
VMPC-MAC: A Stream Cipher Based
Authenticated Encryption Scheme

Bartosz Zoltak

http://www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. A simple and software-efficient stream cipher based algo-
rithm for computing Message Authentication Codes is described. The
algorithm employs the internal state of the underlying stream cipher,
which allows to minimize the additional-to-encryption computational ef-
fort required by the scheme and to maintain simplicity of the design.
The analyses described in this paper indicate that the scheme provides
a considerable level of resistance against forgery attacks in a chosen ci-
phertext attack model, good statistical properties and high efficiency in
software implementations.

Keywords: Authenticated Encryption, MAC, Stream Cipher, VMPC

1 Introduction

In the past few years the interest in message authentication algorithms has
been concentrated mostly on modes of operation of block ciphers. Examples of
some recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9].
Parallely a growing interest in stream cipher design can be observed, however
it appears to be not sufficiently balanced with the development of dedicated
message authentication schemes. Two recent proposals include Helix and Sober-
128 stream ciphers with built-in MAC functionality. However a powerful attack
against the MAC algorithm of Sober-128 [10] and two weaknesses of Helix [12]
were presented at FSE’04.

This paper gives a proposition of a simple and software-efficient algorithm for
computing Message Authentication Codes for the presented at FSE’04 VMPC
Stream Cipher [13].

The proposed scheme was designed to minimize the computational cost of the
additional-to-encryption MAC-related operations by employing some data of the
internal-state of the underlying cipher. The aim of this approach is to achieve
design simplicity and good performance in software implementations. The secu-
rity analyses described in this paper indicate that the scheme ensures a proper
diffusion effect, is practically secure in the chosen ciphertext attack model and



enables to increase the security level, in an analogous attack approach, by ad-
justing a parameter d.

Section 2 describes general characteristics of the VMPC-MAC Scheme, Section
3 outlines the employed primitives – the VMPC Stream Cipher and its Key
Scheduling Algorithm, Section 4 defines a d-level VMPC-MAC Scheme, sections
5-7 discuss the security of the scheme and sections 8-9 quote software perfor-
mance numbers and test-vectors.

2 General features of the VMPC-MAC Scheme

The scheme is based on an internal state T being transformed along with the
progress of the encryption process in a manner determined by the ciphertext
data and the internal state of the cipher. This stage will be further referred to
as the Encryption Phase of the scheme.

After the Encryption Phase T is transformed in the Post-Processing Phase to
ensure an undistinguishable from random diffusion effect, discussed in Section
5.

In the third and final MAC Generation Phase T is transformed into a desired-
length Message Authentication Code by a compression function. This phase is
considered to provide a security margin to the scheme. The statistical tests (Sec-
tion 5) and a collision-finding attack (Section 7) will indicate that the scheme
remains secure also without this phase. One practical benefit of the MAC Gener-
ation Phase is the fact that it allows to comfortably adjust the size of the MAC
tag, here proposed at 160 bits.

To minimize the number of employed primitives, the compression function in
the MAC Generation Phase is derived from the Key Scheduling Algorithm of
the underlying stream cipher and from the cipher itself. The properties of the
cipher and its KSA will be outlined in section 3 to justify the choice.

3 Employed primitives

This section outlines the primitives the scheme is based on – the VMPC Stream
Cipher and the VMPC Key Scheduling Algorithm (KSA). VMPC was introduced
at FSE’04 as a simple and software-efficient stream cipher with a specified KSA
and Initialization Vector (IV) management routine.



3.1 VMPC Stream Cipher

The VMPC Stream Cipher generates a stream of 8-bit words, as specified in
Table 1.

Variables:

P : 256-byte table storing a permutation initialized by the VMPC KSA
s : 8-bit variable initialized by the VMPC KSA
n : 8-bit variable
L : desired length of the keystream in bytes
+ : addition modulo 256

Table 1. VMPC Stream Cipher

1. n = 0

2. Repeat steps 3-6 L times:
3. s = P [s + P [n]]
4. Output P [P [P [s]] + 1]
5. Temp = P [n]

P [n] = P [s]
P [s] = Temp

6. n = n + 1

According to [13] the cipher generates keystreams undistinguishable from a truly
random source and has a number of statistical advantages over the popular RC4
keystream generator. The risk of the cipher’s output falling into a short cycle
was concluded to be negligibly low (an example estimate says that probability
that the output will enter a cycle not longer than 2850 is about 2−850). The
average computational complexity of recovering the cipher’s internal state from
its output is estimated at about 2900 operations. An RC4-specific problem of the
so-called Finney states (which theoretically can make the keystream fall into a
cycle of length 65280, for the typical 8-bit version of the cipher) is automati-
cally avoided by the VMPC Stream Cipher. A number of tests showed no bias
in the statistical characteristics of the cipher’s output, including many of the
tests which revealed the weaknesses of RC4. The cipher can also be considered
efficient in software implementations – it is claimed to perform at a rate of about
12.7 clock-cycles per byte on a Pentium 4 processor.

3.2 VMPC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm (KSA) transforms a cryptographic key
(K) and – optionally – an Initialization Vector (V ) into the 256-element permu-
tation P and initializes variable s.



Variables as for VMPC Stream Cipher, with:

c : fixed length of the cryptographic key in bytes, 16 ≤ c ≤ 64
K : c-element table storing the cryptographic key
z : fixed length of the Initialization Vector in bytes, 16 ≤ z ≤ 64
V : z-element table storing the Initialization Vector
m : 16-bit variable
+ : addition modulo 256

Table 2. VMPC Key Scheduling Algorithm

1. s = 0
2. for n from 0 to 255: P [n] = n

3. for m from 0 to 767: execute steps 4-6:
4. n = m modulo 256
5. s = P [s + P [n] + K[m modulo c]]
6. Temp = P [n]

P [n] = P [s]
P [s] = Temp

7. If Initialization Vector is used: execute step 8:

8. for m from 0 to 767: execute steps 9-11:
9. n = m modulo 256

10. s = P [s + P [n] + V [m modulo z]]
11. Temp = P [n]

P [n] = P [s]
P [s] = Temp

According to [13] the algorithm provides an undistinguishable from random dif-
fusion of changes of one bit or byte of the key K of size up to 64 bytes onto the
generated P permutation and onto output generated by the cipher.

The diffusion effect of the KSA has consequences for the design of the com-
pression function employed in the MAC Generation Phase of the VMPC-MAC
Scheme. Section 3.3 outlines the analyses of this aspect of the KSA following
[13].

3.3 Diffusion effect of the VMPC KSA

The VMPC Key Scheduling Algorithm was tested for diffusion of changes of the
key onto the generated permutation and onto the output of the VMPC Stream
Cipher. A change of one bit or byte of the key of size 128, 256 and 512 bits



appears to cause an undistinguishable from random change in the generated
permutation and in the cipher’s output.

In other words the relations between two permutations or two keystreams gener-
ated from keys K and K ′ differing in only one bit or byte are undistinguishable
from relations between, respectively, two random permutations or two random
data-streams.

The KSA was designed to provide the diffusion without the use of the Ini-
tialization Vector and the tests were run without the IV (only steps 1-6 of the
KSA were applied). The Initialization Vector would obviously mix the generated
permutation further, which would improve the diffusion effect. The aim of this
approach is to ensure that the diffusion effect is additionally provided with a
safety margin over the test results.

Given numbers of equal permutation elements probabilities Frequencies
of occurrence of situations where in two permutations, generated from keys dif-
fering in one byte, there occurs a given number (0, 1, 2, 3, 4, 5) of equal elements
in the corresponding positions and the average number of equal elements in the
corresponding positions – showed no statistically significant deviation from their
expected values in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

Given numbers of equal Cipher’s outputs probabilities Frequencies of
occurrence of situations where in two 256-byte streams generated by the VMPC
Stream Cipher directly after running the KSA for keys differing in one byte, there
occurs a given number (0, 1, 2, 3, 4, 5) of equal values in the corresponding
byte-positions and the average number of equal values in the corresponding
byte-positions – showed no statistically significant deviation from their expected
values in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

Equal corresponding permutation elements probabilities Frequencies of
occurrence of situations where the elements in the corresponding positions of
permutations generated from keys differing in one byte are equal (for each of the
256 positions) – showed no statistically significant deviation from their expected
value in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

4 d-level VMPC-MAC Scheme

The d-level VMPC-MAC Scheme is described in Table 3. Steps E1-E12 define
the Encryption Phase, steps P1-P10 – the Post-Processing Phase and steps M1-
M5 the MAC Generation Phase.



Variables:

Pt[m] : m-th 8-bit word of plaintext
Ct[m] : m-th 8-bit word of ciphertext

x1, x2, . . . , xd : 8-bit variables
T : (8× d)-element table of 8-bit words. Let T [n] denote n-th element of T

n,m, g, R : temporary integer variables
Let V and z be defined as in Section 3.2 and L – as in Section 3.1
Let + denote addition modulo 256

Table 3. d-level VMPC-MAC Scheme

E1. Run the VMPC Key Scheduling Algorithm (Table 2)
E2. Set T , x1, . . . , xd, n, m, g to 0

E3. s = P [s + P [n]]
E4. Ct[m] = Pt[m] xor P [P [P [s]] + 1]

E5. For i from d down to 2 : xi = P [xi + xi−1]
E6. x1 = P [x1 + s + Ct[m]]
E7. For i from 1 to d : xor T [g + i− 1] with xi

E8. Temp = P [n]; P [n] = P [s]; P [s] = Temp
E9. g = (g + d) modulo (8× d)
E10. n = n + 1
E11. Increment m
E12. If m < Length of P laintext : Go to step E3

P1. Set R to 1
P2. s = P [s + P [n]]

P3. For i from d down to 2 : xi = P [xi + xi−1 + R]
P4. x1 = P [x1 + s + R]
P5. For i from 1 to d : xor T [g + i− 1] with xi

P6. Temp = P [n]; P [n] = P [s]; P [s] = Temp
P7. g = (g + d) modulo (8× d)
P8. n = n + 1
P9. R = R + 1
P10. If R ≤ 24: Go to step P2

M1. Store table T in table V
M2. Set z to (8× d)
M3. Execute step 8 of the VMPC Key Scheduling Algorithm (Table 2)
M4. Set L to 20
M5. Execute steps 1 and 2 of the VMPC Stream Cipher (Table 1) and

save the 20 generated outputs as the 160-bit MAC



5 Statistical properties of the scheme

The scheme was tested for diffusion of changes of the input data onto the output
data. The input includes the plaintext message Pt, the key K and the Initial-
ization Vector V (K and V as defined in Section 3.2). The actual output is
the keystream generated by the VMPC Stream Cipher in step M5, however to
obtain a more rigorous measure of the diffusion effect, we will consider the T
table generated only in steps E1-E12 and P1-P10 as the scheme’s output for the
purpose of the statistical tests. Steps M1-M5 ensure the diffusion properties of
the VMPC KSA, discussed in Section 3.3, which provides a safety margin to the
diffusion effect of the complete MAC scheme.

A proper diffusion effect (a random-like relation between outputs generated from
different inputs) is considered here to occur, when for Tr being an (8×d)-element
table of 8-bit words derived from a truly random source, T1 = MAC(Pt1,K1, V1)
and T2 = MAC(Pt2,K2, V2), where Pt1 6= Pt2 or K1 6= K2 or V1 6= V2 (the
or is not exclusive and the differences can be limited to only one bit-position),
probability of determining which of the three values (Tr, T1 or T2) was generated
by the truly random source is 1/3.

The diffusion of changes of the key K or the Initialization Vector V onto the T
table can be assumed random-like as a direct result of the diffusion properties
of the VMPC Key Scheduling Algorithm discussed in Section 3.3.

The question remains whether the proper diffusion occurs when K1 = K2,
V1 = V2 and Pt1 6= Pt2. To try to evaluate this, statistical tests were run
for: (a) Pt1 and Pt2 differing only in the last byte and (b) for Pt1 and Pt2,
where Pt2 is derived by copying Pt1 to Pt2 and by appending one more byte to
Pt2.

5.1 Pt1 and Pt2 differing in the last byte

In this test the length of Pt1 and Pt2 was 8 bytes and the last byte of Pt2
(the one which is input to the scheme in the latest time) was taking on all
the possible 255 values except for the value of the last byte of Pt1. For each
value of Pt2 two tables T1 = MAC(Pt1, K0, V0) and T2 = MAC(Pt2,K0, V0)
were compared. The values of Pt1, K0 and V0 were changed after each set of
the 255 steps. The test was run for d = 4 and for 237.2 pairs of Pt1 and Pt2.
Frequencies of occurrence of situations where T1[x] = T2[x] for x ∈ {0..31}
showed no statistically significant deviations from their expected value of 1/256.

5.2 Pt2 with an appended last byte

In this test the length of Pt1 was 8 bytes and the length of Pt2 was 9 bytes. First 8
bytes of Pt1 and Pt2 were equal and the last byte of Pt2 (the one which is input to
the scheme in the latest time) was taking on all the possible 256 values. For each



value of Pt2 two tables T1 = MAC(Pt1, K0, V0) and T2 = MAC(Pt2,K0, V0)
were compared. The values of Pt1, K0 and V0 were changed after each set of
the 256 steps. The test was run for d = 4 and for 237.2 pairs of Pt1 and Pt2.
Frequencies of occurrence of situations where T1[x] = T2[x] for x ∈ {0..31}
showed no statistically significant deviations from their expected value of 1/256.

6 A proof of security

A desirable feature of an authenticated encryption scheme is a proof of security.
Proofs are usually obtained for MAC algorithms based on primitives like block
ciphers or hash functions. Under the assumption of the desirable properties of
the primitives (e.g. that they are PRPs or PRFs), it is possible to build a proof
of a desired notion of security of the MAC algorithm.

Here the MAC algorithm is integrated with the underlying stream cipher, it
employs the cipher’s internal state to update the internal state of the MAC-
scheme. In our view it is rather unlikely that a formal proof of security of a
similar scheme can be constructed. Such proof would probably be comparable
to a proof of security of a primitive itself, rather than to a proof of security of a
given mode of operation of a primitive. From the lack of proofs for the primitives
(like stream or block ciphers) we accept that building a proof of security of the
described scheme could be practically unachievable.

7 Fastest chosen ciphertext attack found

The most efficient chosen ciphertext attack found against the VMPC-MAC
Scheme obtains collisions in the T table (and consequently in the MAC tags)
with a success probability of 2−144. In case a higher level of resistance was de-
sired, in an analogous attack model, it can be obtained by increasing the value
of the d parameter.

The attack assumes that the adversary has full passive and active access to
the ciphertext and plaintext and can use an unlimited number of verification
queries for the new message. The purpose of the adversary is to introduce a new
valid ciphertext Ct2 which was not MACed through an authentication query but
which is deemed valid in a verification query. The most efficient attack found as-
sumes that the adversary starts with a valid message Ct1 (which was intercepted
or obtained through an authentication query), copies it to Ct2 and attempts to
change Ct2 it in such way as to make Ct2 generate the same MAC as Ct1 did.

The attack route begins with a change of one byte of the ciphertext – Ct2[m]
and proceeds with changing a number of other bytes of Ct2 in such way as to
obtain MAC(Pt2) = MAC(Pt1).



The attack is illustrated for an example value of d = 4.
Let xw(m) denote the value of xw in iteration m; w ∈ {1, 2, 3, 4}
Let n be a function defined as n = (m modulo 8)×4
Let “(+)” denote addition modulo 32

A change of Ct2[m] unconditionally causes a change of x1(m), since P is a
permutation.

Because x1(m) and only x1(m) directly updates x2(m + 1) and indirectly up-
dates x3(m+2) and x4(m+3), the variables x2(m+1), x3(m+2) and x4(m+3)
will be unconditionally changed too.
The following elements of table T will be updated and unconditionally changed
by those variables: T [n] changed by x1(m), T [n(+)5] changed by x2(m + 1),
T [n(+)10] changed by x3(m + 2) and T [n(+)15] changed by x4(m + 3).

The most efficient method of reverting these changes found forces the adver-
sary to perform the following changes of the ciphertext:

1. Change Ct2[m + 1] in such way as to make x4(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 1), x2(m + 2) and
x3(m + 3). 1 [x3(m + 3) must be changed in such way as to make x4(m + 4) =
(x4(m + 3) + x3(m + 3)) modulo 256 return to its original value 2 ].
As a result T [n(+)4] is changed by x1(m+1), T [n(+)9] is changed by x2(m+2)
and T [n(+)14] is changed by x3(m + 3). T [n(+)19] remains unchanged because
the change of x4(m + 4) was reverted.

2. Change Ct2[m + 2] in such way as to make x3(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 2) and x2(m + 3).
As a result T [n(+)8] is changed by x1(m + 2) and T [n(+)13] is changed by
x2(m + 3). T [n(+)18] remains unchanged because the change of x3(m + 4) was
reverted.

3. Change Ct2[m + 3] in such way as to make x2(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 3).
As a result T [n(+)12] is changed by x1(m + 3). T [n(+)17] remains unchanged
because the change of x2(m + 4) was reverted.

4. Change Ct2[m + 4] in such way as to make x1(m + 4) return to its origi-
nal value. As a result T [n(+)16] remains unchanged.

1 The algorithm can be varied into making some of the variables (e.g. x2(m + 2))
remain unchanged, which yields an apparent improvement, however further analysis
shows that this actually leads to higher complexity of the complete attack.

2 The approach by which the first variable to return to its original value is x4, rather
than e.g. x1 or x2, in further analysis shows to lead to much lower complexities of
the complete attack.



At this moment the adversary has succeeded in stopping the avalanche of changes
of the elements of T , resulting from a change of Ct2[m], by reverting the changes
of x1, x2, x3, x4 in the earliest possible iteration m + 4. The cost of this is an
unavoidable change of 10 elements of the T table (T [n, n(+)4, n(+)5, n(+)8,
n(+)9, n(+)10, n(+)12, n(+)13, n(+)14, n(+)15]).

To complete a successful forgery, the adversary needs to revert the changes of
these elements of T . Operations analogous to steps 1-4 are needed to refrain
x1, x2, x3, x4 from causing more damage to T and the additional requirement
– to revert the already caused changes to T – needs to be satisfied. The most
efficient approach found achieves that in the following steps 5-9:

5. Change Ct2[m + 8] in such way as to change x1(m + 8) in such way as to
revert the change of T [n], make x2(m + 9) change in such way as to revert the
change of T [n(+)5], x3(m + 10) change in such way as to revert the change
of T [n(+)10], and x4(m + 11) change in such way as to revert the change of
T [n(+)15].

6. Change Ct2[m + 9] in such way as to make x4(m + 12) return to its orig-
inal value, x1(m + 9) change in such way as to revert the change of T [n(+)4],
x2(m+10) change in such way as to revert the change of T [n(+)9] and x3(m+11)
change in such way as to revert the change of T [n(+)14]. T [n(+)19] remains un-
changed because the change of x4(m + 12) was reverted.

7. Change Ct2[m + 10] in such way as to make x3(m + 12) return to its original
value, x1(m + 10) change in such way as to revert the change of T [n(+)8] and
x2(m + 11) change in such way as to revert the change of T [n(+)13]. T [n(+)18]
remains unchanged because the change of x3(m + 12) was reverted.

8. Change Ct2[m + 11] in such way as to make x2(m + 12) return to its original
value and x1(m + 11) change in such way as to revert the change of T [n(+)12].
T [n(+)17] remains unchanged because the change of x2(m + 12) was reverted.

9. Change Ct2[m + 12] in such way as to make x1(m + 12) return to its original
value. As a result T [n(+)16] remains unchanged.

At this point MAC(Pt2) = MAC(Pt1).

The success probability of the described attack is determined by the total num-
ber of changes to variables x1, x2, x3, x4 and T [0, 1, . . . , 31], which need to be
reverted. Steps 1-9 determine this probability, for the assumed d = 4, to 256−18

= 2−144.

In an analogous attack but for d = 5, the success probability would be 256−25 =



2−200 (which would also imply an increase in the size of the MAC tag to 25 or
more bytes), however the implementation of the scheme would not be as natural
as for d = 4 (while still easily achievable) which, given the fact that 2−144 can
be considered a comfortable level of security, encourages to propose d = 4 as
sufficient for possible practical applications of the VMPC-MAC Scheme.

8 Performance of the VMPC-MAC Scheme

Performance of a moderately optimized 32-bit assembler implementation of the
VMPC-MAC Scheme measured on an Intel Pentium 4, 2.66 GHz processor, is
given in Table 4.

Table 4. Performance rates of the VMPC-MAC Scheme

MBytes/s MBits/s cycles/byte

91 728 29

9 Test values of the VMPC-MAC Scheme

Table 5 gives an example 20-byte tag generated by the VMPC-MAC Scheme
for a given 16-byte key K, a given 16-byte Initialization Vector V and for a
256-byte plaintext Message consisting of consecutive numbers from 0 to 255
(Message[x] = x for x ∈ {0, 1, . . . , 255}).

Table 5. Test vectors of the VMPC-MAC Scheme

K; c = 16 [hex] 96, 61, 41, 0A, B7, 97, D8, A9, EB, 76, 7C, 21, 17, 2D, F6, C7

V ; z = 16 [hex] 4B, 5C, 2F, 00, 3E, 67, F3, 95, 57, A8, D2, 6F, 3D, A2, B1, 55

Message [dec] 0, 1, 2, 3, . . ., 253, 254, 255

MAC [hex] 9B, DA, 16, E2, AD, 0E, 28, 47, 74, A3, AC, BC, 88, 35, A8, 32,
6C, 11, FA, AD

10 Conclusions

A simple and software-efficient algorithm for computing Message Authentication
Codes for a stream cipher was described. The scheme is based on two primitives,
the VMPC Stream Cipher and its Key Scheduling Algorithm. The scheme de-
rives some data required to update its internal state from the internal state of



the underlying cipher. This allowed the design of the scheme to remain simple
and to achieve good performance in software implementations.

Security analyses of the scheme indicate that it provides a proper diffusion ef-
fect, remains practically secure in the fastest found chosen ciphertext attack and
allows to increase the security level, in an analogous attack model, by increasing
a parameter d.

The proposed VMPC-MAC Scheme can be seen as a simple to implement and
analyse, efficient in software implementations and, according to analyses per-
formed so far, secure authenticated encryption scheme based on a stream cipher.

References

1. Federal Information Processing Standards Publication 198:
The Keyed-Hash Message Authentication Code (HMAC), 2002
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

2. Mihir Bellare, Ran Canetti, Hugo Krawczyk: Message Authentication using Hash
Functions the HMAC Construction, CryptoBytes, Vol 2, No. 1, RSA Laboratories,
1996

3. Mihir Bellare, Chanathip Namprempre: Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm, Proceedings
of ASIACRYPT 2000, LNCS vol. 1976 Springer-Verlag, 2000

4. Phillip Rogaway, Mihir Bellare, John Black, Ted Krovetz: OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption (2001), Eighth ACM
Conference on Computer and Communications Security (CCS-8) (August 2001),
ACM Press.

5. Mihir Bellare, Roch Guerin, Philip Rogaway: XOR MACs: New Methods for
Message Authentication Using Finite Pseudorandom Functions, Proceedings of
CRYPTO 1995, LNCS vol. 963, Springer-Verlag, 1995.

6. V. Gligor, P. Donescu: Fast Encryption and Authentication: XCBC Encryption and
XECB Authentication Modes, 2nd NIST Workshop on AES Modes of Operation,
Santa Barbara, USA, 2001.

7. T. Iwata, K. Kurosawa: OMAC: One-key CBC MAC, Proceedings of Fast Software
Encryption 2003, LNCS vol. 2887, Springer-Verlag 2003.

8. Mihir Bellare, Philip Rogaway, David Wagner: The EAX Mode of Operation Pre-
proceedings of Fast Software Encryption 2004, pages 367-384.

9. Tadayoshi Kohno, John Viega, Doug Whiting: CWC: A High-Performance Con-
ventional Authenticated Encryption Mode, Pre-proceedings of Fast Software En-
cryption 2004, pages 385-402.

10. Dai Watanabe, Soichi Furuya: A MAC forgery attack on SOBER-128, Pre-
proceedings of Fast Software Encryption (FSE) 2004, pages 448-458.

11. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, Ta-
dayoshi Kohno: Helix: Fast Encryption and Authentication in a Single Crypto-
graphic Primitive, Proceedings of FSE 2003, LNCS vol. 2887, Springer-Verlag 2003.

12. Fredric Muller: Differential Attacks Against the Helix Stream Cipher, Pre-
proceedings of Fast Software Encryption 2004, pages 75-88.

13. Bartosz Zoltak: VMPC One-Way Function and Stream Cipher, Pre-proceedings of
Fast Software Encryption 2004, pages 190-204.



14. NESSIE consortium: Performance of Optimized Implementations of the NESSIE
Primitives, 2003 www.cryptonessie.org

15. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege:
Analysis Methods for (Alleged) RC4. Proceedings of ASIACRYPT 1998, LNCS,
vol. 1514, Springer-Verlag, 1998.

16. Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4
Keystream Generator. Proceedings of FSE 2000, LNCS, vol. 1978, Springer-Verlag,
2001.

17. Itsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of
FSE 2001, LNCS, vol. 2355, Springer-Verlag, 2002.

18. Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the Key Scheduling Algo-
rithm of RC4. Proceedings of SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.

19. Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
Proceedings of EUROCRYPT 1997, LNCS, vol. 1233, Springer-Verlag 1997.


