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Abstract

Mixing addition modulo 2n (+) and exclusive-or (⊕) has a host of applications in symmetric
cryptography as the operations are fast and nonlinear over GF(2). We deal with a frequently
encountered equation (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ. The difficulty of solving an arbitrary
system of such equations – named differential equations of addition (DEA) – is an important
consideration in the evaluation of the security of many ciphers against differential attacks. This
paper shows that the satisfiability of an arbitrary set of DEA – which has so far been assumed
hard for large n – is in the complexity class P. We also design an efficient algorithm to obtain
all solutions to an arbitrary system of DEA with running time linear in the number of solutions.
Our second contribution is solving DEA in an adaptive query model where an equation is formed
by a query (α, β) and oracle output γ. The challenge is to optimize the number of queries to
solve (x+y)⊕ ((x⊕α) + (y⊕β)) = γ. Our algorithm solves this equation with only 3 queries in
the worst case. Another algorithm solves the equation (x+y)⊕(x+(y⊕β)) = γ with (n− t−1)
queries in the worst case (t is the position of the least significant ‘1’ of x), and thus, outper-
forms the previous best known algorithm by Muller – presented at FSE ’04 – which required
3(n− 1) queries. Most importantly, we show that the upper bounds, for our algorithms, on the
number of queries match worst case lower bounds. This, essentially, closes further research in
this direction as our lower bounds are optimal. Finally we describe applications of our results
in differential cryptanalysis.
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1 Introduction

Addition modulo 2n. Mixing addition modulo 2n (+) with other Boolean operations such as
exclusive-or (⊕), or (∨) and/or and (∧) is extensively used in symmetric cryptography. The
main motivation for including addition mod 2n in cryptographic primitives is that it is a nonlinear
transformation over GF(2) and the operation is extremely fast on all present day architectures.
Nonlinear transformations are of paramount importance in the design of ciphers as they make
functions hard to invert. Helix [FW+03], IDEA [LM+91], Mars [BC+98], RC6 [RR+99], and Twofish
[SK+99] which mix modular addition with exclusive-or are a few examples of the application of
addition. Very recently Klimov and Shamir also used an update function for internal state, known
as a T -function, where addition is mixed with multiplication and or in a certain fashion to achieve
many useful properties of a secure stream cipher [KS04, KS03].

Keeping with the trend of widespread use of addition in symmetric ciphers, there is a large
body of literature that studies equations involving addition from many different angles. Staffelbach
and Meier investigated the probability distribution of the carry for integer addition [SM90]. Wallén
explained the linear approximations of modular addition [Wal03]. Lipmaa and Moriai [LM02] in-
vestigated the equation (x+ y)⊕ ((x⊕ α) + (y⊕ β)) = γ, where α, β are the input differences and
γ is the output difference, to compute many differential properties. The dual of the above equation
(x⊕y)+((x+α)⊕(y+β)) = γ was investigated for differential properties by Lipmaa et al. [LW+04].

Differential Cryptanalysis (DC). Differential Cryptanalysis, introduced by Biham and Shamir
[BS91], is one of the most powerful attacks against symmetric ciphers. There are broadly two lines
of attacks based on DC. One is guessing input or output differences of a cipher with nontrivial
probability. In a cipher that is secure against DC, input and output differences should behave
‘pseudorandomly’, so that none of them can be guessed from any known values with a nontrivial
probability. This line of attack usually results in distinguishing attacks [YB+04]. A second line of
attack is much stronger but more difficult to implement than the other. It recovers secret infor-
mation from known input and output differences, akin to the algebraic attacks [Mul04]. Note that
this second line of attack implies the first but the converse is not true. Therefore, provable security
against DC – introduced by Lai et al. [LM+91] and first implemented by Nyberg and Knudsen
[NK91] – remained a key factor in the evaluation of the security of a cipher. However, security of
many complex modern ciphers against DC is hard to evaluate because of lack of theory to evaluate
the security of its components. Our target is to mount a second line of attack (i.e., to recover secret
information) on the much used symmetric cipher component addition modulo 2n.

Results of the Paper. There are two basic addition equations under DC where differences
of inputs and outputs are expressed as exclusive-or.

(x+ y)⊕ (x+ (y ⊕ β)) = γ , (1)
(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ . (2)

These equations are named differential equations addition (DEA). While engaged in cryptanalysis of
MD5, Berson noted in 1992 that, for large n, it is hard to analyze modular addition when differences
are expressed as XOR [Ber92]. This may have motivated the use of addition in conjunction with
XOR in many symmetric ciphers to increase resistance against DC.

In this paper we show that the satisfiability of a randomly generated set of DEA is in the
complexity class P. In other words, a Turing machine can show in O(nk) time whether there exists
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a solution to an arbitrary set of DEA (n denotes the bit-length of x, y and k > 0 is an integer-valued
constant computed from the degree of the polynomial (in n) by which the number of equations to
be solved is bounded above). This result, on one hand, gives deeper insight into the behavior of
addition under DC. On the other hand this leaves a cautionary note for the cryptographers to be
more careful about using addition in the design. Outside cryptography, satisfiability of a system
of equations has a natural appeal to many areas such as computational complexity, combinatorics,
circuit optimization and computer algebra (remember the most famous NP-Complete satisfiability
problem: Boolean formula satisfiability [CL+90]). For example, if a large system of DEA is NOT
satisfiable then the whole circuit representing the system of DEA can be safely removed to optimize
the circuit complexity. Going beyond the satisfiability problem, we also give an efficient algorithm
to compute all the solutions to a randomly generated system of DEA with running time linear in
the number of solutions. Another subtle but a noteworthy aspect of our work is the departure
from the traditional technique for solving multivariate polynomial equations over GF(2) [AL95].
We heavily benefit from certain properties of DEA and solve such systems combinatorially.

Next, we extend our work to solve DEA in a crypto-friendly adaptive query model. The aim
is to minimize the search space for the secret (x, y) using a minimum number of adaptive queries
(α, β). Such an optimization problem – typically used to reduce data complexity of chosen plaintext
attacks – for (1) has already been tackled by Muller [Mul04]. But an optimal solution has been
elusive until now. We achieve optimal solutions for both of the equations. We show that a worst
case lower bound on the number of queries (0, β) to solve (1) is (n− t− 1) where (n− t) > 1 with
t being the bit-position of the least significant ‘1’ of x. A worst case lower bound on the number
of queries (α, β) to solve (2) is 3 for n > 2. Most importantly, for solving the above equations
we also design algorithms whose upper bounds on the number of queries match worst case lower
bounds. Note that our algorithm outperforms the previous best known algorithm by Muller to
solve (1) – presented at FSE ’04 – which required 3(n − 1) queries [Mul04]. Over and above, our
results essentially close further investigation in this particular direction as the equations are solved
with an optimal number of queries in the worst case. It is particularly interesting to note that,
for (2), although the number of all queries grows exponentially with the input size n, an optimal
lower bound to solve (2) is 3 for all n > 2, i.e., constant asymptotically.

Our results on modular addition have the potential to be used either directly in the cryptanalysis
of ciphers that include this special component or to facilitate cryptanalysis of several modern ciphers
(e.g., mixing addition with multiplication). We show that, with a maximum of only 3 adaptively
chosen queries, the search space of the secret of modular addition against DC can be reduced from
22n to only 4 for all n ≥ 1. We used our results to cryptanalyze a recently proposed cipher Helix
[FW+03] which was a candidate for consideration in the 802.11i standard. We are successful in
reducing the data complexity of a DC attack on the cipher by a factor of 3 in the worst case (a factor
of 46.5 in the best case) [Mul04]. In addition, using our algorithm to solve DEA, as discussed above
we are able to compute all the differential properties of addition by investigating a single equation
(note that the differential properties of addition have been independently found by Lipmaa and
Moriai using a different technique [LM02]).

1.1 Notation and Model of Computation

The purpose of the paper is to solve (1) and (2) for (x, y) using triples (α, β, γ) where x, y, α, β, γ ∈
Zn2 . The ith bit of an n-bit integer l is denoted by li (l0 denotes the least significant bit or the
0th bit of l). The operation addition modulo 2n over Z2n can be viewed as a binary operation
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over Zn2 (we denote this operation by ‘+’) using the bijection that maps (ln−1, · · · , l0) ∈ Zn2 to
ln−12n−1+· · · + l020 ∈ Z2n . Therefore ‘+’ is a function ‘+’: Zn2×Zn2 → Zn2 . The symbols ‘⊕’ and ‘∧’
denote the operations bit-wise exclusive-or and bit-wise and of two n-bit integers respectively. We
will denote a ∧ b by ab. Throughout the paper, [p, q] denotes a set containing all integers between
the integers p and q including both of them. Unless otherwise stated, n denotes a positive integer.
The size of a set S is denoted by |S|.

The algorithms, described in this paper, can be implemented on a generic one-processor Random
Access Machine (RAM) (i.e., instructions are executed sequentially) whose memory is composed
of an unbounded sequence of registers each capable of containing an integer. Typically, RAM in-
structions consist of simple arithmetic operations (addition and bitwise XOR in our case), storing,
addressing (direct and indirect) and branching, each of which is a constant time operation. How-
ever, the choice of RAM instructions is relatively less important because algorithms based on two
reasonable sets of instructions will have the same asymptotic complexity. A detailed analysis of
RAM can be found in [AH+, FB]. It can be shown that a polynomial-time solvable problem on a
RAM is also polynomial-time solvable on a Turing Machine and vice versa.

2 Solving an Arbitrary System of DEA

Our aim is to solve for (x, y) from the following set of differential equations of addition over Zn2 ,

(x+ y)⊕ ((x⊕ α[k]) + (y ⊕ β[k])) = γ[k] , k = 1, 2 · · ·m. (3)

We observe that the ith bit of γ[k] can be written as

γ[k]i = xi ⊕ yi ⊕ ci ⊕ x̃i ⊕ ỹi ⊕ c̃i, i ∈ [0, n− 1] , (4)

where x̃i = xi ⊕ α[k]i and ỹi = yi ⊕ β[k]i and ci, c̃i are computed from the following recursion,

c0 = c̃0 = 0, cj+1 = xjyj ⊕ xjcj ⊕ yjcj , c̃j+1 = x̃j ỹj ⊕ x̃j c̃j ⊕ ỹj c̃j , j ∈ [0, n− 2] . (5)

Thus we see that γ[k]i is a function of the least (i+ 1) bits of x, y, α[k] and β[k]. More formally,

γ[k]i = Fi(x0, · · · , xi, y0, · · · , yi, α[k]0, · · · , α[k]i, β[k]0, · · · , β[k]i) . (6)

Therefore, from a system of m differential equations of addition, a total of mn multivariate poly-
nomial equations over GF(2) can be formed by ranging (k, i) through all values in (6).

Plenty of research has been undertaken to design efficient ways to solve randomly generated
multivariate polynomial equations. The classical Buchberger’s Algorithm for generating Gröbner
bases [AL95] and its variants [Fau99] are some of them. This problem is NP-complete (NPC)
over GF(2). Many other techniques such as relinearization [KS99] have been proposed to solve
a special case of overdefined systems of multivariate polynomial equations. Note that, in our
case, the number of unknowns and equations are 2n and mn respectively (if m > 2 then the
system of equations is overdefined). However, taking full advantage of the specific nature of the
differential equations of addition, we shall use a combinatorial technique to prove that, although
the satisfiability of an arbitrary multivariate polynomial equation over GF(2) is NP-complete, this
special cryptographically important subclass of equations is in the complexity class P (see [CL+90],
[HM+04] for definitions of NP, P, NPC). Finally, we also derive all the solutions to a system of such
equations.
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2.1 Computing the Character Set and the Useful Set

From (3) we construct A = {(α[k], β[k], γ[k]) | k ∈ [1, m]} assuming (α[k], β[k], γ[k])’s are all
distinct.1 We call A the character set. Our first step is to transform the system of equations
defined in (3) into a new set of equations over Zn2 as defined below,

(x+ y)⊕ ((x⊕ α[k]) + (y ⊕ β[k]))⊕ α[k]⊕ β[k] = γ̃[k] , k = 1, 2 · · ·m ; (7)

where γ̃[k] = γ[k]⊕ α[k]⊕ β[k]. Now, we construct Ã,

Ã = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ A} . (8)

We call Ã the useful set. Let all the solutions for (3) and (7) be contained in the sets A-satisfiable
and Ã-consistent respectively. It is trivial to show that

A-satisfiable = Ã-consistent . (9)

Our aim is to compute Ã-consistent from Ã.

2.2 Precomputation

Take an arbitrary element (α, β, γ̃) ∈ Ã (n > 1). Observe that γ̃i+1 can be computed using xi, yi,
ci, αi, βi, γ̃i, ∀ i ∈ [0, n− 2], from the following three equations

γ̃i+1 = ci+1 ⊕ c̃i+1, ci+1 = xiyi ⊕ xici ⊕ yici, c̃i+1 = x̃iỹi ⊕ x̃ic̃i ⊕ ỹic̃i
where ci is the carry at the ith position of (x + y), x̃i = xi ⊕ αi, ỹi = yi ⊕ βi and c̃i = ci ⊕ γ̃i.
Table 1 lists the values of γ̃i+1 as computed from all values of xi, yi, ci, αi, βi, γ̃i.

Table 1: The values of γ̃i+1 corresponding to the values of xi, yi, ci, αi, βi, γ̃i. A row and a column
are denoted by R(l) and Col(k)

(xi, yi, ci) (αi, βi, γ̃i)
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) R(0)

(0,0,0) 0 0 0 1 0 1 1 1 R(1)
(1,1,1)
(0,0,1) 0 0 1 0 1 0 1 1 R(2)
(1,1,0)
(0,1,0) 0 1 0 0 1 1 0 1 R(3)
(1,0,1)
(1,0,0) 0 1 1 1 0 0 0 1 R(4)
(0,1,1)
Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7) Col(8)

1This can be obtained by taking one of the identical equations in (3).
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2.3 Computation of Parameters Gi, Si, 0 and Si, 1 from the Useful Set Ã

We now determine an important quantity, denoted by Gi, for a nonempty useful set Ã. In Gi, we
store the ith and (i+ 1)th bits of γ̃ and the ith bit of α and β for all (α, β, γ̃) ∈ Ã. We call Gi the
ith core of the useful set Ã. More formally (suppose n > 1),

Gi = {(αi, βi, γ̃i, γ̃i+1) | (α, β, γ̃) ∈ Ã}, i ∈ [0, n− 2] . (10)

In the subsequent discussion we will often use the expression “Gi ⇒ (xi, yi, ci)”. Let |Gi| = g.
Take an element (αi, βi, γ̃i, γ̃i+1) ∈ Gi. In Table 1, find the row(s) of the fourth coordinate γ̃i+1

in the column specified by the first three coordinates (αi, βi, γ̃i) in R(0) and put them in set
Fi1. Find Fi1, · · ·Fig for all g elements of Gi. Let Fi =

⋂
j Fij and R(x)∈ Fi. If (xi, yi, ci) is in

Col(0)×R(x) then we say Gi ⇒ (xi, yi, ci). If Fi = φ then no such (xi, yi, ci) exists. We compute
Si, j = {(xi, yi) |Gi ⇒ (xi, yi, ci = j)}.

Example. (Gi,Si, 0,Si, 1) Let n = 3 and the useful set Ã = {((0, 1, 0), (1, 0, 1) , (0, 0, 0)),
((0, 0, 0), (1, 1, 1), (1, 0, 0)), ((0, 0, 1), (0, 1, 1), (1, 1, 0))}. Therefore, G0 = {(0, 1, 0, 0),
(1, 1, 0, 1)}, G1 = {(1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)} (see (10)). Now, from Table 1, F01 =
{R(1), R(3)}, F02 = {R(1), R(2)}, F11 = {R(1), R(4)}, F12 = {R(2), R(4)}, F13 = {R(1), R(4)}.
Therefore, F0 = F01 ∩ F02 = {R(1)} and F1 = F11 ∩ F12 ∩ F13 = {R(4)}. Now G0 ⇒ (0, 0, 0),
G0 ⇒ (1, 1, 1) as (0, 0, 0), (1, 1, 1) are in Col(0)×R(1). Similarly, G1 ⇒ (1, 0, 0), G1 ⇒ (0, 1, 1).
Thus, S0, 0 = {(0, 0)}, S0, 1 = {(1, 1)}, S1, 0 = {(1, 0)}, S1, 1 = {(0, 1)}. �

We assume m = |Ã| = O(nl) for some nonnegative integer l. Then the time and memory to
compute all Gi’s and Si, j ’s are O(nk) each because the size of Table 1 and |Gi| are O(1) each
(k = l + 1). Now, we show a relation between Si, 0 and Si, 1 that will be used to obtain several
results.

Proposition 1 For all nonempty useful set Ã and all n > 1, |Si, 0| = |Si, 1| ∀ i ∈ [0, n− 2].

We set,

|Si, 0| = |Si, 1| = Si ∀ i ∈ [0, n− 2]. (11)

2.4 Satisfiability of DEA is in P

In this section, we deal with a decision problem: does there exist a solution for an arbitrary set of
differential equations of addition, i.e., is a system of DEA satisfiable?

We have already seen how to compute the character set A, the useful set Ã, the core Gi’s and
Si’s from a system of DEA in O(nk) (see Sect. 2.3). Now, we prove an important theorem that
characterizes the membership in Ã-consistent which is, in fact, the solution set.

Theorem 1 Let the useful set Ã 6= φ and n > 1. The following two statements are equivalent.
1. (x, y) ∈ Zn2 × Zn2 is such that Gi ⇒ (xi, yi, ci), ∀ i ∈ [0, n− 2].
2. (x, y) ∈ Ã-consistent.

Proof. From the construction of Gi, it can be shown that 1⇔ 2. �
Armed with the above theorem, we now formulate |Ã-consistent| (i.e., the number of solutions)

in the following proposition which will later answer our satisfiability question.
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Proposition 2 Let the useful set Ã 6= φ and S denote |Ã-consistent|. Then,

S =





0 if γ̃0 = 1 for some (α, β, γ̃) ∈ Ã,
4 ·∏n−2

i=0 Si if γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n > 1,
4 if γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n = 1.

The Si’s are defined in (11).

Proof. We prove this result by considering all cases individually.

Case 1 If γ̃0 = 1 for some (α, β, γ̃) ∈ Ã then c0 = 1 which is impossible.

Case 2 If γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n > 1. From Theorem 1 of Sect. 2.5, S is the number of
solutions (x, y) ∈ Zn2 ×Zn2 such that Gi ⇒ (xi, yi, ci),∀i ∈ [0, n−2]. Let Mk denote the number of
solutions for ((xk, · · · , x0), (yk, · · · , y0)) such that Gi ⇒ (xi, yi, ci),∀i ∈ [0, k] where k ∈ [0, n−2].
Note that Gk depends only on the least (k + 1) bits of x, y,α,β. We consider two subcases.
Case 2(a): n > 2 . We determine |Ã-consistent| recursively. Let Ml = Ml, 0 +Ml, 1 such that Ml, 0

solutions produce cl+1 = 0 and Ml, 1 solutions produce cl+1 = 1. Therefore, ∀ l ∈ [0, n− 3]

Ml+1 = Ml, 0 · |Sl+1, 0|+Ml, 1 · |Sl+1, 1|
= Sl+1 ·Ml . (12)

as |Si, 0| = |Si, 1| = Si, ∀ i ∈ [0, n− 2] (see Proposition 1). It is easy to show (a proof is by contra-
diction) that Ml+1, so calculated, gives the number of solutions for ((xl+1, · · · , x0), (yl+1, · · · , y0))
such that Gi ⇒ (xi, yi, ci),∀i ∈ [0, l + 1]. From (12),

Mn−2 =
n−2∏

i=0

Si (13)

as M0 = S0. Note that, for all (α, β, γ̃) ∈ Ã, γ̃ is independent of (xn−1, yn−1). Therefore,

S = 4 ·Mn−2 = 4 ·
n−2∏

i=0

Si if n > 2 . (14)

Case 2(b): n = 2 . It is easy to show that S = 4 · S0 if n = 2 .

Case 3 If γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n = 1 . It is trivial to show that S = 4 if n = 1 since for all
(α, β, γ̃) ∈ Ã, γ̃ is independent of (xn−1, yn−1) . �

Using Proposition 2, we now answer the question of satisfiability of DEA in the following claim.

Claim. (i) If γ̃0 = 1 for some (α, β, γ̃) ∈ Ã, then the set of DEA is NOT satisfiable. (ii)
If γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n > 1, then the set of DEA is satisfiable if and only if Si 6= 0
∀i ∈ [0, n− 2]. (iii) If γ̃0 = 0, ∀(α, β, γ̃) ∈ Ã and n = 1, then the set of DEA is satisfiable.

Verification of (i), (ii) and (iii) take time O(1), Θ(n) and O(1) respectively. Therefore, the overall
time to decide whether a system of DEA is satisfiable is O(nk) + O(1) + Θ(n) + O(1) = O(nk).
Thus the satisfiability of DEA is in P.
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2.5 Computing All the Solutions to a System of DEA

Now the only part left unanswered is how to actually compute Ã-consistent, i.e., to extract all the
solutions of a system of DEA which is satisfiable. Note, if n = 1 then Ã-consistent comprises all 4
values of (x, y). The Gi’s can be computed from the useful set Ã in O(nk) (see Sect. 2.3). Now we
compute an intermediate parameter Li = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)} for all i ∈ [0, n− 2] (note
that Li is different from Fi which has been computed in Sect. 2.3). Computation of the Li’s takes
time and memory each Θ(n). We call Li the ith bit solution. Algorithm 1 computes Ã-consistent
from the Li’s (n > 1).

Algorithm 1 Compute all the solutions to a system of satisfiable DEA
Input: Li, ∀i ∈ [0, n− 2]
Output: Ã-consistent

1: Compute M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0)) | (xn−1, yn−1) ∈ Z2
2,

(xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0, ci+1 = xiyi ⊕ xici ⊕ yici}.
2: Return (M).

The idea of the algorithm is to collect in M all (x, y) ∈ Zn2×Zn2 such that Gi ⇒ (xi, yi, ci), ∀i ∈
[0, n− 2]. Theorem 1 is the heart of the argument to prove that M is essentially Ã-consistent.

Time and Memory. Algorithm 1 takes time Θ(S) and memory Θ(n · S) where S is the number
of solutions (an explicit construction of M from the Li’s and its complexity analysis are shown in
Appendix A.3).

3 Solving DEA in the Adaptive Query Model

In this section, we solve the equations

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ, (15)
(x+ y)⊕ (x+ (y ⊕ β)) = γ (16)

separately in an adaptive query model. Solving (15) in adaptive query model means solving a set
of 22n equations generated by ranging (α, β) with the corresponding γ. The number of solutions
satisfying 22n equations is less than that of any subset of the equations. Therefore, solving these
22n equations reduces the search space of the secret (x, y) to the minimum. This fact is the major
motivation for dealing with this problem. The task of a computationally unbounded adversary is to
select a subset A of all equations such that the solutions to the chosen subset A are the same as that
of the entire 22n equations. The target of the adversary is to minimize |A|. A similar optimization
problem can be asked of (16) where the number of equations is 2n. Such an optimization problem
for (16) has already been tackled by Muller [Mul04] in cryptanalysis of the Helix cipher but an
optimal solution has still been elusive. We reach optimal solutions for both equations.

3.1 The Power of the Adversary

The power of an adversary that solves (15) is defined as follows.

1. An adversary has unrestricted computational power and an infinite amount of memory.
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2. An adversary can only submit queries (α, β) ∈ Zn2 ×Zn2 to an honest oracle2 which computes
γ using fixed unknown (x, y) ∈ Zn2 × Zn2 in (15) and returns the value to the adversary. We
will often refer to that fixed (x, y) as the seed of the oracle.

Such an oracle with seed (x, y) is viewed as a mapping Oxy : Zn2 × Zn2 → Zn2 and defined by

Oxy = {(α, β, γ) | (α, β) ∈ Zn2 × Zn2 , γ = (x+ y)⊕ ((x⊕ α) + (y ⊕ β))} . (17)

An adversarial model, similar to the one described above for (15), can be constructed for (16) by
setting (α, β) ∈ {0}n × Zn2 and the mapping Oxy : {0}n × Zn2 → Zn2 .

The model described above represents a practical adaptively chosen message attack scenario
where the adversary makes adaptive queries to an oracle. Based on the replies from the oracle, the
adversary computes one or more unknown parameters.

3.2 The Task

Oxy, defined in (17), generates a family of mappings F = {Oxy | (x, y) ∈ Zn2 × Zn2}. Note that, if
D ∈ F then |D| = 22n for (15). Therefore, D ∈ F is the character set with the number of equations
m = 22n (see Sect. 2.1). Our aim is to find all (x, y) satisfying these 22n equations, i.e., to compute
D-satisfiable from a subset of the character set D. If we deal with (16) then |D| = 2n.

An Equivalent Task. From the character set D one can compute the useful set D̃ using (8).
Therefore, the task is equivalent to the determination of D̃-consistent from a subset of the useful set
D̃. We call D and D̃ the total character set and the total useful set as their sizes are maximal and
they are generated from a satisfiable set 22n DEA (because we assumed the oracle to be honest).
Note that there is a bijection between D and D̃.

Adjusting the Oracle Output. If the oracle outputs γ on query (α, β), we shall consider
the oracle output to be γ̃ = α⊕ β ⊕ γ for the sake of simplicity in the subsequent discussions.

Rules of the Game. Now we lay down the rules followed by the adversary to determine the
set D̃-consistent that, in turn, gives the essence of the whole problem.

1. The adversary starts with no information about x and y except their size n.

2. The adversary settles on a strategy (i.e., a deterministic algorithm) which is publicly known.
Using the strategy, the adversary computes queries adaptively, i.e., based on the previous
queries and the corresponding oracle outputs the next query is determined.

3. The game stops the moment the adversary constructs D̃-consistent. The adversary fails if
she is unable to compute D̃-consistent for some (x, y) ∈ Zn2 × Zn2 .

We search for an algorithm that determines D̃-consistent for all (x, y) ∈ Zn2 × Zn2 . Furthermore,
there is an additional requirement that, in the worst case of (x, y), the number of queries required
by the algorithm is the minimum . We shall elaborate on the meaning of worst case in Sect. 3.4
which focuses on worst case lower bounds on the number of queries.

2An honest oracle correctly computes γ and returns it to the adversary.
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3.3 Number of Solutions

In this section we are interested to determine the number of solutions of (15) and (16) in the
adaptive query model. We have already developed a framework where the set of all solutions in
the adaptive query model is denoted by D̃-consistent where D̃ is the total useful set. Therefore,
formally, our effort will be directed to formulate |D̃-consistent|. We will see in Theorem 5 that, for
(16), |D̃-consistent| depends on the least significant ‘1’ of x. However, for (15), |D̃-consistent| =
4, ∀(x, y) ∈ Zn2 × Zn2 . We shall use these results in Theorem 5 and 6 of Sect. 3.4, to obtain lower
bounds on the number of queries to compute D̃-consistent and in Sect. 3.5, to prove the correctness
of our optimal algorithms.

Theorem 2 Let the position of the least significant ‘1’ of x in the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ

be t and x, y, β, γ ∈ Zn2 . Let the total useful set D̃ be given. Then |D̃-consistent| is
(i) 2t+3 if n− 2 ≥ t ≥ 0,
(ii) 2n+1 otherwise.

Proof.
(i) n − 2 ≥ t ≥ 0. Using the procedure described in Sect. 2.3, we construct the ith core Gi, ∀ i ∈
[0, n− 2], from the total useful set D̃. We derive that

Gi = {(0, 0, 0, ai), (0, 1, 0, bi)} , ∀i ∈ [0, t] (18)
Gi = {(0, 0, 0, ci), (0, 0, 1, di) (0, 1, 0, ei), (0, 1, 1, fi)}, ∀i ∈ [t+ 1, n− 2] . (19)

In the above equations, ai, bi, ci, di, ei, fi ∈ [0, 1]. Note that only (18) is relevant if t = n − 2.
The fact that we are able to extract only the first three coordinates of the elements of Gi, ∀i ∈
[0, n− 2], can be proved using the following two auxiliary lemmas, the proofs of which are given in
Appendix A.1.

Lemma 1 For all (0, β, γ̃) ∈ D̃, γ̃i = 0, ∀ i ∈ [0, t].

Lemma 2 For all i ∈ [t+ 1, n− 1] there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

However, only the first three coordinates of the elements of the Gi’s are sufficient to determine
the Si’s (Si is defined in Sect. 2.3). It is easy to verify from Table 1 that Si = 2, ∀i ∈ [0, t] and
Si = 1, ∀i ∈ [t+ 1, n− 2]. From Proposition 2

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
(n−t−2) times

· 2 · 2 · · · 2︸ ︷︷ ︸
(t+1) times

= 2t+3 .

(ii) The proof is similar to the above one using Proposition 2. �

Theorem 3 Let the total useful set D̃ be given for the equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Zn2 . Then |D̃-consistent|=4.
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Proof. Our approach is same as that of Theorem 2.
Case 1: n ≥ 2. Corresponding to the total useful set D̃ we determine Gi, ∀ i ∈ [0, n− 2].

G0 = {(0, 0, 0, a0), (0, 1, 0, b0), (1, 0, 0, c0), (1, 1, 0, d0)}, (20)
Gi = {(0, 0, 0, ei), (0, 0, 1, fi), (0, 1, 0, gi), (0, 1, 1, hi),

(1, 0, 0, mi), (1, 0, 1, ni), (1, 1, 0, pi), (1, 1, 1, qi)}, ∀ i ∈ [1, n− 2] . (21)

In the equations a0, b0, c0, d0, ei, fi, gi, hi, mi, ni, pi, qi ∈ [0, 1]. From Table 1 we see that Si =
1, ∀ i ∈ [0, n− 2] (see Sect. 2.3 to compute Si from Gi). Therefore, from Proposition 2

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
(n−1) times

= 4 .

Case 2: n = 1. If n = 1 then |D̃-consistent| = 4. The proof is trivial using Proposition 2. �

3.4 Worst Case Lower Bounds on the Number of Queries

Our target is to design an algorithm (for (15) or (16)) which computes D̃-consistent for all seeds
(x, y) ∈ Zn2 ×Zn2 with adaptive queries. For such an algorithm, the number of required queries may
vary with the choice of (x, y). In this section we concentrate on a lower bound on the number of
queries in the worst case of (x, y) under the “rules of the game” stated in Sect. 3.2. The significance
of the lower bound is that there exists no algorithm that requires less queries in the worst case than
the obtained lower bound.

We already noticed that more queries tend to reduce the search space of the secret (x, y). In
our formal framework, if A ⊆ B ⊆ D̃ then D̃-consistent ⊆ B-consistent ⊆ A-consistent. This
implies that |D̃-consistent| ≤ |B-consistent| ≤ |A-consistent|. Note that our algorithm constructs
A ⊆ D̃, ∀(x, y) ∈ Zn2 × Zn2 , using the submitted queries and the corresponding outputs such that
|D̃-consistent| = |A-consistent|. The algorithm fails if |D̃-consistent| < |A-consistent|, for some
(x, y) ∈ Zn2 × Zn2 . We will use the condition – |A-consistent| cannot be strictly greater than |D̃-
consistent| – to compute a lower bound on the number of queries in the worst case. In Theorem 4
we identify a property of A, in terms of the ith core Gi, where the above condition is violated. In
Theorem 5, we use this fact to obtain a lower bound.

Theorem 4 We consider the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n − 3 ≥ t ≥ 0. Let φ ⊂ A ⊆ D̃
and D̃ be the total useful set of the equation. Let the (n − 3)th core Gn−3 contain no element
(0, βn−3, γ̃n−3, γ̃n−2) with γ̃n−2 = 1.3 Then |A-consistent| = 2t+3+k for some k > 0.

Proof. If Gn−3 contains no element (0, βn−3, γ̃n−3, γ̃n−2) with γ̃n−2 = 1 then Gn−2 contains no
element (0, βn−2, γ̃n−2, γ̃n−1) with γ̃n−2 = 1 . Therefore, Gn−2 is of one of the following forms,

Gn−2 = {(0, 0, 0, a)} or {(0, 0, 0, a), (0, 1, 0, b)} .
3This implies that there is no oracle output γ̃ with γ̃n−2 = 1.
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Now, from Table 1, Sn−2 = 2l for either of the cases, where l > 0. Similarly, using Theorem 2,
Si ≥ 2, ∀ i ∈ [0, t]. Also Si ≥ 1, ∀ i ∈ [t+ 1, n−3] (when n−4 ≥ t). Therefore, from Proposition 2,
|A-consistent| = 2t+3+k for some k > 0. �

In the following theorem, we partition the entire seed space Zn2 ×Zn2 and compute a worst case
lower bound for each partition. Note that a lower bound (say, l) for any partition shows that, for
any algorithm that computes D̃-consistent ∀(x, y) ∈ Zn2 ×Zn2 , there exists at least one seed in that
particular partition which requires at least l queries.

Theorem 5 A lower bound on the number of queries (0, β) to solve

(x+ y)⊕ (x+ (y ⊕ β)) = γ

in the worst case of (x, y) is
(i) 0 if n = 1,
(ii) 1 if x = 0 and n > 1,
(iii) 1 if n = 1 + t with t > 0,
(iv) (n− t− 1) if n− 2 ≥ t ≥ 0,
where n is the bit-length of x, y and t is the position of the least significant ‘1’ of x.

Proof. For (i), (ii) and (iii) the lower bounds are trivial.
(iv) n− 2 ≥ t ≥ 0. Note that the submission of queries, generation of the useful set A and the core
Gi are the parts of an evolving process (i.e., with every submitted query (0, β), A, Gi change). At
any time, from the already submitted queries and the outputs, we can always construct A ⊆ D̃ and
the ith core Gi, ∀i ∈ [0, n− 2] where D̃ is the total useful set. Note that A-consistent contains all
the solutions of the equations derived from the already submitted queries. We first divide the case
into four disjoint subcases.
Case 1: n− 5 ≥ t ≥ 0. By Theorem 4, a necessary condition is that ∃(0, βn−3, γ̃n−3, γ̃n−2 = 1)
∈ Gn−3 otherwise |A-consistent| = 2t+3+c > |D̃-consistent| = 2t+3 (invoke Theorem 2).

We now define a quantity Vn, t which denotes the set of all (x, y) ∈ Zn2 × Zn2 such that the
position of the least significant ‘1’ of x is t (Vn, t is a partition). We now define another quantity
l(n, t)(k) for all k ∈ [t + 1, n − 2]. Let l(n, t)(k) denote a lower bound on the number of adaptively
chosen queries to have (0, βi, γ̃i, γ̃i+1 = 1) ∈ Gi for some i ∈ [k, n − 2] in the worst case of
(x, y) ∈ Vn, t . In other words, a worst case lower bound l(n, t)(k) means that, for any algorithm A
there exists a seed (x, y) ∈ Vn, t such that the adaptively chosen sequence of l(n, t)(k) − 1 queries
(l(n, t)(k) > 0) by A for the seed (x, y) produces oracle outputs γ̃’s with γ̃i+1 = 0, ∀ i ∈ [k, n− 2]).
We will determine l(n, t)(n− 3) which is a lower bound in this case. For easy reading, in the rest of
the proof, we shall denote l(n, t)(k) by l(k) .

Let p ∈ [t + 1, n − 3]. Now, for each algorithm, we always identify a seed (x, y) ∈ Vn, t such
that the adaptively chosen sequence of l(p)− 1 queries produces γ̃’s with γ̃i+1 = 0, ∀ i ∈ [p, n− 2] .
From Table 1, we construct (a, b), (a′, b′) ∈ Vn, t for each (x, y) in the following fashion. The carry
bit at the jth position of (a+ b) is cj and similarly c′j .

1. (Construction of a and b) ai = xi and bi = yi, ∀ i ∈ [0, p]. If ci = 0 set ai = 0, bi = 0,
∀ i ∈ [p+ 1, n− 1]. If ci = 1 set ai = 1, bi = 1, ∀ i ∈ [p+ 1, n− 1].

2. (Construction of a′ and b′) a′i = xi and b′i = yi, ∀ i ∈ [0, p]. If c′i = 0 set a′i = 0, b′i = 1,
∀ i ∈ [p+ 1, n− 1]. If c′i = 1 set a′i = 1, b′i = 0, ∀ i ∈ [p+ 1, n− 1].
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It can be shown from the portion of Table 1 – cut off by the rows R(1) and R(3) and the columns
Col(1), Col(2), Col(3) and Col(4) – that seeds (a, b) and (a′, b′) produce the same sequence of
oracle outputs as (x, y) does on the selected sequence of l(p)− 1 queries.

Now we consider each possible l(p)th query (0, β) and its output γ̃ for the seed (x, y). If
(βp+1, γ̃p+1) = (0, 1) then (a, b) produces γ̃i+1 = 0, ∀ i ∈ [p+ 1, n− 2]. Similarly, if (βp+1, γ̃p+1) =
(1, 1) then (a′, b′) produces γ̃i+1 = 0, ∀ i ∈ [p + 1, n − 2]. If (βp+1, γ̃p+1) = (0, 0) or (1, 0) then
both (a, b) and (a′, b′) produce γ̃i+1 = 0, ∀ i ∈ [p + 1, n − 2]. Therefore, either (a, b) or (a′, b′)
produces oracle outputs with γ̃i+1 = 0, ∀ i ∈ [p+ 1, n− 2], for all the chosen l(p) queries.

Thus, we establish that, for any algorithm there exists a seed (x, y) ∈ Vn, t such that the
adaptively chosen sequence of l(p) queries produces oracle outputs γ̃’s with γ̃i+1 = 0, ∀ i ∈ [p +
1, n− 2]. Therefore, a lower bound on the number of queries such that ∃(0, βi, γ̃i, γ̃i+1 = 1) ∈ Gi
for some i ∈ [p+ 1, n− 2] in the worst case of (x, y) ∈ Vn, t is l(p) + 1. Therefore,

l(p+ 1) = l(p) + 1 .

Following the recursion,

l(n− 3) = n− t− 4 + l(t+ 1) . (22)

The following lemma computes a value of l(t+ 1). See Appendix A.2 for an elaborate proof.

Lemma 3 Let n− 4 ≥ t ≥ 0. For any algorithm A there exists a seed (x, y) ∈ Vn, t such that the
adaptively selected sequence of two queries by A for that particular seed produces oracle outputs γ̃’s
with γ̃i+1 = 0, ∀ i ∈ [t+ 1, n− 2].

From Lemma 3, l(t+ 1) = 3. Therefore, from (22), l(n− 3) = n− t− 1 .
Case 2: n = t+ 4, a worst case lower bound is 3. The proof follows from Lemma 3.
Case 3: n = t + 3, a worst case lower bound is 2. The reason is, from Table 1 it is clear that,
with only one query Sn−2 > 1 which makes the number of solutions for this case greater than 2t+3

which is impossible from Theorem 2.
Case 4: n = t+ 2, a worst case lower bound is 1 which is trivial. �

Theorem 6 A lower bound on the number of queries (α, β) to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn2 × Zn2 is (i) 3 if n > 2, (ii) 2 if n = 2, (iii) 0 if n = 1.

Proof. To prove (i), we consider all possible adaptively chosen two queries by all algorithms
and find that, in each case, an oracle can always select a seed such that the number of solutions
obtained from the outputs exceeds 4 which is impossible by Theorem 3. A detailed analysis is given
in Appendix A.4. The proofs for (ii) and (iii) are trivial. �

3.5 Optimal Algorithms

In this section, we concentrate on designing algorithms that solve (16) and (15) in the adaptive
query model. In the formal framework, if the oracle is seeded with an unknown (x, y) then there
is always a total useful set D̃ that the unknown seed (x, y) generates. For a particular total useful
set D̃, there exists a set D̃-consistent containing all values of (x, y). Our algorithm makes adaptive
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queries (α, β) to the oracle – which is already seeded with a fixed (x, y) – and the oracle returns
γ̃. The task of the algorithm is to compute D̃-consistent using oracle outputs γ̃, for all seeds
(x, y) ∈ Zn2 × Zn2 . The algorithm is optimal if the number of queries in the worst case (i.e., the
upper bound) matches the lower bound derived in the relevant theorem (Theorem 5 or 6). Optimal
algorithms to solve (16) and (15) are presented in Algorithm 2 and 3. Below we discuss the intuition
behind the algorithms; while we omit many trivial details, the pseudocode covers all cases.

Algorithm 2 Optimal Algorithm to solve the equation (x+ y)⊕ (x+ (y ⊕ β)) = γ

Input: Oracle O, n, Table T
Output: a set of lists

1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all solutions are possible and then exit;
3: β = (1, 1, · · · , 1, 1)n; /*The first query*/
4: γ̃ = O(β); /*Oracle output*/
5: if γ̃ = 0
6: For all i ∈ [0, n− 2]
7: Gi = {(0, 0, 0, 0), (0, 1, 0, 0)};
8: Go to Step 28;
9: t = Least-Significant-one(γ̃);/*Computing the least significant ‘1’ of the oracle output*/

10: t = t− 1; /*Computing the least significant ‘1’ of x*/
11: For all i ∈ [0, t− 1] /*Computing Gi for all i ∈ [0, t− 1]*/
12: Gi = {(0, 0, 0, 0), (0, 1, 0, 0)};
13: Gt = {(0, 0, 0, 0), (0, 1, 0, 1)}; /*Computing Gt*/
14: If t = n− 2 then Go to Step 28;
15: β′ = (1, 1, · · · , 1, β′t+1 = 1, 0, 0, · · · , 0); /*Query to make γ̃′t+1 = 0*/
16: γ̃′ = O(β′); /*Oracle output*/
17: Gt+1 = {(0, 1, 1, γ̃t+2), (0, 1, 0, γ̃′t+2)}; /*Computing Gt+1*/
18: If t = n− 3 then Go to 28;
19: For all i ∈ [2, n− t− 2], in increasing order /*Computing Gi for all i ∈ [t+ 2, n− 2]*/
20: If γ̃t+i == γ̃′t+i == 1 then
21: β′ = (1, 1, · · · , 1, β′t+i−1 = 0, 0, · · · , 0);/*Query to make γ̃′t+i = 0*/
22: γ̃′ = O(β′) and Go to Step 27; /*Oracle output*/
23: If γ̃t+i == γ̃′t+i == 0
24: if γ̃t+i−1 == 1 then swap ((β, γ̃), (β′, γ̃′));
25: β′ = (1, 1, · · · , 1, β′t+i−1 = 0, β′t+i−2, · · · , β′0);/*Query to make γ̃′t+i = 1*/
26: γ̃′ = O(β′); /*Oracle output*/
27: Gt+i = {(0, 1, γ̃t+i, γ̃t+i+1), (0, 1, γ̃′t+i, γ̃

′
t+i+1)};

28: Li = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)}, ∀i ∈ [0, n− 2] (Using the table T );/*Computing Li’s*/
29: Return the set {Li|i ∈ [0, n− 2]};

Discussion: Algorithm 2(sketch). The inputs to Algorithm 2 are an oracle O (which is set
with the unknown seed and computes γ̃), n denoting the size of the unknowns and the precomputed
Table 1 denoted by the variable T . The output of Algorithm 2 is a set of lists. This set contains
the Li’s – the ith bit solution for all i ∈ [0, n− 2] – similar to the ones computed in Sect. 2.5. The
objective of Algorithm 2 is to correctly compute the Li’s for the useful set D̃. The computed Li’s
will be given to Algorithm 1 which computes all the individual solutions.

Algorithm 2 works in a way that at first Gi’s are computed from the submitted queries such that
the number of solutions for them is the same as that for all 2n queries. Then the Li’s are computed
from the Gi’s (Step 28). First, we find t, the position of the least significant ‘1’ of x, by making the
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first query (0, β) with β composed of all 1’s (Step 3, 10). Once the position of the least significant
‘1’ of x is known, we can immediately compute Gi, ∀i ∈ [0, t], by invoking Lemma 1 (Step 11 to
13). We see that Si = 2, ∀i ∈ [0, t]. This result readily determines that Si = 1, ∀i ∈ [t+ 1, n− 1]
(see Theorem 2). To compute Gi, ∀i ∈ [t+1, n−2] we will use a nice pattern observable in Table 1.
Consider Col (3) and Col (4) of the Table 1. Observe no two rows, contained in these two columns,
are identical. Therefore, if for some queries Gi contains two elements of the form (0, 1, 0, a) and
(0, 1, 1, b) then the corresponding Si = 1. Therefore, the aim of Algorithm 2 is to submit queries
such that Gi contains elements of the form (0, 1, 0, a) and (0, 1, 1, b), for all i ∈ [t + 1, n − 2].
Another interesting pattern of Table 1 is that each row, cut off by Col 2, Col 3 and Col 4, has at
least one ‘1’. The algorithm uses this fact to get oracle output γ̃ with γ̃i = 1 if required (Step 25).
However, it is always easy to get an oracle output γ̃ with γ̃i = 0 by setting the least i bits of β to
zero (Step 15 and 21). Note that the algorithm submits the first two queries in Steps 3 and 15. In
the loop (from steps 19 to 27) one of the two previous queries is modified to get ‘0’ or ‘1’ at the
required locations of the output. Thus we get Gi, ∀i ∈ [t+ 1, n− 2], for which Si = 1. Therefore,
invoking Theorem 2, we get the number solutions for the submitted queries is 2t+3 (omitting many
trivial cases). This proves the correctness of Algorithm 2. It can be easily verified from Theorem 5
that the number of queries used by Algorithm 2 is worst case optimal.

Discussion: Algorithm 3 (sketch). The basic idea of Algorithm 3 is the same as that of
Algorithm 2, i.e., we compute the Li’s for the total useful set D̃. But here we use a different trick
to optimize the number of queries. Note that, for all i ∈ [0, n−2], Si = 1 for (15) (see Theorem 3).

We first submit two queries as shown in Step 3 and 5. For these two queriesGi = {(1, 0, γ̃i, γ̃i+1),
(0, 1, γ̃′i, γ̃

′
i+1)} if i even. Note that, in this case, if γ̃i = γ̃′i then Si = 1 otherwise Si = 2 (from

Table 1). Gi = {(1, 0, γ̃i, γ̃i+1), (1, 0, γ̃′i, γ̃
′
i+1)} if i odd. Note that, in this case, if γ̃i 6= γ̃′i then

Si = 1 otherwise Si = 2. Observe that Si = 2 ⇔ |Li| = 4 and Si = 1 ⇔ |Li| = 2. Now if
|Li| = 2, ∀i ∈ [0, n − 2] then we are done (Step 11). A combinatorial pattern in the precomputed
Table 1 shows that, if |Li| = 4 then |Li−1| = 2 (omitting the proof). In Step 13 and 16, we change
the second query (c, d) to obtain the third query so that the new query can remove extra elements
from the Li’s with |Li| = 4. The rule is if |Li| = 4 then change the (i−1)th bits of (c, d) “suitably”
(details in the pseudocode). In Steps 13 and 16, the relation operator “⇒” is used in the same
sense as in Sect. 2.3. Now L′is are computed from the first and the third queries (Step 21). If
|Li| = 4 then we assign Li = L′i (Step 23). Now we get |Li| = 2, ∀i ∈ [0, n − 2]. Algorithm 3 is
optimal because it uses maximum 3 queries.

Time and Memory. For each of Algorithm 2 and Algorithm 3, the memory and the time are
Θ(n) and O(n) respectively (the oracle takes O(1)-time to compute γ̃).

4 Cryptographic Applications

Weakness of modular addition under DC. The fact that an arbitrary system of DEA is in
the complexity class P, shows a major differential weakness of modular addition which is one of the
most used block cipher components. The weakness is more alarming because, with a maximum of
only 3 adaptively chosen queries the search space of the secret can be reduced from 22n to only 4
for all n ≥ 1 (see Theorem 3 and Algorithm 3). It is, however, not known at this moment, how
much influence this weakness has on many modern symmetric ciphers that mix other nonlinear
operations with addition. Still, a recommendation for a deeper analysis of ciphers mixing XOR and
modular addition in the light of our investigation is well justified.
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Algorithm 3 Optimal algorithm to solve the equation (x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

Input: Oracle O, n, Table T
Output: a set of lists

1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all solutions are possible and then exit;
3: (a, b) = ((11 · · · 11)n, (00 · · · 00)n);/*First Query*/
4: γ̃ = O(a, b); /*Oracle Output*/
5: (c, d) = ((· · · 101010)n, (· · · 010101)n);/*Second Query*/
6: γ̃′ = O(c, d); /*Oracle Output*/
7: For all i ∈ [0, n− 2] /*Computing Gi’s*/
8: Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃

′
i+1)};

9: For all i ∈ [0, n− 2] /*Computing Li’s*/
10: Li = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)}, ∀i ∈ [0, n− 2] (Using the table T );
11: If |Li| = 2, ∀i ∈ [0, n− 2] then Go to step 25;
12: For all i ∈ [0, n− 2] and i even /*Checking even Li’s*/
13: If |Li| = 4 then collect (xi−1, yi−1, 0) ∈ Li−1 and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1.

Select (αi−1, βi−1) from T such that
{(αi−1, βi−1, 0, γ̃i), (αi−1, βi−1, 1, γ̃i)} ⇒ (xi−1, yi−1, 0);

14: (ci−1, di−1) = (αi−1, βi−1);
15: For all i ∈ [0, n− 2] and i odd /*Checking odd Li’s*/
16: If |Li| = 4 then collect (xi−1, yi−1, 0) ∈ Li−1 and (1, 0, γ̃i−1, γ̃i) ∈ Gi−1.

Select (αi−1, βi−1) from T such that
{(αi−1, βi−1, 0, 1⊕ γ̃i), (αi−1, βi−1, 1, 1⊕ γ̃i)} ⇒ (xi−1, yi−1, 0);

17: (ci−1, di−1) = (αi−1, βi−1);
18: γ̃′ = O(c, d);/*Oracle Output*/
19: For all i ∈ [0, n− 2] /*Computing Gi’s*/
20: Gi = {(ai, bi, γ̃i, γ̃i+1), (ci, di, γ̃′i, γ̃

′
i+1)};

21: For all i ∈ [0, n− 2] /*Computing L′i’s*/
22: L′i = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)}, ∀i ∈ [0, n− 2] (Using the table T );
23: For each i ∈ [0, n− 2]
24: If |Li| = 4, then assign Li = L′i;
25: Return the set {Li|i ∈ [0, n− 2]};

Cryptanalysis of Helix. Helix, proposed by Ferguson et al. [FW+03], is a stream cipher with
a combined MAC functionality. The primitive uses combination of addition and XOR to generate
pseudorandom bits. Recently a differential attack was found against Helix by Muller [Mul04]. He
solved the equation (x + y) ⊕ (x + (y ⊕ β)) = γ many times to recover secret information (x, y)
using β and the corresponding γ. Every time β corresponds to a chosen plaintext. His algorithm
uses 3(n− 1) queries every time. Therefore, the most natural challenge, from an algorithmic point
of view, is to reduce the number of queries and if possible to attain an optimality. For the Helix
output word n = 32 bits, 93 queries were needed whereas Algorithm 2 takes at most 31 queries
if the position of the least significant ‘1’ of x (denoted by t) is zero. Note that, if t > 0 then the
number of queries is less. However, the most important fact is that the number of queries cannot
be further reduced in the worst case as our algorithm is worst case optimal. This fact can be
straightaway used to reduce the data complexity of that particular attack on Helix cipher by, at
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least, a factor of 3. However, in the best case, there exists seed (x, y), ∀ t ∈ [0, n − 3], for which
(16) can be solved by Algorithm 2 with only 2 queries and the improvement in such a case is a
factor of 46.5.

Computing Differential Properties of Addition. It is easy to show that our algorithm to
solve a randomly generated set DEA is robust enough to compute all differential properties of ad-
dition (e.g., maximal differential, impossible differential, etc.) In such a case we need to consider a
single differential equation of addition instead of many and then compute the solutions to it. For
example, if the single equation is NOT satisfiable then this is an impossible differential. However,
the differential properties of addition has been independently studied in depth by Lipmaa and
Moriai using a different approach [LM02].

5 Conclusion and Further Research

The results of the paper have impacts on both theory and practice. We have shown the importance
of solving DEA from both a theoretical and a practical point of view. The paper seals any further
search to improve lower bounds on the number of queries for solving DEA with adaptive queries.
Although the total number of queries grows exponentially, an optimal lower bound is linear for one
of them and constant for the other. Moreover, our algorithm reduces the number of queries of the
previous best known algorithm and our results improve the data complexity of an attack on Helix
cipher. Our work leaves room for further research, particularly, in the direction of solving DEA
with nonadaptive queries. Last but not the least, our solution techniques motivate further research
to solve more complex equations that mix modular addition, exclusive-or, modular multiplication
and T -functions.
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A Appendix

A.1 Proofs of Lemma 1 and 2

Claim 1 For all (0, β, γ̃) ∈ D̃, γ̃i = 0 ∀ i ∈ [0, t].

Proof. If the position of the least significant ‘1’ of x is t then ci = c̃i = 0 ∀ i ∈ [0, t] and ∀β ∈ Zn2
(see (4)). Recall γ̃i = ci ⊕ c̃i. This proves the lemma. �

Claim 2 For each i ∈ [t+ 1, n− 1], there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

Proof. We prove the lemma by induction on i. The statement is true if i = t + 1. Suppose, the
statement is true if i = k for some k ∈ [t+ 1, n− 2], that is, there exists (0, a, b) ∈ D̃ with bk = 1
(induction hypothesis). We construct three n-bit integers from a,

1. a′ = (an−1, an−2, · · · , ak+1, 0, ak−1, · · · , a0)

2. a′′ = (an−1, an−2, · · · , ak+1, 1, ak−1, · · · , a0)

3. a′′′ = (an−1, an−2, · · · , ak+1, 1, 0, 0, · · · , 0).

Now we select three elements (0, a′, b′), (0, a′′, b′′), (0, a′′′, b′′′) ∈ D̃ (such elements exist since, for
all p ∈ Zn2 , there exists (0, p, q) ∈ D̃ for some q ∈ Zn2 ). Note that b′k = b′′k = bk = 1 and b′′′k = 0.
From Table 1, at least one of b′k+1, b

′′
k+1 and b′′′k+1 is 1. This proves the lemma. �

A.2 Proof of Lemma 3

Claim 3 Let n − 4 ≥ t ≥ 0. For any algorithm A there exists a seed (x, y) ∈ Vn, t such that the
adaptively selected sequence of two queries by A for that particular seed produces oracle outputs γ̃’s
with γ̃i+1 = 0, ∀ i ∈ [t+ 1, n− 2].

Proof. Let the first two queries and the corresponding oracle outputs be (0, β), (0, β′), γ̃ and γ̃′.
Depending only on the tth bit of β and β′, the oracle returns outputs (i.e., γ̃ and γ̃′) according to
the following rules.

1. If βt = 0 then the oracle returns γ̃ = (0, 0, · · · , 0)n.

2. If βt = 1 then γ̃t+1 = 1 and all other bits of γ̃ are zero.

3. If β′t = 0 then the oracle returns γ̃′ = (0, 0, · · · , 0)n.

4. If β′t = 1 then γ̃′t+1 = 1 and all other bits of γ̃′ are zero.

Under any of the above input-output combinations there exists a seed and γ̃i+1 = 0 ∀ i ∈ [t+1, n−2]
for all outputs γ̃. This proves the lemma. �
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A.3 Construction of M from the Li’s

Let Gi be known ∀ i ∈ [0, n− 2] (n > 1) for a nonempty useful set Ã. Let Li = {(xi, yi, ci) |Gi ⇒
(xi, yi, ci)} ∀i ∈ [0, n− 2]. Let a set M be constructed from the Li’s in the following way,

M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0))
|(xn−1, yn−1) ∈ Z2

2, (xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0 ,
ci+1 = xiyi ⊕ xici ⊕ yici} .

We present an algorithm to construct M from the Li’s with memory O(n ·S) and time O(S) where
S = |Ã-consistent|.

First we set

M1 = {((c1), (x0), (y0))|(x0, y0, 0) ∈ L0, c1 = x0y0} .

Now we construct a set Mk ∀ k ∈ [2, n− 1] using the following recursion.

Mk = {((ck), (xk−1, · · · , x0), (yk−1, · · · , y0))|(xk−1, yk−1, ck−1) ∈ Lk−1 ,

((ck−1), (xk−2, · · · , x0), (yk−2, · · · , y0)) ∈Mk−1, ck = xk−1yk−1 ⊕ xk−1ck−1 ⊕ yk−1ck−1} .

Now, we construct

Mn = {((xn−1, · · · , x0), (yn−1, · · · , y0))|(xn−1, yn−1) ∈ Z2
2 ,

((cn−1), (xn−2, · · · , x0), (yn−2, · · · , y0)) ∈Mn−1} .

Using Proposition 2 and Theorem 1 it is easy to show that M = Mn. Note that the size of each Li
is O(1) since the size of the Table 1 is O(1). Also note that |Mn| = S and therefore the asymptotic
memory requirement to construct Mn recursively following the above algorithm is O(n · S) since
k = O(n) and Mk+1 can be constructed from Mk only. It is trivial to show that the time to
construct Mn (i.e., M) from the Li’s is O(S). Thus, the set M can be constructed from the Li’s
with memory O(n · S) and time O(S).

A.4 Proof of Lower Bound for (3)

Claim 4 A lower bound on the number of queries (α, β) to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

in the worst case of (x, y) ∈ Zn2 × Zn2 is
(i) 3 if n > 2,
(ii) 2 if n = 2,
(iii) 0 if n = 1.

Proof. (i) n > 2. Let the first two queries and the corresponding oracle outputs be (α, β), (α′, β′),
γ̃ and γ̃′. Depending on the two least significant bits of α, β, α′ and β′, the oracle returns outputs
(i.e., γ̃ and γ̃′) according to the following rules.

1. If (α0, β0) = (0, 0) then γ̃ = (0, 0, · · · , 0)n.
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2. If (α0, β0) 6= (0, 0) and (α1, β1) = (1, 1) then γ̃ = (1, 1, · · · , 1, 0)n.

3. If (α0, β0) 6= (0, 0) and (α1, β1) 6= (1, 1) then γ̃ = (0, 0, · · · , 0)n.

4. If (α0, β0) = (α′0, β
′
0) then γ̃ = γ̃′.

5. If (α0, β0) 6= (α′0, β
′
0) = (0, 0) then γ̃′ = (0, 0, · · · , 0)n.

6. If (α0, β0) 6= (α′0, β
′
0) 6= (0, 0) and (α′1, β

′
1) = (0, 0) then γ̃′ = (0, 0, · · · , 0)n.

7. If (α0, β0) 6= (α′0, β
′
0) 6= (0, 0) and (α′1, β

′
1) = (1, 1) then γ̃′ = (1, 1, · · · , 1, 0)n.

8. If (α0, β0) 6= (α′0, β
′
0) 6= (0, 0), (α′1, β

′
1) ∈ {(0, 1), (1, 0)} and (α1, β1) = (α′1, β

′
1) then

γ̃′ = (0, 0, · · · , 0)n.

9. If (α0, β0) 6= (α′0, β
′
0) 6= (0, 0), (α′1, β

′
1) ∈ {(0, 1), (1, 0)} and (α1, β1) 6= (α′1, β

′
1) then γ̃′0 = 0

and γ̃′i = 1⊕ γ̃i for all i ∈ [1, n− 1].

From the oracle outputs produced according to the above rules on the first two queries, one can
show, using Table 1, that one of the following cases occurs.

1. S0 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

2. S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

3. S0 ≥ 2, S1 ≥ 2 and Si ≥ 1 ∀ i ∈ [0, n− 2].

Clearly, for any of the above cases, the number of valid solutions S, derived from the results of the
queries, is at least 8 which is not the case with this equation (see Theorem 3). Therefore, a lower
bound on the number of queries in the worst case is 3.
(ii) n = 2. Using Table 1, a proof is similar to the proof for (i).
(iii) n = 1. A proof is trivial. �
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