes the sharing.

The reconstruction stage is straightforward. Every party reveals its share set to every

other party, and waits for such share sets from parties such that for shares contained in these
share sets verify-share should hold. Then it computes the secret d from these share sets.

ip
ipS

1+t

In the scheme description, the following predicate is used:
verify-share (, C), where is a share and C is the commitment array, verifies that is

consistent with C; it is true if and only if it holds (),

, and is an even number, and .

id id id

∏
=

+ =
l

j
jl CvC publicd

1
1

d
l vC =+1

]..[22 lNlNdi −∈ id NvC id
i mod=

Theorem 1. In the random oracle model, the AVASS scheme is secure assuming the
standard RSA signature scheme is secure.

Due to lack of space, the proof of the security of the AVASS scheme appears at appendix A.
4. An asynchronous RSA scheme
 In this section, we propose an asynchronous threshold RSA scheme and give a formal proof of
security. Our asynchronous RSA scheme builds on the AVASS scheme. After the dealer shared
the secret key d using the AVASS scheme, parties can begin to generate their signature shares.

4.1 Implementation of the asynchronous RSA scheme
Given a message m, its signature under the public key (N, e) is . In our setting this

signature needs to be generated by the parties in a distributed manner where each individual
party uses shares of its share set. As the secret key d is shared using a sum, i.e,

, we have that .

Nmd mod

∑
=

∈+=
l

i
ipublic Zddd

1
∏
=

+
=

∑
= =

l

i

dd
dd publicd Nmmmm ipublic

l

i
i

1
mod1

We now describe how a signature share on a message m is generated. Let . has

 signature shares, and every signature share consists of (is an even

number), along with a “proof of correctness,” where . The proof of correctness is

basically just a proof that the discrete logarithm of to the base of x is the same as the discrete
logarithm of to the base v.

)(mHx = ip

||
ipS n

d
i Qxx i ∈= id

ii pSd ∈

ix

iv

Now let’s see the details. Let be the bit-length of and)(2lNL 2lN 'H be a hash function,
whose output is an -bit integer, where is a security parameter (=128, say). To construct

the proof of correctness, party chooses a random number and r is an
1L 1L 1L

ip }12,...,0{ 12)(−∈ + LnLr

even number, computes
 , , ,rvv =' rxx ='),,,,,(''' xvxvxvHc ii= rcdz i +=
 The proof of correctness is (z, c).
 To verify this proof of correctness, one checks that
 and z is an even number.),,,,,(' c

i
zc

i
z

ii xxvvxvxvHc −−=
We next describe how signature shares are combined. Suppose we have valid shares from a

set S of parties, where , and all l shares of the secret are contained in share
sets of S.

},...,{ 11 += tppS 1+t

Let , and assume that for *)(NmHx Ζ∈= id
i xx =)1(li ≤≤ . Then combine shares,

 such that . ∏
=

=
l

i
i

d xxy public

1
xye =

4.2 Security analysis of the asynchronous RSA scheme
Theorem 2. In the random oracle model for 'H , the asynchronous RSA scheme is a secure

threshold signature scheme (robust and non-forgeable) assuming the standard RSA signature
scheme is secure.

Due to lack of space, the proof is given at appendix B.
5. A threshold coin-tossing scheme

In this section, we first introduce the concept of the validated Byzantine agreement (VBA)
scheme, and its relations to Byzantine agreement scheme and the threshold coin-tossing scheme,
then propose a threshold coin-tossing scheme based on the RSA scheme in Section 4.

5.1 The VBA scheme
 In constructing the asynchronous refresh scheme in Section 6, the building blocks are the

AVASS scheme and the VBA scheme. The standard notion of a Byzantine agreement implements
only a binary decision in asynchronous networks. A VBA [5] scheme extends this to arbitrary
domains by means of a so-called external validity condition. It is based on a global, polynomial-
time computable predicate known to all parties, which is determined by an external
application. Each party may propose a value that perhaps contains validation information. The
agreement ensures that the decision value satisfies , and that it has been proposed by at least
one party.

IDQ

IDQ

Cachin presented a complete VBA scheme in [5], which was built on the basis of a Byzantine
agreement in [4]. However, we cannot use this VBA scheme completely, since the Byzantine
agreement in this scheme is not appropriate for our use. In constructing Cachin’s Byzantine
agreement, two threshold signature schemes are used. One is a),,(ttnn − threshold scheme,
and the other is a threshold scheme. If we adopt this Byzantine agreement, we have to
refresh shares of both threshold signature schemes, which is very complex and hard. For
simplicity, we use the Byzantine agreement proposed by Toueg in [21]. In Toueg’s scheme, a
Rabin dealer is used to generate random common coins for Byzantine agreement schemes. A
Rabin dealer has some drawbacks and is not appropriate for our use, so we select to use the
threshold coin-tossing scheme to generate random common coins. In [4][5], Cachin propose a
threshold coin-tossing scheme based on computational Diffile-Hellman (CDH) assumption and a
Byzantine agreement based on this coin-tossing scheme. However, we cannot use Cachin’s coin-
tossing scheme, since we have to build all schemes based on our asynchronous RSA scheme. (S.
Micali et al proposed such ideas and a complete scheme in [22]. In [7], Cachin also proposed to
use RSA inverse to implement verifiable random functions (VRFs), but no detailed description.)

),1,(ttn +

5.2 Definition of threshold coin-tossing scheme
In this section, we define the notion of a)1,(+tn threshold coin-tossing scheme. The basic

idea is that there are n parties, up to t of which may be corrupted. The parties hold shares of an
unpredictable function F mapping the name C (which is an arbitrary bit string) of a coin to its
value . The parties may generate shares of a coin—l coin shares are both necessary
and sufficient to construct the value of the particular coin.

}1,0{)(∈CF

Definition 2. A threshold coin-tossing scheme satisfies the following conditions for any
adversary:

Robustness. It is computationally infeasible for an adversary to produce a name C and l valid
shares of C such that the output of the share combining algorithm is not F(C).

Unpredictability. An adversary’s advantage in the following game is negligible. The
adversary interacts with the honest parties as above, and at the end of this interaction, he outputs a
name C that has not been submitted as a reveal request, and a bit }1,0{∈b . The adversary’s
advantage in this game is defined to be the distance from 1/2 of the probability that . bCF =)(

5.3 Implementation of the threshold coin-tossing scheme
For a given coin C, to obtain the value of the coin C, first, compute the threshold RSA

signature of name of coin C, suppose the result is , then computes to obtain the value
of coin C. Here

0g)('' 0gH
''H is a hash function, which could actually be implemented in the standard

model by the inner product of the bit representation of the input with a random bit string, chosen
once and for all by the dealer in the initial phase.

5.4 Proof of the security of the threshold coin-tossing scheme
Theorem 3. In the random oracle model, the threshold coin-tossing scheme is secure

assuming the standard RSA signature scheme is secure.
Clearly, the robustness of the scheme follows from the robustness of the asynchronous RSA

scheme.
To prove unpredictability, we assume we have an adversary that can predict a coin with non-

negligible probability, and show how to use this adversary to efficiently generate RSA signature.
Observe that because the adversary has a non-negligible advantage in predicting the value of the
coin C, he must evaluate ''H at the corresponding point with non-negligible probability,
which violates the non-forgeablity of the asynchronous RSA scheme.

0g

Replacing a Rabin dealer with our coin-tossing scheme in Touge’s scheme and the Byzantine
agreement with the modified Touge’s scheme in Cachin’s VBA schemes, we achieve a VBA
scheme appropriate for our use.
6. An asynchronous proactive secret sharing scheme

In Section 2, we described an AVASS scheme. In this Section, we present a refresh scheme
to refresh shares in the AVASS scheme. Combining the AVASS scheme and the refresh scheme
shown in this section, we obtain an asynchronous proactive secret sharing scheme.

6.1 Definition of asynchronous refresh scheme.
Our definition of an asynchronous secure refresh is similar to that of [6].

Definition 3. Suppose the shared secret key is d. An asynchronous refresh scheme satisfies the
following conditions for any adversary:
Liveness: If the adversary activates all honest parties on a clock tick for the beginning of a phase
and delivers all associated messages within phases, then all honest parties complete the refresh,
except with negligible probability.
Correctness: If at least t + 1 honest parties have completed the refresh of sharing and have not
detected a subsequent clock tick for a new phase, these parties can reconstruct the secret key and
the reconstructed value equals d, except with negligible probability.
Privacy: In any polynomial number of consecutive executions of the scheme, the adversary’s
view is statistically independent of d.
 Note that this definition guarantees that the parties complete the refresh only when the
adversary delivers messages within phases. Otherwise, the model allows the adversary to cause

the secret to be lost, in order to preserve privacy. Such a trade-off between privacy and
correctness seems unavoidable in asynchronous networks (See [6] for more discussion about this
problem).

6.2 Implementation of the asynchronous refresh scheme
 From a high-level point of view, the scheme works in three stages. First, every party

shares every share using an AVASS scheme. Since every share set has
ip

ipi Sd ∈

)(tl − shares and there are all n parties, there are ntl ×−)(sharings. In order to distinguish
these sharings, every sharing is identified by a symbol ID| j))(1(ntlj ×−≤≤ .
In these sharings, we call a set of sharings a candidate set if that set consists of exactly one
sharing generated from each share of all l shares of the secret d. Second, for the above
sharings, the parties propose a candidate set that have successfully terminated as their input to a
VBA scheme, then use the VBA scheme to select a candidate set as the output. Third, they
compute fresh shares and share sets from the set of sharings which they agreed on.

Note that, to ensure the correctness of a sharing, parties need to check if the commitment
of the shared s is correct. For this purpose, parties have to store the commitments of

 for in an array V, every element of which is the commitment of the
corresponding . At the end of every phase, and V are updated. Then in next phase, parties

can check if the commitment of in a new phase is correct by comparing it with that
stored in V.

sv
Nv id mod li ≤≤1

id id

Nv id mod

Every party executes the following three steps to refresh secret shares in phaseτ .
(1) Party participate in initializing ip ntl ×−)(AVASS (n, t + 1)-sharings ID|j for

using an extended version of the AVASS scheme. Thus the shares
of the secret key d are re-shared. The AVASS scheme here is a little different from

that one in Section 3. Firstly, the scope of the value of shares is different. For example, shares
 and of are chosen or computed as follows.

 , (not).

])(,1[ntlj −∈

id)1(li ≤≤

jid , publicid , id)1(li ≤≤

∑ =
−= l

k kiipublici ddd 1 ,,]...[22
, NNd Rki −∈]...[22

, lNlNd Rki −∈
 Secondly, in the extended AVSS scheme, each party adds a digital signature to every ready
message. In extended AVASS instance , the signature is computed on (jID | ready,,| τjID). A
list of 2t + 1 such signatures is output when the sharing is completed and may serve as a
proof for this fact. Thirdly, to keep a sharing correct, parties have to check the validness of the
commitment of the shared secret. Finally, party should immediately erase the current shared
secret in sharing ID|j, in which as the dealer. (This is used to preserve privacy. See [6] , for
more discussion about this topic.)

jΠ

ip

ip

(2) waits for completing a candidate set. Recall that the extended AVASS scheme also returns

a proof for the completion of the sharing. Next, proposes the candidate set for the

validated Byzantine agreement. Its proposal is a set

ip

jΠ iP
)},{(jj Π=iL of l tuples, indicating the

sharing ID|j is completed and containing the list jΠ of signatures on ready messages from the

extended sharing. The predicate of the VBA scheme is set to verify-termination),(iLτ , which
verifies that contains l sharing with the proofs that these sharings will actually terminate. It is

true if and only if and for every
iL

l=|| iL iL∈Π),(jj , the list jΠ contains at least 2t + 1 valid
signatures on ready messages from distinct parties.
(3) After decides in the VBA scheme for a set L that indicates l AVASS instances, it waits for
these sharings to complete. Then compute its new shares, share set and the new commitments V.
The new shares for is computed as (1); the new shares for is computed as (2).

ip

id publicd

∑ =
= l

j ij
new
i dd 1 , (1)

∑ =
+= l

j publicj
old
public

new
pubic ddd 1 , (2)

 Then, the new commitment for id)1(li ≤≤ is computed as (3)

 (3) ∏
=

=
l

j

dd ij
new
i vv

1

,

Finally, the party aborts all sharing ID|j))(1(ntlj ×−≤≤ , which automatically erases all
information of these sharings.

Theorem 4. In the random oracle model, the asynchronous refresh scheme is secure assuming
the standard RSA signature scheme is secure.

Due to lack of space, the proof of security of the asynchronous refresh scheme appears at
appendix C.
Acknowledgments

Special thanks go to Stanislaw Jarecki for some discussions on this topic.
REFERENCES
[1] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. 10th ACM

Symposium on Principles of Distributed Computing (PODC), pages 51–59, 1991.
[2] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or how to cope
with perpetual leakage. In Advances in Cryptology CRYPTO ’95 (D. Coppersmith, ed. Springer.).
963:339-352, 1995.
[3] V. Shoup. Practical threshold signatures. In Advances in Cryptology: EUROCRYPT 2000 (B.
Preneel,ed.), 1087(207-220), 2000.
[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography. In Proc. 19th ACM Symposium on
Principles of Distributed Computing (PODC), pages 123–132, 2000.
[5] Cachin C., Kursawe, K. Petzold F., and Shoup V. Secure and efficient asynchronous
broadcast protocols (extended abstract). In Advances in Cryptology: CRYPTO 2001(LNCS).
2139:524-541, August 2001.
[6] Cachin C., Kursawe K., Lysyanskaya A., and Strobl R. Asynchronous verifiable secret
sharing and proactive cryptosystems. In Proc. 9th ACM Conference on Computer and

Communications Security (CCS). Washington, DC, USA, pages 88–97, November 2002.
[7] Cachin C. An asynchronous protocol for distributed computation of RSA inverses and its
applications. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing. Boston, USA, , pages 153 – 162, April 2003.
[8] CASTRO, M. 2000. Practical Byzantine fault tolerance. PhD. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
Mass.
[9] Zhou L. Towards Fault-tolerant and Secure On-line Services. PhD thesis, Department of
Computer Science, Cornell University, Ithaca, NY USA. April 2001.
[10] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A Secure Distributed
On-line Certification Authority. ACM Transactions on Computer Systems 20, 4 (November
2002), 329--368. Earlier version: Technical Report TR 2000-1828, December 7, 2000.
[11] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine, 13(6):24–30,
1999.
[12] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal-Resilience Proactive
Public-Key Cryptosystems. In Foundations of Computer Science FOCS’97, pages 384–393, 1997.
 [13] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In Proc. of
Crypto’97, pages 440–454, 1997.
[14] T. Rabin. A simplified approach to threshold and proactive RSA. in Proc. CRYPTO ’98, pp.
89–104, Springer, 1998.
[15] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia Zhang. Providing Robust
and Ubiquitous Security Support for MANET. In IEEE 9th International Conference on Network
Protocols (ICNP), 2001.
[16] Haiyun Luo, Jiejun Kong, Petros Zerfos, Songwu Lu, and Lixia Zhang. URSA: Ubiquitous
and Robust Access Control for Mobile Ad Hoc Networks, available on-line at
http://www.cs.ucla.edu/wing/publication/publication.html. In IEEE/ACM Transactions on
Networking (ToN), to appear, Oct 2004.
[17] H. Luo and S. Lu. Ubiquitous and Robust Authentication Services for Ad Hoc Wireless
Networks, available on-line at http://citeseer.ist.psu.edu/luo00ubiquitous.html. Technical Report
TR-200030, Dept. of Computer Science, UCLA, 2000.
[18] M. Narasimha, G. Tsudik, and J. H. Yi. On the Utility of Distributed Cryptography in P2P
and MANETs: The Case of Membership Control. In IEEE 11th International Conference on
Network Protocol (ICNP), pages 336–345, November 2003.
[19] Stanislaw Jarecki, Nitesh Saxena, and Jeong Hyun Yi. Cryptanalyzing the Proactive RSA
Signature Scheme in the URSA Ad Hoc Network Access Control Protocol. In ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN), to appear, October 2004.
[20] G. Bracha. An asynchronous [(n- 1)/3]-resilient consensus protocol. In Proc. 3rd ACM
Symposium on Principles of Distributed Computing (PODC), pages 154-162, 1984.
[21]S. Toueg, Randomized Byzantine agreements, In Proc. 3rd ACM Symposium on Principles of
Distributed Computing (PODC), pages 163–178, 1984.
[22] S. Micali, M. Rabin, and S. Vadhan, Verifiable random functions. In Proc. 40th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 120–130, 1999.
Appendix
A Proof of the security of the AVASS scheme

Lemma 1. Suppose an honest party sends a ready message containing and a distinct

honest party sends a ready message containing . Then
ip iC

jp jC ji CC = .

Proof. We prove the lemma by contradiction. Suppose ji CC ≠ . generates the ready ip

http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf
http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf
http://research.microsoft.com/users/lidongz/2000-1828.ps

message for only if it has received at least iC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing or

 ready messages containing . In the second case, at least one honest party has sent a

ready message containing upon receiving at least

iC

1+t iC

iC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages; we may

as well assume that this is to simplify the rest of the argument. Thus, has received ip ip

⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing , of which up to t are from corrupted parties. Using

the same argumentation, must have received at least

iC

jp ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing

 .Then there are at least 2jC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn 1++= tn echo messages received by and

together, among them at least from honest parties. But no honest party generates more
than one such message by the scheme.

ip jp

1++ tn

Liveness. If the dealer is honest, it follows directly by inspection of the scheme that all
honest parties complete the sharing, provided all parties initialize the sharing and the adversary
delivers all associated messages.

dp

Agreement. We first show that if some honest party completes the sharing, then all honest
parties complete the sharing, provided all parties initialize the sharing and the adversary delivers
all associated messages.

Suppose an honest party has completed the sharing. Then it has received valid ready
messages that agree on some

12 +t
C . Of these, at least 1+t have been sent by honest parties. A valid

echo or ready message is one that satisfies verify-share, and it is easy to see from the
definition of verify-share that honest parties send only valid ready messages.
Since an honest party sends its ready message to all parties, every honest party receives at least

 valid ready messages with the same 1+t C by Lemma 1 and sends a ready message
containing C . Hence, by the assumption, any honest party receives 12 +>− ttn valid
ready messages containing C and completes the sharing.

As for the reconstruction part, it follows from Lemma 1 that every honest party computes

the same
ip

C . Moreover, has received enough valid echo or ready messages with respect

to
ip

C so that it computes valid ready messages and a valid share with respect toid C such that

verify-share(,id C) holds. Thus, if all honest parties subsequently start the reconstruction stage,
then every party receives enough valid shares to reconstruct some value, provided the adversary
delivers all associated messages.
Correctness. Let J be the index set of the 1+t honest parties that have completed the
sharing.

jp

To prove the first part, suppose the dealer has shared d and is honest throughout the sharing
stage. Towards a contradiction assume dz ≠ . Because the dealer is honest, it is easy to see that
every echo message sent from an honest to contains C, ip jp

jiji ppp SSS I∈
,

as the same

as sent by the dealer. Furthermore, if the party p in J computed their share sets only from these

echo messages, then the resulting should be the same as sent by the dealer. But

since , at least one honest party computed ; this must be because accepted

an echo or ready message from some corrupted containing

'
pS pS

dz ≠ ip
ii pp SS ≠'

ip

mp C and . It is

easy to see from Lemma 1 and from the fact that the dealer is honest that C used by the dealer and
mm pp SS ≠'

C sent by are equal. Since has evaluated verify-share to true for all shares of , we

have for all shares , where

mp ip '
mpS

NvC id
i mod

'
= ''

mpi Sd ∈
mpIi∈ . Thus,

. This implies also . Since the order of is M ,

.Thus, since , and N are known, one can easily compute M in
polynomial time, which means the standard RSA scheme is not secure.

NvNv ii dd modmod
'

= 1mod
'

=− Nv ii dd
NQ

0,' ≠∧∈=− kZkkMdd ii id '
id

To prove the second part, assume that two distinct honest parties and reconstruct

values and . This means that they have received two distinct share sets and of
ip jp

iz jz iS jS 1+t

shares each, which are valid with respect to the unique commitment array C used by and

(the uniqueness of
iP jP

C follows from Lemma 1). According to the scheme, and are

computed from the shares in the share sets obtained from and , respectively. Since the

shares in and are valid, it is easy to see that for all

shares and , where

iz jz

iS jS

iS jS NvNv ii dd modmod
'''

=

iSd '
i ∈ jSd ''

i ∈ li ≤≤1 . The remaining proof is similar to the first part.
Privacy. We use the assumption of the asynchronous RSA scheme is secure to prove the privacy.
The security of the asynchronous RSA scheme will be given in Section 4. Suppose the
asynchronous RSA scheme is secure, the privacy holds. Or else, the adversary can forge RSA
signatures successfully with non-negligible probability.
B Proof of the security of the asynchronous RSA scheme

We show how to simulate the adversary’s view, given access to an RSA signing oracle
which we use only when the adversary asks for a signature share from an uncorrupted party.
Let be the set of corrupted parties. tpp ,...,1

 Now, we simulate the adversary’s view on the AVASS scheme first. Assume are
the shares contained in .

},...,{ 11 −ldd
},...,,{

21 tppp SSS

1. choose share and]..[ˆ,...,ˆ 22
11 lNlNdd Rl −∈−]..[ˆ 2222 NNlNld Rpublic +−∈

2. (a) compute Ngwgw ll d
l

d
l modˆ,...,ˆ 1

1
ˆ

−== −

(b) set Nwgggw l
i

ddd
l

publicl modˆ/ˆ 1
1 1

ˆ ∏ −
=

==

3. (a) Perform as the same as the AVASS scheme for tpp ,...,1

(b) Perform as the same as the AVASS scheme when interacting with . Send
random messages when interacting with other parties.

tpp ,...,1

 Clearly, the above simulation is statistically indistinguishable to the adversary.
Then, we simulate the adversary’s view on the asynchronous RSA scheme.

(1) compute for Nmx id
i modˆ ˆ
= 11 −≤≤ li

(2) set Nxxmx l
i ipublic

d
l mod)ˆˆ/(ˆ 1

1∏ −
=

= , where Nmx publicd
public modˆ

ˆ
=

 Our proof is similar to that of Shoup’s scheme [3].With regard to the “proofs of correctness”,
one can invoke the random oracle mode for the hash function 'H to get soundness and statistical
zero knowledge.

 First, consider soundness. We want to show that the adversary cannot construct except with
negligible probability, a proof of correctness for an incorrect share. Let x and be given, along

with a valid proof of correctness (z, c). We have , where
ix

),,,,,(''' xvxvxvHc ii=

 ., '' c
i

zc
i

z xxxvvv −− ==

Now, , , , , are all easily seen to lie in , and we are assuming that v generates
. So we have

iv 'v 'x ix 2x NQ

NQ
δαγβ vxvxvvvxvv i

d
i

i ===== '2 ,,',, ,
for some integers α, β, γ, δ. Moreover,

 and mcdz i modγ≡− mcz mod
2

δβα
≡− .

 Multiplying the first equation by α and subtracting the second multiplying by 2, we have
 mdc i mod2γ)2(δααβ −≡− (1)

Now, a share is correct if and only if
 mdi mod2 αβ ≡ (2)
 If (2) fails to hold, then it must fail to hold mod p’ or mod q’, and so (1) uniquely determines c
modulo one of these primes. But in the random oracle model, the distribution of c is uniform and
independent of the inputs to the hash function, and so this even happens with negligible
probability.
 Second, consider zero-knowledge simulatability. We can construct a simulator that simulates
the adversary’s view without knowing the value . This view includes the values of the random
oracle at those points where the adversary has queried the oracle, so the simulator is in complete
change of the random oracle. Whenever the adversary makes a query to the random oracle, if the
oracle has not been previously defined at the given point, the simulator defines it to be a random
value, and in any case returns the value to the adversary. When an uncorrupted party is supposed
to generate a proof of correctness for a given x, , the simulator chooses and

 and z is an even number is at random, and for given values x and ,

defines the value of the random oracle at to be c. With all but
negligible probability, the simulator has not defined the random oracle at this point before, and so
it is free to do so now. The proof is just (z, c). It is straight forward to verify that the distribution
produced by this simulator is statistically close to perfect.

id

ix }12,...0{ 1 −∈ Lc

12,...,0 12)(−∈ + LnLz ix

),,,,,(c
i

zc
i

z
ii xxvvxvxv −−

 From soundness, we get the robustness of the threshold signature scheme. From zero-
knowledge, and the above arguments, we get the non-forgeability of the threshold signature
scheme, assuming that the standard RSA signature scheme is secure, i.e., existentially non-
forgeable against adaptive chosen message attack.
C Security analysis of the asynchronous refresh scheme
 We have to show the proposed scheme satisfies the liveness, correctness, privacy properties.
Liveness. Since there are at least 1+t honest parties, and there is at least a candidate of set.
Then the VBA scheme will terminate with a candidate of set as the output within a phases

provided the adversary delivers all associated messages within phases.
Correctness. Fix a point in time where a set H of at least t + 1 honest parties has completed the
refresh scheme and not yet detected the next clock tick for the beginning of the next phase. Since
the correctness of the AVASS scheme, the secret key d is shared among new l shares. And since
the next phase hasn’t started yet, then, for any 1+t honest parties, all l shares are contained in
their share sets. So any honest parties can reconstruct the secret key and the
reconstructed value equals d, except with negligible probability.

1+t 1+t

Privacy. We show that the adversary’s view in an execution of the scheme is statistically
independent of d. Similar to the proof of privacy of the AVASS scheme; we prove privacy of the
asynchronous refresh scheme by proving the security of the asynchronous RSA scheme in the
current phase. Note that our proof the security of asynchronous RSA scheme in appendix B is
only applicable to the asynchronous RSA scheme for the initial phase (Just after the dealer of the
system completes the initialization of the system). For the other phases (When some rounds of
refreshing have been completed), the proof should be a little different.

Assume that we have constructed a simulator to simulate previous phases }1,...,2,1{ −τ (In
appendix B, we construct a simulator for the initial phase 1, so this holds,) we now consider
constructing a simulator for phaseτ .

For simplifying, let be the set of corrupted parties in the current phase, and
 are the shares that could be observed by the adversary in the next phase.

tpp ,...,1

},...,,{ 121 −lddd
Now, we simulate the adversary’s view on the asynchronous refresh scheme. First, for those

shares contained in share sets of , perform as the same steps as the asynchronous
refresh scheme; for that remaining one, suppose it to be , perform the following simulation.

)1(−l tpp ,...,1

id

Assume that can be observed by the adversary, and 1,1,
ˆ,...,ˆ

−lii dd],[21 RRd Ri ∈ (In phase 1,

. We can also compute the scope of in other phases, which is

described below.) Choose shares and are even

numbers, and is an even

number.

],[],[22
21 lNlNRR −= id

]...[ˆ,...,ˆ 22
1,1, NNdd Rlii −∈− 1,1,

ˆ,...,ˆ
−lii dd

]ˆ,ˆ[ˆ 2
1

1
,2

2
1

1
,1, NdRNdRd

l

j
ji

l

j
jiRpublici +−−−∈ ∑∑

−

=

−

=
publicid ,

ˆ

New for that could be observed by the adversary are computed as the

APSS scheme. For new , we compute the scope of it as .

new
i

d)11(−≤≤ li

new
ld],[2

1

1
,

2
1

1
, NdNd

l

i
li

l

i
li +− ∑∑

−

=

−

=
Clearly, the above simulation is statistically indistinguishable to the adversary. We then

simulate the adversary’s view on the signing scheme with the similar method used in appendix B.
With the above simulation, we can prove that asynchronous RSA scheme is still secure in

other phases rather than 1. Then the security of the asynchronous scheme is proved.

