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Abstract: 

Nowadays, to model practical systems better, such as the Internet network and ad hoc 
networks, researchers usually regard these systems as asynchronous networks. Meanwhile, 
proactive secret sharing schemes are often employed to tolerate a mobile adversary. Considering 
both aspects, an asynchronous proactive threshold signature scheme is needed to keep computer 
systems secure.  

So far, two asynchronous proactive secret sharing schemes have been proposed. One is 
proposed by Zhou in 2001, which is for RSA schemes. The other scheme is proposed by Cachin  
in 2002, which is a proactive secret sharing scheme for discrete-log schemes. There exist several 
drawbacks in both schemes. In Zhou’s scheme, the formal security proof of this scheme is 
missing. Furthermore, Zhou’s scheme needs to resort to the system administrator as the trusted 
third party for further run when some Byzantine errors occur. In Cachin’s scheme, the building 
block is based on the threshold RSA scheme proposed by Shoup. However, how to proactivize 
Shoup’s scheme is omitted in Cachin’s scheme, so this scheme is incomplete. 

In this paper, we present a complete provably secure asynchronous proactive RSA scheme 
(APRS). Our paper has four contributions. Firstly, we present a provably secure asynchronous 
verifiable secret sharing for RSA schemes (asynchronous verifiable additive secret sharing, 
AVASS), which is based on a verifiable additive secret sharing over integers. Secondly, we 
propose an asynchronous threshold RSA signature scheme that is based on the AVASS scheme 
and the random oracle model, and is capable of being proactivized. Thirdly, we present a 
provably secure threshold coin-tossing scheme on the basis of the above threshold RSA scheme. 
Fourthly, we propose an asynchronous proactive secret sharing based on the threshold RSA 
scheme and the coin-tossing scheme. Finally, combining the proactive secret sharing scheme and 
the threshold RSA scheme, we achieve a complete provably secure asynchronous proactive RSA 
scheme. 
Keywords: asynchronous networks, threshold RSA signature, provably secure, 
asynchronous verifiable secret sharing, asynchronous proactive secret sharing scheme, 
threshold coin-tossing scheme  

1. Introduction 
The idea of threshold signature is to distribute the power of the signing operation of a single 

party to a group of n parties, such that an adversary who corrupts up to t parties can not break the 
whole system. However, when a threshold cryptosystem operates over a longer time period, the 
threshold cryptosystem needs to tolerate a mobile adversary [1], which may move from party to 
party and eventually corrupt every party in the system. Proactive secret sharing schemes address 
this problem by operating in phases; they can tolerate the corruption of up to t different parties 
during every phase [2].  

Most distributed computing protocols, such as threshold signature schemes, assume a 
synchronous network with a broadcast channel connecting all parties. This assumption may lead 
to some vulnerability in practice. For example, when deployed in a distributed system over a 
wide-area network with only loosely synchronized clocks, such systems are vulnerable to timing 
attacks. Recently, researchers begin to model computer systems as asynchronous networks when 
constructing practical distributed computing schemes. A long term research project Malicious-
and Accidental-Fault Tolerance for Internet Applications (MAFTIA) of the department of 
information security and cryptography of the IBM Zurich research lab assumes an asynchronous 
network model, and researchers in IBM Zurich research lab proposed many asynchronous 
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schemes, such as non-interactive threshold signature [3], asynchronous Byzantine agreement 
[4][5], asynchronous secret sharing and proactive secret sharing scheme [6],  asynchronous 
protocol for distributed computation of RSA inverses[7], etc. Meanwhile, other researchers also 
do a lot works in this field.  In 2000, Castro proposed an asynchronous replication algorithm for 
the Internet network based on asynchronous Byzantine agreement [8]. In 2001, Zhou proposed an 
online certification authority scheme for the Internet, which is also modeled as asynchronous 
networks [9][10]. Furthermore, Zhou considers ad hoc networks as asynchronous networks too 
[11] and present some ideas for constructing proactive secret sharing for ad hoc networks. 

When considering proactive secret sharing in asynchronous networks, asynchronous proactive 
secret sharing schemes and asynchronous threshold signature schemes are needed. In this paper, 
we present a complete provably secure asynchronous proactive threshold RSA signature scheme 
to tolerate a mobile adversary in asynchronous networks.  

1.1 Related work 
Let’s see synchronous proactive signature first. While many synchronous proactive signature 

schemes for discrete-log schemes were presented and well studied [12, 13, 14], the work on 
secure proactive RSA schemes progressed more slowly. The difficulty appeared because the 
parties need to be able to keep re-sharing the private key d, even if no single party is allowed to 
know the secret modulus )(Nφ (recall that )(Nφ   enables computation of the private key d  from 
the public key e ). Firstly, Frankel et al. proposed two proactive RSA schemes [12, 13]. Then, 
Rabin proposed a simplified protocol using similar ideas [14]. Recently, Jarecki presented a more 
efficient proactive RSA scheme based on Rabin’s scheme. The above schemes are similar in two 
aspects. They all use secret sharing “in two levels” to make the shares in the top level backed-up 
in the secondary level. For example, party knows a number  such that  . 

Meanwhile, each  is a verifiable secret shared among the parties. Furthermore, all these 
schemes require some form of additive rather than polynomial secret-sharing in the solutions that 
tolerate an optimal adversarial threshold.  From synchronous proactive RSA schemes, we learn 
that the additive secret sharing and backing up shares are very important in constructing proactive 
RSA schemes. Our asynchronous proactive RSA scheme is built on these two techniques. 
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     In addition the above proactive RSA scheme, Luo et al also proposed a proactive RSA scheme 
for ad hoc networks, which built on polynomial secret sharing[15,16,17]. Unfortunately, due to 
lack of a formal proof, though this scheme has been studied for several years, this scheme has 
been proved faulty in two recent papers [18][19]. It seems that how to proactivize RSA schemes 
using polynomial secret sharing is still a great challenge. In addition, a formal proof of security of 
proactive RSA scheme seems to be necessary.  

In 1999, Shoup proposed a non-interactive threshold RSA signature which could be used in 
asynchronous networks [3]. However, there are still no asynchronous discrete-log threshold 
signature schemes now. So far, two asynchronous proactive secret sharing schemes are presented. 
One is proposed by Zhou in 2001, which is a proactive secret sharing scheme for RSA schemes 
and based on Rabin’s RSA signature scheme. The other scheme is proposed by Cachin  in 2002, 
which is a proactive secret sharing scheme for discrete-log schemes. There exist several 
drawbacks in both schemes. In Zhou’s scheme, the formal security proof of this scheme is 
missing. Furthermore, Zhou’s scheme needs to resort to the system administrator  to act as a 
trusted third party for further run when some Byzantine errors occur. In Cachin’s scheme, though 
Cachin’s asynchronous proactive scheme is for discrete-log schemes, the building block is based 
on Shoup’s threshold RSA scheme. However, how to proactivize Shoup’s scheme is omitted in 
Cachin’s scheme. Furthermore, there are still no corresponding asynchronous discrete-log 
signature schemes for asynchronous proactive schemes. Considering both aspects, Cachin’s 
scheme is incomplete now. 
    1.2 Our contributions 



    In this paper, we present a complete provably secure asynchronous proactive RSA (APR) 
scheme. Our paper has four contributions.  

Firstly, we present a provably secure asynchronous verifiable secret sharing for RSA schemes 
(asynchronous verifiable additive secret sharing, AVASS), which is based on a verifiable additive 
secret sharing over integers. Secondly, we propose an asynchronous threshold RSA signature 
scheme that is based on the AVASS scheme and the random oracle model, and is capable of 
being proactivized. Thirdly, we present a provably secure threshold coin-tossing scheme on the 
basis of the above threshold RSA scheme. Fourthly, we propose an asynchronous proactive secret 
sharing based on the threshold RSA scheme and the coin-tossing scheme. Finally, combining the 
proactive secret sharing scheme and the threshold RSA scheme, we achieve a complete provably 
secure asynchronous proactive RSA scheme. 
1.3 Discussion of techniques used 
     To describe the techniques used clearly, we first see the whole layered architecture of our 
asynchronous proactive RSA scheme in Figure 1. 
      The lowest layer is the broadcast primitive, and Bracha’s broadcast scheme [20] is used in this 
layer. The second layer is the asynchronous verifiable secret sharing scheme, and our AVASS 
scheme is used in this layer. Similar to Rabin’s scheme, the AVASS scheme has two-levels, and 
is based on the additive secret sharing over integers. However, unlike Rabin’s scheme, which 
back up an additive secret share by a polynomial secret sharing, the AVASS back up an additive 
secret shares at several parties in a redundant way. The third layer is the asynchronous RSA 
signature, and our proposed asynchronous RSA scheme is used in this layer. Like Rabin’s scheme, 
our RSA scheme is based on the additive secret sharing. However, our scheme employs a 
technique of Shoup’s scheme to prove the robustness of the scheme, while Rabin’s scheme 
employs a different technique. The fourth layer is the threshold coin-tossing scheme, and we 
implement such a scheme on the basis of our RSA scheme. The fifth layer is the Byzantine 
agreement, and we use Toueg’s Byzantine agreement and replace the Rabin dealer in his scheme 
with our coin-tossing scheme. The sixth layer is the validated Byzantine agreement, and we use 
Cachin’s validated Byzantine agreement and replace the Byzantine agreement in his scheme with 
the modified Touge’s scheme. Finally, the top level is the asynchronous refresh scheme, and we 
implement such scheme based on the AVASS scheme and validated Byzantine agreement. Our 
refresh scheme adopts the similar idea with Rabin’s scheme except that it uses validated 
Byzantine agreement to replace broadcast channel in synchrotrons networks. 
      Combining all these, we obtain a complete asynchronous proactive secret sharing scheme and 
asynchronous proactive RSA scheme. Our whole asynchronous proactive RSA scheme either 
employ other schemes directly (e.g. validated Byzantine agreement), or construct new similar 
schemes based on other schemes (e.g. the AVASS scheme and the asynchronous refresh scheme). 
So does our proof of the security of the whole scheme.    
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                Figure 1 The whole layered architecture of the asynchronous proactive RSA scheme 
    
1.4 Outline 

The paper is organized as follows. Section 2 presents the system model and the cryptographic 
assumptions used. An asynchronous verifiable secret sharing scheme is presented in Section 3, 
and an asynchronous threshold RSA scheme is presented in Section 4. Then a threshold coin-
tossing scheme is proposed in Section 5. In Section 6, an asynchronous proactive secret sharing 
scheme is presented. In Appendix A, B, C, the proof of the AVASS scheme, the asynchronous 
RSA scheme and the asynchronous refresh scheme are described, respectively. 
 2. System model and cryptographic assumptions 

2.1Asynchronous system model   
We work in one of the several standard models of threshold cryptography and distributed 

systems, known in short as asynchronous, secure links, trusted dealer, static but proactive 
adversary model. This system model is as same as that of  [4, 5]. We can only give a brief 
overview here; for the details, see [4,5] .  
     The network consists of n parties , which are linked by a secure asynchronous 
channel that provides privacy and authenticity with scheduling determined by the adversary. The 
scheme these parties run aims at tolerating a presence of the so-called “mobile”, which is strictly 
stronger than “threshold”, adversary who is a probabilistic polynomial time algorithm, and who 
can statically (i.e., at the beginning of the life time of the scheme) schedule up to t arbitrarily 
malicious faults among any n of the parties, for any t < n/3, independently in every update round.  
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A single time signal or clock tick is used to activate parties to inform the start of every phase 
locally. The adversary may corrupt up to t servers who are in the same local phase. Furthermore, 
for simplicity, we assume that secure channels in the proactive model guarantee that messages are 
delivered in the same local phase in which they are sent. More precisely, a message sent in some 
local phase of the sender arrives when the receiver is in the same local phase or it is invariably 
lost. Under these restrictions, we leave all scheduling up to the adversary (See [6] for more 
discussion about this topic). In practice, such proactive secure channels might be implemented by 
re-keying every point-to-point link when a phase change occurs, as discussed our asynchronous 
refresh scheme in Section 6. 
 We also assume a trusted dealer who initializes the distributed scheme (picks the RSA key and 
shares the private key among the parties) before the adversary can corrupt any of the parties. 

2.2 Cryptographic assumptions 
The RSA modulus is pqN = , where p and q are  random two large primes of equal 

length(512 bit, say),  and ,1'2 += pp 1'2 += qq ,with ,  themselves prime. Let .    
The public key is . The private key 

'p 'q '' qpM =
),( eNPK = )(NZd Φ∈  should be an even number. Denote 

by  the subgroup of squares in .  Clearly, is cyclic of order M. Choose at 
random, which generates   since this happens with all but negligible probability. 
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3. An asynchronous verifiable secret sharing scheme 

In this section, we propose an asynchronous verifiable secret sharing (AVSS) scheme for RSA 
schemes, which is employed to build the asynchronous RSA scheme in Section 4. 

3.1 Definition of the AVSS scheme 
A scheme to share a secret s consists of a sharing stage and a reconstruction stage as follows. 

Sharing stage. The sharing stage starts when a party initializes the scheme. In this case, we say 
the party initializes a sharing. There is a special party , called the dealer, which is activated 
additionally on an input message of the form (in, share, s). If this occurs, we say  shares s 
among the group. A party is said to complete the sharing when it generates an output of the form 
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(out, shared). 
Reconstruction stage. After a party has completed the sharing, it may be activated on a message 
(in, reconstruct). In this case, we say the party starts the reconstruction. At the end of the 
reconstruction stage, every party should output the shared secret. A party  terminates the 
reconstruction stage by generating an output of the form (out, reconstructed, ). In this case, we 
say   reconstructs .  
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The definition of our AVSS is adopted from [6].  

Definition 1.  A scheme for asynchronous verifiable secret sharing satisfies the following 
conditions for any adversary: 
Liveness: If the adversary initializes all honest parties on a sharing, delivers all associated 
messages, and the dealer  is honest throughout the sharing stage, then all honest parties 
complete the sharing, except with negligible probability. 

dP

Agreement: Provided the adversary initializes all honest parties on a sharing and delivers all 
associated messages, the following holds: If some honest party completes the sharing , 
then all honest parties complete the sharing and if all honest parties subsequently start the 
reconstruction, then every honest party  reconstructs some , except with negligible 
probability. 
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Correctness: Once t + 1 honest parties have completed the sharing, there exists a fixed value z 
such that the following holds except with negligible probability: 
1. If the dealer has shared d and is honest throughout the sharing stage, then d = s. 
2. If an honest party  reconstructs  , then ip iz zzi = . 
Privacy: If an honest dealer has shared d and less than t + 1 honest parties have started the 
reconstruction, the adversary’s view is statistically independent of d. 

3.2 Implementation of the AVASS scheme 
Now we describe our asynchronous verifiable secret sharing scheme (asynchronous verifiable 

additive secret sharing, AVASS) with computational security. The AVASS scheme adopts the 
similar ideas of Rabin’s scheme and Zhou’s scheme. There are two levels in the AVASS scheme. 
The lower level is an additive secret sharing (ASS) over integers, and the top level is the AVASS 
scheme.  

 We outline the whole scheme informally first.  
Let’s see the ASS scheme, which is a scheme, where . The shared secret 

 and d is an even number. The dealer chooses and hands  value 

  for such that  is an even number. Then the dealer sets 

and computes a commitment array C with  
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Now, we consider how to construct the AVASS scheme on the basis of the ASS scheme. In 

order that up to t corrupted parties cannot reconstruct the secret, we need to consider all kinds of 
combination of t parties of n, which constitutes a set of  , such that  each element 

contains exactly t parties.  Include secret share  in , the share set for a party p, if and only 

if p is not in corresponding . That is, for any party p, share set  equal  

. Note that, by not assigning to any party in , we ensure that parties 
in do not together have all l shares to reconstruct the secret. Also, for any party p, construct 
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an index set }1|{ ip PpliiI ∉∧≤≤= . Obviously, we have }|{ pip SdiI ∈=  
and . The index sets provide a sharing-independent description of the 
share-set construction. Figure 2 illustrates a  (i.e., n = 4 and t = 1) AVASS example 

based on a  ASS
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party(p) Share set )( pS Index set  )( pI

1p  },,{ 432 ddd  {2,3,4} 

2p  },,{ 431 ddd  {1,3,4} 

3p  },,{ 421 ddd  {1,2,4} 

4p  },,{ 321 ddd  {1,2,3} 
 

                             Figure 2 An Example of the AVASS scheme. 
In the ASS scheme, the secret d is shared among l shares, and shares are single values. 

However, in the AVASS scheme, shares are sets of values, called shares sets, which are kept by 
parties. Shares in  share sets implement an additive secret sharing. In the AVASS scheme, 
there is l shares and a size 

1+t
)(|| tlS p −= of shares for party p. 

The AVASS scheme uses exactly the same communication pattern as the asynchronous 
broadcast primitive proposed by Bracha [20].There are four steps in the AVASS scheme, and the 
details of these steps are describes as follows.  
(1) The dealer computes an ASS by choosing a sharing  with  

 for such that  and  is an even number. 

The corresponding witness is C that . Then the dealer computes the 

commitment array C with , for
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 Then in the send messages, the dealer sends to every party p share set  and the 
commitment array C, respectively. 
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(2) When they receive the send message from the dealer, the parties use verify-share ( , C) 

to check if the share  is valid, where 
id

id pi Sd ∈ . If all shares of are valid, then the parties 
send the share set in which their share set overlap to each other in an echo message. For example, 

sends an echo message containing C, share set 

pS
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 echo messages that agree on C and contain valid shares 

checked by using verify-share( ) , every party computes its share set from the received share sets 
( agree on  C  means  Cs  in the received echo messages are the same). 

For example,  computes its shares set  =  where jp
jpS U
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S
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share set sent by . (In case the dealer is honest, the resulting share set is the same as that in the 
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send message.) Then  sends a ready message containing C, share set  

to every party . 
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It is also possible that a party receives ⎥⎥
⎤
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 valid ready messages that agree on C and 

contain valid shares, but has not yet received ⎥⎥
⎤

⎢⎢
⎡ ++

2
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 valid echo messages. In this case, the 

party computes its share set from the ready messages and sends its own ready message to all 
parties as above. 
4. Once a party receives a total of 12 +t ready messages that agree on C and contain valid 
shares, it completes the sharing. 

The reconstruction stage is straightforward. Every party   reveals its share set to every 

other party, and waits for  such share sets from parties such that for shares contained in these 
share sets verify-share should hold. Then it computes the secret d from these share sets. 
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In the scheme description, the following predicate is used: 
verify-share ( , C), where  is a share and  C  is the commitment array, verifies that  is  

consistent with C; it is true if and only if it holds  ( ), 

, and  is an even number, and . 
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Theorem 1.  In the random oracle model, the AVASS scheme is secure assuming the 
standard RSA signature scheme is secure. 

Due to lack of space, the proof of the security of the AVASS scheme appears at appendix A. 
4. An asynchronous RSA scheme 
    In this section, we propose an asynchronous threshold RSA scheme and give a formal proof of 
security. Our asynchronous RSA scheme builds on the AVASS scheme. After the dealer shared 
the secret key d using the AVASS scheme,  parties can begin to generate their signature shares.   

4.1 Implementation of the asynchronous RSA scheme 
Given a message m, its signature under the public key (N, e) is . In our setting this 

signature needs to be generated by the parties in a distributed manner where each individual   
party uses shares of its share set. As the secret key d  is shared using a sum, i.e, 

, we have that  . 
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We now describe how a signature share on a message m is generated. Let .  has 

 signature shares, and every signature share consists of    (  is an even 

number ),  along with a “proof of correctness,” where . The proof of correctness is 

basically just a proof that the discrete logarithm of  to the base of x is the same as the discrete 
logarithm of  to the base v. 
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Now let’s see the details.  Let be the bit-length of  and )( 2lNL 2lN 'H  be a hash function, 
whose output is an -bit integer, where  is a security parameter ( =128, say). To construct 

the proof of correctness, party  chooses a random number and r is an 
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even number, computes  
        ,  , ,rvv =' rxx =' ),,,,,( ''' xvxvxvHc ii= rcdz i +=   
     The proof of correctness is (z, c). 
     To verify this proof of correctness, one checks that 
           and  z is an even number. ),,,,,(' c
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We next describe how signature shares are combined. Suppose we have valid shares from a 

set S of parties, where , and all l shares of the secret are contained in  share 
sets of S. 
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4.2 Security analysis of the asynchronous RSA scheme 
Theorem 2.  In the random oracle model for 'H , the asynchronous RSA scheme is a secure 

threshold signature scheme (robust and non-forgeable) assuming the standard RSA signature 
scheme is secure. 

Due to lack of space, the proof is given at appendix B. 
5. A threshold coin-tossing scheme 

In this section, we first introduce the concept of the validated Byzantine agreement (VBA) 
scheme, and its relations to Byzantine agreement scheme and the threshold coin-tossing scheme, 
then propose a threshold coin-tossing scheme based on the RSA scheme in Section 4. 

5.1 The VBA scheme 
 In constructing the asynchronous refresh scheme in Section 6, the building blocks are the 

AVASS scheme and the VBA scheme. The standard notion of a Byzantine agreement implements 
only a binary decision in asynchronous networks. A VBA [5] scheme extends this to arbitrary 
domains by means of a so-called external validity condition. It is based on a global, polynomial-
time computable predicate  known to all parties, which is determined by an external 
application. Each party may propose a value that perhaps contains validation information. The 
agreement ensures that the decision value satisfies , and that it has been proposed by at least 
one party. 

IDQ
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Cachin presented a complete VBA scheme in [5], which was built on the basis of a Byzantine 
agreement  in [4]. However, we cannot use this VBA scheme completely, since the Byzantine 
agreement in this scheme is not appropriate for our use. In constructing Cachin’s Byzantine 
agreement, two threshold signature schemes are used. One is a  ),,( ttnn −  threshold scheme, 
and the other is a  threshold scheme. If we adopt this Byzantine agreement, we have to 
refresh shares of both threshold signature schemes, which is very complex and hard. For 
simplicity, we use the Byzantine agreement proposed by Toueg in [21]. In Toueg’s scheme, a 
Rabin dealer is used to generate random common coins for Byzantine agreement schemes. A 
Rabin dealer has some drawbacks and is not appropriate for our use, so we select to use the 
threshold coin-tossing scheme to generate random common coins. In [4][5], Cachin propose a  
threshold coin-tossing scheme based on computational Diffile-Hellman (CDH) assumption and a 
Byzantine agreement based on this coin-tossing scheme. However, we cannot use Cachin’s coin-
tossing scheme, since we have to build all schemes based on our asynchronous RSA scheme. (S. 
Micali et al proposed such ideas and a complete scheme in [22]. In [7], Cachin also proposed to 
use RSA inverse to implement verifiable random functions (VRFs), but no detailed description.) 

),1,( ttn +

5.2 Definition of threshold coin-tossing scheme   
In this section, we define the notion of a )1,( +tn threshold coin-tossing scheme. The basic 



idea is that there are n parties, up to t of which may be corrupted. The parties hold shares of an 
unpredictable function F mapping the name C (which is an arbitrary bit string) of a coin to its 
value . The parties may generate shares of a coin—l coin shares are both necessary 
and sufficient to construct the value of the particular coin.  

}1,0{)( ∈CF

Definition  2.  A threshold coin-tossing scheme satisfies the following conditions for any 
adversary: 

Robustness. It is computationally infeasible for an adversary to produce a name C and l valid 
shares of C such that the output of the share combining algorithm is not F(C). 

Unpredictability.  An adversary’s advantage in the following game is negligible. The 
adversary interacts with the honest parties as above, and at the end of this interaction, he outputs a 
name C that has not been submitted as a reveal request, and a bit }1,0{∈b . The adversary’s 
advantage in this game is defined to be the distance from 1/2 of the probability that .  bCF =)(

5.3 Implementation of the threshold coin-tossing scheme 
For a given coin C, to obtain the value of the coin C, first, compute the threshold RSA 

signature of name of coin C, suppose the result is , then computes  to obtain the value 
of coin C. Here 

0g )('' 0gH
''H  is a hash function, which could actually be implemented in the standard 

model by the inner product of the bit representation of the input with a random bit string, chosen 
once and for all by the dealer in the initial phase. 

5.4 Proof of the security of the threshold coin-tossing scheme 
Theorem  3.  In the random oracle model, the threshold coin-tossing scheme is secure 

assuming the standard RSA signature scheme is secure. 
Clearly, the robustness of the scheme follows from the robustness of the asynchronous RSA 

scheme.  
To prove unpredictability, we assume we have an adversary that can predict a coin with non-

negligible probability, and show how to use this adversary to efficiently generate RSA signature. 
Observe that because the adversary has a non-negligible advantage in predicting the value of the 
coin C, he must evaluate ''H  at the corresponding point with non-negligible probability, 
which violates the non-forgeablity of the asynchronous RSA scheme. 

0g

Replacing a Rabin dealer with our coin-tossing scheme in Touge’s scheme and the Byzantine 
agreement with the modified Touge’s scheme in Cachin’s VBA schemes, we achieve a VBA 
scheme appropriate for our use. 
6. An asynchronous proactive secret sharing scheme 

In Section 2, we described an AVASS scheme. In this Section, we present a refresh scheme 
to refresh shares in the AVASS scheme. Combining the AVASS scheme and the refresh scheme 
shown in this section, we obtain an asynchronous proactive secret sharing scheme.   

6.1 Definition of asynchronous refresh scheme. 
Our definition of an asynchronous secure refresh is similar to that of [6]. 

Definition 3.  Suppose the shared secret key is d. An asynchronous refresh scheme satisfies the 
following conditions for any adversary: 
Liveness: If the adversary activates all honest parties on a clock tick for the beginning of a phase 
and delivers all associated messages within phases, then all honest parties complete the refresh, 
except with negligible probability. 
Correctness: If at least t + 1 honest parties have completed the refresh of sharing and have not 
detected a subsequent clock tick for a new phase, these parties can reconstruct the secret key and 
the reconstructed value equals d, except with negligible probability. 
Privacy: In any polynomial number of consecutive executions of the scheme, the adversary’s 
view is statistically independent of d. 
       Note that this definition guarantees that the parties complete the refresh only when the 
adversary delivers messages within phases. Otherwise, the model allows the adversary to cause 



the secret to be lost, in order to preserve privacy. Such a trade-off between privacy and 
correctness seems unavoidable in asynchronous networks (See [6] for more discussion about this 
problem). 
 

6.2 Implementation of the asynchronous refresh scheme 
  From a high-level point of view, the scheme works in three stages. First, every party  

shares every share  using an AVASS scheme. Since every share set has   
ip

ipi Sd ∈

)( tl −  shares and there are all n parties, there are ntl ×− )(  sharings. In order to distinguish 
these sharings, every sharing is identified by a symbol ID| j ))(1( ntlj ×−≤≤ .  
In these sharings, we call a set of sharings a candidate set if that set consists of exactly one 
sharing generated from each share of all l shares of the secret d. Second, for the above 
sharings, the parties propose a candidate set that have successfully terminated as their input to a 
VBA scheme, then use the VBA scheme to select a candidate set as the output. Third, they 
compute fresh shares and share sets from the set of sharings which they agreed on.  

Note that, to ensure the correctness of a sharing, parties need to check if the commitment 
of the shared s is correct. For this purpose, parties have to store the commitments of 

 for  in an array V, every element of which is the commitment of the 
corresponding . At the end of every phase,  and V are updated. Then in next phase, parties 

can check if the commitment of in a new phase is correct by comparing it with that 
stored in V. 

sv
Nv id mod li ≤≤1

id id

Nv id mod

Every party executes the following three steps to refresh secret shares in phaseτ . 
(1) Party  participate in initializing ip ntl ×− )(  AVASS (n, t + 1)-sharings ID|j for 

using an extended version of the AVASS scheme. Thus the shares 
of the secret key d are re-shared. The AVASS scheme here is a little different from 

that one in Section 3. Firstly, the scope of the value of shares is different. For example, shares 
 and    of   are chosen or computed as follows.   

 ,  (not ).  

])(,1[ ntlj −∈

id )1( li ≤≤

jid , publicid , id )1( li ≤≤

∑ =
−= l

k kiipublici ddd 1 ,, ]...[ 22
, NNd Rki −∈ ]...[ 22

, lNlNd Rki −∈
 Secondly, in the extended AVSS scheme, each party adds a digital signature to every ready 
message. In extended AVASS instance , the signature is computed on (jID | ready,,| τjID ). A 
list  of 2t + 1 such signatures is output when the sharing is completed and may serve as a 
proof for this fact. Thirdly, to keep a sharing correct, parties have to check the validness of the 
commitment of the shared secret. Finally, party should immediately erase the current shared 
secret in sharing ID|j, in which as the dealer. (This is used to preserve privacy. See [6] , for 
more discussion about this topic.)

jΠ

ip

ip



 
 

(2) waits for completing a candidate set. Recall that the extended AVASS scheme also returns 

a proof for the completion of the sharing. Next,  proposes the candidate set for the 

validated Byzantine agreement. Its proposal is a set 

ip

jΠ iP
)},{( jj Π=iL of l tuples, indicating the 

sharing  ID|j  is completed and containing the list jΠ of signatures on ready messages from the 

extended sharing. The predicate of the VBA scheme is set to verify-termination ),( iLτ , which 
verifies that  contains l sharing with the proofs that these sharings will actually terminate. It is 

true if and only if  and for every
iL

l=|| iL iL∈Π ),( jj , the list jΠ  contains at least 2t + 1 valid 
signatures on ready messages from distinct parties. 
(3) After  decides in the VBA scheme for a set L that indicates l AVASS instances, it waits for 
these sharings to complete. Then compute its new shares, share set and the new commitments V. 
The new shares for  is computed as (1); the new shares for  is computed as (2). 

ip

id publicd

∑ =
= l

j ij
new
i dd 1 ,                                                                                                              (1) 

∑ =
+= l

j publicj
old
public

new
pubic ddd 1 ,                                                                                         (2) 

      Then, the new commitment for id )1( li ≤≤  is computed as (3) 

                                                                                                                         (3) ∏
=

=
l

j

dd ij
new
i vv

1

,

Finally, the party aborts all sharing ID|j ))(1( ntlj ×−≤≤ , which automatically erases all 
information of these sharings. 

Theorem 4. In the random oracle model, the asynchronous refresh scheme is secure assuming 
the standard RSA signature scheme is secure. 

Due to lack of space, the proof of security of the asynchronous refresh scheme appears at 
appendix C. 
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Appendix 
A  Proof of the security of the AVASS scheme  

Lemma 1. Suppose an honest party  sends a ready message containing and a distinct 

honest party sends a ready message containing . Then 
ip iC

jp jC ji CC = . 

Proof. We prove the lemma by contradiction. Suppose ji CC ≠ .  generates the ready ip

http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf
http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf
http://research.microsoft.com/users/lidongz/2000-1828.ps


message for  only if it has received at least iC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing or 

 ready messages containing . In the second case, at least one honest party has sent a 

ready message containing   upon receiving at least 

iC

1+t iC

iC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages; we may 

as well assume that this is   to simplify the rest of the argument. Thus,   has received ip ip

⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing , of which up to t are from corrupted parties. Using 

the same argumentation,  must have received at least 

iC

jp ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn

 echo messages containing 

 .Then there are at least 2jC ⎥⎥
⎤

⎢⎢
⎡ ++

2
1tn 1++= tn  echo messages received by  and  

together, among them at least  from honest parties. But no honest party generates more 
than one such message by the scheme. 

ip jp

1++ tn

Liveness. If the dealer  is honest, it follows directly by inspection of the scheme that all 
honest parties complete the sharing, provided all parties initialize the sharing and the adversary 
delivers all associated messages. 

dp

Agreement.  We first show that if some honest party completes the sharing, then all honest 
parties complete the sharing, provided all parties initialize the sharing and the adversary delivers 
all associated messages. 

Suppose an honest party has completed the sharing. Then it has received valid ready 
messages that agree on some

12 +t
C . Of these,  at least 1+t  have been sent by honest parties. A valid 

echo or ready message is one that satisfies verify-share, and it is easy to see from the 
definition of verify-share that honest parties send only valid ready messages. 
Since an honest party sends its ready message to all parties, every honest party receives at least 

  valid ready messages with the same 1+t C  by Lemma 1 and sends a ready message 
containing C . Hence, by the assumption, any honest party receives 12 +>− ttn   valid 
ready messages containing C  and completes the sharing. 

As for the reconstruction part, it follows from Lemma 1 that every honest party  computes 

the same 
ip

C . Moreover,   has received enough valid echo or ready messages with respect 

to 
ip

C  so that it computes valid ready messages and a valid share with respect toid C  such that 

verify-share( ,id C ) holds. Thus, if all honest parties subsequently start the reconstruction stage, 
then every party receives enough valid shares to reconstruct some value, provided the adversary 
delivers all associated messages. 
Correctness. Let J be the index set of the 1+t  honest parties  that have completed the 
sharing.  

jp

To prove the first part, suppose the dealer has shared d and is honest throughout the sharing 
stage. Towards a contradiction assume dz ≠ . Because the dealer is honest, it is easy to see that 
every echo message sent from an honest   to  contains C, ip jp

jiji ppp SSS I∈
,

as the same 

as sent by the dealer. Furthermore, if the party p in J computed their share sets only from these 



echo messages, then the resulting  should be the same as  sent by the dealer. But 

since , at least one honest party  computed ; this must be because  accepted 

an echo or ready message from some corrupted  containing 

'
pS pS

dz ≠ ip
ii pp SS ≠'

ip

mp C  and . It is 

easy to see from Lemma 1 and from the fact that the dealer is honest that C used by the dealer and 
mm pp SS ≠'

C  sent by  are equal. Since  has evaluated verify-share to true for all shares of , we 

have  for all shares , where 

mp ip '
mpS

NvC id
i mod

'
= ''

mpi Sd ∈
mpIi∈  . Thus, 

. This implies also . Since the order of  is  M , 

.Thus, since , and N are known, one can easily compute M in 
polynomial time, which means the  standard RSA scheme is not secure. 

NvNv ii dd modmod
'

= 1mod
'

=− Nv ii dd
NQ

0,' ≠∧∈=− kZkkMdd ii id '
id

To prove the second part, assume that two distinct honest parties  and  reconstruct 

values  and . This means that they have received two distinct share sets and  of 
ip jp

iz jz iS jS 1+t  

shares each, which are valid with respect to the unique commitment array C  used by  and  

(the uniqueness of 
iP jP

C  follows from Lemma 1). According to the scheme,  and  are 

computed from the shares in the share sets obtained from  and  , respectively. Since the 

shares in  and  are valid, it is easy to see that  for all 

shares  and   , where 

iz jz

iS jS

iS jS NvNv ii dd modmod
'''

=

iSd '
i ∈ jSd ''

i ∈ li ≤≤1 . The remaining proof is similar to the first part. 
Privacy.  We use the assumption of the asynchronous RSA scheme is secure to prove the privacy. 
The security of the asynchronous RSA scheme will be given in Section 4. Suppose the 
asynchronous RSA scheme is secure, the privacy holds. Or else, the adversary can forge RSA 
signatures successfully with non-negligible probability.  
B  Proof of the security of the asynchronous RSA scheme 

We show how to simulate the adversary’s view, given access to an RSA signing oracle 
which we use only when the adversary asks for a signature share from an uncorrupted party. 
Let  be the set of corrupted parties.  tpp ,...,1

    Now, we simulate the adversary’s view on the AVASS scheme first. Assume are  
the shares contained in . 

},...,{ 11 −ldd
},...,,{

21 tppp SSS

1. choose share and  ]..[ˆ,...,ˆ 22
11 lNlNdd Rl −∈− ]..[ˆ 2222 NNlNld Rpublic +−∈
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d
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1
ˆ

−== −

(b) set  Nwgggw l
i

ddd
l

publicl modˆ/ˆ 1
1 1

ˆ ∏ −
=
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3.    (a)  Perform as the same as the AVASS scheme for   tpp ,...,1

(b)  Perform as the same as the AVASS scheme when interacting with . Send 
random messages when interacting with other parties. 

tpp ,...,1

   Clearly, the above simulation is statistically indistinguishable to the adversary.  
Then, we simulate the adversary’s view on the asynchronous RSA scheme. 

(1) compute  for Nmx id
i modˆ ˆ
= 11 −≤≤ li  



(2) set Nxxmx l
i ipublic

d
l mod)ˆˆ/(ˆ 1

1∏ −
=

= , where  Nmx publicd
public modˆ

ˆ
=

     Our proof is similar to that of Shoup’s scheme [3].With regard to the “proofs of correctness”, 
one can invoke the random oracle mode for the hash function 'H  to get soundness and statistical 
zero knowledge.  

 First, consider soundness. We want to show that the adversary cannot construct except with 
negligible probability, a proof of correctness for an incorrect share. Let x and be given, along 

with a valid proof of correctness (z, c). We have , where 
ix

),,,,,( ''' xvxvxvHc ii=

                                    ., '' c
i

zc
i

z xxxvvv −− ==

Now, , , , ,  are all easily seen to lie in , and we are assuming that v generates 
. So we have  

iv 'v 'x ix 2x NQ

NQ
δαγβ vxvxvvvxvv i

d
i

i ===== '2 ,,',, , 
for some integers α, β, γ, δ. Moreover, 

                                   and  mcdz i modγ≡− mcz mod
2

δβα
≡− . 

    Multiplying the first equation by α  and subtracting the second multiplying by 2, we have 
                                   mdc i mod2γ)2( δααβ −≡−                                                       (1) 

Now, a share is correct if and only if  
                                   mdi mod2 αβ ≡                                                                               (2) 
   If (2) fails to hold, then it must fail to hold mod p’ or mod q’, and so (1) uniquely determines c 
modulo one of these primes. But in the random oracle model, the distribution of c is uniform and 
independent of the inputs to the hash function, and so this even happens with negligible 
probability.  
    Second, consider zero-knowledge simulatability. We can construct a simulator that simulates 
the adversary’s view without knowing the value . This view includes the values of the random 
oracle at those points where the adversary has queried the oracle, so the simulator is in complete 
change of the random oracle. Whenever the adversary makes a query to the random oracle, if the 
oracle has not been previously defined at the given point, the simulator defines it to be a random 
value, and in any case returns the value to the adversary. When an uncorrupted party is supposed 
to generate a proof of correctness for a given x, , the simulator chooses  and 

 and z is an even number is  at random, and for given values x and , 

defines the value of the random oracle at  to be c. With all but 
negligible probability, the simulator has not defined the random oracle at this point before, and so 
it is free to do so now. The proof is just (z, c). It is straight forward to verify that the distribution 
produced by this simulator is statistically close to perfect. 

id

ix }12,...0{ 1 −∈ Lc

12,...,0 12)( −∈ + LnLz ix
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i

zc
i
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     From soundness, we get the robustness of the threshold signature scheme. From zero-
knowledge, and the above arguments, we get the non-forgeability of the threshold signature 
scheme, assuming that the standard RSA signature scheme is secure, i.e., existentially non-
forgeable against adaptive chosen message attack.  
C  Security analysis of the asynchronous refresh scheme 
      We have to show the proposed scheme satisfies the liveness, correctness, privacy properties. 
Liveness.  Since there are at least 1+t  honest parties, and there is at least a candidate of set. 
Then the VBA scheme will terminate with a candidate of set as the output within a phases 



provided the adversary delivers all associated messages within phases.  
Correctness.  Fix a point in time where a set H of at least t + 1 honest parties has completed the 
refresh scheme and not yet detected the next clock tick for the beginning of the next phase. Since 
the correctness of the AVASS scheme, the secret key d is shared among new l shares. And since 
the next phase hasn’t started yet, then, for any 1+t  honest parties, all l shares are contained in 
their  share sets. So any  honest parties can reconstruct the secret key and the 
reconstructed value equals d, except with negligible probability. 

1+t 1+t

Privacy.  We show that the adversary’s view in an execution of the scheme is statistically 
independent of d. Similar to the proof of privacy of the AVASS scheme; we prove privacy of the 
asynchronous refresh scheme by proving the security of the asynchronous RSA scheme in the 
current phase. Note that our proof the security of asynchronous RSA scheme in appendix B is 
only applicable to the asynchronous RSA scheme for the initial phase (Just after the dealer of the 
system completes the initialization of the system). For the other phases (When some rounds of 
refreshing have been completed), the proof should be a little different. 

Assume that we have constructed a simulator to simulate previous phases }1,...,2,1{ −τ (In 
appendix B, we construct a simulator for the initial phase 1, so this holds,) we now consider 
constructing a simulator for phaseτ .   

For simplifying, let  be the set of corrupted parties in the current phase, and 
 are the shares that could be observed by the adversary in the next phase. 

tpp ,...,1

},...,,{ 121 −lddd
Now, we simulate the adversary’s view on the asynchronous refresh scheme. First, for those 

shares contained in share sets of , perform as the same steps as the asynchronous 
refresh scheme; for that remaining one, suppose it to be ,  perform the following simulation.  
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. We can also compute the scope of in other phases, which is 
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New  for  that could be observed by the adversary are computed as the 

APSS scheme. For new , we compute the scope of it as . 
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Clearly, the above simulation is statistically indistinguishable to the adversary. We then 

simulate the adversary’s view on the signing scheme with the similar method used in appendix B. 
With the above simulation, we can prove that asynchronous RSA scheme is still secure in 

other phases rather than 1. Then the security of the asynchronous scheme is proved. 


