
Optimal Lower Bounds on the Number of
Queries for Solving Differential Equations of

Addition?

Souradyuti Paul and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001 Leuven-Heverlee, Belgium
{Souradyuti.Paul, Bart.Preneel}@esat.kuleuven.ac.be

Abstract. Equations that mix addition modulo 2n (+) and exclusive-
or (⊕) have a host of applications in design and cryptanalysis of sym-
metric ciphers. In this paper we study two basic equations of the form
(x + y)⊕ (x + (y⊕ β)) = γ and (x + y)⊕ ((x⊕ α) + (y⊕ β)) = γ, which
are termed differential equations of addition. Firstly, the paper presents
formal proofs for the number of solutions for (x, y) in the above equa-
tions. Secondly, we give an algorithm that solves the first equation with
(n − t − 1) queries in the worst case, where n is the input size and t
is a non-negative parameter depending on the input, when the previous
best known algorithm by Muller required 3(n− 1) queries. For the other
equation, the number of queries required by our algorithm is 3 in the
worst case for all n > 2, i.e., the number of queries is constant asymp-
totically. The most important contribution of the paper is that, using
simple combinatorial relations among carry bits and input bits, we also
show that, for our algorithms, the upper bounds on the required number
of queries match worst case lower bounds. This, in effect, closes further
research in this direction as our lower bounds are optimal. Finally, as an
example of practical use of our results, we show that these results alone
improve the data complexity of a differential attack on the Helix stream
cipher by a factor of 3 in the worst case and by a factor of 46.5 in the
best case.

Keywords: Input and output differentials, Lower bound, Upper bound,
Optimal bound, Asymptotic Complexity, Query.

1 Introduction

The arithmetic addition of two n-bit integers modulo 2n is a nonlinear
transformation when considered over GF(2). Equations that mix addition
with other Boolean operations such as exclusive-or (⊕), or (∨) and/or
? This work was partially supported by the Concerted Research Action GOA-

MEFISTO-666 of the Flemish government.

and (∧) are interesting research subjects in their own right. However,
many cryptographic primitives, such as Helix [4], IDEA [9], Mars [7], RC6
[8], and Twofish [10] mix modular addition with exclusive-or operations
to achieve nonlinearity through the propagation of the carry-bits. The
list is by no means exhaustive as the equations of the above types have
applications outside the scope of cryptography too (e.g. optimization of
circuit complexities). However, in the present context, we will take a closer
look at the combination of addition modulo 2n and bitwise exclusive-or
as it is extensively used as one of the basic building blocks to generate
modern symmetric ciphers.

There is a large body of literature that studies equations involving
addition from many different angles. Staffelbach and Meier investigated
the probability distribution of the carry for integer addition [3]. Wallen
explained the linear approximations of modular addition [14]. In the most
recent development of stream ciphers, Klimov and Shamir also used an
update function for internal state, known as T -function, where modular
addition and OR are mixed in a certain fashion to achieve many useful
properties of a secure stream cipher [12, 13].

Differential cryptanalysis, introduced by Biham and Shamir [1], is
one of the most powerful attacks against symmetric ciphers. Immunity
against differential cryptanalysis is a prime factor in the evaluation of the
security of a cipher. The interplay between addition (+) and exclusive-
or (⊕) against differential cryptanalysis has been studied in depth by
Lipmaa and Moriai [2]. In particular, the equation they investigated to
determine the differential probabilities is (x+y)⊕ ((x⊕α)+(y⊕β)) = γ,
where x, y, α, β, γ ∈ Zn

2 , α, β are the input differentials and γ is the
output differential. They have shown that the probability of a triplet
(α, β, γ) satisfying the above equation on a randomly chosen pair of n-
bit integers (x, y) can be computed with an asymptotic time complexity
of O(log n). Many other useful differential properties of addition (e.g.
maximal differentials) can also be determined with the same asymptotic
time complexity [2].

Another way of mixing addition and exclusive-or is to use the dual of
the above case where differences are expressed using addition modulo 2n,
that is, employing equations of the form (x⊕y)+((x+α)⊕ (y +β)) = γ.
The differential probabilities of this case has been investigated in detail
by Lipmaa et al. [6].

In this paper we explore two basic addition equations where differences
of inputs and outputs are expressed in terms of exclusive-or. In particular,
we study the following two equations separately:

2

(x + y)⊕ (x + (y ⊕ β)) = γ (1)
(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ (2)

with an objective to determine all (x, y) ∈ Zn
2 × Zn

2 that satisfy the
equation for all triples (α, β, γ)1, using a minimum number of queries
(α, β) where an adversary is only allowed to supply (α, β) to an oracle
and receive the corresponding γ (α = 0 for Eqn. (1)). Note that Eqn. (2)
has already been studied by Lipmaa and Moriai [2] to compute many
differential properties. Our focus is on recovering secret information in-
stead of calculating differential probabilities. These methods can be used
to reduce the data complexity of adaptively chosen plaintext/ciphertext
attacks that attempt to recover secret information of a cipher. As a direct
example, we apply our results to the Helix cipher. We term the equations
of the above types differential equations of addition to be consistent with
the existing body of literature as the corresponding differential probabili-
ties derived from such equations are known as differential probabilities of
addition [2].
Our Main Contributions: The aim of this paper is fourfold. First, we
determine the number of all solutions for Eqn. (1) and (2) in a general
framework. A claim, on the number of solutions for Eqn. (1), has been
made in [5], for a specific case of n = 32, without any formal proof which
is non-trivial. Secondly, we show that a worst case lower bound on the
required number of queries (0, β) to solve Eqn. (1) for (x, y) is (n− t−1)
where (n− t) > 1 with t being the bit-position of the least significant ‘1’
of x. A worst case lower bound on the number of queries (α, β) required
to solve Eqn. (2) is 3 for n > 2. Most importantly, for solving the above
equations we also design algorithms whose upper bounds on the number
of queries match worst case lower bounds.

Our algorithm to solve Eqn. (1) records an improvement over the pre-
vious best known algorithm by Muller which required 3(n− 1) queries [5]
(note that our algorithm takes (n − t − 1) queries with t ≥ 0). Further-
more, our results essentially close further investigation in this particular
direction as the equations are solved with an optimal number of queries
in the worst case. It is particularly interesting to note that, for Eqn. (2),
although the number of all queries grows exponentially with input-size n,
an optimal lower bound to solve (2) is 3 for all n > 2, i.e., the number of
queries in the worst case is constant asymptotically. We directly use these
results to reduce the data complexity of an attack on the Helix stream
cipher by a factor of 3 in the worst case (a factor of 46.5 in the best case),

1 The number of all possible triplets equals 2n for Eqn. (1) and 22n for (2).

3

without exploring any other possibilities for improvement [5]. In addition
to that, our solution techniques, which make use of simple combinato-
rial relations among carry bits and input bits, leave open the possibility
of solving more complex equations (e.g., combination of addition, XOR,
multiplication and T -functions) efficiently and also computing differential
probabilities of addition with improved complexities.

2 The Problem and an Adversarial Model

The aim of an adversary is to solve the following equation for fixed un-
known integers x and y,

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ (3)

using triplets (α, β, γ). A pair (α, β) is defined to be a query. In Eqn. (3),
x, y, α, β, γ ∈ Zn

2 and the symbols ‘+’, ‘⊕’, ‘∧’ denote the binary oper-
ations addition modulo 2n, bit-wise exclusive-or and bit-wise and on Zn

2

respectively. We will denote x ∧ y by xy. Throughout the paper, unless
otherwise stated, n denotes a positive integer.

2.1 The Power of the Adversary

The power of an adversary that solves Eqn. (3) is defined as follows.

1. An adversary has unrestricted computational power.
2. An adversary has infinite amount of memory.
3. An adversary can only make queries (α, β) ∈ Zn

2 × Zn
2 to an oracle

which computes γ using fixed (x, y) ∈ Zn
2×Zn

2 in Eqn. (3) and returns
the value to the adversary. We will often refer to that fixed (x, y) as
the seed of the oracle.

Such an oracle seeded with (x, y) ∈ Zn
2 × Zn

2 (which is unknown to ad-
versary) can be viewed as a mapping Oxy : Zn

2 × Zn
2 → Zn

2 and defined
by

Oxy = {(α, β, γ) | (α, β) ∈ Zn
2 × Zn

2 ,

γ = (x + y)⊕ ((x⊕ α) + (y ⊕ β))} . (4)

An adversarial model, similar to the one described above for Eqn. (3),
can be constructed for the following equation:

(x + y)⊕ (x + (y ⊕ β)) = γ , (5)

4

by setting (α, β) ∈ {0}n × Zn
2 and the mapping Oxy : {0}n × Zn

2 → Zn
2 .

The model described above represents a practical adaptively chosen
message attack scenario where the adversary makes queries to an oracle
adaptively. Based on the replies from the oracle, the adversary computes
one or more unknown parameters.

2.2 The Problem

Oxy, defined in Eqn. (4), generates a family of mappings F = {Oxy

| (x, y) ∈ Zn
2 × Zn

2}. Let a mapping f : Zn
2 × Zn

2 → F be defined by

f(x, y) = Oxy . (6)

In the adversarial framework described in Sect. 2.1, solving Eqn. (3) or
(5) is understood to be solving the corresponding equation:

f(x, y) = D ∈ F for (x, y) ∈ Zn
2 × Zn

2 . (7)

Let D-satisfiable denote the solution set for Eqn. (7). Therefore,

D-satisfiable = {(x, y) | (x, y) ∈ Zn
2 × Zn

2 , f(x, y) = D} . (8)

The task of an adversary is to determine D-satisfiable when the max-
imum information she can extract from the oracle is the set D.

Example 1. (D-satisfiable) Suppose n = 2 and therefore, x, y, α, β, γ ∈
Z2

2 × Z2
2. The oracle receives (α, β) and computes γ = (x + y) ⊕ ((x ⊕

α) + (y ⊕ β)) and returns γ to the adversary. For example, let the oracle
return γ = (1, 0) for (α, β) = ((0, 0), (0, 1)). There are at most 16 values
of (α, β) (therefore, at most 16 queries an adversary can submit to the
oracle) and for each (α, β) the oracle returns a γ. Now, the set D (as
defined in Eqn. 7) contains all 16 triplets (α, β, γ). Therefore, the set
D-satisfiable (as defined in Eqn. 8) contains all possible values of (x, y)
such that each (x, y) generates the same set D. ut

Rules of the Game: Now we lay down the rules followed by the adver-
sary to determine the set D-satisfiable that, in turn, gives the essence of
the whole problem.

1. The adversary starts with no information about (x, y).

5

2. The adversary can choose any (α, β) ∈ Zn
2 × Zn

2 as the first query.
The first query remains same for any seed (x, y) ∈ Zn

2 × Zn
2 since the

adversary has no information about the seed when she submits the
first query.

3. Using a strategy, the adversary computes queries adaptively, i.e., based
on the previous queries and the corresponding oracle outputs the next
query is determined.

4. Suppose, for the seeds (a, b) and (a′, b′), the first t queries submitted
by the adversary and the corresponding oracle outputs are (Q1, O1),
(Q2, O2), . . . (Qt, Ot) then the (t + 1)th query for both (a, b) and
(a′, b′) will be the same. Note that the adversary can not distinguish
between (a, b) and (a′, b′) from the first t outputs of the oracle.

5. The game stops the moment the adversary constructs D-satisfiable.

Against this scenario we are going to address the following questions in
the subsequent sections.

1. What is the size of D-satisfiable?

2. Is it possible to determine D-satisfiable when D is entirely known?

3. Is it possible to determine D-satisfiable when D is partly known? By
partly known we mean that the adversary submits queries fewer than
the maximum possible queries. Note, if this case is possible then with-
out submitting any extra query the adversary can always complete the
construction of D using an element of D-satisfiable. In such case, how
far can the number of submitted queries be reduced to determine D-
satisfiable in the worst case?

So far, we hope to have explained enough about the problem that we are
going to solve and the challenges associated with it.

Organization: The rest of the paper is organized as follows. Sect. 3.1
elaborates on the relations among different quantities which are used
throughout the paper to establish most of the important results. Sect. 3.2
gives formal proofs for the number of solutions for the equations in discus-
sion. Sect. 3.3 determines lower bounds on the number of queries to solve
the equations. In Sect. 3.4, we design algorithms that solve the equations
with an optimal number of queries. A practical cryptographic application
is presented in Sect. 4. Finally, in Sect. 5, we sum up possible extensions
of our work.

6

3 Towards the Solution

3.1 Relations Among Different Quantities

Let an oracle seeded with (x, y) ∈ Zn
2×Zn

2 generate D ∈ F (see Sect. 2 for
notations and definitions). Let the binary representation of x be (xn−1,
xn−2, . . . , x2, x1, x0). Let (α, β, γ) ∈ D. Therefore,

γi = xi ⊕ yi ⊕ ci ⊕ x̃i ⊕ ỹi ⊕ c̃i (9)

for all i ∈ Zn where x̃i = xi ⊕ αi and ỹi = yi ⊕ βi and the carry bits ci

and c̃i are computed recursively in the following way,

c0 = c̃0 = 0 (10)
ci+1 = xiyi ⊕ xici ⊕ yici (11)
˜ci+1 = x̃iỹi ⊕ x̃ic̃i ⊕ ỹic̃i (12)

Now we construct a set D̃ in the following fashion,

D̃ = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ D}. (13)

Note, γ̃i = ci ⊕ c̃i for all i ∈ Zn (compare with Eqn. (9)). It is easy to
identify a bijection between D and D̃ where (α, β, γ) ∈ D is mapped
to (α, β, α ⊕ β ⊕ γ) ∈ D̃. We will, henceforth, use either D or D̃ as the
oracle output according to whichever suits our analysis best.

Definition 1. (A-compatible) Let φ ⊂ A ⊆ Zn
2 × Zn

2 × Zn
2 . An element

(a, b) ∈ Zn
2 ×Zn

2 is A-compatible if (a+ b)⊕ ((a⊕ p)+ (b⊕ q))⊕ p⊕ q = r
for all (p, q, r) ∈ A .

Definition 2. (A-consistent) Let φ ⊂ A ⊆ Zn
2 × Zn

2 × Zn
2 . A set S ⊆

Zn
2 × Zn

2 is such that an element s ∈ S if and only if s is A-compatible.
Then the set S is called A-consistent .

Theorem 1. D-satisfiable = D̃-consistent.

Proof. A proof is immediate from the construction of D and D̃.

Suppose n > 1. For any (α, β, γ̃) ∈ D̃, γ̃i+1 can be computed using
xi, yi, ci, αi, βi, γ̃i for i ∈ Zn−1. Table 1 lists the values of γ̃i+1 as com-
puted from all possible values of xi, yi, ci, αi, βi, γ̃i.

7

Table 1. All possible values of ˜γi+1 are plotted against all possible values of
xi, yi, ci, αi, βi, γ̃i. A row and a column are denoted by Row(l) (where l ∈ Z4) and
Col(k) (where k ∈ Z8).

(xi, yi, ci) (αi, βi, γ̃i)
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0, 0) 0 0 0 1 0 1 1 1 Row(0)
(1, 1, 1)

(0, 0, 1) 0 0 1 0 1 0 1 1 Row(1)
(1, 1, 0)

(0, 1, 0) 0 1 0 0 1 1 0 1 Row(2)
(1, 0, 1)

(1, 0, 0) 0 1 1 1 0 0 0 1 Row(3)
(0, 1, 1)

Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7)

Computation of Important Parameters Gi, Si, 0 and Si, 1: We
now determine an important quantity, denoted by Gi, from the set of
queries and its results. Let the adversary submit a few queries (either in
batch or adaptively) to the oracle and construct a nonempty set A ⊆ D̃
(see the beginning Sect. 3.1 for a definition of D̃). Suppose n > 1. Now,
we construct Gi as follows,

Gi = {(αi, βi, γ̃i, ˜γi+1) | (α, β, γ̃) ∈ A} for each i ∈ Zn−1 . (14)

Now, for each i ∈ Zn−1, from Table 1, we identify (xi, yi, ci) that corre-
sponds to every element (αi, βi, γ̃i, ˜γi+1) ∈ Gi. Si, j denotes the number
of solutions for (xi, yi) that correspond to every element in Gi and ci = j.

Example 2. (Si, 0, Si, 1) Suppose, after submission of a few queries to the
oracle the adversary constructs a nonempty set A ⊆ D̃. Let n = 3 and
A = {((0, 1, 0), (1, 0, 1), (0, 0, 0)), ((0, 0, 0), (1, 1, 1), (1, 0, 0)), ((0,
0, 1), (0, 1, 1), (1, 1, 0))}. Therefore, G0 = {(0, 1, 0, 0), (1, 1, 0, 1)},
G1 = {(1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)} (see Eqn. 14). Now, from
Table 1, G0 and G1 correspond to Row(0) and Row(3) respectively. Thus,
S0, 0 = S0, 1 = 1,S1, 0 = S1, 1 = 1. ut

3.2 Number of Solutions

Before we compute the number of solutions for the equations, we establish
three fundamental results in the following propositions and theorem.

8

Proposition 1. (Equality of Si, 0 and Si, 1) For any nonempty set A ⊆ D̃
and n > 1, Si, 0 = Si, 1 for all i ∈ Zn−1 (see Sect. 3.1 for notations and
definitions).

Proof. Let the size of Gi be ki where i ∈ Zn−1. From Table 1, it is easy
to see that, for any nonempty set A ⊆ D̃, for any i ∈ Zn−1, ki ∈ Z9 \ Z1

and the exact value of ki depends on the set A. Now, from Table 1, for
any i ∈ Zn−1 and for any ki ∈ Z9 \ Z1, Si, 0 = Si, 1. ut
We set,

Si, 0 = Si, 1 = Si for all i ∈ Zn−1. (15)

Theorem 2. (An equivalence between A and Gi’s) Let φ ⊂ A ⊆ D̃ and
n > 1. The following two statements are equivalent.

1. (x, y) ∈ Zn
2 × Zn

2 is A-compatible.
2. (x, y) ∈ Zn

2 × Zn
2 is such that, for each i ∈ Zn−1, the triple (xi, yi, ci)

corresponds to every element (αi, βi, γ̃i, ˜γi+1) ∈ Gi in Table 1, where
c0 = 0 and ci+1 = xiyi ⊕ xici ⊕ yici.

Proof. From the construction of Gi, it can be shown that (1) ⇔ (2). ut
Proposition 2. (Size of A-consistent) Let φ ⊂ A ⊆ D̃ and S denote the
size of A-consistent. Then,

S =

{
4 ·∏n−2

i=0 Si if n > 1,

4 if n = 1

Proof. Case 1: When n > 1. Let Gi be computed corresponding to
nonempty oracle outputs A ⊆ D̃ for all i ∈ Zn−1 following the method de-
scribed in Sect. 3.1. Let S denote the number of all possible solutions for
(x, y) ∈ Zn

2 × Zn
2 that correspond to G0, G1, · · · , Gn−2 (i.e., (xi, yi, ci)

corresponds to every element in Gi, i ∈ Zn−1). From Theorem 2, S is the
size of A-consistent. Let Mk denote the number of all possible solutions
for ((xk, · · · , x0), (yk, · · · , y0)) that correspond to G0, G1, · · · , Gk where
k ∈ Zn−1. Note that, for a given set of submitted queries, Gk depends
only on ((xk, · · · , x0), (yk, · · · , y0)).
Case 1(a): When n > 2 . We determine the size of the set A-consistent re-
cursively. Let Mi = Mi, 0+Mi, 1 such that Mi, 0 solutions produce ci+1 = 0
and Mi, 1 solutions produce ci+1 = 1. Therefore, for all i ∈ Zn−2,

Mi+1 = Mi, 0 · Si+1, 0 + Mi, 1 · Si+1, 1

= Si+1 ·Mi . (16)

9

as Si, 0 = Si, 1 for all i ∈ Zn−1 (see Proposition 1). It is easy to show (a
proof is by contradiction) that Mi+1, so calculated, gives the number of
all possible solutions for ((xi+1, · · · , x0), (yi+1, · · · , y0)) that correspond
to G0, G1, · · ·Gi+1. From Eqn. (16),

Mn−2 =
n−2∏

i=0

Si (17)

as M0 = S0. Note that, for all (α, β, γ̃) ∈ A, r is independent of (xn−1, yn−1).
Therefore,

S = 4 ·
n−2∏

i=0

Si if n > 2. (18)

Case 1(b): When n = 2 . It is easy to show that S = 4 · S0 if n = 2 .
Case 2: When n = 1 . It is trivial to show that S = 4 if n = 1 since for
all (α, β, γ̃) ∈ A, γ̃ is independent of (xn−1, yn−1) . ut
As explained in Sect. 3.1, the number solutions for Eqn. (3) or (5) is the
size of the set D-satisfiable (see (7)). From this point onwards, we will
treat these two equations separately. The set D ∈ F (and consequently
the corresponding D̃) may correspond to either Eqn. (3) or (5). The
relevant equation should be understood according to the context. Note,
only Col(0), Col(1), Col(2) and Col(3) of Table 1 are relevant for Eqn. (5)
because α = (0, 0, · · · , 0)n for all queries. Therefore, (α, β, γ) ∈ D
and (α, β, γ̃) ∈ D̃ will be denoted by (0, β, γ) and (0, β, γ̃) in case of
Eqn. (5). The following theorem determines the number of solutions for
Eqn. (5). A claim similar to that of the following theorem has been made
in [5] for a specific case of n = 32, which discusses a differential attack on
Helix [4], without any formal proof. We prove it in a general framework.

Theorem 3. (Number of Solutions for Eqn. 5) Let the position of the
least significant ‘1’ of x in the following equation,

(x + y)⊕ (x + (y ⊕ β)) = γ

be t (following the convention that the position of the least significant bit is
zero and the positions of the successive higher order bits are incremented
by 1 successively) and x, y, β, γ ∈ Zn

2 . Let f(x, y) = D be given. Then
the size of D-satisfiable is
(i) 2t+3 when n− 1 > t ≥ 0,
(ii) 2n+1 otherwise.

10

Proof. We consider the set D̃ corresponding to D (see Proposition 1).
(i) When n−1 > t ≥ 0. We prove it by dividing it into two disjoint cases.
Case 1: When n− 2 > t ≥ 0. First, we prove the following two lemmas.

Lemma 1. For any (0, β, γ̃) ∈ D̃, γ̃i = 0 for all i ∈ Zt+1.

Proof. If the position of the least significant ‘1’ of x is t then ci = c̃i = 0
for all i ∈ Zt+1 and for all β ∈ Zn

2 (see Eqn. (10), (11) and (12)). Recall
γ̃i = ci ⊕ c̃i. This proves the lemma. ut

Lemma 2. For any i ∈ Zn \Zt+1, there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

Proof. We prove the lemma by induction on i. Suppose, there exists
(0, a, b) ∈ D̃ with bi=k = 1 for some k ∈ Zn−1 \ Zt+1 (induction hy-
pothesis). The statement is true when i = t + 1. Select (0, m, n) ∈ D̃
with mt = 1. Now, the carry bits, as defined in Sect. 3.1, ct = c̃t = 0 and
xt = 1 which implies nt+1 = 1. We construct three n-bit integers from a,

1. a′ = (an−1, an−2, · · · , ak+1, 0, ak−1, · · · , a0)
2. a′′ = (an−1, an−2, · · · , ak+1, 1, ak−1, · · · , a0)
3. a′′′ = (an−1, an−2, · · · , ak+1, 1, 0, 0, · · · , 0).

Now we select three elements (0, a′, b′), (0, a′′, b′′), (0, a′′′, b′′′) ∈ D̃ (such
elements exist since, for any p ∈ Zn

2 , there exists (0, p, q) ∈ D̃ for some
q ∈ Zn

2). Note that b′k = b′′k = bk = 1 and b′′′k = 0. From Table 1, at least
one of b′k+1, b′′k+1 and b′′′k+1 is 1. This proves the lemma. ut

Now, we construct Gi = {(0, βi, γ̃i, ˜γi+1) | (0, β, γ̃) ∈ D̃} for each
i ∈ Zn−1 (see Sect. 3.1). From Lemma 1, for each i ∈ Zt+1,

Gi = {(0, 0, 0, ei+1), (0, 1, 0, fi+1)} (19)

for some ei+1, fi+1 ∈ Z2. Note that, for any two elements (0, a, b),
(0, a′, b′) ∈ D̃, b0 = b′0 = 0 and bi+1 = b′i+1 if ai = a′i and bi = b′i for any
i ∈ Zn−1 (see Sect. 3.1). Also note that, for any (0, a, b) ∈ D̃ and any
i ∈ Zn, one can select (0, a′, b′), (0, a′′, b′′) ∈ D̃ with (a′i, b′i) = (0, bi),
(a′′i , b′′i) = (1, bi). Therefore, from Lemma 2, for each i ∈ Zn−1 \ Zt+1,

Gi = {(0, 0, 0, ei+1), (0, 0, 1, fi+1),
(0, 1, 0, gi+1), (0, 1, 1, hi+1)} (20)

for some fi+1, gi+1, hi+1 ∈ Z2.

11

Let Si, j (see Sect. 3.1), denote the number of solutions for (xi, yi)
that correspond to Gi and ci = j. From Table 1, for each i ∈ Zn−1 \Zt+1,
Si, 0 = 1, Si, 1 = 1. Similarly, Si, 0 = 2, Si, 1 = 2 for each i ∈ Zt+1.

Let S denote the size of D̃-consistent. From Proposition 2,

S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
n−t−2 times

· 2 · 2 · · · 2︸ ︷︷ ︸
(t+1) times

= 2t+3 .

From Proposition 1 the size of D-satisfiable is 2t+3.
Case 2: When n = t + 2 and t ≥ 0. Following a similar way as in Case 1,
it can be shown that S = 2t+3 when n = t + 2 .
(ii) A proof is similar to the above using Proposition 2. ut
Theorem 4. (Number of Solutions for Eqn. 3) Let f(x, y) = D be given
for the equation

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ;

x, y, α, β, γ ∈ Zn
2 . Then the size of D-satisfiable is 4.

Proof. Case 1: When n > 2. We construct Gi = {(αi, βi, γ̃i, ˜γi+1)
| (α, β, γ̃) ∈ D̃} for all i ∈ Zn−1. Using a similar technique used in The-
orem 3, it is easy to show that

Gi = { (0, 0, 0, ei+1), (0, 0, 1, fi+1), (0, 1, 0, gi+1),
(0, 1, 1, hi+1), (1, 0, 0, mi+1), (1, 0, 1, ni+1),
(1, 1, 0, pi+1), (1, 1, 1, qi+1)} (21)

for some ei+1, fi+1, gi+1, hi+1, mi+1, ni+1, pi+1, qi+1 ∈ Z2 and i ∈ Zn−1\
{0}. Note that G0 does not contain any member (α0, β0, γ̃0, γ̃1) with
γ̃0 = 1. Exactly the same way as in Theorem 3, for all i ∈ Zn−1, Si, 0 and
Si, 1 can be determined from Table 1 that correspond to Gi. We see that
Si, 0 = Si, 1 = 1 for all i ∈ Zn−1. Therefore, the size of D-satisfiable is 4
(see Proposition 2 and Proposition 1).
Case 2: When n = 2. A proof is similar to the above.
Case 3: When n = 1. A proof is trivial using Proposition 2. ut

3.3 Lower Bounds

Now, we go back to our adversarial framework described in Sect. 2.1.
An adversary supplies (α, β) ∈ Zn

2 × Zn
2 to the oracle and receives the

corresponding γ. Then she calculates γ̃ = α ⊕ β ⊕ γ and constructs a
nonempty set A ⊆ D̃.

12

Theorem 5. (Relation between Gi and A-consistent) We consider the
equation

(x + y)⊕ (x + (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t and n− 2 > t ≥ 0.
Let φ ⊂ A ⊆ D̃ and, for some i ∈ Zn−1 \ Zt+1, Gi contain no element
(0, βi, γ̃i, ˜γi+1) with γ̃i = 1. Then the size of A-consistent is 2t+3+k where
k > 0 (see Sect. 3.1 for a definition of Gi).

Proof. Without loss of generality, assume Gk contains no element (0, qk,
rk, rk+1) with rk = 1 for some k ∈ Zn−1 \ Zt+1. Therefore, the set Gk is
of one of the following forms,

Gk = {(0, 0, 0, a)} or {(0, 0, 0, a), (0, 1, 0, b)}.

Now, from Table 1, Sk = 2k for either of the cases, where k > 0. Similarly,
using Lemma 1, Si ≥ 2 for all i ∈ Zt+1. Also Si ≥ 1 for all i ∈ Zn−1\Zt+1.
Therefore, from Proposition 2, the size of A-consistent is 2t+3+k where
k > 0. ut
Theorem 6. A lower bound on the number of queries (0, β) to solve

(x + y)⊕ (x + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn
2 × Zn

2 is
(i) (n− t− 1), when n− 1 > t ≥ 0,
(ii) 1 when n = 1 + t with t > 0,
(iii) 1 when x = 0 and n > 1,
(iv) 0 otherwise, i.e., when n = 1,
where t is the position of the least significant ‘1’ of x.

Proof. (i) When n− 1 > t ≥ 0. We first divide it into four disjoint cases.
Case 1. When n > 4 + t. By Theorem 5, a necessary condition is that
Gn−2, constructed for A ⊆ D̃, must have an element (0, qn−2, rn−2, rn−1)
with rn−2 = 1 otherwise the number of solutions for (x, y) is 2t+3+k where
k > 0. But, from Theorem 3, the number of solutions is 2t+3. To have
Gn−2 having an element (0, qn−2, rn−2, rn−1) with rn−2 = 1, Gn−3 must
contain an element (0, qn−3, rn−3, rn−2) with rn−2 = 1 .

Let l(k) denote a lower bound on the number of adaptively chosen
queries to construct A ⊆ D̃ such that Gi contains an element (0, qi, ri, ri+1)
with ri+1 = 1 for some i ∈ Zn−1 \Zk in the worst case, where, k ∈ Zn−2 \
Zt+1. Let p ∈ Zn−3\Zt+1. Therefore, a worst case lower bound l(p) means,

13

for any adaptively chosen sequence of l(p) − 1 queries (l(p) > 0), there
exists (x, y) ∈ Zn

2 × Zn
2 such that Gi contains no element (0, qi, ri, ri+1)

with ri+1 = 1 for all i ∈ Zn−1 \ Zp . Now, for each adaptively chosen
sequence of l(p) − 1 queries we always identify an (x, y) ∈ Zn

2 × Zn
2 for

which all queries produce ri+1 = 0 for all i ∈ Zn−1 \Zp . From Table 1, we
construct (a, b), (a′, b′) ∈ Zn

2×Zn
2 for each (x, y) in the following fashion.

The carry cj is computed from the preceding j bits of (x, y).

1. (Construction of a and b) ai = xi and bi = yi for all i ∈ Zp+1. If ci = 0
set ai = 0, bi = 0 for each i ∈ Zn \ Zp+1. If ci = 1 set ai = 1, bi = 1
for each i ∈ Zn \ Zp+1.

2. (Construction of a′ and b′) a′i = xi and b′i = yi for all i ∈ Zp+1. If
ci = 0 set a′i = 0, b′i = 1 for each i ∈ Zn \ Zp+1. If ci = 1 set a′i = 1,
b′i = 0 for each i ∈ Zn \ Zp+1.

The values of (ai, bi) and (a′i, b′i) for each i ∈ Zn are chosen from Table 1
in order to have both (a, b) and (a′, b′) produce the same sequence of
oracle outputs as (x, y) does on the selected sequence l(p)− 1 queries. A
reason is that the least significant (p+1) bits of both (a, b) and (a′, b′) are
the same as that of (x, y). Therefore, on any query, the least significant
(p + 2) bits of the oracle output, for both (a, b) and (a′, b′) are the same
as for (x, y). As a result, each of the l(p) − 1 queries produces oracle
output γ̃ with γ̃p+1 = 0 for all of (a, b), (a′, b′) and (x, y). The rest of
the (n−p−1) bits of (a, b) and (a′, b′) are chosen in a way such that, for
each of the l(p)−1 queries, γ̃ has the most significant (n−p−2) bits zero.
Thus, we prove that both (a, b) and (a′, b′) produce the same sequence
of oracle outputs as (x, y) does on the selected sequence l(p)− 1 queries.

Additionally, if (βp+1, ˜γp+1) = (0, 1) for the l(p)th query, then (a, b)
produces ˜γp+2 = 0 and therefore all other higher order bits of γ̃ are also
zero. Similarly, if (βp+1, ˜γp+1) = (1, 1) then (a′, b′) produces ˜γp+2 = 0
and consequently all other higher order bits of γ̃ are also zero. Therefore,
for the chosen sequence of l(p) queries, either (a, b) or (a′, b′) produces
oracle outputs such that Gi contains all elements with ri+1 = 0 for all
i ∈ Zn−1 \ Zp+1. Now, from Rule 4 in Sect. 2.2, the first l(p)− 1 queries
submitted by the adversary for both (a, b) and (a′, b′) are the same as
the queries she submits for (x, y) and either (a, b) or (a′, b′) produces
γ̃i = 0 for all i ∈ Zn \ Zp+2 for each of the l(p) queries. Therefore, we
establish that, for any adaptively chosen sequence of l(p) queries, there
exists (m, n) ∈ Zn

2 ×Zn
2 such that Gi contains no element (0, qi, ri, ri+1)

with ri+1 = 1 for all i ∈ Zn−1 \ Zp+1. Therefore, a lower bound on the
number of queries to construct A ⊆ D̃ such that Gi contains an element

14

(0, qi, ri, ri+1) with ri+1 = 1 for some i ∈ Zn−1 \ Zp+1 is l(p) + 1 in the
worst case. Therefore,

l(p + 1) = l(p) + 1 .

Following the recursion,

l(n− 3) = n− t− 4 + l(t + 1) (22)

The following lemma computes a value of l(t + 1).

Lemma 3. Let n−3 > t ≥ 0. For any adaptively selected sequence of two
queries, there exists (x, y) ∈ Zn

2 × Zn
2 such that Gi contains no element

(0, qi, ri, ri+1) with ri+1 = 1 for all i ∈ Zn−1 \ Zt+1.

Proof. Let the first two queries and the corresponding oracle outputs be
(0, β), (0, β′), γ̃ and γ̃′. Depending only on the tth bit of β and β′, the
oracle returns outputs (i.e., γ̃ and γ̃′) according to the following rules.

1. If βt = 0 then the oracle returns γ̃ = (0, 0, · · · , 0)n.
2. If βt = 1 then γ̃t+1 = 1 and all other bits of γ̃ are zero.
3. If β′t = 0 then the oracle returns γ̃′ = (0, 0, · · · , 0)n.
4. If β′t = 1 then γ̃′t+1 = 1 and all other bits of γ̃′ are zero.

Under any of the above input-output combinations one can find from
Table 1 that Si ≥ 1 for all i ∈ Zn−1. Therefore, from Proposition 2,
the number of solutions for (x, y) under any of the above input-output
combinations is at least 4. This proves the lemma. ut
From Lemma 3, l(t + 1) = 3. Therefore, from Eqn. 22,

l(n− 3) = n− t− 1 .

Case 2: When n = t + 4, a worst case lower bound is 3. A proof is using
Lemma 3.
Case 3: When n = t + 3, a worst case lower bound is 2. A reason is, from
Table 1 it is clear that, with only one query Sn−2 > 1 which makes the
number of solutions for this case greater than 2t+3 which is impossible
from Theorem 3.
Case 4: When n = t + 2, a worst case lower bound on the number of
queries is 1. For n > 1, this lower bound is trivial.
(ii) When n = 1 + t and t > 0, a worst case lower bound is 1. A proof is
trivial.
(iii) When x = 0 and n > 1, a worst case lower bound is 1. A proof is
easy.
(iv) A proof is trivial. ut

15

Theorem 7. A lower bound on the number of queries (α, β) to solve

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn
2 × Zn

2 is
(i) 3 when n > 2,
(ii) 2 when n = 2,
(iii) 0 when n = 1.

Proof. (i) When n > 2. Let the first two queries and the corresponding
oracle outputs be (α, β), (α′, β′), γ̃ and γ̃′. Depending on the two least
significant bits of α, β, α′ and β′, the oracle returns outputs (i.e., γ̃ and
γ̃′) according to the following rules.

1. If (α0, β0) = (0, 0) then γ̃ = (0, 0, · · · , 0)n.
2. If (α0, β0) 6= (0, 0) and (α1, β1) = (1, 1) then γ̃ = (1, 1, · · · , 1, 0)n.
3. If (α0, β0) 6= (0, 0) and (α1, β1) 6= (1, 1) then γ̃ = (0, 0, · · · , 0)n.
4. If (α0, β0) = (α′0, β′0) then γ̃ = γ̃′.
5. If (α0, β0) 6= (α′0, β′0) = (0, 0) then γ̃′ = (0, 0, · · · , 0)n.
6. If (α0, β0) 6= (α′0, β′0) 6= (0, 0) and (α′1, β′1) = (0, 0) then γ̃′ =

(0, 0, · · · , 0)n.
7. If (α0, β0) 6= (α′0, β′0) 6= (0, 0) and (α′1, β′1) = (1, 1) then γ̃′ =

(1, 1, · · · , 1, 0)n.
8. If (α0, β0) 6= (α′0, β′0) 6= (0, 0), (α′1, β′1) ∈ {(0, 1), (1, 0)} and (α1, β1)

= (α′1, β′1) then γ̃′ = (0, 0, · · · , 0)n.
9. If (α0, β0) 6= (α′0, β′0) 6= (0, 0), (α′1, β′1) ∈ {(0, 1), (1, 0)} and (α1, β1)
6= (α′1, β′1) then γ̃′0 = 0 and γ̃′i = 1⊕ γ̃i for all i ∈ Zn \ Z1.

From the oracle outputs produced according to the above rules on the
first two queries, one can show, using Table 1, that one of the following
cases occurs.

1. S0 ≥ 2 and Si ≥ 1 for all i ∈ Zn−1 \ Z1.
2. S1 ≥ 2 and Si ≥ 1 for all i ∈ Zn−1 \ {1}.
3. S0 ≥ 2, S1 ≥ 2 and Si ≥ 1 for all i ∈ Zn−1 \ Z2.

Clearly, for any of the above cases, the number of valid solutions S, derived
from the results of the queries, is at least 8 which is not the case with
this equation (see Theorem 4). Therefore, a lower bound on the number
of queries in the worst case is 3.
(ii) When n = 2. Using Table 1, a proof is similar to the proof for (i).
(iii) When n = 1. A proof is trivial. ut

16

3.4 Optimal Algorithms

We design two algorithms Algo1 and Algo2, described in Fig. 1 and Fig. 2
respectively, to show that our lower bounds on the number of queries,
computed in Sect. 3.3, are optimal. Notations used are consistent with
the present analysis. The oracle O returns γ̃ on input (α, β). The variable
T denotes Table 1. In Algo1, Least-Significant-one(p) computes the least
significant ‘1’ of p. The following proposition will be used to prove the
correctness of Algo1 and Algo2.

Proposition 3. Let Gi, constructed from the oracle output A = D̃, be
known for all i ∈ Zn−1 (n > 1). Let Li contain all triples (xi, yi, ci) such
that each triple corresponds to all elements of Gi in Table 1. Let a set M
be constructed from Li’s in the following way,

M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0))
|(xn−1, yn−1) ∈ Z2

2, (xi, yi, ci) ∈ Li, i ∈ Zn−1, c0 = 0,

ci+1 = xiyi ⊕ xici ⊕ yici}.

Then,
(i) M = D-satisfiable;
(ii) there exists an algorithm such that D-satisfiable can be constructed
from Li’s with memory n · 2O(n) and time n · 2O(n).

Proof. (i) From Theorem 2 and 1,

(a, b) ∈ M ⇒ (a, b) ∈ D̃-compatible ⇒ (a, b) ∈ D-satisfiable. (23)

Now from Lemma 1, 2, Proposition 2 and Table 1 it is easy to see that
the size of M is
1) 2t+3 if n− 1 > t ≥ 0,
2) 2n+1 otherwise,
where t denotes the position of the least significant ‘1’ of x and the pair
(x, y) is the seed of the oracle which outputs D̃.

The above results together with Theorem 3 show that M = D-
satisfiable.
(ii) We construct a set Mk recursively where k ∈ Zn \ Z2 and M1 =
{((x0), (y0))|(x0, y0, c0) ∈ L0},

Mk = {((xk−1, · · · , x0), (yk−1, · · · , y0))|(xk−1, yk−1, ck−1) ∈ Lk−1,

((xk−2, · · · , x0), (yk−2, · · · , y0)) ∈ Mk−1}.

17

Now, we construct

Mn = {((xn−1, · · · , x0), (yn−1, · · · , y0))|(xn−1, yn−1) ∈ Z2
2,

((xn−2, · · · , x0), (yn−2, · · · , y0)) ∈ Mn−1}.

Note that the size of each Li is O(1) since the size of the Table 1 is
O(1). Also note that the size of Mn is 2O(n) and therefore the asymptotic
memory requirement to construct Mn recursively following the above al-
gorithm is n ·2O(n) since k = O(n) and Mk+1 can be constructed from Mk

only. It is trivial to show that the time T1 to construct Mn from Li’s is
also 2O(n) (assuming asymptotic time to copy and delete an n-bit string
O(1)). Note that M ⊆ Mn. To compute M from Mn we have to filter out
the false candidates from Mn by performing the following steps for each
member (x, y) ∈ Mn.

1. If (x0, y0, 0) does not belong to L0 then (x, y) is a false candidate
otherwise set i = 1 and proceed to the next step.

2. Compute the carry bit ci = xi−1yi−1⊕xi−1ci−1⊕yi−1ci−1; then check
whether (xi, yi, ci) belongs to Li. If the answer is ‘yes’ then increment
i by one; if i < n− 1 carry out this step once more, if i = n− 1, then
(x, y) is a member of M . If the answer is ‘no’ then (x, y) is a false
candidate.

The time T2, required to perform the above steps for all members of Mn,
is n · 2O(n). Therefore, T = T1 + T2 = n · 2O(n). Thus, the set M can be
constructed from Li’s with memory n ·2O(n) and time n ·2O(n). From the
first part of the proposition we already know that M = D-satisfiable. ut

Correctness of Algo1: To show that Algo1 (see Fig. 1) is correct we only
need show that the computed Li corresponds to oracle output A = D̃ for
all i ∈ Zn−1, since there exists an algorithm to determine the correspond-
ing D-satisfiable from the computed Li’s with finite time and memory
without any extra query (see Proposition 3). We prove the correctness of
Algo1 by considering all possible cases individually.

1. When n ≤ 0, Algo1 correctly returns “Invalid Input” (see line 1).
2. When n = 1, Algo1 returns an empty set (see line 2). This empty set

is an indicator showing D-satisfiable= {(0, 0), (0, 1), (1, 0), (1, 1)}.
Therefore, Algo1 is correct for n = 1 (see Theorem 3). We will later
see that the algorithm never returns empty set for n > 1.

3. When n > 1 and the oracle output γ̃ = 0 on query β = (1, 1, · · · ,
1, 1)n then the seed of the oracle (x, y) is such that the least (n− 1)

18

Algo1(Input: Oracle O, n, Table T ; Output: a set of lists)

1. If n ≤ 0 then exit with a comment {“Invalid Input”}.
2. If n = 1 then return an empty set {} and exit.
3. β = (1, 1, · · · , 1, 1)n

4. γ̃ = O(β)
5. if γ̃ = 0

6. For each i ∈ Zn−1

7. Gi = {(0, 0, 0, 0), (0, 1, 0, 0)}
8. Go to Step 28

9. t = Least-Significant-one(γ̃)
10. t = t− 1
11. For each i ∈ Zt

12. Gi = {(0, 0, 0, 0), (0, 1, 0, 0)}
13. Gt = {(0, 0, 0, 0), (0, 1, 0, 1)}
14. if t = n− 2, Go to Step 28
15. β′ = (1, 1, · · · , 1, β′t+1 = 1, 0, 0, · · · , 0)
16. γ̃′ = O(β′)
17. Gt+1 = {(0, 0, 0, 0), (0, 1, 1, γ̃t+2), (0, 1, 0, γ̃′t+2)}
18. if t = n− 3, Go to 28
19. For each i ∈ Zn−t−1 \ Z2, in increasing order

20. if γ̃t+i == γ̃′t+i == 1
21. β′ = (1, 1, · · · , 1, β′t+i−1 = 0, 0, · · · , 0)
22. γ̃′ = O(β′), Go to Step 27

23. if γ̃t+i == γ̃′t+i == 0
24. if γ̃t+i−1 = 1 swap ((β, γ̃), (β′, γ̃′))
25. β′ = (β′n−1, · · · , β′t+i, β′t+i−1 = 0, β′t+i−2, · · · , β′0)
26. γ̃′ = O(β′)

27. Gt+i = {(0, 0, 0, 0), (0, 1, γ̃t+i, γ̃t+i+1), (0, 1, γ̃′t+i, γ̃′t+i+1)}
28. Using the table T , collect all (xi, yi, ci) corresponding to Gi in list Li

29. Return the set {Li|i ∈ Zn−1}.

Fig. 1. An Algorithm to solve the equation (x+y)⊕ (x+(y⊕β)) = γ with an optimal
number of queries.

19

bits of x are each zero. Then from Lemma 1 and Eqn. (19), Gi =
{(0, 0, 0, 0), (0, 1, 0, 0)} for all i ∈ Zn−1. Therefore, Algo1 determines
Gi’s that correspond to oracle output A = D̃ (line 7). Hence, Li’s,
computed in line 28, also correspond to oracle output A = D̃.

4. When n > 1 and the oracle output γ̃ 6= 0 on query β = (1, 1, · · · ,
1, 1)n, then line 9 and 10 compute the position of the least significant
‘1’ of x (denoted by t). Line 12 and 13 compute Gi for all i ∈ Zt+1.
Using Table 1, Lemma 1 and 2 it can be shown that Gi for all i ∈ Zt+1

correspond to oracle output A = D̃. Hence, Li for all i ∈ Zt+1 are also
correct.
– If t = n− 2 then the construction of Li for all i ∈ Zn−1 is complete
(line 14).
– If n − 2 > t then a second query β′ = (1, 1, · · · , 1, β′t+1 =
1, 0, · · · , 0) is submitted (line 15 and 16). Now, Gt+1 = {(0, 0, 0,
0), (0, 1, 1, γ̃t+2), (0, 1, 0, γ̃′t+2)} (line 17). Note that the size of Gt+1

is less than what it should be if constructed from the oracle output
A = D̃ (see Eqn.(20)). Now, we observe an interesting property of Ta-
ble 1. If we choose any two columns from Col(1), Col(2) and Col(3), we
see that each row of the partially specified table is unique. Therefore,
Gt+1 corresponds to exactly one row in Table 1. Note that Eqn. (20)
requires that Gt+1 correspond to a single row in Table 1. Therefore,
Lt+1, constructed from Gt+1, also corresponds to the oracle output
A = D̃. If t = n − 3, then the construction of Li for all i ∈ Zn−1 is
complete (see line 18).
– If n − 3 > t then a loop between lines 19 and 27 is executed. The
jth iteration of the loop determines Gt+2+j (iterations are numbered
0, 1, 2, and so on). The execution continues till Gn−2 is evaluated. At
the start of every iteration, oracle outputs on exactly two queries are
known. At the start of jth iteration let the queries and the correspond-
ing outputs be (β, γ̃) and (β′, γ̃′). Note that βt+1+j = β′t+1+j = 1
and γ̃t+1+j 6= γ̃′t+1+j . Now there are three possible cases. Case 1: If
γ̃t+2+j = γ̃′t+2+j = 1 then a new query β′ = (1, 1, · · · , 1, β′t+i−1 =
0, 0, · · · , 0) is submitted and the corresponding oracle output γ̃′ is
collected (see line 21 and 22). It is clear from β′ that γ̃′t+2+j = 0.
As a result, we get βt+2+j = β′t+2+j = 1 and γ̃t+2+j 6= γ̃′t+2+j .
Now, we determine Gt+2+j = {(0, 0, 0, 0), (0, 1, 1, γ̃t+3+j), (0, 1, 0,
γ̃′t+3+j)} (see line 27). As argued in the earlier case Lt+2+j , corre-
sponding to Gt+2+j , also corresponds to the entire set of oracle out-
puts A = D̃. Case 2: If γ̃t+2+j = γ̃′t+2+j = 0 then a new query
β′ = (1, 1, · · · , 1, β′t+1+j = 0, β′t+j , · · · , β′0) is submitted (the cor-

20

responding output is γ̃′), assuming γ̃t+1+j = 0 without loss of gen-
erality (see line 25). Now, from Row(2) of Table 1 (consider only
the first four columns as they are only relevant for the equation in
discussion) γ̃′t+2+j = 1. Therefore, Gt+2+j = {(0, 0, 0, 0), (0, 1, 1,
γ̃′t+3+j), (0, 1, 0, γ̃t+3+j)} and Lt+2+j is correct (argument is similar
as before that Gt+2+j refers to a unique row in Table 1). Case 3: If
γ̃t+2+j 6= γ̃′t+2+j then the execution jumps to line 27 and the computed
Gt+j+2 = {(0, 0, 0, 0), (0, 1, γ̃t+j+2, γ̃t+i+3), (0, 1, γ̃′t+j+2, γ̃′t+j+3)}.
Therefore, Lt+2+j corresponds to D̃.

Thus, for any n and t, Algo1 constructs Li, for all i ∈ Zn−1 (as defined in
Proposition 3), that corresponds to the entire set of oracle output A = D̃.
Therefore, Algo1 correctly solves Eqn.(5).

Correctness of Algo2: The correctness of Algo2 (see Fig. 2) is proved
the same way as Algo1 is proved. We will only verify whether Algo2 com-
putes Li corresponding to oracle output A = D̃ for any i ∈ Zn−1 (see
Proposition 3 for a method to construct Li). The solutions for n ≤ 1
are given in line 1 and 2 (an explanation is similar to that for Algo1).
Now we take a closer look at the first two queries (a, b) = ((11 · · · 11)n,
(00 · · · 00)n) and (c, d) = ((· · · 101010)n, (· · · 010101)n) and their cor-
responding outputs γ̃ and γ̃′ (see line 2 and 3). Note that if i is even then
Gi is of the following form,

Gi = {(1, 0, γ̃i, γ̃i+1), (0, 1, γ̃′i, γ̃′i+1)}. (24)

If i is odd then Gi is of the following form,

Gi = {(1, 0, γ̃i, γ̃i+1), (1, 0, γ̃′i, γ̃′i+1)}. (25)

From Eqn. (21), Gi for any i ∈ Zn−1 should correspond to exactly one
row in Table 1. Now, we observe two interesting properties of Table 1.
Firstly, in Eqn. (24), γ̃i 6= γ̃′i implies and is implied by the fact that
Gi corresponds to two rows of Table 1. Similarly, in Eqn. (25), γ̃i = γ̃′i
implies and is implied by the fact that Gi corresponds to two rows of
Table 1. Secondly, if Gi corresponds to two rows then Gi−1 corresponds
to exactly one row. A reason is, if i is even then γ̃i−1 6= γ̃′i−1; if i is odd
then γ̃i−1 = γ̃′i−1.

Based on these observations, we construct Gi and Li for all i ∈ Zn−1

(see line 7, 8, 9, 10). Note that if Gi refers to only one row of Table 1,
then |Li| = 2 and vice-versa. Similarly, if Gi refers to two rows of Table 1,

21

Algo2(Input: Oracle O, n, Table T ; Output: a set of lists)

1. If n ≤ 0 then exit with a comment {“Invalid Input”}.
2. If n = 1 then return an empty set {} and exit.
3. (a, b) = ((11 · · · 11)n, (00 · · · 00)n)
4. γ̃ = O(a, b)
5. (c, d) = ((· · · 101010)n, (· · · 010101)n)
6. γ̃′ = O(c, d)
7. For each i ∈ Zn−1

8. Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃′i+1)}
9. For each i ∈ Zn−1

10. Using table T , extract all possible (xi, yi, ci) corresponding to Gi and store
it in Li

11. If |Li| = 2 for all i ∈ Zn−1 then Go to step 27
12. For each i ∈ Zn−1 and i even

13. if |Li| = 4 then collect (xi−1, yi−1, 0) from Li−1 and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1

14. Select (αi−1, βi−1) from T such that (xi−1, yi−1, 0) corresponds
to both (αi−1, βi−1, 0, γ̃i) and (αi−1, βi−1, 1, γ̃i)

15. (ci−1, di−1) = (αi−1, βi−1)
16. For each i ∈ Zn−1 and i odd

17. if |Li| = 4 then collect (xi−1, yi−1, 0) and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1

18. Select (αi−1, βi−1) from T such that (xi−1, yi−1, 0) corresponds
to both (αi−1, βi−1, 0, 1⊕ γ̃i) and (αi−1, βi−1, 1, 1⊕ γi)

19. (ci−1, di−1) = (αi−1, βi−1)
20. γ̃′ = O(c, d)
21. For each i ∈ Zn−1

22. Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃′i+1)}
23. For each i ∈ Zn−1

24. Using table T , extract all possible (xi, yi, ci) corresponding to Gi and store
it in L′i

25. For each i ∈ Zn−1

26. If |Li| = 4, then assign Li = L′i
27. Return the set {Li|i ∈ Zn−1}.

Fig. 2. An Algorithm to solve the equation (x + y)⊕ ((x + α) + (y ⊕ β)) = γ with an
optimal number of queries.

22

then |Li| = 4 and vice-versa. After submission of the first two queries
(a, b) and (c, d) if Gi corresponds to only one row (or |Li| = 2) for each
i ∈ Zn−1 then our job is done (see line 11). If |Li| = 4 for some i ∈ Zn−1

then we will submit a third query by modifying the query (c, d) according
to the rules described in lines 12 to 15 and lines 16 to 19 (see Fig. 2).
Now we take the oracle output γ̃′ = O(c, d) (line 20). The query (c, d)
is selected in such a way that, if |Li| = 4 for an even i then γ̃i = γ̃′i (see
line 14 and 15); if |Li| = 4 for an odd i then γ̃′i = 1 ⊕ γ̃i (see line 18
and 19). We now, construct Gi and L′i using queries (a, b), (c, d) and the
outputs γ̃ and γ̃′ (see lines 21 to 24). Clearly, if |Li| = 4 then |L′i| = 2. We
replace all |Li| = 4 with Li = L′i (line 25 and 26). Now, |Li| = 2 for all
i ∈ Zn−1 (note that Eqn. (21) enforces |Li| = 2 for all i ∈ Zn−1). Finally,
we conclude that Algo2 is correct as it computes Li, for all i ∈ Zn−1, that
are compatible with the entire set of oracle output A = D̃.

Theorem 8. Worst case lower bounds on the number of queries, as de-
rived in Theorem 6 and 7, to solve (5) and (3) respectively, are optimal.

Proof. Upper bound on the number of queries required by Algo1 (see
Fig. 1) is listed below.
(i) 0 when n = 1 (see line 2).
(ii) 1 when n = 1 + t and t > 0. The required query is shown in line 3.
(iii) 1 when x = 0 and n > 1. The only required query is shown in line 3.
(iv) (n − t − 1), when n − 1 > t ≥ 0 and t is the position of the least
significant ‘1’ of x (the position is determined in line 10). The first two
queries are shown in line 3 and 15. The loop in lines 19 to 27 requires a
maximum of (n− t−3) queries. Note that each iteration submits at most
one query in either line 22 or 26.

Therefore, lower bound computed in Theorem 6 is optimal.
Upper bound on the number of queries required by Algo2 (see Fig. 2)

is as follows.
(i) 0 when n = 1 (see line 2).
(ii) 2 when n = 2. One can show from Table 1 that, for n = 2, on the
queries shown in lines 3 and 4 , |L1| = 2. Therefore, a third query is not
required (see line 11).
(iii) 3 when n > 2 (third query is submitted in line 20).

Therefore, lower bound computed in Theorem 7 is optimal. ut

Asymptotic Time and Memory : For Algo1, the memory complexity
is θ(n). The time complexity of Algo1 is O(n2) because of the loop in lines
19 to 27 (assuming that the oracle takes O(n) time to return the output

23

γ̃ on any input (0, β)). For Algo2, the memory and time complexities are
θ(n) each.

4 Improving an Attack on the Helix Stream Cipher

Helix which was proposed by Ferguson et al. [4] is a stream cipher with a
combined MAC functionality. The primitive uses combination of addition
and XOR to generate pseudorandom bits. Recently a differential attack
was found against Helix by Muller [5]. They have solved the equation,
(x + y)⊕ (x + (y⊕ β)) = γ for (x, y) to recover secret information (x, y)
using β and the corresponding γ. Every time β corresponds to a chosen
plaintext. They solved the equation many times to launch an attack. The
algorithm they used requires 3(n− 1) queries every time. Therefore, the
most natural challenge, from an algorithmic point of view, is to reduce
the number of queries and if possible to attain an optimality. For n = 32
bits (which is the size of the Helix output word), they required 93 queries
whereas Algo1 (see Fig. 1) takes at most 31 queries when the position of
the least significant ‘1’ of x (denoted by t) is zero. Note that, if t > 0
then the number of queries is less. However, the most important fact is
that the number of queries cannot be further reduced in the worst case as
our algorithm is worst case optimal. This fact can be straightaway used
to reduce the data complexity of that particular attack on Helix cipher
by, at least, a factor of 3 without exploring other possibilities to reduce
the data further. However, in the best case, Algo1 requires only 2 queries
(one can easily show that there exists seed of the oracle (x, y) ∈ Zn

2 ×Zn
2

with any t ∈ Zn−2 for which (5) can be solved with only 2 queries) and
the improvement in such case is a factor of 46.5.

5 Conclusion and Further Research

In this paper we have dealt with two equations that mix operations ad-
dition modulo 2n and exclusive-or. Such equations are the basic build-
ing blocks for many symmetric ciphers. Using simple relations among
carry-bits and the input bits we have solved those equations with an op-
timal number of queries. These results have superseded the previous best
known results by a constant factor. Furthermore, the results cannot be
further improved as we reached an optimality. To show a practical use we
reduce the data complexity of an attack on Helix stream cipher. In ad-
dition to that, the solution techniques motivate further research to solve
more complex equations (e.g. combination of modular addition, exclusive-
or and modular multiplication) with a minimum number of queries and

24

also to calculate differential properties of addition with complexities less
than the existing ones. We expect that these results will be useful in the
cryptanalysis of other ciphers too.

Acknowledgement

The authors thank Taizo Shirai of Sony Incorporation, Japan and Sankar-
das Roy of George Mason University, USA for useful discussions.

References

1. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,”
Crypto ’90 (A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS, pp. 2-21,
Springer-Verlag, 1991.

2. H. Lipmaa, S. Moriai, “Efficient Algorithms for Computing Differential Properties
of Addition,” FSE 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 336-350, Springer-
Verlag, 2002.

3. O. Staffelbach, W. Meier, “Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition,” Crypto ’90 (A. Menezes, S. A. Vanstone, eds.), vol. 537
of LNCS, pp. 601-614, Springer-Verlag, 1991.

4. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, T. Kohno, “Helix:
Fast Encryption and Authentication in a Single Cryptographic Primitive,” Fast
Software Encryption 2003 (T. Johansson, ed.), vol. 2887 of LNCS, pp. 330-346,
Springer-Verlag, 2003.

5. F. Muller, “Differential Attacks against the Helix Stream Cipher,” Fast Software
Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 94-108, Springer-
Verlag, 2004.

6. L. Lipmaa, J. Wallén, P. Dumas, “On the Addititive Differential Probability of
Exclusive-Or,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017
of LNCS, pp. 317-331, Springer-Verlag, 2004.

7. C. Burwick, D. Coppersmith, E. D’Avignon, Y. Gennaro, S. Halevi,
C. Jutla, S. M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford and
N. Zunic, “MARS – A Candidate Cipher for AES,” Available Online at
http://www.research.ibm.com/security/mars.html, June 1998.

8. R. L. Rivest, M. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block Cipher,” Avail-
able Online at http://theory.lcs.mit.edu/ rivest/rc6.ps, June 1998.

9. X. Lai, J. L. Massey, S. Murphy, “Markov Ciphers and Differential Cryptanalysis,”
Eurocrypt ’91 (W. Davis, ed.), vol. 547 of LNCS, pp. 17-38, Springer-Verlag, 1991.

10. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.Hall, N. Ferguson, “The Twofish
Encryption Algorithm: A 128-Bit Block Cipher,” John Wiley & Sons, April 1999,
ISBN: 0471353817.

11. D. E. Knuth, “The Art of Computer Programming,” vol. 2, Seminumerical Algo-
rithms, Addison-Wesley Publishing Company, 1981.

12. A. Klimov, A. Shamir, “New Cryptographic Primitives Based on Multiword T-
Functions,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of
LNCS, pp. 1-15, Springer-Verlag, 2004.

25

13. A. Klimov, A. Shamir, “Cryptographic Applications of T-Functions,” Selected Ar-
eas in Cryptography 2003 (M. Matsui, R. J. Zuccherato, eds.), vol. 3006 of LNCS,
pp. 248-261, Springer-Verlag, 2004.

14. J. Wallen, “Linear Approximations of Addition Modulo 2n,” Fast Software Encryp-
tion 2003 (T. Johansson, ed.), vol. 2887 of LNCS, pp. 261-273, Springer-Verlag,
2003.

26

