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Abstract. Equations that mix addition modulo 2n (+) and exclusive-
or (⊕) have a host of applications in design and cryptanalysis of sym-
metric ciphers. In this paper we study two basic equations of the form
(x + y) ⊕ (x + (y ⊕ β)) = γ and (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ,
which are termed differential equations of addition. Firstly, the paper
presents formal proofs for the number of solutions for (x, y) in the above
equations. Secondly, we give an algorithm that solves the first equation
with (n− t− 1) queries in the worst case, where n is the input size and
t is a non-negative parameter depending on the input, when the previ-
ous best known algorithm by Muller required 3(n − 1) queries. For the
other equation, the number of queries required by our algorithm is 3
in the worst case for all n > 2, i.e., the number of queries is constant
asymptotically. The most important contribution of the paper is that we
show, using simple combinatorial relations among carry bits and input
bits, that the upper bounds for our algorithms on the required number
of queries match worst case lower bounds. This, in effect, closes further
research in this direction as our lower bounds are optimal. Finally, as an
example of practical use of our results, we show that these results alone
improve the data complexity of a differential attack on the Helix stream
cipher by a factor of 3 in the worst case and by a factor of 46.5 in the
best case.

Keywords: Input and output differentials, Lower bound, Upper bound,
Optimal bound, Asymptotic Complexity, Query.

1 Introduction

The arithmetic addition of two n-bit integers modulo 2n is a nonlinear
transformation when considered over GF (2). Equations that mix addition
with other Boolean operations such as exclusive-or (⊕), or (∨) and/or
? This work was partially supported by the Concerted Research Action GOA-
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and (∧) are interesting research subjects in their own right. However,
many cryptographic primitives, such as Helix [3], IDEA [7], Mars [2], RC6
[11], and Twofish [12] mix modular addition with exclusive-or operations
to achieve nonlinearity through the propagation of the carry-bits. The
list is by no means exhaustive as the equations of the above types have
applications outside the scope of cryptography too (e.g. optimization of
circuit complexities). However, in the present context, we will take a closer
look at the combination of addition modulo 2n and bitwise exclusive-or
as it is extensively used as one of the basic building blocks to generate
modern symmetric ciphers.

There is a large body of literature that studies equations involving
addition from many different angles. Staffelbach and Meier investigated
the probability distribution of the carry for integer addition [13]. Wallén
explained the linear approximations of modular addition [14]. In the most
recent development of stream ciphers, Klimov and Shamir also used an
update function for internal state, known as a T -function, where modular
addition and OR are mixed in a certain fashion to achieve many useful
properties of a secure stream cipher [6, 5].

Differential cryptanalysis, introduced by Biham and Shamir [1], is one
of the most powerful attacks against symmetric ciphers. Immunity against
differential cryptanalysis is a prime factor in the evaluation of the secu-
rity of a cipher. The interplay between addition (+) and exclusive-or (⊕)
against differential cryptanalysis has been studied in depth by Lipmaa
and Moriai [8]. In particular, the equation they investigated to determine
the differential probabilities is (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ, where
x, y, α, β, γ ∈ Zn

2 , α, β are the input differences and γ is the output
difference. They have shown that the probability of a triple (α, β, γ) sat-
isfying the above equation on a randomly chosen pair of n-bit integers
(x, y) can be computed with an asymptotic time complexity of O(log n).
Many other useful differential properties of addition (e.g. maximal differ-
entials) can also be determined with the same asymptotic time complexity
[8].

Another way of mixing addition and exclusive-or is to use the dual of
the above case where differences are expressed using addition modulo 2n,
that is, employing equations of the form (x⊕y)+((x+α)⊕ (y +β)) = γ.
The differential probabilities of this case has been investigated in detail
by Lipmaa et al. [9].

In this paper we explore two basic addition equations where differences
of inputs and outputs are expressed in terms of exclusive-or. In particular,
we study the following two equations separately:
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(x + y)⊕ (x + (y ⊕ β)) = γ (1)
(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ , (2)

in order to determine all (x, y) ∈ Zn
2 × Zn

2 that satisfy the equation for
all triples (α, β, γ)1, using a minimum number of queries (α, β) where
an adversary is only allowed to supply (α, β) to an oracle and receive the
corresponding γ (α = 0 for (1)). Note that (2) has already been studied
by Lipmaa and Moriai [8] to compute many differential properties. Our
focus is on recovering secret information instead of calculating differen-
tial probabilities (our approach works just as well to compute differential
properties too, however such issues fall outside the scope of this paper).
These methods can be used to reduce the data complexity of adaptively
chosen plaintext/ciphertext attacks that attempt to recover secret infor-
mation of a cipher. As a direct example, we apply our results to the Helix
cipher. We term the equations of the above types differential equations
of addition to be consistent with the existing body of literature as the
corresponding differential probabilities derived from such equations are
known as differential probabilities of addition [8].
Our Main Contributions: The aim of this paper is fourfold. First, we de-
termine the number of all solutions for (1) and (2) in a general framework.
A claim on the number of solutions for (1) has been made in [10] for a
specific case of n = 32 without any formal proof (note that such a proof
is non-trivial). Secondly, we show that a worst case lower bound on the
required number of queries (0, β) to solve (1) for (x, y) is (n−t−1) where
(n − t) > 1 with t being the bit-position of the least significant ‘1’ of x.
A worst case lower bound on the number of queries (α, β) required to
solve (2) is 3 for n > 2. Most importantly, for solving the above equations
we also design algorithms whose upper bounds on the number of queries
match worst case lower bounds.

Our algorithm to solve (1) records an improvement over the previous
best known algorithm by Muller which required 3(n−1) queries [10] (note
that our algorithm takes (n− t−1) queries with t ≥ 0). Furthermore, our
results essentially close further investigation in this particular direction as
the equations are solved with an optimal number of queries in the worst
case. It is particularly interesting to note that, for (2), although the num-
ber of all queries grows exponentially with the input size n, an optimal
lower bound to solve (2) is 3 for all n > 2, i.e., constant asymptotically.
We directly use these results to reduce the data complexity of an attack
on the Helix stream cipher by a factor of 3 in the worst case (a factor of

1 The number of all possible triples equals 2n for (1) and 22n for (2).
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46.5 in the best case), without exploring any other possibilities for im-
provement [10]. In addition, our solution techniques, which make use of
simple combinatorial relations among carry bits and input bits, open the
possibility of solving more complex equations (e.g., combination of addi-
tion, XOR, multiplication and T -functions) efficiently and also computing
differential properties of addition with improved complexities.

2 The Problem and an Adversarial Model

The aim of an adversary is to solve the following equation for fixed un-
known integers x and y,

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ (3)

using triples (α, β, γ). A pair (α, β) is defined to be a query. In (3),
x, y, α, β, γ ∈ Zn

2 and the symbols ‘+’, ‘⊕’, ‘∧’ denote the binary oper-
ations addition modulo 2n, bit-wise exclusive-or and bit-wise and on Zn

2

respectively. We will denote x∧y by xy. Throughout the paper, [p, q] de-
notes a set containing all integers between the integers p and q including
both of them. Unless otherwise stated, n denotes a positive integer. We
follow the convention that the position of the least significant bit of an
integer is zero and the positions of the successive higher order bits are
incremented by 1 successively.

2.1 The Power of the Adversary

The power of an adversary that solves (3) is defined as follows.

1. An adversary has unrestricted computational power.
2. An adversary has infinite amount of memory.
3. An adversary can only make queries (α, β) ∈ Zn

2 × Zn
2 to an oracle

which computes γ using fixed (x, y) ∈ Zn
2 ×Zn

2 in (3) and returns the
value to the adversary. We will often refer to that fixed (x, y) as the
seed of the oracle.

Such an oracle seeded with (x, y) ∈ Zn
2 × Zn

2 (which is unknown to the
adversary) can be viewed as a mapping Oxy : Zn

2 × Zn
2 → Zn

2 and defined
by

Oxy = {(α, β, γ) | (α, β) ∈ Zn
2 × Zn

2 , γ = (x + y)⊕ ((x⊕ α) + (y ⊕ β))} . (4)

An adversarial model, similar to the one described above for (3), can be
constructed for the following equation:

(x + y)⊕ (x + (y ⊕ β)) = γ , (5)
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by setting (α, β) ∈ {0}n × Zn
2 and the mapping Oxy : {0}n × Zn

2 → Zn
2 .

The model described above represents a practical adaptively chosen
message attack scenario where the adversary makes adaptive queries to
an oracle. Based on the replies from the oracle, the adversary computes
one or more unknown parameters.

2.2 The Problem

Oxy, defined in (4), generates a family of mappings F = {Oxy | (x, y) ∈
Zn

2 × Zn
2}. Let a mapping f : Zn

2 × Zn
2 → F be defined by

f(x, y) = Oxy . (6)

In the adversarial framework described in Sect. 2.1, solving (3) or (5) is
understood to be solving the corresponding equation:

f(x, y) = D ∈ F for (x, y) ∈ Zn
2 × Zn

2 . (7)

Let D-satisfiable denote the solution set for (7). Therefore,

D-satisfiable = {(x, y) | (x, y) ∈ Zn
2 × Zn

2 , f(x, y) = D} . (8)

See Appendix A.7 for an example of D-satisfiable.

The task of an adversary is to determine D-satisfiable when the max-
imum information she can extract from the oracle is the set D.

Rules of the Game: Now we lay down the rules followed by the adver-
sary to determine the set D-satisfiable that, in turn, gives the essence of
the whole problem.

1. The adversary starts with no information about (x, y).
2. The adversary settles on a strategy (i.e., a deterministic algorithm)

which is publicly known and chooses some (α, β) ∈ Zn
2 × Zn

2 as the
first query. For a particular strategy the first query remains the same
for any seed (x, y) ∈ Zn

2 × Zn
2 .

3. Using the strategy, the adversary computes queries adaptively, i.e.,
based on the previous queries and the corresponding oracle outputs
the next query is determined.

4. Suppose, for the seeds (a, b) and (a′, b′), the first t queries submitted
by the adversary and the corresponding oracle outputs are (Q1, O1),
(Q2, O2), . . . (Qt, Ot) then the (t + 1)th query for both (a, b) and
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(a′, b′) will be the same (as required by a deterministic algorithm).
Note that the adversary cannot distinguish between (a, b) and (a′, b′)
from the first t outputs of the oracle.

5. The game stops the moment the adversary constructs D-satisfiable.

We search for a strategy that determines D-satisfiable with a minimum
number of queries in the worst case of (x, y). Later we will see that the
answers to the following questions eventually lead us to such a strategy.

1. What is the size of D-satisfiable?
2. Is it possible to determine D-satisfiable when D is entirely known?
3. Is it possible to determine D-satisfiable when D is partly known? By

partly known we mean that the adversary submits fewer queries than
the maximum possible number of queries. Note, if this is possible
then without submitting any extra query the adversary can always
complete the construction of D using an element of D-satisfiable (ap-
plying (4)). In such case, how far can the number of submitted queries
be reduced to determine D-satisfiable in the worst case?

So far, we hope to have explained enough about the problem that we are
going to solve and the challenges associated with it. The rest of the paper
answers all of these questions one by one.

Organization: The rest of the paper is organized as follows. Sect. 3.1
elaborates on the relations among different quantities which are used
throughout the paper to establish most of the important results. Sect. 3.2
gives formal proofs for the number of solutions for the equations in discus-
sion. Sect. 3.3 determines lower bounds on the number of queries to solve
the equations. In Sect. 3.4, we design algorithms that solve the equations
with an optimal number of queries. A practical cryptographic application
is presented in Sect. 4. Finally, in Sect. 5, we sum up possible extensions
of our work.

3 Towards the Solution

3.1 Relations Among Different Quantities

Let an oracle seeded with (x, y) ∈ Zn
2 × Zn

2 generate D ∈ F (as defined
Sect. 2). Let the binary representation of x be (xn−1, xn−2, . . . , x2, x1, x0).
Let (α, β, γ) ∈ D. Therefore,

γi = xi ⊕ yi ⊕ ci ⊕ x̃i ⊕ ỹi ⊕ c̃i, i ∈ [0, n− 1] (9)
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where x̃i = xi ⊕ αi and ỹi = yi ⊕ βi and the carry bits cj and c̃j are
computed recursively in the following way,

c0 = c̃0 = 0 (10)
cj+1 = xjyj ⊕ xjcj ⊕ yjcj (11)
c̃j+1 = x̃j ỹj ⊕ x̃j c̃j ⊕ ỹj c̃j , j ∈ [0, n− 2] . (12)

Now we construct a set D̃ in the following fashion,

D̃ = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ D} . (13)

Note, γ̃i = ci⊕ c̃i ∀ i ∈ [0, n−1] (compare with (9)). It is easy to identify a
bijection between D and D̃ where (α, β, γ) ∈ D is mapped to (α, β, α⊕
β ⊕ γ) ∈ D̃. We will, henceforth, use either D or D̃ as the oracle output
according to whichever suits our analysis best.

Definition 1. (A-compatible) Let φ ⊂ A ⊆ Zn
2 × Zn

2 × Zn
2 . An element

(a, b) ∈ Zn
2 ×Zn

2 is A-compatible if (a+ b)⊕ ((a⊕ p)+ (b⊕ q))⊕ p⊕ q = r
for all (p, q, r) ∈ A .

Definition 2. (A-consistent) Let φ ⊂ A ⊆ Zn
2 ×Zn

2 ×Zn
2 . Consider a set

S ⊆ Zn
2 ×Zn

2 for which an element s ∈ S if and only if s is A-compatible.
Then the set S is called A-consistent .

Theorem 1. D-satisfiable = D̃-consistent.

Proof. A proof is immediate from the construction of D and D̃.

Suppose n > 1. For any (α, β, γ̃) ∈ D̃, γ̃i+1 can be computed using
xi, yi, ci, αi, βi, γ̃i ∀ i ∈ [0, n − 2]. Table 1 lists the values of γ̃i+1 as
computed from all values of xi, yi, ci, αi, βi, γ̃i using (10), (11), (12).

Computation of Parameters Gi, Si, 0 and Si, 1: We now determine
an important quantity, denoted by Gi, from the set of queries and its
results. Let the adversary submit a few queries to the oracle and construct
a nonempty set A ⊆ D̃. Suppose n > 1. Now, we construct Gi as follows,

Gi = {(αi, βi, γ̃i, ˜γi+1) | (α, β, γ̃) ∈ A}, i ∈ [0, n− 2] . (14)

Now, ∀ i ∈ [0, n−2], from Table 1 we identify (xi, yi, ci) that corresponds
to every element (αi, βi, γ̃i, ˜γi+1) ∈ Gi. Si, j denotes the number of solu-
tions for (xi, yi) that correspond to every element in Gi and ci = j. See
Appendix A.7 for an example of Si, 0 and Si, 1.
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Table 1. All possible values of γ̃i+1 are plotted against all possible values of
xi, yi, ci, αi, βi, γ̃i. A row and a column are denoted by Row(l) (where l ∈ Z4) and
Col(k) (where k ∈ Z8). Col(0) till Col(3) are used for (5). Col(0) till Col(7) are used
for (3).

(xi, yi, ci) (αi, βi, γ̃i)
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0, 0) 0 0 0 1 0 1 1 1 Row(0)
(1, 1, 1)

(0, 0, 1) 0 0 1 0 1 0 1 1 Row(1)
(1, 1, 0)

(0, 1, 0) 0 1 0 0 1 1 0 1 Row(2)
(1, 0, 1)

(1, 0, 0) 0 1 1 1 0 0 0 1 Row(3)
(0, 1, 1)

Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7)

3.2 Number of Solutions

Before we compute the number of solutions for the equations, we establish
three fundamental results in the following propositions and theorem.

Proposition 1. (Equality of Si, 0 and Si, 1) For any nonempty set A ⊆ D̃
and n > 1, Si, 0 = Si, 1 ∀ i ∈ [0, n− 2].

Proof. Let the size of Gi be ki where i ∈ [0, n−2]. From Table 1, it is easy
to see that, for all nonempty set A ⊆ D̃ and ∀ i ∈ [0, n−2], ki ∈ [1, 8] (the
exact value of ki depends on the set A). Now, from Table 1, ∀ i ∈ [0, n−2]
and ∀ ki ∈ [1, 8], Si, 0 = Si, 1. ut

We set,

Si, 0 = Si, 1 = Si ∀ i ∈ [0, n− 2]. (15)

Theorem 2. (Equivalence between A and Gi’s) Let φ ⊂ A ⊆ D̃ and
n > 1. The following two statements are equivalent.

1. (x, y) ∈ Zn
2 × Zn

2 is A-compatible.
2. (x, y) ∈ Zn

2 × Zn
2 is such that, ∀ i ∈ [0, n − 2], the triple (xi, yi, ci)

corresponds to every element (αi, βi, γ̃i, ˜γi+1) ∈ Gi in Table 1, where
c0 = 0 and ci+1 = xiyi ⊕ xici ⊕ yici.

Proof. From the construction of Gi, it can be shown that 1 ⇔ 2. ut
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Proposition 2. (Size of A-consistent) Let φ ⊂ A ⊆ D̃ and S denote the
size of A-consistent. Then,

S =

{
4 ·∏n−2

i=0 Si if n > 1,

4 if n = 1.

The Si’s are defined in (15).

Proof. Using Theorem 2 the proposition can be proved. See Appendix A.1
for a detailed description. ut

As explained in Sect. 3.1, the number solutions for (3) or (5) is the size
of the set D-satisfiable (see (7)). From this point onwards, we will treat
these two equations separately. The set D ∈ F (and consequently the cor-
responding D̃) may correspond to either (3) or (5). The relevant equation
should be understood from the context. Note, only Col(0), Col(1), Col(2)
and Col(3) of Table 1 are relevant for (5) because α = (0, 0, · · · , 0)n for
all queries. Therefore, (α, β, γ) ∈ D and (α, β, γ̃) ∈ D̃ will be denoted
by (0, β, γ) and (0, β, γ̃) for (5). The following theorem determines the
number of solutions for (5). A claim similar to that of the following the-
orem has been made in [10] for a specific case of n = 32, which discusses
a differential attack on Helix [3], without any formal proof. We prove it
in a general framework.

Theorem 3. (Number of Solutions for (5)) Let the position of the least
significant ‘1’ of x in the equation

(x + y)⊕ (x + (y ⊕ β)) = γ

be t and x, y, β, γ ∈ Zn
2 . Let f(x, y) = D be given. Then the size of D-

satisfiable is
(i) 2t+3 when n− 1 > t ≥ 0,
(ii) 2n+1 otherwise.

Proof. We consider the set D̃ corresponding to D (see Proposition 1).
(i) When n−1 > t ≥ 0. We prove it by dividing it into two disjoint cases.
Case 1: When n − 2 > t ≥ 0. First, we state the following two lemmas
whose proofs are given in Appendix A.2.

Lemma 1. For each (0, β, γ̃) ∈ D̃, γ̃i = 0, ∀ i ∈ [0, t].

Lemma 2. For each i ∈ [t + 1, n − 1] there exists (0, β, γ̃) ∈ D̃ with
γ̃i = 1.
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Now, we construct Gi = {(0, βi, γ̃i, ˜γi+1) | (0, β, γ̃) ∈ D̃}, ∀ i ∈ [0, n−2]
(see Sect. 3.1). From Lemma 1, ∀ i ∈ [0, t],

Gi = {(0, 0, 0, ei+1), (0, 1, 0, fi+1)} (16)

for some ei+1, fi+1 ∈ Z2. Let (0, a, b), (0, a′, b′) ∈ D̃. Then b0 = b′0 = 0
and bi+1 = b′i+1 if ai = a′i and bi = b′i ∀ i ∈ [0, n− 2] (see Sect. 3.1). Also
note that, ∀ (0, a, b) ∈ D̃ and ∀ i ∈ [0, n − 1], one can select (0, a′, b′),
(0, a′′, b′′) ∈ D̃ with (a′i, b′i) = (0, bi), (a′′i , b′′i ) = (1, bi). Therefore, from
Lemma 2, ∀ i ∈ [t + 1, n− 2],

Gi = {(0, 0, 0, ei+1), (0, 0, 1, fi+1), (0, 1, 0, gi+1), (0, 1, 1, hi+1)}(17)

for some fi+1, gi+1, hi+1 ∈ Z2.
Let Si, j denote the number of solutions for (xi, yi) that correspond

to Gi and ci = j. From Table 1, ∀ i ∈ [t+1, n− 2], Si, 0 = 1 and Si, 1 = 1.
Similarly, Si, 0 = 2 and Si, 1 = 2 ∀ i ∈ [0, t].

Let S denote the size of D̃-consistent. From Proposition 2,

S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
n−t−2 times

· 2 · 2 · · · 2︸ ︷︷ ︸
(t+1) times

= 2t+3 .

From Proposition 1 the size of D-satisfiable is 2t+3.
Case 2: When n = t + 2 and t ≥ 0. Following a similar way as in Case 1,
it can be shown that S = 2t+3 when n = t + 2 .
(ii) The proof is similar to the above one using Proposition 2. ut

Theorem 4. (Number of Solutions for (3)) Let f(x, y) = D be given for
the equation

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Zn
2 . Then the size of D-satisfiable is 4.

Proof. Case 1: When n > 2. We construct Gi = {(αi, βi, γ̃i, ˜γi+1) | (α, β, γ̃) ∈
D̃} ∀ i ∈ [0, n − 2]. Using a similar technique used in Theorem 3, it is
easy to show that ∀ i ∈ [1, n− 2]

Gi = { (0, 0, 0, ei+1), (0, 0, 1, fi+1), (0, 1, 0, gi+1), (0, 1, 1, hi+1),
(1, 0, 0, mi+1), (1, 0, 1, ni+1), (1, 1, 0, pi+1), (1, 1, 1, qi+1)}(18)
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for some ei+1, fi+1, gi+1, hi+1, mi+1, ni+1, pi+1, qi+1 ∈ Z2. Note that G0

does not contain any member (α0, β0, γ̃0, γ̃1) with γ̃0 = 1. Therefore, the
size of G0 is 4. Exactly the same way as in Theorem 3, ∀ i ∈ [0, n−2], Si, 0

and Si, 1 can be determined from Table 1 that correspond to Gi. We see
that Si, 0 = Si, 1 = 1 ∀ i ∈ [0, n− 2]. Therefore, the size of D-satisfiable is
4 (see Proposition 2 and Proposition 1).
Case 2: When n = 2. The proof is similar to the above.
Case 3: When n = 1. The proof is trivial using Proposition 2. ut

3.3 Lower Bounds

Now, we go back to our adversarial framework described in Sect. 2.1.
An adversary supplies (α, β) ∈ Zn

2 × Zn
2 to the oracle and receives the

corresponding γ. Then she calculates γ̃ = α ⊕ β ⊕ γ and constructs a
nonempty set A ⊆ D̃. The following theorem is used as the condition for
a lower bound for (5).

Theorem 5. (Relation between Gi and the size of A-consistent) We con-
sider the equation

(x + y)⊕ (x + (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n− 2 > t ≥ 0.
Let φ ⊂ A ⊆ D̃ and, for some i ∈ [t + 1, n − 2], Gi contains no element
(0, βi, γ̃i, ˜γi+1) with γ̃i = 1. Then the size of A-consistent is 2t+3+k where
k > 0.

Proof. See Appendix A.3 for a proof. ut

Theorem 6. A lower bound on the number of queries (0, β) to solve

(x + y)⊕ (x + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn
2 × Zn

2 is
(i) (n− t− 1), when n− 1 > t ≥ 0,
(ii) 1 when n = 1 + t with t > 0,
(iii) 1 when x = 0 and n > 1,
(iv) 0 otherwise, i.e., when n = 1,
where t is the position of the least significant ‘1’ of x.

Proof. (i) When n− 1 > t ≥ 0. We first divide it into four disjoint cases.
Case 1. When n > 4 + t. By Theorem 5, a necessary condition is that
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Gn−2, constructed for a nonempty set A ⊆ D̃, must have an element
(0, qn−2, rn−2, rn−1) with rn−2 = 1 otherwise the number of solutions
for (x, y) is 2t+3+k where k > 0. But, from Theorem 3, the number of
solutions is 2t+3. To have Gn−2 having an element (0, qn−2, rn−2, rn−1)
with rn−2 = 1, Gn−3 must contain an element (0, qn−3, rn−3, rn−2) with
rn−2 = 1 .

Let l(k) denote a lower bound on the number of adaptively chosen
queries to construct A ⊆ D̃ such that Gi contains an element (0, qi, ri, ri+1)
with ri+1 = 1 for some i ∈ [k, n − 2] in the worst case, where, k ∈
[t + 1, n − 2]. Let p ∈ [t + 1, n − 3]. Therefore, a worst case lower
bound l(p) means, for any adaptively chosen sequence of l(p)− 1 queries
(l(p) > 0), there exists (x, y) ∈ Zn

2 ×Zn
2 such that Gi contains no element

(0, qi, ri, ri+1) with ri+1 = 1 ∀ i ∈ [p, n − 2] . Now, for each adaptively
chosen sequence of l(p)−1 queries we always identify an (x, y) ∈ Zn

2 ×Zn
2

for which all queries produce ri+1 = 0 ∀ i ∈ [p, n− 2] . From Table 1, we
construct (a, b), (a′, b′) ∈ Zn

2×Zn
2 for each (x, y) in the following fashion.

The carry cj is computed from the preceding j bits of (x, y).

1. (Construction of a and b) ai = xi and bi = yi ∀ i ∈ [0, p]. If ci = 0
set ai = 0, bi = 0 ∀ i ∈ [p + 1, n − 1]. If ci = 1 set ai = 1, bi = 1
∀ i ∈ [p + 1, n− 1].

2. (Construction of a′ and b′) a′i = xi and b′i = yi ∀ i ∈ [0, p]. If ci = 0
set a′i = 0, b′i = 1 ∀ i ∈ [p + 1, n − 1]. If ci = 1 set a′i = 1, b′i = 0
∀ i ∈ [p + 1, n− 1].

The values of (ai, bi) and (a′i, b′i) for all i ∈ [0, n − 1] are chosen from
Table 1 in order to have both (a, b) and (a′, b′) produce the same sequence
of oracle outputs as (x, y) does on the selected sequence l(p)− 1 queries.
The reason is that the least significant (p + 1) bits of both (a, b) and
(a′, b′) are the same as that of (x, y). Therefore, on any query, the least
significant (p+2) bits of the oracle output, for both (a, b) and (a′, b′) are
the same as for (x, y). As a result, each of the l(p)− 1 queries produces
an oracle output γ̃ with γ̃p+1 = 0 for all of (a, b), (a′, b′) and (x, y). The
rest of the (n− p− 1) bits of (a, b) and (a′, b′) are chosen in a way such
that, for each of the l(p)−1 queries, γ̃ has the most significant (n−p−2)
bits zero. Thus, we prove that both (a, b) and (a′, b′) produce the same
sequence of oracle outputs as (x, y) does on the selected sequence l(p)−1
queries.

Now we consider the l(p)th query. If (βp+1, γ̃p+1) = (0, 1) for the
l(p)th query, then (a, b) produces γ̃p+2 = 0 and therefore all other higher
order bits of γ̃ are also zero. Similarly, if (βp+1, γ̃p+1) = (1, 1) then (a′, b′)
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produces γ̃p+2 = 0 and consequently all other higher order bits of γ̃ are
also zero. Therefore, for the chosen sequence of l(p) queries, either (a, b) or
(a′, b′) produces oracle outputs such that Gi contains all elements with
ri+1 = 0 ∀ i ∈ [p + 1, n − 2]. Now, from Rule 4 in Sect. 2.2, the first
l(p) − 1 queries submitted by the adversary for both (a, b) and (a′, b′)
are the same as the queries she submits for (x, y) and either (a, b) or
(a′, b′) produces γ̃i = 0 ∀ i ∈ [p + 2, n − 1] on each of the l(p) queries.
Therefore, we establish that, for any adaptively chosen sequence of l(p)
queries, there exists a pair (m, n) ∈ Zn

2 × Zn
2 such that Gi contains no

element (0, qi, ri, ri+1) with ri+1 = 1 ∀ i ∈ [p + 1, n − 2]. Therefore, a
lower bound on the number of queries to construct A ⊆ D̃ such that Gi

contains an element (0, qi, ri, ri+1) with ri+1 = 1 for some i ∈ [p+1, n−2]
is l(p) + 1 in the worst case. Therefore,

l(p + 1) = l(p) + 1 .

Following the recursion,

l(n− 3) = n− t− 4 + l(t + 1) . (19)

The following lemma computes a value of l(t + 1). See Appendix A.4 for
an elaborate proof.

Lemma 3. Let n−2 > t ≥ 0. For any adaptively selected sequence of two
queries, there exists (x, y) ∈ Zn

2 × Zn
2 such that Gi contains no element

(0, qi, ri, ri+1) with ri+1 = 1 ∀ i ∈ [t + 1, n− 2].

From Lemma 3, l(t + 1) = 3. Therefore, from (19), l(n− 3) = n− t− 1 .
Case 2: When n = t+4, a worst case lower bound is 3. The proof follows
from Lemma 3.
Case 3: When n = t + 3, a worst case lower bound is 2. A reason is, from
Table 1 it is clear that, with only one query Sn−2 > 1 which makes the
number of solutions for this case greater than 2t+3 which is impossible
from Theorem 3.
Case 4: When n = t + 2, a worst case lower bound on the number of
queries is 1. For n > 1, this lower bound is trivial.
(ii) When n = 1 + t and t > 0, a worst case lower bound is 1. The proof
is trivial.
(iii) When x = 0 and n > 1, a worst case lower bound is 1. The proof is
easy.
(iv) The proof is trivial. ut
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Theorem 7. A lower bound on the number of queries (α, β) to solve

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn
2 × Zn

2 is
(i) 3 when n > 2,
(ii) 2 when n = 2,
(iii) 0 when n = 1.

Proof. The theorem is proved using a similar technique as that used for
Theorem 6. The adversary submits all possible two adaptively selected
queries and the oracle tries to defeat the adversary. A detailed analysis is
given in Appendix A.6. ut

3.4 Optimal Algorithms

We design two algorithms Algo1 and Algo2, described in Fig. 1 and Fig. 2
respectively, to show that our lower bounds on the number of queries,
computed in Sect. 3.3, are optimal. The notation is consistent with the
present analysis. The oracle O returns γ̃ on input (α, β). The variable
T denotes Table 1. In Algo1, Least-Significant-one(p) computes the least
significant ‘1’ of p. The following proposition, a proof of which is given in
Appendix A.5, will be used to prove the correctness of Algo1 and Algo2.

Proposition 3. Let Gi, constructed from the oracle output A = D̃, be
known ∀ i ∈ [0, n− 2] (n > 1). Let Li contain all triples (xi, yi, ci) such
that each triple corresponds to all elements of Gi in Table 1. Let a set M
be constructed from the Li’s in the following way,

M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0))
|(xn−1, yn−1) ∈ Z2

2, (xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0,

ci+1 = xiyi ⊕ xici ⊕ yici}.

Then (i) M is D-satisfiable; (ii) there exists an algorithm2 such that
D-satisfiable can be constructed from the Li’s with memory n · 2O(n) and
time 2O(n). ut
2 One may attempt to design a faster algorithm using time-memory trade-off. How-

ever, our main objective in this paper is to optimize the number of queries.
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Algo1(Input: Oracle O, n, Table T ; Output: a set of lists)

1. If n ≤ 0 then exit with a comment {“Invalid Input”}.
2. If n = 1 then return an empty set {} and exit.
3. β = (1, 1, · · · , 1, 1)n

4. γ̃ = O(β)
5. if γ̃ = 0

6. For each i ∈ [0, n− 2]
7. Gi = {(0, 0, 0, 0), (0, 1, 0, 0)}

8. Go to Step 28
9. t = Least-Significant-one(γ̃)
10. t = t− 1
11. For each i ∈ [0, t− 1]

12. Gi = {(0, 0, 0, 0), (0, 1, 0, 0)}
13. Gt = {(0, 0, 0, 0), (0, 1, 0, 1)}
14. if t = n− 2, Go to Step 28
15. β′ = (1, 1, · · · , 1, β′t+1 = 1, 0, 0, · · · , 0)
16. γ̃′ = O(β′)
17. Gt+1 = {(0, 0, 0, 0), (0, 1, 1, γ̃t+2), (0, 1, 0, γ̃′t+2)}
18. if t = n− 3, Go to 28
19. For each i ∈ [2, n− t− 2], in increasing order

20. if γ̃t+i == γ̃′t+i == 1
21. β′ = (1, 1, · · · , 1, β′t+i−1 = 0, 0, · · · , 0)
22. γ̃′ = O(β′), Go to Step 27

23. if γ̃t+i == γ̃′t+i == 0
24. if γ̃t+i−1 = 1 swap ((β, γ̃), (β′, γ̃′))
25. β′ = (β′n−1, · · · , β′t+i, β′t+i−1 = 0, β′t+i−2, · · · , β′0)
26. γ̃′ = O(β′)

27. Gt+i = {(0, 0, 0, 0), (0, 1, γ̃t+i, γ̃t+i+1), (0, 1, γ̃′t+i, γ̃′t+i+1)}
28. Using the table T , collect all (xi, yi, ci) corresponding to Gi in list Li

29. Return the set {Li|i ∈ [0, n− 2]}.

Fig. 1. An Algorithm to solve the equation (x+y)⊕ (x+(y⊕β)) = γ with an optimal
number of queries.
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Correctness of Algo1: To show that Algo1 (see Fig. 1) is correct we only
need show that the computed Li corresponds to oracle output A = D̃,
∀ i ∈ [0, n − 2], since there exists an algorithm to determine the corre-
sponding D-satisfiable from the computed Li’s with finite time and mem-
ory without any extra query (see Proposition 3). We prove the correctness
of Algo1 by considering all possible cases individually.

1. When n ≤ 0, Algo1 correctly returns “Invalid Input” (see line 1).
2. When n = 1, Algo1 returns an empty set (see line 2). This empty set

is an indicator showing D-satisfiable= {(0, 0), (0, 1), (1, 0), (1, 1)}.
Therefore, Algo1 is correct for n = 1 (see Theorem 3). We will later
see that the algorithm never returns an empty set for n > 1.

3. When n > 1 and the oracle outputs γ̃ = 0 on query β = (1, 1, · · · ,
1, 1)n then the seed of the oracle (x, y) is such that the least (n−1) bits
of x are each zero. Then from Lemma 1 and (16), Gi = {(0, 0, 0, 0),
(0, 1, 0, 0)}, ∀ i ∈ [0, n − 2]. Therefore, Algo1 determines the Gi’s
that correspond to the oracle output A = D̃ (line 7). Hence, the Li’s,
computed in line 28, also correspond to the oracle output A = D̃.

4. When n > 1 and the oracle output γ̃ 6= 0 on query β = (1, 1, · · · ,
1, 1)n, then line 9 and 10 compute the position of the least significant
‘1’ of x (denoted by t). Line 12 and 13 compute Gi ∀ i ∈ [0, t]. Using
Table 1, Lemma 1 and 2 it can be shown that Gi ∀ i ∈ [0, t] correspond
to oracle output A = D̃. Hence, Li ∀ i ∈ [0, t] are also correct.
– If t = n− 2 then the construction of Li ∀ i ∈ [0, n− 2] is complete
(line 14).
– If n − 2 > t then a second query β′ = (1, 1, · · · , 1, β′t+1 =
1, 0, · · · , 0) is submitted (line 15 and 16). Now, Gt+1 = {(0, 0, 0,
0), (0, 1, 1, γ̃t+2), (0, 1, 0, γ̃′t+2)} (line 17). Note that the size of Gt+1

is less than what it should be if constructed from the oracle output
A = D̃ (see (17)). Now, we observe an interesting property of Ta-
ble 1. If we choose any two columns from Col(1), Col(2) and Col(3),
we see that each row of the partially specified table is unique. There-
fore, Gt+1 corresponds to exactly one row in Table 1. Note that (17)
requires that Gt+1 correspond to a single row in Table 1. Therefore,
Lt+1, constructed from Gt+1, also corresponds to the oracle output
A = D̃. If t = n − 3, then the construction of Li ∀ i ∈ [0, n − 2] is
complete (see line 18).
– If n − 3 > t then a loop between lines 19 and 27 is executed. The
jth iteration of the loop determines Gt+2+j (iterations are numbered
0, 1, 2, and so on). The execution continues till Gn−2 is evaluated. At
the start of every iteration, oracle outputs on exactly two queries are
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known. At the start of jth iteration let the queries and the correspond-
ing outputs be (β, γ̃) and (β′, γ̃′). Note that βt+1+j = β′t+1+j = 1
and γ̃t+1+j 6= γ̃′t+1+j . Now there are three possible cases. Case 1: If
γ̃t+2+j = γ̃′t+2+j = 1 then a new query β′ = (1, 1, · · · , 1, β′t+i−1 =
0, 0, · · · , 0) is submitted and the corresponding oracle output γ̃′ is
collected (see line 21 and 22). It is clear from β′ that γ̃′t+2+j = 0.
As a result, we get βt+2+j = β′t+2+j = 1 and γ̃t+2+j 6= γ̃′t+2+j .
Now, we determine Gt+2+j = {(0, 0, 0, 0), (0, 1, 1, γ̃t+3+j), (0, 1, 0,
γ̃′t+3+j)} (see line 27). As argued in the earlier case Lt+2+j , corre-
sponding to Gt+2+j , also corresponds to the entire set of oracle out-
puts A = D̃. Case 2: If γ̃t+2+j = γ̃′t+2+j = 0 then a new query
β′ = (1, 1, · · · , 1, β′t+1+j = 0, β′t+j , · · · , β′0) is submitted (the cor-
responding output is γ̃′), assuming γ̃t+1+j = 0 without loss of gen-
erality (see line 25). Now, from Row(2) of Table 1 (consider only
the first four columns as they are only relevant for the equation in
discussion) γ̃′t+2+j = 1. Therefore, Gt+2+j = {(0, 0, 0, 0), (0, 1, 1,
γ̃′t+3+j), (0, 1, 0, γ̃t+3+j)} and Lt+2+j is correct (argument is similar
as before that Gt+2+j refers to a unique row in Table 1). Case 3: If
γ̃t+2+j 6= γ̃′t+2+j then the execution jumps to line 27 and the computed
Gt+j+2 = {(0, 0, 0, 0), (0, 1, γ̃t+j+2, γ̃t+i+3), (0, 1, γ̃′t+j+2, γ̃′t+j+3)}.
Therefore, Lt+2+j corresponds to D̃.

Thus, for any n and t, Algo1 constructs Li, ∀ i ∈ [0, n− 2] (as defined in
Proposition 3), that corresponds to the entire set of oracle output A = D̃.
Therefore, Algo1 correctly solves (5).

Correctness of Algo2: The correctness of Algo2 (see Fig. 2) is proved
the same way as Algo1 is proved. We will only verify whether Algo2 com-
putes Li corresponding to oracle output A = D̃ ∀ i ∈ [0, n − 2] (see
Proposition 3 for a method to construct Li). The solutions for n ≤ 1
are given in line 1 and 2 (an explanation is similar to that for Algo1).
Now we take a closer look at the first two queries (a, b) = ((11 · · · 11)n,
(00 · · · 00)n) and (c, d) = ( (· · · 101010)n, (· · · 010101)n) and their cor-
responding outputs γ̃ and γ̃′ (see line 3 and 5). Note that if i is even then
Gi is of the following form,

Gi = {(1, 0, γ̃i, γ̃i+1), (0, 1, γ̃′i, γ̃′i+1)} . (20)

If i is odd then Gi is of the following form,

Gi = {(1, 0, γ̃i, γ̃i+1), (1, 0, γ̃′i, γ̃′i+1)} . (21)
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Algo2(Input: Oracle O, n, Table T ; Output: a set of lists)

1. If n ≤ 0 then exit with a comment {“Invalid Input”}.
2. If n = 1 then return an empty set {} and exit.
3. (a, b) = ((11 · · · 11)n, (00 · · · 00)n)
4. γ̃ = O(a, b)
5. (c, d) = ((· · · 101010)n, (· · · 010101)n)
6. γ̃′ = O(c, d)
7. For each i ∈ [0, n− 2]

8. Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃′i+1)}
9. For each i ∈ [0, n− 2]

10. Using table T , extract all possible (xi, yi, ci) corresponding to Gi and store
it in Li

11. If |Li| = 2 for all i ∈ [0, n− 2] then Go to step 27
12. For each i ∈ [0, n− 2] and i even

13. if |Li| = 4 then collect (xi−1, yi−1, 0) from Li−1 and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1

14. Select (αi−1, βi−1) from T such that (xi−1, yi−1, 0) corresponds
to both (αi−1, βi−1, 0, γ̃i) and (αi−1, βi−1, 1, γ̃i)

15. (ci−1, di−1) = (αi−1, βi−1)
16. For each i ∈ [0, n− 2] and i odd

17. if |Li| = 4 then collect (xi−1, yi−1, 0) and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1

18. Select (αi−1, βi−1) from T such that (xi−1, yi−1, 0) corresponds
to both (αi−1, βi−1, 0, 1⊕ γ̃i) and (αi−1, βi−1, 1, 1⊕ γ̃i)

19. (ci−1, di−1) = (αi−1, βi−1)
20. γ̃′ = O(c, d)
21. For each i ∈ [0, n− 2]

22. Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃′i+1)}
23. For each i ∈ [0, n− 2]

24. Using table T , extract all possible (xi, yi, ci) corresponding to Gi and store
it in L′i

25. For each i ∈ [0, n− 2]
26. If |Li| = 4, then assign Li = L′i

27. Return the set {Li|i ∈ [0, n− 2]}.

Fig. 2. An Algorithm to solve the equation (x + y)⊕ ((x + α) + (y ⊕ β)) = γ with an
optimal number of queries.
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From (18), Gi ∀ i ∈ [0, n− 2] should correspond to exactly one row in
Table 1. Now, we observe two interesting properties of Table 1. Firstly,
in (20), γ̃i 6= γ̃′i implies and is implied by the fact that Gi corresponds
to two rows of Table 1. Similarly, in (21), γ̃i = γ̃′i implies and is implied
by the fact that Gi corresponds to two rows of Table 1. Secondly, if Gi

corresponds to two rows then Gi−1 corresponds to exactly one row. The
reason is, if i is even then γ̃i−1 6= γ̃′i−1; if i is odd then γ̃i−1 = γ̃′i−1.

Based on these observations, we construct Gi and Li ∀ i ∈ [0, n − 2]
(see line 7, 8, 9, 10). Note that if Gi refers to only one row of Table 1, then
|Li| = 2 and vice-versa. Similarly, if Gi refers to two rows of Table 1, then
|Li| = 4 and vice-versa. After submission of the first two queries (a, b)
and (c, d) if Gi corresponds to only one row (or |Li| = 2) ∀ i ∈ [0, n− 2]
then our job is done (see line 11). If |Li| = 4 for some i ∈ [0, n− 2] then
we will submit a third query by modifying the query (c, d) according to
the rules described in lines 12 to 15 and lines 16 to 19 (see Fig. 2). Now we
take the oracle output γ̃′ = O(c, d) (line 20). The query (c, d) is selected
in such a way that, if |Li| = 4 for an even i then γ̃i = γ̃′i (see line 14 and
15); if |Li| = 4 for an odd i then γ̃′i = 1 ⊕ γ̃i (see line 18 and 19). We
now, construct Gi and L′i using queries (a, b), (c, d) and the outputs γ̃
and γ̃′ (see lines 21 to 24). Clearly, if |Li| = 4 then |L′i| = 2. We replace
all |Li| = 4 with Li = L′i (line 25 and 26). Now, |Li| = 2 ∀ i ∈ [0, n − 2]
(note that (18) enforces |Li| = 2 ∀ i ∈ [0, n−2]. Finally, we conclude that
Algo2 is correct as it computes Li, ∀ i ∈ [0, n − 2], that are compatible
with the entire set of oracle output A = D̃.

Theorem 8. The worst case lower bounds on the number of queries, as
derived in Theorem 6 and 7, to solve (5) and (3) respectively, are optimal.

Proof. The claim can be easily verified from Algo1 and Algo2. See Ap-
pendix A.8 for a proof. ut

Asymptotic Time and Memory: For Algo1, the memory and the time
are θ(n) and O(n2) (the oracle takes O(n)-time to compute γ̃). For Algo2,
the memory and the time are θ(n) each.

4 Improving an Attack on the Helix Stream Cipher

Helix, proposed by Ferguson et al. [3], is a stream cipher with a combined
MAC functionality. The primitive uses combination of addition and XOR
to generate pseudorandom bits. Recently a differential attack was found
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against Helix by Muller [10]. They solved the equation (x+y)⊕ (x+(y⊕
β)) = γ many times for (x, y) to recover secret information (x, y) using β
and the corresponding γ. Every time β corresponds to a chosen plaintext.
The algorithm used requires 3(n − 1) queries every time. Therefore, the
most natural challenge, from an algorithmic point of view, is to reduce the
number of queries and if possible to attain an optimality. For the Helix
output word n = 32 bits, they required 93 queries whereas Algo1 (see
Fig. 1) takes at most 31 queries when the position of the least significant
‘1’ of x (denoted by t) is zero. Note that, if t > 0 then the number of
queries is less. However, the most important fact is that the number of
queries cannot be further reduced in the worst case as our algorithm is
worst case optimal. This fact can be straightaway used to reduce the
data complexity of that particular attack on Helix cipher by, at least, a
factor of 3 without exploring other possibilities to reduce the data further.
However, in the best case, there exists seed (x, y) ∀ t ∈ [0, n−3] for which
(5) can be solved by Algo1 with only 2 queries and the improvement in
such case is a factor of 46.5.

5 Conclusion and Further Research

The paper seals any further search to improve lower bounds on the num-
ber of queries for solving differential equations of addition. Although the
total number of queries grow exponentially, an optimal lower bound is
linear for one of them and constant for the other (not to mention that
our algorithm reduces the number of queries of the previous best known
algorithm). Our results improve the data complexity of an attack on Helix
cipher. Apart from achieving these results the authors believe that the
most important contribution of this paper is the application of an elegant
combinatorial relation among input bits and carry bits which is tabulated
in Table 1. Such a belief is justified by the fact that, using Table 1, just by
investigating a single query, we are able to derive all the differential prop-
erties of addition, described in [8] (e.g. differential probability of addition,
maximal differentials, impossible differentials, density of impossible dif-
ferentials) arguably more easily. However, we leave detailed analysis of
these issues as future work because of the limited scope of this paper.
Last but not the least, our solution techniques motivate further research
to solve more complex equations that mix modular addition, exclusive-or,
modular multiplication and T -functions.
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A Appendix

A.1 Proof of Proposition 2

Claim. (Size of A-consistent) Let φ ⊂ A ⊆ D̃ and S denote the size of
A-consistent. Then,

S =

{
4 ·∏n−2

i=0 Si if n > 1,

4 if n = 1.

The Si’s are defined in (15).

Proof. Case 1: When n > 1. Let Gi be computed corresponding to a
nonempty set of oracle output A ⊆ D̃ ∀ i ∈ [0, n − 2] following the
method described in Sect. 3.1. Let S denote the number of all possible
solutions for (x, y) ∈ Zn

2 × Zn
2 that correspond to G0, G1, · · · , Gn−2

(i.e., (xi, yi, ci) corresponds to every element in Gi, i ∈ [0, n− 2]). From
Theorem 2, S is the size of A-consistent. Let Mk denote the number
of all possible solutions for ((xk, · · · , x0), (yk, · · · , y0)) that correspond
to G0, G1, · · · , Gk where k ∈ [0, n − 2]. Note that, for a given set of
submitted queries, Gk depends only on ((xk, · · · , x0), (yk, · · · , y0)).
Case 1(a): When n > 2 . We determine the size of the set A-consistent
recursively. Let Mi = Mi, 0+Mi, 1 such that Mi, 0 solutions produce ci+1 =
0 and Mi, 1 solutions produce ci+1 = 1. Therefore, ∀ i ∈ [0, n− 3]

Mi+1 = Mi, 0 · Si+1, 0 + Mi, 1 · Si+1, 1

= Si+1 ·Mi . (22)

as Si, 0 = Si, 1 ∀ i ∈ [0, n − 2] (see Proposition 1). It is easy to show (a
proof is by contradiction) that Mi+1, so calculated, gives the number of
all possible solutions for ((xi+1, · · · , x0), (yi+1, · · · , y0)) that correspond
to G0, G1, · · ·Gi+1. From (22),

Mn−2 =
n−2∏

i=0

Si (23)

as M0 = S0. Note that, for all (α, β, γ̃) ∈ A, γ̃ is independent of
(xn−1, yn−1). Therefore,

S = 4 ·
n−2∏

i=0

Si if n > 2. (24)

Case 1(b): When n = 2 . It is easy to show that S = 4 · S0 if n = 2 .
Case 2: When n = 1 . It is trivial to show that S = 4 if n = 1 since for
all (α, β, γ̃) ∈ A, γ̃ is independent of (xn−1, yn−1) . ut
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A.2 Proofs of Lemma 1 and 2

Claim. For each (0, β, γ̃) ∈ D̃, γ̃i = 0 ∀ i ∈ [0, t].

Proof. If the position of the least significant ‘1’ of x is t then ci = c̃i = 0
∀ i ∈ [0, t] and ∀β ∈ Zn

2 (see (10), (11) and (12)). Recall γ̃i = ci⊕ c̃i. This
proves the lemma. ut
Claim. For each i ∈ [t + 1, n− 1], there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

Proof. We prove the lemma by induction on i. Suppose, the statement
is true when i = k for some k ∈ [t + 1, n − 2], that is, there exists
(0, a, b) ∈ D̃ with bk = 1 (induction hypothesis). The statement is true
when i = t+1. Select (0, m, n) ∈ D̃ with mt = 1. Now, the carry bits, as
defined in Sect. 3.1, ct = c̃t = 0 and xt = 1 which implies nt+1 = 1. We
construct three n-bit integers from a,

1. a′ = (an−1, an−2, · · · , ak+1, 0, ak−1, · · · , a0)
2. a′′ = (an−1, an−2, · · · , ak+1, 1, ak−1, · · · , a0)
3. a′′′ = (an−1, an−2, · · · , ak+1, 1, 0, 0, · · · , 0).

Now we select three elements (0, a′, b′), (0, a′′, b′′), (0, a′′′, b′′′) ∈ D̃ (such
elements exist since, for all p ∈ Zn

2 , there exists (0, p, q) ∈ D̃ for some
q ∈ Zn

2 ). Note that b′k = b′′k = bk = 1 and b′′′k = 0. From Table 1, at least
one of b′k+1, b′′k+1 and b′′′k+1 is 1. This proves the lemma. ut

A.3 Proof of Theorem 5

Claim. (Relation between Gi and the size of A-consistent) We consider
the equation

(x + y)⊕ (x + (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n− 2 > t ≥ 0.
Let φ ⊂ A ⊆ D̃ and, for some i ∈ [t + 1, n − 2], Gi contains no element
(0, βi, γ̃i, ˜γi+1) with γ̃i = 1. Then the size of A-consistent is 2t+3+k where
k > 0.

Proof. Without loss of generality, assume Gl contains no element (0, ql,
rl, rl+1) with rl = 1, l ∈ [t + 1, n − 2]. Therefore, the set Gl is of one of
the following forms,

Gl = {(0, 0, 0, a)} or {(0, 0, 0, a), (0, 1, 0, b)}.
Now, from Table 1, Sl = 2k for either of the cases, where k > 0. Similarly,
using Lemma 1, Si ≥ 2 ∀ i ∈ [0, t]. Also Si ≥ 1 ∀ i ∈ [t + 1, n − 2].
Therefore, from Proposition 2, the size of A-consistent is 2t+3+k where
k > 0. ut
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A.4 Proof of Lemma 3

Claim. Let n − 2 > t ≥ 0. For any adaptively selected sequence of two
queries, there exists (x, y) ∈ Zn

2 × Zn
2 such that Gi contains no element

(0, qi, ri, ri+1) with ri+1 = 1 ∀ i ∈ [t + 1, n− 2].

Proof. Let the first two queries and the corresponding oracle outputs be
(0, β), (0, β′), γ̃ and γ̃′. Depending only on the tth bit of β and β′, the
oracle returns outputs (i.e., γ̃ and γ̃′) according to the following rules.

1. If βt = 0 then the oracle returns γ̃ = (0, 0, · · · , 0)n.
2. If βt = 1 then γ̃t+1 = 1 and all other bits of γ̃ are zero.
3. If β′t = 0 then the oracle returns γ̃′ = (0, 0, · · · , 0)n.
4. If β′t = 1 then γ̃′t+1 = 1 and all other bits of γ̃′ are zero.

Under any of the above input-output combinations one can find from
Table 1 that Si ≥ 1 for all i ∈ Zn−1. Therefore, from Proposition 2,
the number of solutions for (x, y) under any of the above input-output
combinations is at least 4. This proves the lemma. ut

A.5 Proof of Proposition 3

Claim. Let Gi, constructed from the oracle output A = D̃, be known
∀ i ∈ [0, n − 2] (n > 1). Let Li contain all triples (xi, yi, ci) such that
each triple corresponds to all elements of Gi in Table 1. Let a set M be
constructed from the Li’s in the following way,

M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0))
|(xn−1, yn−1) ∈ Z2

2, (xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0,

ci+1 = xiyi ⊕ xici ⊕ yici}.

Then (i) M is D-satisfiable; (ii) there exists an algorithm such that D-
satisfiable can be constructed from the Li’s with memory n · 2O(n) and
time 2O(n).

Proof. (i) From Theorem 2 and 1,

(a, b) ∈ M ⇒ (a, b) ∈ D̃-consistent ⇒ (a, b) ∈ D-satisfiable. (25)

Now from Lemma 1, 2, Proposition 2 and Table 1 it is easy to see that
the size of M is
1) 2t+3 if n− 1 > t ≥ 0,
2) 2n+1 otherwise,
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where t denotes the position of the least significant ‘1’ of x and the pair
(x, y) is the seed of the oracle which outputs D̃.

The above results together with Theorem 3 show that M = D-
satisfiable.
(ii) First we set

M1 = {((c1), (x0), (y0))|(x0, y0, 0) ∈ L0, c1 = x0y0} .

Now we construct a set Mk ∀ k ∈ [2, n− 1] using the following recursion.

Mk = {((ck), (xk−1, · · · , x0), (yk−1, · · · , y0))|(xk−1, yk−1, ck−1) ∈ Lk−1,

((ck−1), (xk−2, · · · , x0), (yk−2, · · · , y0)) ∈ Mk−1, ck = xk−1yk−1 ⊕ xk−1ck−1 ⊕ yk−1ck−1}.
Now, we construct

Mn = {((xn−1, · · · , x0), (yn−1, · · · , y0))|(xn−1, yn−1) ∈ Z2
2,

((cn−1), (xn−2, · · · , x0), (yn−2, · · · , y0)) ∈ Mn−1}.
It is easy to see that M = Mn. Note that the size of each Li is O(1)
since the size of the Table 1 is O(1). Also note that the size of Mn is
2O(n) and therefore the asymptotic memory requirement to construct Mn

recursively following the above algorithm is n · 2O(n) since k = O(n) and
Mk+1 can be constructed from Mk only. It is trivial to show that the
time to construct Mn (i.e., M) from the Li’s is 2O(n) (assuming copying
and deleting takes O(1)-time). Thus, the set M can be constructed from
the Li’s with memory n · 2O(n) and time 2O(n). From the first part of the
proposition we already know that M = D-satisfiable. ut

A.6 Proof of Lower Bound for (3)

Claim. A lower bound on the number of queries (α, β) to solve

(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn
2 × Zn

2 is
(i) 3 when n > 2,
(ii) 2 when n = 2,
(iii) 0 when n = 1.

Proof. (i) When n > 2. Let the first two queries and the corresponding
oracle outputs be (α, β), (α′, β′), γ̃ and γ̃′. Depending on the two least
significant bits of α, β, α′ and β′, the oracle returns outputs (i.e., γ̃ and
γ̃′) according to the following rules.
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1. If (α0, β0) = (0, 0) then γ̃ = (0, 0, · · · , 0)n.
2. If (α0, β0) 6= (0, 0) and (α1, β1) = (1, 1) then γ̃ = (1, 1, · · · , 1, 0)n.
3. If (α0, β0) 6= (0, 0) and (α1, β1) 6= (1, 1) then γ̃ = (0, 0, · · · , 0)n.
4. If (α0, β0) = (α′0, β′0) then γ̃ = γ̃′.
5. If (α0, β0) 6= (α′0, β′0) = (0, 0) then γ̃′ = (0, 0, · · · , 0)n.
6. If (α0, β0) 6= (α′0, β′0) 6= (0, 0) and (α′1, β′1) = (0, 0) then γ̃′ =

(0, 0, · · · , 0)n.
7. If (α0, β0) 6= (α′0, β′0) 6= (0, 0) and (α′1, β′1) = (1, 1) then γ̃′ =

(1, 1, · · · , 1, 0)n.
8. If (α0, β0) 6= (α′0, β′0) 6= (0, 0), (α′1, β′1) ∈ {(0, 1), (1, 0)} and (α1, β1)

= (α′1, β′1) then γ̃′ = (0, 0, · · · , 0)n.
9. If (α0, β0) 6= (α′0, β′0) 6= (0, 0), (α′1, β′1) ∈ {(0, 1), (1, 0)} and (α1, β1)
6= (α′1, β′1) then γ̃′0 = 0 and γ̃′i = 1⊕ γ̃i for all i ∈ [1, n− 1].

From the oracle outputs produced according to the above rules on the
first two queries, one can show, using Table 1, that one of the following
cases occurs.

1. S0 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].
2. S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].
3. S0 ≥ 2, S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

Clearly, for any of the above cases, the number of valid solutions S, derived
from the results of the queries, is at least 8 which is not the case with
this equation (see Theorem 4). Therefore, a lower bound on the number
of queries in the worst case is 3.
(ii) When n = 2. Using Table 1, a proof is similar to the proof for (i).
(iii) When n = 1. A proof is trivial. ut

A.7 Examples

Example 1. (D-satisfiable) Suppose n = 2 and therefore, x, y, α, β, γ ∈
Z2

2 × Z2
2. The oracle receives (α, β) and computes γ = (x + y) ⊕ ((x ⊕

α) + (y ⊕ β)) and returns γ to the adversary. For example, let the oracle
return γ = (1, 0) for (α, β) = ((0, 0), (0, 1)). There are at most 16 values
of (α, β) (therefore, at most 16 queries an adversary can submit to the
oracle) and for each (α, β) the oracle returns a γ. Now, the set D (as
defined in (7)) contains all 16 triples (α, β, γ). Therefore, the set D-
satisfiable (as defined in (8)) contains all possible values of (x, y) such
that each (x, y) generates the same set D. ut
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Example 2. (Si, 0, Si, 1) Suppose, after submission of a few queries to the
oracle the adversary constructs a nonempty set A ⊆ D̃. Let n = 3 and
A = {((0, 1, 0), (1, 0, 1), (0, 0, 0)), ((0, 0, 0), (1, 1, 1), (1, 0, 0)), ((0,
0, 1), (0, 1, 1), (1, 1, 0))}. Therefore, G0 = {(0, 1, 0, 0), (1, 1, 0, 1)},
G1 = {(1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)} (see (14)). Now, from Ta-
ble 1, G0 and G1 correspond to Row(0) and Row(3) respectively. Thus,
S0, 0 = S0, 1 = 1,S1, 0 = S1, 1 = 1. ut

A.8 Proof: Lower Bounds are Optimal

Claim. The worst case lower bounds on the number of queries, as derived
in Theorem 6 and 7, to solve (5) and (3) respectively, are optimal.

Proof. The upper bound on the number of queries required by Algo1 (see
Fig. 1) is (i) 0 when n = 1 (see line 2); (ii) 1 when n = 1+t and t > 0 (the
required query is shown in line 3); (iii) 1 when x = 0 and n > 1 (the only
required query is shown in line 3); (iv) (n− t−1), when n−1 > t ≥ 0 and
t is the position of the least significant ‘1’ of x (the position is determined
in line 10). The first two queries are shown in line 3 and 15. The loop in
lines 19 to 27 requires a maximum of (n− t− 3) queries. Note that each
iteration submits at most one query in either line 22 or 26. Therefore, the
lower bound computed in Theorem 6 is optimal.

The upper bound on the number of queries required by Algo2 (see
Fig. 2) is (i) 0 when n = 1 (see line 2); (ii) 2 when n = 2 (one can
show from Table 1 that, for n = 2, on the queries shown in lines 3 and 5,
|L1| = 2 and consequently a third query is not required); (iii) 3 when
n > 2 (third query is submitted in line 20). Therefore, the lower bound
computed in Theorem 7 is optimal. ut
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