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Abstract

We introduce the notion of hierarchical group signatures. This is a proper
generalization of group signatures, which allows multiple group managers
organized in a tree with the signers as leaves. For a signer that is a leaf of the
subtree of a group manager, the group manager learns which of its children
that (perhaps indirectly) manages the signer.

We provide definitions for the new notion and construct a scheme that is
provably secure given the existence of a family of trapdoor permutations.

We also present a construction which is relatively practical, and prove its
security in the random oracle model under the strong RSA assumption and
the DDH assumption.

1 Introduction

Consider the notion of group signatures introduced by Chaum and van Heyst [15].
A group member can compute a signature that reveals nothing about the signer’s
identity except that he is a member of the group. On the other hand the group
manager can always reveal the identity of the signer.

An application for group signatures is anonymous credit cards. The cardholder
wishes to preserve his privacy when he pays a merchant for goods, i.e., he is
interested in unlinkability of payments. The bank must obviously be able to extract
the identity of a cardholder from a payment or at least an identifier for an account,
to be able to debit the account. To avoid fraud, the bank, the merchant, and the
cardholder all require that a cardholder cannot pay for goods without holding a
valid card. To solve the problem using group signatures we let the bank be the
group manager and the cardholders be signers. A cardholder signs a transaction
and hands it to the merchant. The merchant then hands the signed transaction to
the bank, which debits the cardholder and credits the merchant. Since signatures
are unlinkable, the merchant learns nothing about the cardholder’s identity. The
bank on the other hand can always extract the cardholder’s identity from a valid
signature and debit the correct account.

The above scenario is somewhat simplified since normally there are many banks
that issue cards of the same brand and which are processed through the same
payment network. The payment network normally works as an administrator and
routes transactions to several independent banks. Thus, the merchant hands a
payment to the payment network which hands the payment to the issuing bank.
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We could apply group signatures here as well by making the payment network act
as the group manager. The network would then send the extracted identity to the
issuing bank. Another option is to set up several independent group signatures
schemes, one for each issuer. In the first approach, the payment network learns the
identity of the customer, and in the second approach the merchant learns which
bank issued the customer’s card. A better solution would reveal nothing except
what is absolutely necessary to each party. The merchant needs to be convinced
that the credit card is valid, the payment network must be able to route the
payment to the correct card issuer and the issuer must be able to determine the
identity of the cardholder.

A solution that comes to mind is to use ordinary group signatures with the
modification that the customer encrypts his identity with his bank’s public key.
Then we have the problem of showing to the merchant that this encryption contains
valid information. However, the customer cannot reveal the public key of the bank
to the merchant, making such a proof far from trivial.

In this paper we introduce and investigate the notion of hierarchical group sig-
natures. These can be employed to solve the above problem. When using a hier-
archical group signature scheme there is not one single group manager. Instead
there are several group managers organized in a tree, i.e., each group manager
either manages a group of signers or a group of group managers. In the original
notion the group manager can always identify the signer of a message, but nobody
else can distinguish between signatures by different signers. The corresponding
property for hierarchical group signatures is more complicated. If a manager dir-
ectly manages a group of signers, it can identify all the signers that it manages,
but the signatures of all other signers are indistinguishable to it. This corresponds
directly to the original notion. If a manager manages a group of managers, it
cannot identify the signer, but it can identify the manager directly below it which
(perhaps indirectly) manages the signer. Thus, a manager that does not manage
signers directly get only partial information on the identity of the signer.

When we use hierarchical group signatures to construct anonymous credit cards
for the more realistic setting we let the payment network be the root manager
that manages a set of group managers, i.e., the issuing banks, and we let the
cardholders be signers. The credit card application also demonstrates what kind
of responsibility model is likely to be used with a hierarchical group signature
scheme. With a valid signature on a transaction, the merchant has a valid demand
on the payment network. If the payment network has a signature that can be shown
to belong to a certain bank, the network has a valid demand on that bank. Thus,
it is in the network’s interest to open the signatures it receives from merchants,
and it is in the issuing banks’ interest to open the signatures they receive from the
network.

1.1 Previous Work

The concept of group signatures was first introduced by Chaum and van Heyst [15]
in 1991. This and the group signature schemes that followed [16, 9] all had the
property that the complexity of the scheme grows with the number of participants.
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In [12] Camenisch and Stadler presented a system where the key does not grow
with the number of participants. This system, however, relies on a non-standard
number-theoretic assumption. The assumption was actually found to be incorrect
and modified in [2]. An efficient system whose security rests on the strong RSA as-
sumption and the Diffie-Hellman decision assumption was presented by Camenisch
and Michels in 1998 [10]. This system was improved in [1].

In [5] Bellare et al. presented a scheme for group signatures based on general
methods. Our scheme based on general assumptions can be seen as a generalization
of their scheme.

In [2] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [27] a system for hierarchical multi-groups is given. It may be
worthwhile to consider the differences between these concepts and hierarchical sig-
natures introduced here. Multi-group signature schemes allow a signer who is a
member of two groups to produce a signature that shows membership of either
both groups or just one of them. In hierarchical multi-groups a signer who is
a member of a supergroup with subgroups can produce a signature that reveals
membership either of the supergroup or of a subgroup of his choice. However, the
opening procedure is not hierarchical, e.g., there are no group managers for the
subgroups.

Subgroup signatures make it possible for an arbitrary number i of signers to
produce a joint signature which can be verified to stem from i distinct group
members. None of these extensions contain the hierarchical property.

The connection between group signatures and anonymous payment systems is
quite natural and has been studied before. In [28] a system for electronic cash
based on group signatures is given by Lysyanskaya and Ramzan.

Group signatures, and especially hierarchical group signatures, should not be
confused with zero-knowledge sets as described in [30]. Zero-knowledge sets enables
a prover to commit to a set S. Given x he can then prove x ∈ S or x 6∈ S
(whichever is true) without disclosing anything else about S. For zero-knowledge
sets the prover has the necessary information to produce a proof of membership
for any element in the set. With group signatures on the other hand the set of
members may be public, and the signer proves that it belongs to this set.

1.2 Notation

We write [a, b] to denote the set {x ∈ Z | a ≤ x ≤ b}. We say that an element is
chosen “randomly” instead of the more cumbersome “independently and uniformly
at random”. If T is a tree we denote by L(T ) its set of leaves. We let φ denote
Euler’s φ function. By r ∈R S we mean that r is chosen randomly in S. Through-
out the paper, κ denotes the security parameter. A function f : N→ [0, 1] is said
to be negligible if for each c > 0 there exists a κ0 ∈ N such that f(κ) < κ−c for
κ0 < κ ∈ N. We say that a function f : N → [0, 1] is non-negligible whenever it
is not negligible. When we say that a number is k-bit, we implicitly mean that it
has a leading one (i.e., that it is in the interval [2k−1, 2k − 1]).

We sometimes do not explicitly state how a group given as input to an algorithm
is described, e.g., we write CHPg(Gq) to denote that the algorithm CHPg is given
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a description of a group Gq of prime order q as input. Whenever we do that, Gq

is assumed to be the unique subgroup of order q of Z∗
p for a prime p = 2q + 1, so

the obvious description of Gq is p. In Section 5 we consider the issue of existence
of such primes. We use QRN to denote the subgroup of squares in Z∗

N , i.e., the
quadratic residues. We write ∅ to denote both the empty set and the empty string.

We say that a distribution ensemble D = {Dκ} is efficiently sampleable if there
exists a polynomial time Turing machine TD that on input 1κ outputs a random
sample distributed according to Dκ.

All adversaries in this paper are modeled as polynomial time Turing machines
with non-uniform auxiliary advice string. We denote the set of such adversaries
by PPT∗.

A public-key cryptosystem is said to be CCA2-secure if it is infeasible for
an attacker to determine which one of two messages of his choice that a given
cryptotext is the encryption of, even if the attacker has access to a decryption
oracle both before the choice is made and after the cryptotext is received [35]. The
following formalizes this property.

Let CS = (Kg, E,D) be a public key cryptosystem. Consider the following
experiment.

Experiment 1.1 (CCA2, Expcca2−b
CS,A (κ)).

(pk, sk)← Kg(1κ)

(m0,m1, state)← ADsk(·)(choose,pk)

c← Encsk(mb)

d← ADsk(·)(guess, state,pk)

The experiment returns 0 if the encryption oracle was queried on c, and d
otherwise. The advantage of an adversary is defined as

Advcca2
CS,A(κ) = |Pr[Expcca2−0

CS,A (κ) = 1]− Pr[Expcca2−1
CS,A (κ) = 1]| .

Definition 1.2 (CCA2-secure). The cryptosystem CS is said to be CCA2-secure
if Advcca2

CS,A(κ) is negligible for any A ∈ PPT∗.

A signature scheme is said to be CMA-secure if it infeasible for an attacker
to output a message-signature pair even if given a signing oracle [26]. Formally
CMA-security is defined using the following experiment, where SS = (Kg,Sig,Vf)
is a signature scheme

Experiment 1.3 (CMA, Expcma
SS,A(κ)).

(pk, sk)← Kg(1κ)

(m, s)← ASigsk(·)(guess,pk)

If Vfpk(m, s) = 1 and A’s oracle was never queried on m return 1, else return 0.
The advantage of an adversary A is defined as Advcma

SS,A(κ) = Pr[Expcma
SS,A(κ) = 1].

Definition 1.4 (CMA-secure). The signature scheme SS is said to be CMA-
secure if Advcma

SS,A(κ) is negligible for any A ∈ PPT∗.
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Two ensembles {Xn}n∈N and {Yn}n∈N are statistically close if
∑

α |Pr[Xn =
α]− Pr[Yn = α]| is negligible.

Definition 1.5 (Trapdoor Permutation Family). A trapdoor permutation
family is a tuple of probabilistic polynomial time Turing machines F = (Gen, Eval,
Invert) such that:

1. Gen(1κ) outputs a pair (f, f−1) such that f is a permutation of {0, 1}κ.

2. Eval(1κ, f, x) is a deterministic algorithm which on input f , where (f, f−1) ∈
Gen(1κ), and x ∈ {0, 1}κ outputs y = f(x).

3. Invert(1κ, f−1, y) is a deterministic algorithm which on input f−1, where
(f, f−1) ∈ Gen(1κ), and y ∈ {0, 1}κ outputs some x = f−1(y).

4. For all κ, (f, f−1) ∈ Gen(1κ), and x ∈ {0, 1}κ we have f−1f(x) = x.

5. For all adversaries A ∈ PPT∗, the following is negligible

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = f−1(y)] .

Definition 1.6 (Hard-Core Bit). Let B = {Bκ : {0, 1}κ → {0, 1}} be a collection
of functions such that there exists a polynomial time Turing machine that outputs
Bκ(x) on input (1κ, x), where x ∈ {0, 1}κ. Let F = (Gen,Eval, Invert) be a trapdoor
permutation family. B is a hard-core bit for F if the following is negligible for all
adversaries A ∈ PPT∗

∣

∣

∣

∣

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = B(x)]−
1

2

∣

∣

∣

∣

.

1.3 Outline of Paper

In Section 2 we formalize the notion of hierarchical group signatures and give
definitions of security. We also briefly discuss why it is not trivial to transform
a non-hierarchical group signature scheme into a hierarchical scheme. In Section
3 we introduce the concept of cross-indistinguishability, which we use in both
the general construction and the explicit construction. Our construction under
general assumptions is presented in Section 4 and in Section 5 we give the explicit
construction. The zero-knowledge proofs used in Section 5 can be found in Section
6. Finally in Sections 7 and 8 we discuss possible modifications and extensions of
the current scheme.

1.4 Contributions

We introduce and formalize the notion of hierarchical group signatures. We give a
construction that is provably secure under the existence of a trapdoor permutation
family. As part of our investigations we introduce a new property of cryptosystems,
which we call cross-indistinguishability. This property may be of independent
interest.
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Then we consider how a practical hierarchical group signature scheme can be
constructed under specific complexity assumptions. We show that by a careful
selection of primitives one can construct a relatively practical hierarchical group
signature scheme that is provably secure under the DDH assumption and the strong
RSA assumption in the random oracle model. For reasonable security parameters
a few hundred exponentiations are required to produce a signature.

As part of the construction we show how to prove efficiently in zero-knowledge
that a committed value is a signature of an encrypted message. This technique
may be useful for other applications.

2 Hierarchical Group Signatures

In this section we discuss the notion of hierarchical group signatures. We begin by
describing the parties of a hierarchical group signature system. Then we proceed
by giving formal definitions.

2.1 Parties

There are two types of parties: signers denoted Sα for α in some index set I, and
group managers denoted Mα for indices α described below. The parties form a
tree T , where the signers are leaves and the group managers are inner nodes. The
indices of the group managers are formed as follows. If a group manager manages
a set of signers {Sα | α ∈ β ⊂ I} we denote it by Mβ. This corresponds to
Mβ having Sα for α ∈ β as children. If a group manager Mγ manages a set of
group managers {Mβ1 , . . . ,Mβl} we denote it by Mγ where γ = {β1, . . . , βl}. This
corresponds to Mγ having Mβi for i = 1, . . . , l as children. Let Mρ denote the root
group manager. We assume that the root group manager is at depth 0 and that
all leaves in the tree are at the same depth. When there is no risk of confusion we
write α instead of Mα or Sα.

Note that standard group signatures correspond to having a single group man-
ager M[1,l] that manages all signers S1, . . . , Sl.

Mρ

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 1: A tree of group managers and signers, where ρ = {β1, . . . , β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.
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2.2 Definition of Security

The first thorough investigation of the fundamentals of group signatures was car-
ried out by Bellare et al. [5]. They give a definition of a group signature scheme,
but more importantly they argue that two properties of group signatures, full an-
onymity and full traceability, imply any reasonable security requirements one can
expect from a group signature scheme.

We follow their definitional approach closely and develop definitions that are
proper generalizations of the original.

The idea is that the managers and signers are organized in a tree T , and we
wish to associate with each node (or leaf) α a public value hpk(α) and a private
value hsk(α).

Definition 2.1 (Hierarchical Group Signature). A hierarchical group sig-
nature scheme HGS = (HKg,HSig,HVf,HOpen) consists of four polynomial-time
algorithms

1. The randomized key generation algorithm HKg takes as input (1κ, T ), where
T is a tree of size polynomially bounded in κ with all leaves at the same depth,
and outputs a pair of maps hpk,hsk : T → {0, 1}∗.

2. The randomized signature algorithm HSig takes as input a message m, a
tree T , a public map hpk, and a secret signing key hsk(α), and returns a
signature of m.

3. The deterministic signature verification algorithm HVf takes as input a tree
T , a public map hpk, a message m and a candidate signature σ of m and
returns either 1 or 0.

4. The deterministic opening algorithm HOpen takes as input a tree T , a pub-
lic map hpk, a secret opening key hsk(β), a message m, and a candidate
signature σ. It outputs an index α ∈ β or ⊥.

In the definition of HSig above, it is assumed that it is possible to verify in
polynomial time given the public tree gpk, a secret key gsk(α) and an index α ′, if
α = α′. This is the case for the construction in [5]. We assume that hpk and hsk
map any input that is not a node of T to ⊥ and that HOpen(·, ·,⊥, ·, ·) = ⊥.

We need to define what we mean when we say that a hierarchical group sig-
nature scheme is secure. Here we generalize the definitions of [5]. We begin with
anonymity. Assume a message has been signed by either α(0) or α(1). Then any
group manager on the path leading from α(0) or α(1) to the first group manager
who is an ancestor of both α(0) and α(1), can determine who the signer is. In Figure
2 those group managers are marked with black. In the definition of anonymity we
capture the property that an adversary that is not allowed to corrupt any of these
group managers cannot determine whether α(0) or α(1) signed the message, even if
the adversary itself is given the private keys of all signers and is allowed to select
α(0), α(1) and the message himself.

We define Experiment 2.2 to formalize these ideas. Throughout the experiment
the adversary has access to an HOpen(T,hpk,hsk(·), ·, ·) oracle. At the start of the
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α(0) α(1)

Figure 2: Nodes in black represent group managers able to distinguish between
α(0) and α(1).

experiment the adversary is given the public keys of all parties and the private
keys of all signers. Then it can adaptively ask for the private keys of the group
managers. At some point it outputs the indices α(0) and α(1) of two leaves and a
message m. The HSig(·, T,hpk,hsk(·)) oracle computes the signature of m using
the private key hsk(α(b)) and hands it to the adversary. The adversary finally
outputs a guess d of the value of b. If the scheme is anonymous the probability
that b = d should be negligibly close to 1/2 when b is a randomly chosen bit.
The labels corrupt, choose and guess below distinguish between the phases of the
experiment.

Experiment 2.2 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T )).

(hpk,hsk)← HKg(1κ, T ); sstate ← (hpk,hsk(L(T ))); C ← ∅; α← ∅;

While (α 6= ⊥) do

(sstate, α)← AHOpen(T,hpk,hsk(·),·,·)(corrupt, sstate,hsk(α))

C ← C ∪ {α}

Done

(sstate, α
(0), α(1),m)← AHOpen(T,hpk,hsk(·),·,·)(choose, sstate)

σ ← HSig(T,hpk,hsk(α(b)),m)

d← AHOpen(T,hpk,hsk(·),·,·)(guess, sstate, σ)

Let B be the set of nodes on paths from α(0) and α(1) up to their first common

ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of nodes α
(0)
l ,

α
(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α
(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt 3 α

(1)
t+1 3 . . . 3 α

(1)
δ−2 3 α

(1)
δ−1 3 α

(1) .

If B ∩ C 6= ∅ or if A asked its HOpen(T,hpk,hsk(·), ·, ·) oracle a question (α
(0)
l , m,

σ) or (α
(1)
l ,m, σ) return 0. Otherwise return d.

Consider the above experiment with a depth one tree T with root ρ. In that case
we may assume that hsk(ρ) is never handed to the adversary, since the adversary
fails in that case anyway. Similarly the HOpen(T,hpk,hsk(·), ·, ·) oracle reduces
to the Open oracle in [5]. Thus, our experiment reduces to the experiment for full
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anonymity given in [5] where the adversary gets the secret keys of all signers, but
only the public key of the group manager.

Next we consider how the notion of full traceability can be defined in our
setting. Full traceability as defined in [5] is similar to security against chosen
message attacks (CMA-security) as defined by Goldwasser, Micali and Rivest [26]
for signatures. The only essential difference is that the group manager must always
be able to open a signature and identify the signer. In our setting this amounts
to the following. Given a signature deemed valid by the HVf algorithm, the root
should always be able to identify the child directly below of which the signer is a
descendent. The child should have the same ability for the subtree of which it is a
root and so on until the child itself is a signer.

Again we define an experiment consisting of two phases. To start with the
adversary is given the secret keys of all group managers. Then the adversary
adaptively chooses a set of signers to corrupt. Then in a second phase the adversary
guesses a message and signature pair. If the guess amounts to a signature deemed
valid by HVf and the signer cannot be traced, or if the signature is traced to a
non-corrupted signer, the adversary has succeeded and the experiment outputs
1. Otherwise it outputs 0. Thus, the distribution of the experiment should be
negligibly close to 0 for all adversaries if the scheme is secure.

Experiment 2.3 (Hierarchical Traceability, Exptrace
HGS,A(κ, T )).

(hpk,hsk)← HKg(1κ, T ); sstate ← (hpk,hsk(T\L(T )); C ← ∅; α← ∅;

While (α 6= ⊥) do

(sstate, α)← AHSig(·,T,hpk,hsk(·))(choose, sstate,hsk(α))

C ← C ∪ {α}

Done

(m,σ)← AHSig(·,T,hpk,hsk(·))(guess, sstate)

If HVf(T,hpk,m, σ) = 0 return 0. Define α0 = ρ and αl = HOpen(T , hpk,
hsk(αl−1), m, σ) for l = 1, . . . , δ. If αl = ⊥ for some 0 < l ≤ δ return 1. If
αδ 6∈ C and the HSig(·, T,hpk,hsk(·)) oracle did not get a question (m,αδ) return
1. Otherwise return 0.

Consider the experiment above with a depth one tree. This corresponds to
giving the adversary the secret key of the group manager, and letting it adaptively
choose additional signing keys. Furthermore, the HSig(·, T,hpk,hsk(·)) oracle re-
duces to the GSig oracle in [5]. This is precisely the setting of [5].

The advantage of the adversary is defined in the natural way by

Advanon
HGS,A(κ, T ) = |Pr[Expanon−0

HGS,A(κ, T ) = 1]− Pr[Expanon−1
HGS,A(κ, T ) = 1]|

and
Advtrace

HGS,A(κ, T ) = Exptrace
HGS,A(κ, T ) .

Definition 2.4 (Security of Hierarchical Group Signatures). A hierarchical
group signature scheme HGS = (HKg,HSig,HVf,HOpen) is secure if for all trees
T of polynomial size in κ with all leaves at the same depth, and all A ∈ PPT∗,
Advtrace

HGS,A(κ, T ) + Advanon
HGS,A(κ, T ) is negligible.
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Remark 2.5. The reason the adversary is not given access to both the HOpen and
the HSig oracle in the experiments is that it is given sufficient private keys to
simulate the missing oracle by itself.

Remark 2.6. An ordinary signature scheme SS = (Kg,Sig,Vf), with key generator
Kg, signature algorithm Sig, and verification algorithm Vf, can be viewed as a
hierarchical group signature scheme (Kg,Sig,Vf,HOpen) of depth 0 by defining
HOpen(σ) = ⊥. Then Advanon

HGS,A(κ, T ) = 0 and Definition 2.3 reduces to the
definition of security against chosen message attacks as defined by Goldwasser,
Micali, and Rivest [26].

2.3 Alternative Definitions

Above we define a hierarchical group signature scheme such that the group man-
agers are organized in a tree where all leaves are at the same depth. Furthermore,
a group manager can by looking at a signature decide whether the signer belongs
to it or not without any interaction with other group managers. Several other
variants are possible. Below we discuss some of these variants informally.

Trees with leaves on different depths could be considered. Any such tree can
clearly be replaced by a tree with all leaves at the same depth by inserting dummy
group managers in between signers and their immediate parents until all signers
are at the same depth.

We could let group managers sign on behalf of its group. If this is needed
a signer that correspond to the group manager is added. Depending on if the
parent of the group manager should be able to distinguish between a signature of
the group manger itself and its children or not, the signer is added to the group
manager’s parent or itself.

We could consider a forest of trees, i.e. there could be several roots. Such a
scheme can be simulated in our definition by first joining the trees into a single
tree by adding a root and then disposing of the private root key.

The group managers could be organized in a directed acyclic graph (DAG), e.g.
two trees could share a common subtree. This would give alternative paths to some
signers. There may be situations where this is advantageous, but the semantics
of such a scheme are complex and involves many subtle issues, e.g. should all
group managers (indirect and direct) of a signer get information on its identity,
or should the signer decide on a path from a root and only reveal information
to group managers along this path? Although we believe that the techniques we
use for our construction would be useful also for this type of scheme we do not
investigate such schemes further.

2.4 On Constructing Hierarchical Group Signatures

All known group signatures are based on the idea that the signer encrypts a secret of
some sort using the group manager’s public key, and then proves that the resulting
cryptotext is on this special form. The security of the cryptosystem used implies
anonymity, since no adversary can distinguish cryptotexts of two distinct messages
if they are encrypted using the same public key.
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Suppose we wish to generalize this approach to construct a hierarchical group
signature scheme. In the hierarchical setting protecting the identity of the signer
implies protecting the identity of the group managers along the path of to the
signer. On the other hand these group managers (and nobody else) must be able
to extract partial knowledge on the identity on the identity of the signer. Thus, it
seems that hierarchical group signatures must somehow contain embedded crypto-
texts. To ensure anonymity, signatures with embedded cryptotexts corresponding
to distinct public keys must be indistinguishable, since otherwise the cryptotexts
embedded in a signature would reveal information on the identity of the signer.
This type of indistinguishability does not follow from the indistinguishability of a
cryptosystem. We say that a cryptosystem that has this property is cross-indis-
tinguishable. This property is investigated in detail in Section 3 below.

On the other hand, to ensure traceability, the signer must prove that a signature
contains the identity of the signer encrypted with public keys corresponding to
the path to the signer. In principle this is not a problem, since there is a non-
interactive zero-knowledge proof system for any language in NP, but the details
must be resolved. It is far from obvious how to construct a practical proof system.

3 Cross-Indistinguishability

It turns out that the cryptosystem we use must not only be indistinguishable
(semantically secure), but it must also have an incomparable security property
which we call cross-indistinguishability. We formalize cross-indistinguishability in
Definition 3.4 below, but first we recall the definition of indistinguishability of a
cryptosystem CS = (Kg, E,D), with key generator Kg, encryption algorithm E,
and decryption algorithm D, as defined by Goldwasser and Micali [24].

Experiment 3.1 (Indistinguishability, Expind−b
CS,A (κ) (cf. [24])).

(pk, sk) ← Kg(1κ)

(m0,m1, sstate) ← A(pk)

d ← A(Epk(mb), sstate)

We let Advind
CS,A(κ) = |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]|.

Definition 3.2. Let CS be a cryptosystem. We say that CS is indistinguishable
if for all A ∈ PPT∗, Advind

CS,A(κ) is negligible.

Informally, cross-indistinguishability boils down to the property that the ad-
versary cannot distinguish cryptotexts encrypted with distinct public keys.

Experiment 3.3 (Cross-Indistinguishability, Expcross−b
CS,A (κ)).

(pk0, sk0) ← Kg(1κ), (pk1, sk1)← Kg(1κ)

(m, sstate) ← A(pk0,pk1)

d ← A(Epkb(m), sstate)

11



Note that compared to the standard definition of indistinguishability of crypto-
texts, the roles played by public keys and messages are reversed. One could con-
sider a variant definition which captures both types of indistinguishabilities, but
we think it is more natural to think of cross-indistinguishability as an additional
property. We let Advcross

CS,A(κ) = |Pr[Expcross−0
CS,A (κ) = 1]− Pr[Expcross−1

CS,A (κ) = 1]|.

Definition 3.4. Let CS be a cryptosystem. We say that CS is cross-indistinguish-
able if for all A ∈ PPT∗, Advcross

CS,A(κ) is negligible.

The property of cross-indistinguishability is clearly useless if the cryptosys-
tem is not indistinguishable, since it allows the encryption function to be the
identity map. Thus, cross-indistinguishability does not imply indistinguishab-
ility. To see that the other implication does not hold, note that if CS is an
indistinguishable cryptosystem, then so is the cryptosystem where the encryp-
tion and decryption functions c = Epk(m) and Dsk(c) = m are replaced by
(c, c′) = E′

pk(m) = (Epk(m),pk) and D′
sk(c, c

′) = Dsk(c) = m respectively.
The lemma below characterizes the set of cryptosystems which are both indis-

tinguishable and cross-indistinguishable. Denote by Exp
ind−Dind
CS,A (κ) Experiment

3.1, but with the input Epkb(m) replaced by an element distributed according to

a distribution Dκ, where Dind = {Dκ}, and correspondingly for Exp
cross−Dind
CS,A (κ).

We use TD to denote the Turing machine that on input 1κ returns a sample dis-
tributed according to Dκ.

Experiment 3.5 (Dind-Indistinguishability, Exp
ind−Dind
CS,A (κ)).

(pk, sk) ← Kg(1κ)

(m0,m1, sstate) ← A(pk)

d ← (TD(1κ), sstate)

Experiment 3.6 (Dind-Cross-Indistinguishability, Exp
cross−Dind
CS,A (κ)).

(pk0, sk0) ← Kg(1κ), (pk1, sk1)← Kg(1κ)

(m, sstate) ← A(pk0,pk1)

d ← A(TD(1κ), sstate)

Lemma 3.7. Let CS be a cryptosystem which is both indistinguishable and cross-
indistinguishable. Then there exists an efficiently sampleable distribution D ind such
that for all A ∈ PPT∗

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Dind(κ)
CS,A (κ) = 1]| ,

is negligible for b ∈ {0, 1}. The reverse implication holds as well.

Proof. Suppose that a distribution Dind as in the lemma exists. The indistin-
guishability of CS then follows by a trivial hybrid argument. Suppose that CS is
not cross-indistinguishable. Then there exists an adversary A ∈ PPT∗ such that

|Pr[Expcross−0
CS,A (κ) = 1]− Pr[Expcross−1

CS,A (κ) = 1]|

12



is non-negligible which by a trivial hybrid argument implies that

|Pr[Expcross−b
CS,A (κ) = 1]− Pr[Exp

cross−Dind
CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}, which we without loss assume to be 0.
Let A′ be the adversary in Experiment 3.1 defined as follows. On input pk it
sets pk0 = pk generates (pk1, sk1) = Kg(1κ) and hands (pk0,pk1) to A, which
returns (m, sstate). Then A′ returns (m,m, sstate). When handed (c, sstate) from
the experiment, where c is either is Epk0

(m) or a sample from Dκ, it returns the

output of A(c, sstate). By construction Expind−0
CS,A′(κ) is identically distributed to

Expcross−0
CS,A (κ), and Exp

ind−Dind
CS,A′ (κ) is identically distributed to Exp

cross−Dind
CS,A (κ).

This is a contradiction, since it implies that

|Pr[Expind−0
CS,A′(κ) = 1]− Pr[Exp

ind−Dind
CS,A′ (κ) = 1]|

is non-negligible.
Suppose next that CS is indistinguishable and cross-indistinguishable. We

define our prospective distribution Dind as follows. To generate a sample from
Dind, generate a key pair (pk′, sk′) = Kg(1κ) and output an encryption Epk′(m′),
where m′ = 0κ. This implies that Dind is efficiently sampleable. Assume that

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Dind
CS,A (κ) = 1]|

is non-negligible for b = 0 (then it is also non-negligible for b = 1, since CS is indis-
tinguishable). Let A′

0 be the adversary in Experiment 3.3 that does the following.
On input (pk0,pk1) it hands pk0 to A which returns (m0,m1). Then A′

0 returns
m0, and is given Epkb(m0) for a randomly chosen b ∈ {0, 1} by the experiment. It
hands Epkb(m0) to A and returns the output of A. A′

1 is identical to A′
0 except

that it hands m′ to the experiment instead of m0. From the construction follows
that Expind−0

CS,A (κ) and Exp
ind−Dind
CS,A (κ) are identically distributed to Expcross−0

CS,A′

0
(κ)

and Expcross−1
CS,A′

1
(κ) respectively. Thus

|Pr[Expcross−0
CS,A′

0
(κ) = 1]− Pr[Expcross−1

CS,A′

1
(κ) = 1]|

is non-negligible. From the cross-indistinguishability of CS we have that

|Pr[Expcross−0
CS,A′

b

(κ) = 1]− Pr[Expcross−1
CS,A′

b

(κ) = 1]|

is negligible for b ∈ {0, 1}. A hybrid argument implies that

|Pr[Expcross−b
CS,A′

0
(κ) = 1]− Pr[Expcross−b

CS,A′

1
(κ) = 1]|

is non-negligible for some b ∈ {0, 1}. Without loss we assume b = 0. Denote by
A′′ the adversary in Experiment 3.1 defined as follows. Given input pk it hands
(pk) to A. When A returns (m0,m1), it outputs (m0,m

′), and receives either
Epk(m0) or Epk(m

′), which it forwards to A. Finally, it returns the output of A.
Since, Expind−0

CS,A′′(κ) is identically distributed to Expcross−0
CS,A′

0
(κ) and Expind−1

CS,A′′(κ) is

identically distributed to Expcross−0
CS,A′

1
(κ), this contradicts the indistinguishability of

CS.
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Note that Dind depends on CS but is independent of all stochastic variables in
the experiment. Below we show that the probabilistic cryptosystem of Goldwasser
and Micali [24] is cross-indistinguishable.

Remark 3.8. Several standard probabilistic cryptosystems can be made cross-in-
distinguishable by minor modifications. E.g. it is not hard to see that the ElGamal
[20] cryptosystem is cross-indistinguishable if the group in which it is employed is
fixed for each value of the security parameter.

4 A Construction under General Assumptions

In this section we show how hierarchical group signatures can be constructed under
general assumptions. Our focus is on feasibility and conceptual simplicity. We
prove the following theorem.

Theorem 4.1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.

To prove the theorem we construct a hierarchical group signature scheme by
augmenting the group signature scheme of [5] with additional cryptotexts and a
non-interactive zero-knowledge proof.

4.1 Assumptions and Primitives Used

Before we give our construction we review some constructions and results on which
our construction is based.

4.1.1 Group Signature Scheme

The first building block we need is a group signature scheme secure under the
assumption that trapdoor permutations exists. As shown by Bellare et al. such a
scheme exists.

Theorem 4.2 (cf. [5]). If there exists a family of trapdoor permutations, then
there exists a secure group signature scheme GS = (GKg,GSig,GVf,Open).

4.1.2 Public Key Cryptosystem

The probabilistic cryptosystem of Goldwasser and Micali [24] is indistinguishable,
but we are not aware of any proof of cross-indistinguishability. We prove that their
construction is also cross-indistinguishable, but first we recall their construction.

Their construction is based on the existence of non-approximable trapdoor
predicates. This concept can be captured in modern terminology as follows. A
family of trapdoor permutations is a triple of polynomial time algorithms F =
(Gen,Eval, Invert). The instance generator Gen(1κ) outputs a description f of a
permutation of {0, 1}κ and a trapdoor f−1. The evaluation algorithm Eval(1κ, f, x)
evaluates the permutation on input x ∈ {0, 1}κ. The the corresponding inversion
algorithm Invert(1κ, f−1, y) evaluates the inverse permutation on input y ∈ {0, 1}κ.

14



We abuse notation and write f(x) and f−1(y) for the evaluation of the permutation
and inverse permutation as described above. The last requirement on the family
of trapdoor permutations is that it must be infeasible for any A ∈ PPT∗ given f
and y = f(x), where x ∈ {0, 1}κ, to compute x = f−1(y). A hard-core bit for
F is a family of functions B = {Bκ : {0, 1}κ → {0, 1}} such that it is infeasible
to compute Bk(x), given only f and f(x) for a random x ∈ {0, 1}κ. Goldreich
and Levin [23] show how to construct a family of trapdoor permutations F with a
hard-core bit B from any family of trapdoor permutations.

The cryptosystem GM = (GMKg, E,D) of Goldwasser and Micali [24] using F
and B can be defined as follows (using modern terminology). The key generator
GMKg(1κ) simply outputs (pk, sk) = (f, f−1) = Gen(1κ). To compute a cryptotext
Epk(m) of a bit m ∈ {0, 1}, choose r ∈ {0, 1}κ, and output (f(r),B(r) ⊕m). To
decrypt a cryptotext (c, c′), compute Dsk(c, c

′) = B(f−1(c)) ⊕ c′. To encrypt a
bit-string the encryption function is invoked with a fresh randomly chosen r for
each bit in the natural way. Goldwasser and Micali essentially show the following
theorem.

Theorem 4.3. If F is a trapdoor permutation family with hard-core bit B, then
GM is indistinguishable.

We show that the GM cryptosystem is also cross-indistinguishable.

Lemma 4.4. If F is a trapdoor permutation family with hard-core bit B, then GM
is cross-indistinguishable.

Proof. Suppose that GM is not cross-indistinguishable. Let Uκ+1 be the uniform
and independent distribution over {0, 1}κ+1. Then for some adversary A ∈ PPT∗,

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Uκ+1

CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}. Without loss we assume b = 0. Since
GM is a bitwise cryptosystem, we may without loss assume that m0 = 0 and
m1 = 1. Let m ∈ {0, 1} be randomly distributed, then a cryptotext Epk(m) =
(f(r),B(r) ⊕ m) is distributed according to Uκ+1, since f is a permutation and
B(r)⊕m is uniformly and independently distributed. A trivial average argument
implies that |Pr[Expind−b

CS,A (κ) = 1] − Pr[Expind−1
CS,A (κ) = 1]| is non-negligible which

is a contradiction.

4.1.3 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feldman,
and Micali [6]. Several works have since refined and extended the notion in various
ways. Following [5] we employ the definition of adaptive zero-knowledge for NIZK
introduced by Feige, Lapidot, and Shamir [21] and we use the notion of simula-
tion soundness introduced by Sahai [37]. The notion of simulation soundness is
strengthened by De Santis et al. [38]. In contrast to [5], the NIZK we use must
be adaptive zero-knowledge for polynomially many statements, and not only for a
single statement. The requirement on simulation soundness is in fact unchanged
compared with [5], i.e. single statement simulation soundness suffices.
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Definition 4.5 (NIPS). A triple (p(κ), P, V ) is an efficient adaptive non-inter-
active proof system (NIPS) for a language L ∈ NP with witness relation R if p(κ)
is a polynomial and P and V are probabilistic polynomial time machines such that

1. Completeness. (x,w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x,w, ξ), ξ) = 1.

2. Soundness. For all computable functions A, Prξ∈{0,1}p(κ) [A(ξ) = (x, π) ∧ x 6∈
L ∧ V (x, π, ξ) = 1] is negligible in κ.

We suppress p in our notation of a NIPS and simply write (P, V ).
Loosely speaking a non-interactive zero-knowledge proof system is a NIPS,

which is also zero-knowledge, but there are several flavors of zero-knowledge. We
need a NIZK which is adaptive zero-knowledge (for a single statement) in the sense
of Feige, Lapidot, and Shamir [21].

Experiment 4.6 (Adaptive Indistinguishability, Expadind−b
(P,V,S),A(κ) (cf. [21])).

ξ ← {0, 1}f(κ) if b = 0
(ξ, ssimstate)← S(1κ) if b = 1

sstate = ξ, t← ∅

While (t 6= ⊥) do

(sstate, t, w)←







A(choose, P (t, w, ξ)) if (t, w) ∈ R and b = 0
A(choose, S(t, ξ, ssimstate)) if (t, w) ∈ R and b = 1
A(choose,⊥) otherwise

Done

d← A(sstate)

The advantage in the experiment is defined

Advadind
(P,V,S),A(κ) = |Pr[Expadind−0

(P,V,S),A
(κ) = 1]− Pr[Expadind−1

(P,V,S),A
(κ) = 1]|

and the notion of adaptive zero-knowledge is given below.

Definition 4.7 (Adaptive Zero-Knowledge (cf. [21])). A NIPS (P, V ) is
adaptive zero-knowledge (NIZK) if there exists a polynomial time Turing machine
S such that Advadind

(P,V,S),A(κ) is negligible for all A ∈ PPT∗.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If the experiment simulates NIZKs to the
adversary, the adversary could potentially gain the power to compute valid proofs
of false statements. For a simulation sound NIZK this is not possible.

Experiment 4.8 (Simulation Soundness, Expsims
(P,V,S),A(κ) (cf. [38])).

(ξ, ssimstate)← S(1κ)

(t, π) = AS(·,ξ,ssimstate)(ξ)

Let Q be the set of proofs returned by the S(·, ξ, ssimstate) oracle. Return 1 if
π 6∈ Q, t 6∈ L, and V (t, π, ξ) = 1, and 0 otherwise.
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Definition 4.9 (Simulation Soundness (cf. [37, 38])). A NIZK (P, V ) with
polynomial time simulator S for a language L is unbounded simulation sound if
Advsims

(P,V,S),A(κ) = Expsims
(P,V,S),A(κ) is negligible for all A ∈ PPT∗.

De Santis et al. [38] extend the results in [21] and [37] and prove the following
result.

Theorem 4.10. If there exists a family of trapdoor permutations, then there exists
a simulation sound NIZK for any language in NP.

In the the rest of this paper we abbreviate “efficient non-interactive adaptive
zero-knowledge unbounded simulation sound proof” by NIZK.

4.2 Our Construction

We now describe our hierarchical group signature schemeHGS = (HKg, HSig, HVf,
HOpen). We let F = (Gen,Eval, Invert) denote a family of trapdoor permutations
with a hard-core bit B, and assume that a Goldwasser-Micali cryptosystem GM
has been constructed from this. We denote by GS = (GKg, GSig, GVf, Open) the
group signature scheme of Bellare et al. also constructed from F . However, we view
this as a hierarchical group signature scheme of depth 1 and use the corresponding
notation, i.e. the public and secret keys of the group manager Mρ are denoted by
hpk(ρ) and hsk(ρ) (not by gpk and gmsk etc. as in [5]). Below we also use F to
construct a NIZK for a language LHGS.

First keys to the GS group signature scheme are generated, where the signers
correspond to the signers in the hierarchical group signature scheme we are con-
structing. However, the root group manager is not given its usual secret opening
key gsk(ρ). Instead, each group manager (including the root) is given a key pair
(pkβ, skβ) of the GM cryptosystem. When a signer Sα signs a message m it first
forms a group signature σ of the message m. Suppose that the signer corresponds
to the path α0, . . . , αδ in the tree, i.e. α0 = ρ and αδ = α. Then the signer forms
a chain of cryptotexts C = (Epkα0

(pkα1
), . . . , Epkαδ−1

(pkαδ )). Finally, it forms a

NIZK π that the chain of cryptotexts C is formed in this way, and that the encryp-
ted path corresponds to the identity of the signer hidden in the group signature
σ. The hierarchical group signature consists of the triple (σ,C, π). Verification
of a signature corresponds to verifying the NIZK. Opening a signature using the
secret opening key of a group manager at depth l corresponds to decrypting the
lth cryptotext.

Algorithm 4.11 (Key Generation, HKg(1κ, T )). The key generation is defined
as follows.

1. Generate a random string ξ ∈ {0, 1}∗ sufficiently long for a NIZK based on
F of the language LHGS defined below.

2. For each node α in T , compute (pkα, skα) = GMKg(1κ).

3. Let I be the bijection mapping each list (pkα0
, . . . ,pkαδ) such that α0, . . . , αδ

is a path in T , where α0 = ρ and αδ ∈ L(T ) to αδ. Define I to map anything
else to ⊥. Denote by TGS the tree with root ρ and leaves L(T ).
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4. Run (gpk, gsk) = GKg(1κ, TGS), and set (hpk(α),hsk(α)) = ((pkα, gpk(α)),
(skα, gsk(α))) for α ∈ L(T ).

5. Set (hpk(ρ),hsk(ρ)) = ((ξ,pkρ, gpk(ρ)), skρ) and set (hpk(β),hsk(β)) =
(pkβ, skβ) for β 6∈ L(T ), β 6= ρ (note that hsk(ρ) does not contain gsk(ρ)).

6. Output (hpk,hsk).

The result of running the above algorithm is illustrated in Figure 3.

((ξ,pkρ, gpk(ρ)), skρ)

(pkβ3
, skβ3)

((pkα7
, gpk(α7)), (skα7 , gsk(α7)))

Figure 3: The figure illustrates the public and secret keys along a path (the thick
edges) in the tree of keys corresponding to Figure 1. Each node contains a pair of
public and secret keys.

Algorithm 4.12 (Signing, HSig(m,T,hpk,hsk(α))). Let α0, . . . , αδ be the path
to the signer Sα, i.e. ρ = α0 and αδ = α.

1. Compute
σ = GSig(m,TGS , gpk, gsk(α))

and
C = (C0, . . . , Cδ−1) = (Epkα0

(pkα1
), . . . , Epkαδ−1

(pkαδ )) .

2. Compute a NIZK π of the language LHGS















(T,hpk,m, σ,C)

∣

∣

∣

∣

∣

∣

∣

∣

∃pk0, . . . ,pkδ−1 : α0 = ρ ,
Cl = Epkl(pkl+1) for l = 0, . . . , δ − 1 ,
I(pk0, . . . ,pkδ−1) = α , and
σ = GSig(m,TGS , gpk, gsk(α))















.

3. Output (σ,C, π).

Remark 4.13. Above the complete tree of public keys hpk is given to the signing
algorithm, despite that only the public keys hpk(α0), . . . ,hpk(αδ) along the path
are needed. This is for notational convenience.

Algorithm 4.14 (Verification, HVf(T,hpk,m, (σ,C, π))). On input a signature
(σ,C, π) invoke the NIZK verifier V on input ((T,hpk,m, σ,C, ), π) and return the
result.
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Algorithm 4.15 (Opening, HOpen(T, gpk, gsk(β),m, (σ,C, π))). If HVf(T,hpk,
m, (σ,C, π)) = 0, then return ⊥. Otherwise compute pkα = Dskβ (Cl). If α ∈ β
return α and otherwise ⊥.

Consider the construction HGS above, where GM is replaced by any indistin-
guishable cryptosystem CS. Is the result secure? The answer is no. The problem
is that the security of the cryptosystem CS does not imply that a cryptotext does
not reveal the public key used for encryption. An adversary could possibly identify
which key was used for encryption simply by looking at a cryptotext, and thereby
extract partial information on the identity of the signer. Fortunately, we have
shown that GM is cross-indistinguishable which solves the problem.

Remark 4.16. In Section 7 we describe an alternative construction which seems
better suited if we try to eliminate the trusted key generator, but which is harder
to analyze.

Remark 4.17. It is an interesting question whether we can instantiate the Gold-
wasser-Micali scheme using RSA in our setting. The problem is that for a given
security parameter the RSA permutations are defined for different moduli. This
can be solved as follows. We modify the Goldwasser-Micali encryption algorithm
such that it repeatedly chooses r until f(r) < 2κ. This implies that f(r) < N for
all κ-bit moduli N . The probability that r has this property is at least 1/4. Given
that we put a polynomial bound on the number of tried r, the encryption process
fails with negligible probability. The security of the modified scheme follows from
the security of the original since the original scheme uses an r with f(r) < 2κ with
probability at least 1/4.

4.3 Security Analysis

We prove the following lemma on the security of our construction, from which
Theorem 4.1 follows immediately.

Lemma 4.18. If F is a family of trapdoor permutations, then HGS is secure.

The proof of hierarchical anonymity is similar in structure to the proof of full
anonymity for the one level case given in [5], e.g. we need only single-statement
simulation soundness. In the proof of hierarchical traceability we cannot proceed
as in the proof of full traceability [5], since we cannot simulate answers of the
signature oracle without invoking the simulator of the NIZK a polynomial number
of times. This is why we must assume that the NIZK is adaptive zero-knowledge.

Proof. We prove the hierarchical anonymity and the hierarchical traceability of
HGS separately.

Proof of Hierarchical Anonymity. Suppose to the contrary that the ad-
versary A breaks hierarchical anonymity. Then we have Advanon

HGS,A(κ, T ) ≥ 1/κc

for some polynomial size tree T , constant c > 0 and κ in an infinite index set N .
We construct a machine A′ that runs A as a blackbox and breaks the hierarchical
anonymity (i.e. full anonymity [5]) of GS.
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Definition of A′.
The adversary A′ simulates the hierarchical anonymity experiment, Experiment

2.2, with HGS to A. It also plays the role of adversary in Experiment 2.2 with
GS.

The key generation is simulated as follows. First the NIZK simulator S is
invoked to compute a reference string with a trapdoor (ξ, ssimstate). The string
ξ is used instead of a random string. Recall that TGS denotes the tree having ρ
(the root of T ) as root, and children L(T ). A′ first waits until it receives gpk
and (gsk(α))α∈L(T ). Then it simulates the remaining part of the key generation
honestly except that it uses these values, and it does not define gsk(ρ) at all. Thus,
the keys of all intermediate group managers are generated by A′.

In each iteration in the simulated experiment A may request gsk(α) for some
group manager Mα. The only such request A′ cannot answer honestly and correctly
is a request for gsk(ρ) which it answers by ⊥, but this is not a problem since the
experiment outputs 0 in this case anyway.

Queries to the HOpen(T,hpk,hsk(·), ·, ·) oracle are simulated in the following
way. Given a query on the form (β,m, (σ,C, π)), A′ first checks that β ∈ T and

HVf(T,hpk,m, (σ,C, π)) = 1 .

If not it returns ⊥. If so it asks its Open(TGS , gpk, gsk(·), ·, ·) oracle the ques-
tion (β,m, σ), which replies by α ∈ L(T ). Let α0, . . . , αδ be its corresponding
path, i.e. α0 = ρ and αδ = α. Let β be on depth l. Then A′ instructs the
HOpen(T,hpk,hsk(·), ·, ·) oracle to return αl+1 to A. Note that the answers com-
puted in this way are not necessarily correct.

When A outputs (α(0), α(1),m), A′ outputs this as well. When A′ is given
a signature σ from its experiment, it computes δ samples C = (C0, . . . , Cδ−1)
distributed according to the distribution Dind guaranteed to exist by Lemma 3.7.
Then it invokes the simulator S on ((T,hpk,m, σ,C), ssimstate) to form a proof π,
and hands (σ,C, π) to A.

Eventually A outputs a bit d, which A′ then returns as output.

Analysis of A′. We divide our analysis into three claims. Denote by Abc,o,p the
machine that on input κ simply simulates Experiment 2.2 with HGS to A and
outputs the result. Then clearly Abc,o,p(κ) is identically distributed to Expanon−b

HGS,A(κ)

for b ∈ {0, 1}. Denote by Abc,o the machine which is identical to Abc,o,p except for the
following two changes. Firstly, instead of generating ξ as a random string, it invokes
the NIZK simulator S, which returns (ξ, ssimstate). Secondly, to form the NIZK
π, it invokes the NIZK simulator S on input ((T,hpk,m, σ,C), ssimstate). Thus,
except from the fact that the proof π is simulated, Abc,o simulates Experiment 2.2

with HGS to A. We also define Abc to be identical to Abc,o except that it simulates
the HOpen(T,hpk,hsk(·), ·, ·) oracle to A precisely as A′ does. Finally, we define
Ab to be identical to Abc except that the C0, . . . , Cδ in the challenge signature are
generated precisely as A′ does.

Thus, by construction Ab is identically distributed to Expanon−b
GS,A′ (κ). This gives

us a chain of distributions Abc,o,p, A
b
c,o, A

b
c, A

b starting with Expanon−b
HGS,A(κ) and end-
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ing with Expanon−b
GS,A′ (κ). In the following claims we show that the distance between

each pair of distributions is negligible.

Claim 2. There is a negligible function ε1(κ) in κ such that

|Pr[Abc,o,p(κ) = 1]− Pr[Abc,o(κ) = 1]| < ε1(κ) .

Proof. The proof follows from the adaptive zero-knowledge of the NIZK (P, V, S).
Consider the adaptive zero-knowledge adversary Aadzk in Experiment 4.6 which

we define as follows. It waits for ξ from the experiment. Then starts the simulation
of Ac,o except that it uses the ξ received from the experiment. Then it continues
the simulation of Ac,o until it is about to generate the NIZK π. Instead of gener-
ating the NIZK, it requests a NIZK π of the statement (T,hpk,m, σ,C) from its
experiment. It must also hand the experiment a witness of this statement, but
this is easy since the statement was generated honestly. Finally, it continues the
simulation of Ac,o until it halts.

It follows that Abc,o,p(κ) and Abc,o(κ) are identically distributed to the outcome

of the experiments Expadind−0
(P,V,S),Aadzk

(κ) and Expadind−1
(P,V,S),Aadzk

(κ) respectively. The
reader should note that if π is a simulated proof, then the “proved” statement is
always true. Thus, simulation soundness plays no role here. From the adaptive
zero-knowledge of the NIZK we have that there exists a negligible function ε1(κ)
such that

|Expadind−0
(P,V,S),Aadzk

(κ)−Expadind−1
(P,V,S),Aadzk

(κ)| < ε1(κ) ,

and the claim follows.

Claim 3. There is a negligible function ε2(κ) such that

|Pr[Abc,o(κ) = 1]− Pr[Abc(κ) = 1]| < ε2(κ) .

Proof. The proof of this claim is similar to the proof in [37] and follows from the
simulation soundness of the NIZK.

A query (β,m, (σ,C, π)) from A to the simulated Open(T,hpk,hsk(·), ·, ·) is
answered incorrectly precisely when π is a valid proof, i.e., V ((T,hpk,m, σ,C),
π, ξ) = 1, but (T,hpk,m, σ,C) 6∈ LHGS. Denote by Ebq(A

b
c) the event that A asks

such a query in the simulation by Abc, and correspondingly for Abc,o.
We construct an adversary Asims against simulation soundness, i.e. Experiment

4.8, as follows. It simulates Abc (or Abc,o). Whenever A asks a query (β,m, (σ,C, π)),

Asims interrupts the simulation of Abc (or Abc,o) and checks whether the query is
such that (T,hpk,m, σ,C) ∈ LHGS. This is easily done using the keys to the
cryptosystems and the group signature scheme. If (T,hpk,m, σ,C) 6∈ LHGS, then
Asims outputs ((T,hpk,m, σ,C), π). From the simulation soundness we conclude
that there exists a negligible function ε(κ) such that

Pr[Ebq(A
b
c)] = Pr[Ebq(A

b
c,o)] = Expsims

(P,V,S),Asims
(κ) < ε(κ) .

By construction (Abc(κ) | Ebq(Abc)) and (Abc,o(κ) | Ebq(Abc,o)) are identically dis-
tributed. The claim follows.
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Claim 4. There is a negligible function ε3(κ) in κ such that

|Pr[Abc(κ) = 1]− Pr[Ab(κ) = 1]| < ε3(κ) .

Proof. The claim follows from the indistinguishability and cross-indistinguishabil-
ity of GM using Theorem 4.3, Lemma 4.4, and Lemma 3.7 by use of a standard
hybrid argument.

We define a sequence of hybrid machines Aind,l for l = 0, . . . , δ − 1 as fol-
lows. Aind,l simulates Abc until it has computed (C0, . . . , Cδ−1). Then it com-
putes l samples (C ′

0, . . . , C
′
l) distributed according to the Dind distribution guar-

anteed by Lemma 3.7. Finally, it replaces (C0, . . . , Cδ−1) in its simulation by
(C ′

0, . . . , C
′
l , Cl+1, . . . , Cδ−1), and continues the simulation of Abc. By construction,

Aind,−1(κ) and Aind,δ−1(κ) are identically distributed to Abc(κ) and Ab(κ) respect-
ively.

Suppose that the claim is false, i.e. there exists a constant c and an infinite
index set N ′ such that

|Pr[Aind,−1 = 1]− Pr[Aind,δ−1 = 1]| ≥ κ−c

for κ ∈ N ′. A hybrid argument implies that there exists a fixed 0 ≤ l < δ− 1 such
that

|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ κ−c/δ .

Consider the adversary Aind for the indistinguishability experiment (Experiment

3.1) run with GM defined as follows. It chooses β
(b)
δ randomly from L(T ). Let

β0, . . . , βδ be the corresponding path, i.e. ρ = β0 and βδ = β
(b)
δ . Then it simulates

Aind,l−1 except that the keys (pkβl , skβl) are not generated. Instead it defines pkβl
to be the public key it received from Experiment 3.1. Then it hands (βl, βl) to its
experiment. The experiment returns a sample C ′

l .
If A requests the secret key skβl , the simulation can not be continued and Aind

outputs 0. Similarly, if A outputs (α(0), α(1)), where α(b) 6= β(b), then Aind outputs
0. Since β(b) is randomly chosen, we have Pr[α(b) = β(b)] = 1/|L(T )|.

If neither of the two events above occur, Aind continues the simulation until
the list of elements (C ′

0, . . . , C
′
l−1, Cl, . . . , Cδ−1) has been computed. It interrupts

the simulation and replaces Cl by the challenge C ′
l it received from Experiment

3.1. Then it continues the simulation. We have that

|Pr[Expind−b
GM,Aind

(κ) = 1]− Pr[Exp
ind−Dind
GM,Aind

(κ) = 1]|

≥ |Pr[Aind,l−1 = 1 ∧ α(b) = β(b)]− Pr[Aind,l = 1 ∧ α(b) = β(b)]|

= (1/|L(T )|)|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ 1/(|L(T )|δκc) .

The inequality follows by construction, the equality follows by independence of the
events Aind,l = 1 and α(b) = β(b). In view of Theorem 4.3, Lemma 4.4, and Lemma
3.7 this contradicts either the indistinguishability or the cross-indistinguishability
of GM. Thus, the claim is true.
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Claim 5. The hierarchical anonymity of GS is broken.

Proof. From Claim 2, Claim 3, and Claim 4 follows that

|Pr[Abc,o,p(κ) = 1]− Pr[Ab(κ) = 1]| < ε1(κ) + ε2(κ) + ε3(κ) ,

which gives

|Pr[Expanon−0
GS,A′ (κ) = 1]− Pr[Expanon−1

GS,A′ (κ) = 1]|

≥ |Pr[Expanon−0
HGS,A(κ) = 1]− Pr[Expanon−1

HGS,A(κ) = 1]| −

2(ε1(κ) + ε2(κ) + ε3(κ)) .

The assumption about A implies that the hierarchical anonymity is broken.

Proof of Hierarchical Traceability. Suppose to the contrary that A breaks
the hierarchical traceability of HGS. Then Advtrace

HGS,A(κ, T ) ≥ 1/κc for some
polynomial size tree T , constant c > 0 and κ in an infinite index set N . We
construct a machine A′ that runs A as a blackbox and breaks the hierarchical
traceability (i.e. full traceability [5]) of GS.

Definition of A′. The adversary A′ simulates the hierarchical traceability experi-
ment, Experiment 2.3, with HGS to A. It also plays the role of the adversary in
Experiment 2.3 with GS .

The key generation is simulated as follows. First the NIZK simulator is in-
voked to compute a reference string with a trapdoor (ξ, ssimstate). The string ξ is
used instead of a random string. Recall that TGS denotes the tree having ρ (the
root of T ) as root, and children L(T ). A′ first waits until it receives the keys
(gpk(ρ), gsk(ρ)) of the root, and the public keys of all signers (gpk(α))α∈L(T ) from
its experiment. Then it simulates the key generation honestly except that it uses
the received values, and it does not define gsk(α) for any α ∈ L(T ) at all. Thus,
the keys of all intermediate group managers are generated by A′.

In each iteration in the experiment simulated to A, it may request gsk(α) for
some signer Sα. When this happens A′ requests gsk(α) from its experiment, and
hands (skα, gsk(α)) to A.

When A queries its HSig(·, T,hpk,hsk(·)) oracle on (m,α) the reply is computed
as follows. FirstA′ queries its GSig(·, TGS , gpk, gsk(·)) oracle on (m,α). The answer
is a GS signature σ. Then A′ computes C = (C0, . . . , Cδ−1) as defined by HSig.
Finally, it invokes the NIZK simulator S on input ((T,hpk,m, σ, C), ξ, ssimstate)
to get a simulated proof π, and hands (σ,C, π) to A.

At some point A outputs a message signature pair (m, (σ,C, π)). Then A′

outputs (m,σ). This concludes the definition of A′.

Analysis of A′. We divide our analysis into several claims. Denote by Aπ,p the
machine that simulates Experiment 2.3 with HGS to A and outputs 1 if the ex-
periment outputs 1 and the output (m, (σ,C, π)) of A satisfies (T,hpk,m, σ,C) ∈
LHGS.

Denote by Aπ the machine that is identical to Aπ,p except that it simulates the
answers from the HSig(·, T,hpk,hsk(·)) oracle to A precisely as A′ does.
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Claim 6. There is a negligible function ε1(κ) in κ such that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Aπ,p(κ) = 1] + ε1(κ) .

Proof. The claim follows from the soundness of the NIZK. Denote by Eπ,p the
event that the output (m, (σ,C, π)) of A in the experiment satisfies (T , hpk, m, σ,
C) ∈ LHGS. From the soundness of the NIZK follows that Pr[Eπ,p] is negligible.
By definition we have that Pr[Aπ,p(κ) = 1] = Pr[Exptrace

HGS,A(κ) = 1 ∧ Eπ,p]. The
claim follows.

Claim 7. There is a negligible function ε2(κ) in κ such that

|Pr[Aπ(κ) = 1]− Pr[Aπ,p(κ) = 1]| < ε2(κ) .

Proof. The claim follows from the adaptive zero-knowledge of the NIZK. We con-
struct an adversary Aadzk against the adaptive zero-knowledge, Experiment 4.6,
as follows.

It simulates Aπ except for the following two modifications. Firstly, it uses the
random string ξ from the experiment instead of generating its own. Secondly,
instead of invoking the simulator S on input ((T,hpk,m, σ,C), ξ, ssimstate) to
produce a NIZK π it requests a NIZK of (T , hpk, m, σ, C) from its experiment.
To do this it must also hand a witness to the experiment, but this is not a problem
since it has generated all keys.

It follows that

|Pr[Aπ,p(κ) = 1]− Pr[Aπ(κ) = 1]|

= |Pr[Expadzk−0
(P,V,S),Aadzk

(κ) = 1]− Pr[Expadzk−1
(P,V,S),Aadzk

(κ) = 1]| < ε2(κ) ,

for some negligible function ε2(κ).

Claim 8. Pr[Aπ(κ) = 1] ≤ Pr[Exptrace
GS,A′(κ) = 1].

Proof. All inputs to A in the simulation of Aπ are identically distributed to the
corresponding inputs in Experiment 2.3. The only difference in how the out-
put of Aπ and the experiment are defined is that Aπ outputs 1 if the output
(m, (σ,C, π)) of A satisfies (T,hpk,m, σ,C) ∈ LHGS, and the experiment outputs
1 if GVf(∅, gpk,m, σ) = 1, but the former requirement implies the latter. Thus,
the claim follows.

Claim 9. The hierarchical traceability of GS is broken.

Proof. From Claim 6 and Claim 7 Claim 8 follows that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Aπ,p(κ) = 1] + ε1(κ) ≤

Pr[Aπ(κ) = 1] + ε1(κ) + ε2(κ) ≤ Pr[Exptrace
GS,A′(κ) = 1] + ε1(κ) + ε2(κ) .

The claim now follows from the assumption that HGS is broken by A.

Conclusion of Proof. If HGS is not hierarchically anonymous, then by Claim
5 neither is GS . If HGS is not hierarchically traceable, then by Claim 9 neither is
GS. This concludes the proof.
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5 A Construction under the DDH Assumption and the

Strong RSA Assumption

In this section we show how to construct hierarchical group signatures under the
DDH assumption and the strong RSA assumption. In contrast to the previous
section our focus here is on practicality. We give an explicit construction where
the details of all subprotocols are completely specified. Then we prove the security
of our construction in the random oracle model. By now it is known that the
random oracle hypothesis is not literally true [13]. However, all known counter-
examples are contrived, and for practical protocols a security proof in the random
oracle model is often considered to be enough.

5.1 Review of Some Notions and Primitives

Before we give our construction we need to review some notions and primitives on
which our construction is based. Readers familiar with these primitives can safely
browse this section, but should observe that our notation differs slightly from the
standard at some points because of name collisions.

5.1.1 Cunningham Chains

Let q0 and q1 be primes such that q0 = 2q1 + 1. Then there is a unique subgroup
Gq1 ⊂ Z∗

q0 of order q1. Let g1 be a generator of Gq1 . The discrete logarithm of an
element z ∈ Gq1 in the basis g1 is defined as the (unique) r ∈ Zq1 such that z = gr1.
This is usually written logg1 z = r.

The primes q0 and q1 above are clearly of a special form. In fact q1 is called a
Sophie Germain prime. One can demand that q1 is of the same form as q0 and so
on. This leads to the following definition.

Definition 5.1 (Cunningham Chain). A sequence q0, . . . , qk−1 of primes is
called a Cunningham Chain1 of length k if qi = 2qi+1 + 1 for i = 0, . . . , k − 2.

Throughout this paper q0, . . . , q3 are chosen to form a Cunningham Chain of
length 4 and we denote byGqi the unique subgroup of order qi of Z∗

qi−1
. We also pick

a generator gi of Gqi . Thus, the groups are set up such that Z∗
ql
≈ Gql+1

×{−1, 1},
〈gl+1〉 = Gql+1

≈ Zql+1
.

Before we start using Cunningham chains for cryptography we are obliged to
ask if they exist at all. Unfortunately, there exists no proof that there are infinitely
many Cunningham chains of any length, not even of length 2 which correspond
to the Sophie Germain primes. However, one can apply a heuristic argument and
assume that a randomly chosen integer n is prime with “probability” 1/ log n. If we
also assume that the event that (n−1)/2 is prime is independent of the event that
n is prime for every prime we should find a Cunningham chain of length k with
probability close to 1/ logk n. We stress that one must be careful with this type of
heuristic argument since there exist counter examples [29], but the argument seems
reasonable in our setting and agrees with computational experiments. In practice

1This is a chain of the second kind. A chain of the first kind satisfies qi = 2qi+1 − 1.
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it is not hard to find Cunningham chains of length 4 for primes of the size used
in current cryptography (cf. [33], [34]). Young and Yung [40] have also published
some heuristic tricks for finding length-3 Cunningham chains. We let CunnGenk
denote the algorithm that on input 1κ outputs a κ-bit Cunningham chain of length
k. Note that the existence of 2-Cunningham chains is implicitly assumed in many
papers, e.g. [19].

Although we describe our scheme for Cunningham chains because they are
well-known, the scheme also works for a sequence of primes q0, q1, q2, q3 such that
qi = aiqi+1 + 1 for positive numbers ai. Chains of this type have the advantage
that they are easier to generate. The existence of such chains follows from the
following formal assumption:

Assumption 5.2. There exists a constant c and a probabilistic polynomial Turing
machine that given a κ-bit number n as input with overwhelming probability outputs
a logc κ-bit number a such that an+ 1 is prime.

We generalize the notation Gn to denote the cyclic subgroup of order n of
Z∗
an+1, where a is the smallest number such that an+ 1 is prime.

5.1.2 Decision Diffie-Hellman Problem

The Decision Diffie-Hellman problem in a group Gn is defined as the problem of
distinguishing the distributions (gα, gβ , gγ) and (gα, gβ , gαβ), where α, β, γ ∈ Zn
are randomly distributed.

Experiment 5.3 (Decision Diffie-Hellman, Expddh−b
Gn,A

(κ)).

g ← Gn, α, β, γ ← Zn, (D1, D2, D3)← (gα, gβ , g(bγ+(1−b)αβ))

d← A(g,D1, D2, D3)

The advantage of the adversary is Advddh
Gn,A(κ) = |Pr[Expddh−0

Gn,A
(κ) = 1] −

Pr[Expddh−1
Gn,A

(κ) = 1]|.

Assumption 5.4 (Decision Diffie-Hellman Assumption over the group
Gn). For all A ∈ PPT∗ the advantage A = {Aκ}, Advddh

Gn,A(κ) is negligible.

5.1.3 The ElGamal cryptosystem

We review the ElGamal [20] cryptosystem employed in Gq. We write ElgKg(Gq, g)
for the algorithm that generates a random private key x ∈ Zq, computes a public
key (g, y), where y = gx, and outputs ((g, y), x). Encryption of a message m ∈ Gq

using the public key (g, y) is given by E(g,y)(m, r) = (gr, yrm) for r ∈R Zq, and
decryption of a cryptotext on the form (u, v) = (gr, yrm) using the private key x
is given by Dx(u, v) = u−xv = m.
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5.1.4 The RSA cryptosystem

The key generation for the RSA cryptosystem [36] consists of generating primes p
and q of the same size and computing N = pq. The parameters e and d are chosen
so that gcd(e, d) = 1 (mod φ(n)), where φ(n) = (p − 1)(q − 1). The public key
is (e, n) and the private key is d. If we choose p and q so that p = 2p′ + 1 and
q = 2q′+1 where p′, q′ are primes, we ensure that the order of the group QRN , the
quadratic residues modulo N , is p′q′. Throughout the paper we write members of
QRN using bold font (e.g., g,y).

5.1.5 The Strong RSA Assumption

The Strong RSA Assumption y the assumption says that it is hard to compute any
non-trivial root in ZN where N is an RSA modulus, even if allowed to select which
root to compute. This differs from the standard RSA assumption, where the root
to compute is predetermined. Like the standard RSA assumption the strong RSA
assumption implies that factoring is hard.

Assumption 5.5 (Strong RSA Assumption). For any adversary A ∈ PPT∗

the following holds: ∀c > 0, ∃κ0, such that for κ > κ0 we have:

Pr[(P,Q)← csRSA(1κ),σ ← Z∗
PQ, (m, e)← A(PQ,σ),me = σ, e > 1] <

1

κc
.

5.1.6 The Chaum van Heijst Pfitzmann Hash Function

We write CHPg(Gq, δ) for the algorithm that takes as input the representation of
a group Gq and δ ∈ N and outputs a list (h1, . . . , hδ) ∈ G

δ
q of randomly chosen

elements. We employ the Chaum van Heijst Pfitzmann hash function [14] defined
as HCHP : Zq → Gq, H

CHP : (z1, . . . , zδ) 7→
∏δ
l=1 h

zl
l . They prove that this map is

one-way and collision free if the discrete logarithm problem is hard in Gq. We abuse
notation and use HCHP to denote both the map and its representation (h1, . . . , hδ).

Lemma 5.6 (cf. [14]). The hash function HCHP is one-way and collision-free if
the discrete logarithm problem is hard in Gq.

5.1.7 The Shamir Hash Function

We write HSh
(N,g)(x) for the algorithm that computes gx mod N , where N is a

composite number, g ∈ QRN and x ∈ Z. The idea to use this as a hash function
was proposed by Shamir. When (N,g) are clear from the context we may leave
them out. We let HSh denote both the map and the pair (N,g). We have the
following security result for HSh:

Lemma 5.7. The hash function HSh is collision-free if the factoring problem is
hard.

Proof. Assume that HSh is not collision-free, and that HSh
(N,g)(x1) = HSh

(N,g)(x2)

where x1 6= x2. Then gx1−x2 = 1, meaning that x1 − x2 is a multiple of the order
of QRN . This information is enough to factor N as shown in [31].
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5.1.8 The Cramer-Shoup Cryptosystem

We review the Cramer-Shoup cryptosystem [18] over Gq employed with a collision
free one-way function H. We denote their cryptosystem by CS cs

H = (CSKgcs, Ecs,
Dcs).

The key generation algorithm CSKgcs(Gq, q) generates random ḡ1, ḡ2 ∈ Gq and
x̄1, x̄2, ȳ1, ȳ2, z̄ ∈ Zq, computes c̄ = ḡx̄1

1 ḡx̄2
2 , d̄ = ḡȳ11 ḡ

ȳ2
2 , and h̄ = ḡz̄1 and outputs

(ḡ1, ḡ2, c̄, d̄, h̄, x̄1, x̄2, ȳ1, ȳ2, z̄). Encryption of a message m ∈ Gq using the public
key Y = (ḡ1, ḡ2, c̄, d̄, h̄) is given by

Ecs
Y (m, r) = (u, µ, v, ν) = (ḡr1, ḡ

r
2, h̄

rm, c̄rd̄rH(u,µ,v))

for a randomly chosen r ∈ Zq. Note that (u, v) is an ElGamal encryption of the
message m, so decryption of a cryptotext (u, µ, v, ν) using the private key X =
(x̄1, x̄2, ȳ1, ȳ2, z̄) is given by Dcs

X(u, µ, v, ν) = Dz̄(u, v) = m for valid cryptotexts.
A cryptotext is considered valid if the predicate

T cs
X (u, µ, v, ν) = (ux̄1+x̄2H(u,µ,v)µȳ1+ȳ2H(u,µ,v) = ν)

is satisfied. We let T cs
X (u, µ, v, ν) = 1 if it is satisfied and 0 otherwise. An invalid

cryptotext decrypts to ⊥.
Cramer and Shoup [18] prove that their cryptosystem is CCA2-secure under

standard assumptions.

Lemma 5.8 (cf. [18]). The cryptosystem CS cs
H is CCA2-secure under the DDH

assumption in Gq if H is collision free.

5.1.9 Cramer-Shoup RSA Signatures

We review the signature scheme by Cramer and Shoup [19]. We denote their
construction by SScs

H1,H2
= (SSKgcs, Sigcs, Vfcs), and review the algorithms it

consists of below. Here H1 and H2 are hash functions.
We write csRSA for the algorithm that on input 1κ generates two random κ/2-

bit primes P = 2P ′ + 1 and Q = 2Q′ + 1, where P ′ and Q′ are also prime, and
returns (P,Q). Thus, csRSA generates a κ-bit RSA modulus N = PQ.

Algorithm 5.9 (Key Generation, SSKgcs(1κ)).

1. Run (P,Q) = csRSA(1κ) and set P ′ = (P − 1)/2, Q′ = (Q − 1)/2 and
N = PQ.

2. Choose h, z ∈ QRN randomly.

3. Choose a random (κ+ 1)-bit prime e′ such that e′ ≡ 1 (mod 4).

4. Output (N, e′,h, z, P ′Q′).

Algorithm 5.10 (Signing, Sigcs(m,H1,H2, N,h, z, e
′, P ′Q′)).

1. Choose a random (κ + 1)-bit prime e such that e ≡ 3 mod 4 and a random
σ′ ∈ QRN .

28



2. Compute z′ = (σ′)e
′

h−H1(m), σ =
(

zhH2(z′)
)1/e

and output (e,σ,σ′).

Algorithm 5.11 (Verification, Vfcs(H1,H2, N,h, z, e
′,m, (e,σ,σ′)).).

1. Verify that e is an odd number of length between (κ+ 1) bits and
(

3
2κ− 4

)

bits that is distinct from e′.

2. Compute z′ = (σ′)e
′

h−H1(m) and verify that z = σeh−H2(z′). If so output 1,
otherwise output 0.

We have modified the scheme slightly by making e′ always equal to 1 modulo 4
and the primes generated at signing, e, equal to 3 modulo 4. This makes it easier
to prove later in zero-knowledge that e 6= e′. In the original scheme H1 and H2 are
equal, but in our setting they will be different. This does not affect the security
proof in any way.

Also in our description the exponent e is longer than the modulus, but in the
original description e is shorter than P ′ and Q′. Below we argue why the security
proof still holds.

The above signature scheme can proven secure under the Strong RSA Assump-
tion defined below. Informally the assumption says that it is hard to compute any
non-trivial root in ZN where N is an RSA modulus, even if allowed to select which
root to compute. This differs from the standard RSA assumption, where the root
to compute is predetermined. Like the standard RSA assumption the strong RSA
assumption implies that factoring is hard.

Lemma 5.12. The signature scheme SS cs
H1,H2

is CMA-secure under the strong
RSA assumption if H1 and H2 are collision-free one-way functions.

Proof. We assume familiarity with [19]. When the length of the exponent is
between κ + 1 bits and 3

2κ − 4 bits, the proof of [19] holds except for how a
Type III forger is used to break the strong RSA assumption, where a Type III
forger is defined as a forger that outputs a signature (using our notation) (e,σ,σ ′)
such that e 6= ei for all signatures ei it has seen previously. The output from the
Type III forger is used to form the equation σe

′

= zt where z is the number we
wish to compute a root of and t is known. Then the fact that gcd(e, t, 2P ′Q′) = 1
is used, which in the original setting holds because e is odd and smaller than P ′

and Q′. In our setting it may or may not hold. If the forger outputs an e such
that it does hold, then the original proof goes throgh. If it does not hold, then
gcd(e, 2P ′Q′) is either P ′, Q′, or P ′Q′ since e is odd. In all of these cases we have
enough information to factor N .

5.1.10 Proofs of Knowledge

We use a relatively complex proof of knowledge in our construction, but we post-
pone a careful description of the properties we need for Section 6. We define some
notation used in the description of our construction.

Given a three-move public coin interactive proof (P, V ) for a language L, we
can use the Fiat-Shamir heuristic to construct a non-interactive variant in the
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random oracle model, by simply replacing the message sent by the verifier by the
output of the random oracle. We write π = P O(m,·)(x,w) to denote the transcript
of such a protocol execution, where x ∈ L is the common input, w is a witness for
x, and P interacts with the random oracle O(m, ·). We write V O(m,·)(x, π) for the
verification.

5.2 Our Construction

We are now ready to describe our construction. The basic idea is similar to the
construction under general assumptions. A signer encrypts a path from the root
to its leaf using the public keys along the path. Then it proves that it knows a
SScs

HCHP,HSh signature on the list of public keys it used. Thus, a private key of a
signer is simply a SScs

HCHP,HSh signature on the public keys along its path. We de-

note our construction by HGS = (HKg,HSig,HVf,HOpen), and define algorithms
HKg, HSig, HVf, and HOpen below.

5.2.1 Key Generation

The key generation phase proceeds as follows. Each group manager is given an
ElGamal key pair, and each signer is given an RSA signature of the public keys of
the group managers on the path from the root to the signer.

Algorithm 5.13 (Key Generation, HKg(1κ, T )).

1. Run (q0, . . . , q3) = CunnGen4(1
κ) to generate a Cunningham chain, and

choose gi ∈ Gqi randomly for i = 1, 2, 3.

2. Let δ be the depth of the tree T , and run

HCHP = (h1, . . . , hδ) = CHPg(Gq2 , δ)

to generate a collision free one-way function.

3. Run (X,Y ) = CSKgcs(Gq3 , q3) to generate keys for a Cramer-Shoup crypto-
system over Gq3 .

4. Run (N,h, z, e, t) = SSKgcs(1κ) and randomly choose g ∈ QRN to generate
keys for a Cramer-Shoup RSA signature scheme employed with the hash
functions HCHP and HSh

(N,g).

5. Choose a prime on the form aN + 1 and let GN be the unique subgroup of
order N of Z∗

aN+1. Choose gN , yN randomly in GN .

6. For each node β in T , generate keys

(hpk(β),hsk(β)) = (yβ, xβ) = ElgKg(Gq3 , g3)

for an ElGamal cryptosystem over Gq3 .
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7. For each leaf α let α0, . . . , αδ with α0 = ρ and αδ = α be the path from the
root to α, compute

(eα,σα,σ
′
α) = Sigcs((yα1 , . . . , yαδ ),H

CHP,HSh, N,h, z, e′, t)

and redefine hsk(α) = (eα,σα,σ
′
α).

8. Let ρ be the root of T . Choose y ∈ QRN randomly. Choose xi ∈ Zqi
randomly and compute yi = gxii for i = 1, 2, 3. Set the three security para-
meters κ1, κ2, κ3 = Θ(κ). Redefine the public key hpk(ρ) of the root ρ
to be (hpk(ρ), q0,H

CHP, N, e, g1, y1, g2, y2, g3, y3,g,y, gN , yN , κ1, κ2, κ3) and
output hpk,hsk.

Remark 5.14. The three security parameters κ1, κ2 and κ3 are used in the proof
of knowledge. For details, see section 6.

(yρ, (· · · )), xρ

y{{1,2},{3,4}}, x{{1,2},{3,4}}

y{1,2}, x{1,2}

(e1,σ1,σ
′
1)

(e2,σ2,σ
′
2)

y{3,4}, x{3,4}

(e3,σ3,σ
′
3)

(e4,σ4,σ
′
4)

y{{5,6},{7,8}}, x{{5,6},{7,8}}

y{5,6}, x{5,6}

(e5,σ5,σ
′
5)

(e6,σ6,σ
′
6)

y{7,8}, x{7,8}

(e7,σ7,σ
′
7)

(e8,σ8,σ
′
8)

Figure 4: The output of HKg for a four-level tree. The common group parameters
(key size, generators etc.) have been abbreviated by (· · · ).

5.2.2 Computing, Verifying and Opening a Signature

Any leaf α can be associated with a path α0, . . . , αδ where ρ = α0 and αδ = α
from the root to the leaf in the natural way. The signer encrypts its path using the
public keys of the group managers along this path, i.e., the signer computes a list
(Eyα0

(yα1), . . . , Eyαδ−1
(yαδ )). Note the particular way in which the public keys are

chained. It also commits to the SS cs
HCHP,HSh signature of the message (yα1 , . . . , yαδ)

it was given by the key generator. Then it computes a Schnorr-like “proof of
knowledge” in the random oracle model that the cryptotexts and commitments
are indeed formed as described. The message to be signed is included in the
input to the hash function (the random oracle) similarly to Schnorr signatures.
Thus, the signer actually proves that it possesses an SS cs

HCHP,HSh signature of the
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list of public keys it uses to encrypt the public keys along its path. Hierarchical
anonymity follows since only the holders of the secret keys corresponding to yαl can
open any part of the signature. Hierarchical traceability follows since the signer
cannot forge a SScs

HCHP,HSh signature corresponding to a path different from its
own.

Algorithm 5.15 (Signing, HSig(m,T,hpk,hsk(α))).
Let α0, . . . , αδ with ρ = α0 and αδ = α be the path to the signer Sα.

1. Choose r0, . . . , rδ ∈ Zq3 randomly and compute (ul, vl) = E(yαl ,g3)
(yαl+1

, rl),
for l = 0, . . . , δ − 1, and Cδ = Ecs

Y (yαδ , rδ). This is the list of cryptotexts.

2. Choose r, s, r′, s′, t ∈ [0, 2κ3N − 1] randomly and set (u,v) = (gsyr,grσα),
(u′,v′) = (gs

′

yr
′

,gr
′

σ′
α), and C = geαyt. This is a commitment of the

signature (eα,σα,σ
′
α).

3. Denote by RHGS the binary relation consisting of pairs (X,W ), where

X =
(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′ ,v′),C

)

∈

(Gq3 ×Gq3)
δ ×G4

q3 ×QR2
N ×QR2

N ×QRN

W =
(

(τ0, . . . , τδ−1), (τ, ζ, τ
′, ζ ′, ψ, ε)

)

∈

Zδq3 × [0, 2κ3N − 1]5 × [2κ, 2κ+1 − 1]

such that

γ0 = yα0
(

(ul, vl) = E(γl,g)(γl+1, τl)
)δ−1

l=0
Cδ = Ecs

Y (γδ, τδ)

and

u = gζyτ , u′ = gζ
′

yτ ,
C = gεyψ

Vfcs(HCHP,HSh, N,h, z, e′,
(γ1, . . . , γδ),

(ε,v/yτ ,v′/yτ
′

)) = 1

.

In Section 6 we construct an honest verifier public coin zero-knowledge proof
of knowledge (P, V ) for this relation. The signer computes a non-interactive
proof π = PO(m,·)(X,W ) in the random oracle model.

4. Output the signature
(

(ul, vl)
δ−1
l=0 , Cδ , (u,v), (u′,v′),C, π

)

.

Remark 5.16. Note that we switch the order of the components in the ElGamal
cryptosystem so that, for example, D−xρ(u0, v0) = yα1 in order to simplify the
construction of the proof of knowledge.

The construction of the proof of knowledge is involved and postponed until
Section 6. The verification algorithm consists simply of verifying the proof of
knowledge contained in a signature.

Algorithm 5.17 (Verification, HVf(T,hpk,m, σ)).
On input a candidate signature σ = (c, π) =

((

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′),

C
)

, π
)

return the result of V O(m,·)(c, π).
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To open a signature a group manager on depth l simply decrypts the lth com-
ponent of the chain of cryptotexts contained in the signature.

Algorithm 5.18 (Open, HOpen(T,hpk,hsk(β),m, σ)).
On input σ =

(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′ ,v′),C, π

)

proceed as follows. If HVf(T ,
hpk,m, σ) = ⊥, return ⊥. Otherwise compute yα = D−xβ(ul, vl). If α ∈ β return
α and otherwise ⊥.

In our construction we require that cryptotexts encrypted with distinct pub-
lic keys are indistinguishable, since otherwise the cryptotexts themselves leak
information on the identity of the signer. This property, which we call cross-
indistinguishability, is formalized and characterized in Section 3. Note that se-
mantic security does not imply cross-indistinguishability. It is not hard to see that
ElGamal is cross-indistinguishable if we fix a group for each security parameter
such that all cryptotexts cryptotexts for a security parameter are formed over this
group.

It may seem that we have picked arbitrary primitives and then deferred the
problem of forming the proof of knowledge needed. This is not the case. The prim-
itives are carefully selected and slightly modified to allow a reasonably practical
proof of knowledge.

5.3 Security Analysis

We analyze the security of our construction in the random oracle model, and prove
that its security follows from the DDH assumption and the strong RSA assumption.

Theorem 5.19. The hierarchical signature scheme HGS is secure under the DDH
assumption and the strong RSA assumption in the random oracle model. Further-
more, hierarchical traceability holds under the strong RSA assumption.

Proof. The proof proceeds by contradiction. Assume that the signature scheme
SScs

HCHP,HSh is secure. Then we show that if there exists an adversary A which
breaks HGS, there exists another adversary which executes A as a blackbox and
breaks either the Cunningham chain DDH assumption, the security of CS cs

HCHP or
the security of SScs

HCHP,HSh . In view of Corollary 5.12 and Lemma 5.8 this gives a
contradiction.

Breaking HGS means either breaking the hierarchical anonymity, i.e., succeed-
ing in Experiment 2.2, or hierarchical traceability, i.e., succeeding in Experiment
2.3. The adversary A′ simulates to A that it participates in one of these experi-
ments, i.e., it simulates the random oracle O, the HKg oracle, the HOpen oracle,
and the HSig oracle. We consider the details of the simulation of each experiment
below, starting with the case where A breaks hierarchical anonymity.

Hierarchical Anonymity. Suppose that the attacker A breaks hierarchical
anonymity. Then we have Advanon

HGS,A(κ, T ) ≥ 1/κc for some polynomial size tree
T , constant c > 0 and sufficiently large κ.

Definition of A′. As an intermediate step we define a machine A′ that runs A as
a blackbox. A′ is the basis of the adversaries we construct. A′ takes as input a
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single bit b and outputs a single bit. However, A′ itself also plays the role of the
adversary in a DDH experiment, a CCA2 experiment, and a CMA experiment, i.e.,
it plays the adversary in Experiment 5.3 over Gq3 , Experiment 1.1 with CScs

HCHP ,
and Experiment 1.3 with SScs

HCHP,HSh . We reach a contradiction by proving that

A′ is too successful in at least one of these experiments.
We now describe how A′ simulates the oracles to A. The HKg(·) oracle is

simulated as follows. A′ first waits until it receives (g3, D1, D2, D3) in the DDH
experiment. Step 1 is simulated honestly, except that A′ uses the value of g3

received from its oracle instead of generating it randomly. Step 2 is simulated
honestly. Then A′ waits until it receives a CScs

HCHP public key Y in the CCA2
experiment. In Step 3 it takes Y to be the public key, and X is never defined.
Then A′ waits until it receives a SScs

HCHP,HSh public key (N,h, z, e′) in the CMA
experiment. In Step 4 it uses these values, and t is never defined. Step 5 is

simulated honestly. Next A′ chooses two leaves β
(0)
δ and β

(1)
δ randomly. Intuitively,

this is the two leaves A′ guess that A will later ask to be challenged on. Let β
(0)
δ ,

. . ., β
(0)
t and β

(1)
δ , . . ., β

(1)
t be the paths to their common ancestor β

(0)
t = β

(1)
t . Step

6 is then simulated honestly except that for β
(0)
l , β

(1)
l , for l = t, . . . , δ, the public

keys are instead defined using (D1, D2, D3) as follows

y
β

(0)
l

= D
x
β
(0)
l

1 , y
β

(1)
l

= D
x
β
(1)
l

1 .

A′ simulates Step 7 by requesting the Sigcs(·, (H,N,h, z, e′), t) oracle in the CMA
experiment to sign the message (yα1 , . . ., yαδ ) for each α. Then A′ uses the an-
swer, a SScs signature (eα,σα,σ

′
α), to define hsk(α) properly. Step 8 is simulated

honestly.
In each iteration of Experiment 2.2 A may ask for the private key of any inner

node α. If α = β
(0)
l or β

(1)
l for some l = t, . . . , δ, then A′ is unable to satisfy the

request of A properly, since it does not know logg3 yα. Instead of continuing the
simulation, A′ outputs a random bit d ∈ {0, 1} and halts. Otherwise it hands xα
to A.

The HOpen(T,hpk,hsk(·), ·, ·) oracle is simulated as follows given a query (α,
m, σ), where α is on depth l. If HVf(T,hpk,m, σ) = 0, return ⊥. Otherwise
assume that the signature is on the form σ =

(

(ul, vl)
δ−1
l=0 , Cδ , (u,v), (u′,v′),C, π

)

.
A′ hands Cδ to its Dcs

X(·) oracle in the CCA2 experiment. If the answer is not
on the form yαδ for some αδ ∈ L(T ), then the HOpen(T,hpk,hsk(·), ·, ·) oracle
is instructed to return ⊥. This is probably an incorrect reply, which reveals to
A that it is simulated. Intuitively this can only happen if A somehow is able to
manufacture a SScs signature. Suppose now that yαδ is on the expected form.
Then there is a path ρ = α0, . . . , αδ corresponding to αδ. If α = αl for some
0 ≤ l ≤ δ, then the HOpen(T,hpk,hsk(·), ·, ·) oracle is instructed to return αl+1

to A. Otherwise it returns ⊥. Also in this case the reply may be incorrect if A
can manufacture a SScs signature. In the analysis below we show that if incorrect
replies are a non-negligible event we reach a contradiction.

At some point A outputs (sstate, α
(0), α(1),m). If α(0) 6= β

(0)
δ or α(1) 6= β

(1)
δ ,

then A′ guessed incorrectly the challenge indices chosen by A. It outputs a random
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bit d ∈ {0, 1} and halts in this case. Thus, we assume from this point on that

α(0) = β
(0)
δ and α(1) = β

(1)
δ .

The single querym to the HSig(T,hpk,hsk(α(b), ·) oracle is simulated as follows.

To simplify the exposition we write αl instead of α
(b)
l as in Experiment 2.2. A′

chooses rl, r
′
l ∈ Zq3 and τ , ζ, τ ′, ζ ′,ψ ∈ ZN randomly and computes

(ul, vl) = (yrlαlD
xαlr

′

l

3 , yαl+1
grl3 D

r′
l

2 ), for l = 0, . . . , δ − 1 ,

Cδ = Ecs
Y (yαδ , r) , and

(u,v) = (gζ ,gτ ), (u′,v′) = (gζ
′

,gτ
′

), C = gψ .

To construct the proof π, A′ simply invokes the simulator for the proof of know-
ledge.

If (D1, D2, D3) is a DDH triple we have (D
xαl
1 , D2, D

xαl
3 ) = (yαl , g

f
3 , y

f
αl) for

some f . If on the other hand (D1, D2, D3) is not a DDH triple, then we have that

(D
xαl
1 , D2, D

xαl
3 ) = (yαl , g

f
3 , g

f ′

3 y
f
αl) for some random f ′ ∈ Zq3 . It follows that if

(D1, D2, D3) is a DDH triple, the ElGamal cryptotexts are identically distributed
to the corresponding parts of a signature returned by the Sigcs(T , hpk, hsk(α(b)), ·)
oracle in Experiment 2.2, and otherwise they are encryptions of random elements.
Note that when (D1, D2, D3) is not a DDH triple there are no a priori guarantees
for how the output of the simulator of the proof of knowledge is distributed.

A′ simulates A until it halts with output d ∈ {0, 1}. Then A′ halts with output
d. This concludes the definition of the adversary A′.

Analysis of the behavior of A′. We must now analyze the output of A′ and reach
a contradiction. We divide our analysis into a number of claims.

Denote by d′b the output of A′ on input b. Let Enoask denote the event that

A never asks for x
α

(0)
l

or x
α

(1)
l

. Let Eguess denote the event that α(0) = β
(0)
δ ,

α(1) = β
(1)
δ , i.e., that A′ guesses the challenge leaves correctly. Let Eddh denote

the event that (D1, D2, D3) is a DDH triple.

Claim 2. Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask ∧Eguess] = Pr[Expanon−b

HGS,A(κ, T ) = 1].

Proof. The variables β(0) and β(1) are independent from Expanon−b
HGS,A(κ, T ). Thus,

Pr[Expanon−b
HGS,A(κ, T ) = 1 | Eguess] = Pr[Expanon−b

HGS,A(κ, T ) = 1] .

Experiment 2.2 is defined such that it returns 0 if the event Enoask occurs. This
implies that

Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask] = 0 .

Thus
Pr[Expanon−b

HGS,A(κ, T ) = 1 | Enoask] = Pr[Expanon−b
HGS,A(κ, T ) = 1] .

The claim follows.

Claim 3. There exists a negligible function ε(κ), such that for b ∈ {0, 1}

|Pr[d′b = 1 | Enoask ∧Eguess ∧Eddh]

−Pr[Expanon−b
HGS,A(κ, T ) = 1 | Enoask ∧Eguess]| < ε(κ) .
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Proof. The only part of how A′ simulates the experiment to A that is not identic-
ally distributed to the corresponding part in Experiment 2.2 is the simulation of
the HOpen(T,hpk,hsk(·), ·, ·) oracle. Differently phrased, the only way that A can
distinguish between being simulated by A′ and actually run in Experiment 2.2 is
by asking the HOpen(T,hpk,hsk(·), ·, ·) oracle a question that it fails to answer cor-
rectly. We show that the oracle answers all questions correctly with overwhelming
probability.

Let p(κ) denote the running time of A. Then it follows that A asks the sim-
ulated HOpen(T , hpk, hsk(·), ·, ·) oracle at most p(κ) queries (α,m, σ) such that
HVf(T,hpk,m, σ) = 1. Denote by Tl the machine that simulates A′ until l − 1
queries have been answered by the simulated HOpen(T,hpk,hsk(·), ·, ·) oracle, and
then halts outputting the lth query. We say that a query is difficult if it is answered
incorrectly by A′.

We must show for l = 0, . . . , p(k) that Tl outputs a difficult query with negli-
gible probability.

The statement is clearly true for T0, since its output is empty. Suppose now
that the statement is true for Tl for l < s, but false for Ts. Then the distribution of
the output of Ts is indistinguishable from the distribution of the sth query A asks
its HOpen(T,hpk,hsk(·), ·, ·) oracle. This follows from the union bound, since the
lth question is incorrectly answered with negligible probability for l < s. Thus, Ts
outputs a difficult query (α,m, σ) with probability κ−c1 for some constant c1 (and
large enough κ).

Intuitively, it is clear that we can extract a signature from Ts. Formally, we
invoke Lemma 6.6 (in some sense a weak “Forking Lemma” [32]) and conclude that
there exists a polynomial Turing machine T ′

s that runs Ts as a black-box (simulating
the random oracle) and outputs with probability 1/(kc1p(κ))3 a message (γ1, . . .,
γδ) and a SScs signature (ε,σ,σ′) such that

Vfcs(H,N,h, z, e′, (γ1, . . . , γδ), (ε,σ,σ
′)) = 1 ,

with the added property that the query was difficult.
A query is difficult precisely when A′ has not asked its Sigcs(·, (H,N,h, z, e′),

t) oracle the query (γ1, . . . , γδ). This implies that T ′
s breaks the CMA-security of

SScs, which is a contradiction.
Thus, we conclude that A asks a difficult query with negligible probability.

Claim 4. There exists a negligible function ε(κ)′ such that

|Pr[d′0 = 1 | Eguess ∧Enoask ∧Eddh]

−Pr[d′1 = 1 | Eguess ∧Enoask ∧Eddh]| < ε′(κ) .

Proof. Suppose that the claim is false, i.e., that the left side of the equation is
greater or equal to κ−c2 for some constant c2. The only part of the simulation of
A′ that differs between the two cases is how Cδ is formed. This implies that we
can break the security of CScs

HCHP as follows.
Let A′′ be the adversary that is identical to A′ except for the following modi-

fications. It receives no input, it simulates the DDH experiment by handing itself
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a random tuple (g3, D1, D2, D3) ∈ Gq3 , and it simulates the CMA experiment to
itself honestly. The CCA2 experiment is not simulated, i.e., A′′ plays the role of
the adversary in a CCA2 experiment. When A′ would construct Cδ as described
above, A′′ instead requests an encryption of y

α
(0)
δ

or y
α

(1)
δ

from the CCA2 exper-

iment. The experiment hands back a CS cs
HCHP cryptotext C ′

δ = Ecs
Y (y

α
(b)
δ

) for a

randomly chosen b ∈ {0, 1}. Instead of generating Cδ by itself, A′′ continues with
Cδ = C ′

δ. Let d′′b = Expcca−b
CScs

HCHP ,A
′′(κ). By construction d′′b is identically distributed

to the conditioned variable (d′b | Eddh). Thus

|Pr[Expcca−0
CScs

HCHP ,A
′′(κ) = 1]− Pr[Expcca−1

CScs

HCHP ,A
′′(κ) = 1]|

= |Pr[d′′0 = 1 | Eguess ∧Enoask] + Pr[d′′0 = 1 | Eguess ∨Enoask]

−(Pr[d′′1 = 1 | Eguess ∧Enoask] + Pr[d′′1 = 1 | Eguess ∨Enoask])|

= |Pr[d′′0 = 1 | Eguess ∨Enoask]− Pr[d′′1 = 1 | Eguess ∨Enoask]|

= |Pr[d′0 = 1 | Eguess ∧Enoask ∧Eddh]− Pr[d′1 = 1 | Eguess ∧Enoask ∧Eddh]|

≥ κ−c2

where the next to last equality follows from the fact that A′ outputs a random bit
when the event Eguess ∨ Enoask takes place. The resulting inequality contradicts
Lemma 5.8 and Lemma 5.6.

Claim 5. There exists a b ∈ {0, 1} and a constant c3 > 0 such that

κ−c3 ≤ |Pr[d′b = 1 | Eddh]− Pr[d′b = 1 | Eddh]| .

Proof. Write pb0,b1 = Pr[d′b0 = 1 | Enoask ∧ Eguess ∧ E
b1
ddh], where we understand

Eb1ddh to be Eddh or Eddh depending on if b1 = 0 or 1. Without loss we assume that
ε(κ) = ε′(κ). Then we have

κ−c ≤ |Pr[Expanon−0
HGS,A(κ, T ) = 1]− Pr[Expanon−1

HGS,A(κ, T ) = 1]|

= |Pr[Expanon−0
HGS,A(κ, T ) = 1 | Enoask ∧Eguess]

−Pr[Expanon−1
HGS,A(κ, T ) = 1 | Enoask ∧Eguess]|

≤ |Pr[d′0 = 1 | Enoask ∧Eguess ∧Eddh]

−Pr[d′1 = 1 | Enoask ∧Eguess ∧Eddh]|+ 2ε(κ)

≤ |p0,1 − p1,1|+ 2ε(κ) ≤ |p0,1 − p0,0|+ |p0,0 − p1,1|+ 2ε(κ)

≤ |p0,1 − p0,0|+ |p1,0 − p1,1|+ 3ε(κ)

from which it follows that there exists a fixed b0 ∈ {0, 1} and c3 such that the claim
holds. The first inequality holds by assumption, the equality follows from Claim
2, the second inequality follows from Claim 3, and the last inequality follows from
Claim 4.

Claim 6. The DDH assumption is broken.
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Proof. Let A′′′ be identical to A′ except from the following modifications. The
input b is fixed to the value guaranteed to exist by Claim 5, so it takes no input.
It simulates the CCA2 experiment and the CMA experiment to itself. It does not
simulate the DDH experiment, i.e., A′′′ plays the role of the adversary in a DDH
experiment. Then we have

|Expddh−0
Gq3 ,A

′′′(κ)−Expddh−1
Gq3 ,A

′′′(κ)| = |Pr[d′b = 1 | Eddh]− Pr[d′b = 1 | Eddh]| .

Combined with Claim 5 this contradicts the DDH assumption over Gq3 .

We now turn to the case when A breaks the hierarchical traceability and de-
scribe how A′ is implemented in this case.

Hierarchical Traceability. Suppose that A breaks hierarchical traceability.
Then

Advtrace
HGS,A(κ, T ) ≥ 1/kc

for some polynomial size tree T , constant c > 0 and sufficiently large k. We
construct a machine A′ that runs A as a blackbox and breaks the security of SS cs.

Definition of A′. A′ takes no input, but it plays the role of the adversary in the
CMA experiment.

A′ simulates the HKg oracle to A as follows. Steps 1, 2 and 3 are simulated
honestly. Then it waits until it receives a public key (N,h,x, e′) in the CMA
experiment. In Step 4, (N,h,x, e′) is used instead of generating a SS cs key pair,
i.e., the private key t is never defined. Step 5 and Step 6 are simulated honestly.
Step 7 is not performed at all. Step 8 is simulated honestly.

In each iteration in the loop of the experiment simulated to A, A may re-
quest hsk(α). Given such a request A′ requests from its own signature oracle
Sigcs(·,H,N,h, z, e′ , t) a signature (eα,σα,σ

′
α) of the message (yα1 , . . . , yαδ), where

ρ = α0, α1, . . . , αδ = α is the path corresponding to α.
Queries to the HSig oracle are simulated as follows. The first step is simulated

honestly. In Step 2 (u,v), (u′,v′) and C are replaced by (gζ ,gτ ), (gζ
′

,gτ
′

) and
gψ respectively. In Step 3, the simulator of the proof of knowledge is invoked to
construct π. The resulting signature is identically distributed to the reply of the
Sigcs oracle in Experiment 2.3.

At some point A halts with output (m,σ), where the signature is given by
σ =

(

(ul, vl)
δ−1
l=0 , Cδ, (u,v), (u′,v′), C, π

)

. Then A′ computes HVf(T,hpk,m, σ).
If the result is 0, it outputs ⊥.

Suppose that the running time of A′ is bounded by p(κ) for a polynomial κ. We
invoke Lemma 6.6 (in some sense a weak “Forking Lemma” [32]) and conclude that
there exists a polynomial Turing machine T ′ that runs A′ as a black-box (simulating
the random oracle) and outputs with probability 1/(kcp(κ))3 a message (γ1, . . .,
γδ) and a SScs signature (ε,σ,σ′) such that

Vfcs(H,N,h, z, e′, (γ1, . . . , γδ), (ε,σ,σ
′)) = 1 .

Claim 7. The security of SScs is broken.
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Proof. Consider the list γ = (γ1, . . . , γδ). A succeeds in Experiment 2.3 whenever
γ does not correspond to a path in T , or γ corresponds to a path, but γδ 6∈ C.
In the first case A′ clearly succeeds as well since it never asks its Sigcs oracle to
sign any message that is not a list of public keys corresponding to a path in T .
In the second case A′ succeeds since by construction, if γδ 6∈ C it never asked its
Sigcs oracle to sign the message γ. Thus, A′ succeeds whenever A succeeds, and
we have Exptrace

SScs (κ, ∅) ≥ Exptrace
HGS,A(κ, T ) ≥ 1/κc which contradicts Lemma 5.12

and Lemma 5.6.

Conclusion of Proof. If Advanon
HGS,A(κ, T ) is not negligible, Claim 6 gives a con-

tradiction, and if Advtrace
HGS,A(κ, T ) is not negligible Claim 7 gives a contradiction.

Thus, the theorem is true.

As noted above, hierarchical anonymity as defined here is a proper generaliza-
tion of full anonymity as defined in [5], and our scheme can be used as an ordinary
(non-hierarchical) group signature scheme by setting the depth of the tree equal
to two. Thus our scheme is fully anonymous.

The definition of full anonymity is stronger than previously considered an-
onymity definitions, since the adversary is allowed to use an Open oracle during
the attack. In our case we can handle it since we use a CCA2-secure encryption
scheme, and thus reach a contradiction if the adversary is able to form a signature
on his own that we cannot answer.

It is shown in [5] that it is necessary to use a CCA2-secure cryptosystem to
form a group signature scheme. Still we only use a CCA2-secure cryptosystem for
the leaves. This apparent contradiction is resolved by noting that since the public
keys yα are distinct, and we may identify the leaves with their paths in the tree,
any query to the HOpen(T,hpk,hsk(·), ·, ·) oracle for intermediate levels of the tree
can be answered using a single query to the decryption oracle for the cryptosystem
used to encrypt leaves.

6 Construction of the Proof of Knowledge

We give honest verifier zero-knowledge public coin proofs of knowledge for a number
of subprotocols which combined gives the proof of knowledge we need to apply
the Fiat-Shamir heuristic to get a signature scheme in the random oracle model.
Our protocols are based on a variety of proof techniques including, e.g., proofs of
knowledge of exponents, double decker exponentiation, equality of exponents over
distinct groups, interval proofs, and equality of exponents over an RSA modulus.

We divide the exposition into a number of subsections. First we describe proofs
of knowledge over the groups Gqi . Then we give a proof of equality of exponents
over distinct groups. This is followed by the proofs over an RSA modulus ZN .
Finally, the combined protocol is described.

The protocol can be seen as consisting of three steps. In the first step a value
ν is shown to be a commitment to the hash of the encrypted public keys along
the chain. In the second step it is shown that this value (which is in Gq3) is equal
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(over Z) to a value in ZN hidden in a commitment C′. Finally in the third step
the Cramer-Shoup signature the prover has committed to is shown to be a valid
signature of the value committed to in C′. This is shown schematically in Figure
5.

Chained cryptotexts

(ul, vl)
δ−1
l=0

Signature commitment
((u,v), (u′,v′),C)

ν

C′

ν = Commit(

H(Dec((ul, vl)
δ−1
l=0 )))

Open(ν) =
Open(C′)

Vf(Open(C′),
Dec((u,v),

(u′,v′),C) = 1

Figure 5: Schematic overview of the proof of knowledge. The functions Commit

and Open represent creation and opening of commitments.

Although we focus on efficiency, in some cases we have chosen to divide the
protocol into subprotocols for clarity, thus sacrificing some efficiency. Since the by
far most time-consuming part of the protocol is the proofs of exponential relations,
where to our knowledge the best current method is based on cut-and-choose, saving
a few exponentiations in other parts of the protocol yields little in terms of overall
performance.

Before we start we recall some definitions.
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6.1 Review of Some Notions

We assume familiarity with the notion of interactive proofs (IP) introduced by
Goldwasser, Micali and Rackoff [25], and public-coin IPs called Arthur-Merlin
games introduced by Babai [3]. The notion of zero-knowledge was introduced by
Goldwasser, Micali and Rackoff [25]. Statistical special zero-knowledge and special
soundness is defined below.

Let viewV
P (x) denote the view of the verifier V (including its random string)

when interacting with the prover P on common input x. Note that the view of
the verifier V in a three-move protocol can be written (r, x, α, c, d), where r is the
random input of V , x is the common input, α is the first message sent by P , c is
the random challenge from a set C sent by V , and d is final message sent by P .

Definition 6.1 (Statistical Special Honest Verifier Zero-Knowledge). Let
(P, V ) be a three-move IP for a language L. We say that (P, V ) is statistical
special honest verifier zero-knowledge proof (HVZKP) if there exists a probabil-
istic polynomial time algorithm S such that the ensembles {S(x, c)}x∈L,c∈C and
{viewV

P (x)}x∈L,c∈C are statistically close as functions of |x|.

The term special is used since the simulator S is not allowed to pick the chal-
lenge c itself, but must be able to compute a valid view when given c together with
x as input.

Suppose the challenge c = (c1, . . . , ck) is randomly chosen from a product set
C1 × C2 × · · · × Ck for some constant k and that |Ci| ≥ 2κ for i = 1, . . . , k where
κ is the security parameter. Then the following slight generalization of special
soundness makes sense. We get the standard definition of special-sound if k = 1.

Definition 6.2 (Special Soundness). A three-move IP (P, V ) for a binary rela-
tion R is C1×C2×· · ·×Ck-special-sound if there exists a polynomial time algorithm
that given two accepting outcomes of the view (r, x, α, c, d) and (r, x, α, c′, d′) with
ci 6= c′i for all i = 1, . . . , k, outputs a witness w such that (x,w) ∈ R.

We use a generalized definition of Σ-protocol along the lines suggested by
Cramer, Damgård, and Schoenmakers [17].

Definition 6.3 (Σ-Protocol). A C1 ×C2 × · · · ×Ck-Σ-protocol is a three-move
interactive proof (P, V ) that is both statistical special honest verifier zero-knowledge
and C1 ×C2 × · · · × Ck-special-sound for some product set.

Observation 6.4. Let (Pl, Vl) be a C1 × C2 × · · · × Ck-Σ-protocol for a language
Ll for l = 1, . . . , k(κ), where k(κ) is polynomial. Then the parallel composition
(P, V ) of the protocols where a single challenge in C is used for all protocols is a
C-Σ-protocol.

Observation 6.5. Let (Pl, Vl) be a Cl-Σ-protocol for a language Ll for l = 1, . . .,
k, where k is constant. Then the parallel composition (P, V ) of the protocols is a
C1 × C2 × · · · × Ck-Σ-protocol.

It essentially follows from the “Forking Lemma” of Pointcheval and Stern [32]
that a Σ-protocol is a proof of knowledge in the sense of [4]. One must only
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generalize the lemma slightly to hold also for the generalized special soundness as
we define it above. However, we only need the following lemma in the proof of
Theorem 5.19.

Lemma 6.6. Let (P, V ) be a C1×C2× · · · ×Ck-Σ-protocol for a language L. Let
L′ ⊂ L. If AO is a probabilistic random oracle machine running in polynomial
time T such that

Pr[AO = (m,α, c, d) ∧ α ∈ L′ ∧ V O(m,·)(α, c, d) = 1] ≥ p

where the probability is taken over the random choices of AO and the random oracle,
and 1/p is polynomial, then there exists a polynomial time machine A′ running A
as a blackbox (and simulating the random oracle), that outputs (α,w) ∈ RL such
that α ∈ L′ with probability at least (p/4T )3 − ε(κ), where ε(κ) is a negligible
function.

Proof. Let C = C1×C2×· · ·×Ck. First note that V O(m,·)(α, c, d) = 1 implies that
O(m,α) = c. The machine A asks at most T queries to O. Thus, we may identify
O with a list of random answers (r1, . . . , rT ), where ri ∈ C. Set r = (r0, . . . , rT )
and write Ar = (mr, αr, cr, dr) to denote the output of A on internal randomness
r0 ∈ {0, 1}

T and using the oracle O defined by (r1, . . . , rT ). Without loss we
assume that A has queried O on (mr, αr) at some point.

We define A′
j as follows, where j is defined below. It chooses r ∈ {0, 1}T ×

CT and r′ ∈ {0, 1}T × CT randomly under the restriction (r0, r1, . . . , rj−1) =
(r′0, r

′
1, . . . , r

′
j−1) and executes A twice, the first time with r as random oracle and

the second time with r′ as random oracle. Then it invokes the extractor guaranteed
by the Σ-protocol on (αr, cr, dr) and (αr′ , cr′ , dr′) and outputs the result. Note that
the extractor outputs a correct result only if mr = mr′ , αr = αr′ and cr 6= cr′ . We
now show that this happens with non-negligible probability.

Denote by Er the event αr ∈ L′ ∧ V O(mr ,·)(αr, cr, dr) = 1. Then we have
Pr[Er] =

∑T
l=1 Pr[Er ∧ cr = rl], which implies that there exists a j (used in the

algorithm above) such that Pr[Er ∧ cr = rj ] ≥ p/T .
Define

F = {(t0, . . . , tj−1) | Pr[Er ∧ cr = rj | (r0, . . . , rj−1) = (t0, . . . , tj−1)] ≥ p/(2T )}

and let rj = (r0, r1, . . . , rj−1). Then Pr[rj ∈ F ] ≥ p/(2T ) by an average argument,
and we have from independence that

Pr[(Er ∧ cr = rj) ∧ (Er′ ∧ cr′ = r′j)]

≥ Pr[(Er ∧ cr = rj) ∧ (Er′ ∧ cr′ = r′j) | r
j ∈ F ] Pr[rj ∈ F ]

= Pr[Er ∧ cr = rj | r ∈ F ] Pr[Er′ ∧ cr′ = r′j) | r
j ∈ F ] Pr[rj ∈ F ]

≥
( p

4T

)3

Denote by E the event (Er∧cr = rj)∧(Er′∧cr′ = r′j). Denote by Es the event that
∀l ∈ [1, k] : rj,l 6= r′j,l. This corresponds to fulfilling the hypothesis of the extractor
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guaranteed by the special soundness. Denote by Eu the event that all rl and r′l for
l = 1, . . . , T are unique. The event Eu ensures that answer to the j’th query is used
as challenge c, which in turn means that M must have decided on a m and α at
that point. Given that the event E occurs this implies (mr, αr) = (mr′ , αr′). We
clearly have Pr[rj,l = r′j,l] = 1/|Cl|, thus Pr[Es] ≤

∑k
l=1 1/|Cl| by the union bound.

We also have Pr[rl = r′l] = 1/|C| and the union bound gives Pr[Eu] ≤ T 2/|C|. A

final application of the union bound gives Pr[Es ∨Eu] ≤
∑k

l=1 1/|Cl|+ T 2/|C|.
We have

Pr[E] = Pr[E ∧Es ∧Eu] + Pr
[

E ∧
(

Es ∨Eu
)]

≤ Pr[E ∧Es ∧Eu] +
k

∑

l=1

1/|Cl|+ T 2/|C|

≤ Pr[E ∧Es ∧Eu] + k/2κ + T 2/2kκ .

It now follows that

Pr[E ∧Es ∧Eu] ≥ Pr[E]−
(

k/2κ + T 2/2kκ
)

≥ (p/4T )3 −
(

k/2κ + T 2/2kκ
)

which concludes the proof, since if the event E ∧ Es ∧ Eu occurs the extractor is
guaranteed to succeed.

6.2 Proofs of Knowledge in Groups of Known Prime Order

The goal of this section is to provide subprotocols that can be used to prove
knowledge of γ1, . . . , γδ and τ0, . . . , τδ−1 satisfying the relations that are defined
exclusively over Gq1 , Gq2 , and Gq3 in Step 3 in Algorithm 5.15. Relations involving
elements over ZN are handled in Section 6.3 and Section 6.4. Most of the ideas we
use in this section have appeared in various forms in the literature.

In some protocols we use the security parameters κ1, κ2 and κ3. Where used
the completeness depends on κ1, the soundness depends on κ2 and the amount of
information disclosed depends on κ3.

We begin our program by considering a problem related to that of proving
that a list of cryptotexts is chained properly. To simplify the exposition the DDH
assumption and strong RSA assumption are implicitly assumed in the formulation
of the lemmas, and the bases in the common input are assumed to be chosen at
random. In the application of the protocols this is the case.

Protocol 6.7 (Chained Cryptotexts).

Common Input: y0, g, y ∈ Gq and
(

(ul, vl) , (µl, νl)
)δ−1

l=0
∈ G4δ

q

Private Input: rl, sl, tl ∈ Zq for l = 0, . . . , δ−1 and yl ∈ Gq for l = 1, . . . , δ such
that (ul, vl) = E(yl,g) (yl+1, rl) =

(

yrll , g
rlyl+1

)

and (µl, νl) =
(

gslytl , yslyl+1

)

.

1. The prover chooses al ∈ Zq randomly and computes

A1,l = galµrll , A2,l = yalνrll (1)

for l = 0, . . . , δ − 1.
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2. The prover chooses bl, el, fl, hl, il, jl ∈ Zq randomly and computes

B0 = ye00 , (2)

for l = 0, . . . , δ − 1

B1,l = gblµell , B2,l = yblνell (3)

B3,l = gelyil , B4,l = gilyjl , (4)

and for l = 0, . . . , δ − 2

B5,l = gflyhl, B6,l = yfl (5)

and hands B0,
(

A1,l, A2,l, B1,l, B2,l, B3,l, B4,l

)δ−1

l=0
,
(

B5,l, B6,l

)δ−2

l=0
to the veri-

fier.

3. The verifier chooses c ∈ Zq randomly and hands c to the prover.

4. The prover computes

d1,l = cal + bl, d2,l = crl + el, (6)

d3,l = −csl + il, d4,l = −ctl + jl (7)

for l = 0, . . . , δ − 1 and for l = 0, . . . , δ − 2

d5,l = c (al + slrl) + fl, d6,l = ctlrl + hl (8)

and hands (d1,l, d2,l, d3,l, d4,l)
δ−1
l=0 , (d5,l, d6,l)

δ−2
l=0 to the verifier.

5. The verifier checks that
uc0B0 = y

d2,0
0 , (9)

for l = 0, . . . , δ − 1 that

Ac1,lB1,l = gd1,lµ
d2,l
l , Ac2,lB2,l = yd1,lν

d2,l
l (10)

(vl/νl)
cB3,l = gd2,lyd3,l , B4,l = µcl g

d3,lyd4,l . (11)

and finally for l = 0, . . . , δ − 2 that

Ac1,lB5,l = gd5,lyd6,l , (A2,l/ul+1)
cB6,l = yd5,l , (12)

Intuitively the proof works by first showing that (ul, vl) encrypt the key that is
committed to in (µl, νl) and then by showing that key in the commitment (µl, νl) is
the encryption key used for the encryption in (ul+1, vl+1). This concept is depicted
in Figure 6.

The idea here is that the prover first computes two Pedersen commitments in
the bases g, µl and y, νl respectively. Then B1,l and B2,l are used to show that the
prover can open the commitments. With B3,l and B4,l the prover shows that vl
encrypts what is hidden in the commitment νl and that the exponent of g in µl is
the same as the exponent of y in νl.With B5,l the prover shows that it can open
A1,l also in the base g, y. With B6,l it finally shows that it can open A2,l/ul as a
power of y, which implies that A2,l and ul contain yl to the same power and hence
that yl is the key used in the encryption (ul, vl). The detailed proof follows.
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Figure 6: Overview of Protocol 6.7.

Lemma 6.8. Protocol 6.7 is a Zq3-Σ-protocol.

Proof. We prove special soundness first. Suppose we have a list
(

A1,l, A2,l, B1,l,

B2,l, B3,l, B4,l

)δ−1

l=0
,
(

B5,l, B6,l

)δ−2

l=0
, c and (d1,l, d2,l, d3,l, d4,l)

δ−1
l=0 , (d5,l, d6,l)

δ−2
l=0 that

satisfy the Equations (1)-(5), and c′ 6= c and (d′1,l, d
′
2,l, d

′
3,l, d

′
4,l)

δ−2
l=0 , (d′5,l, d

′
6,l)

δ−1
l=0

that satisfies the same equations. We solve the equation systems corresponding to
Equations (6)-(8) to extract λl, αl, ρl, ωl, ζl, and τl such that

u0 = yρ00

A1,l = gαlµρll , A2,l = yαlνρll ,

A1,l = gωlyλl , A2,l/ul+1 = yωl

vl/νl = gρly−ζl , µl = gζlyτl .

From this we can compute ζ∗l = (ωl−αl)/ρl and τ∗l = λl/ρl such that µl = gζ
∗

l yτ
∗

l

since
(

g(wl−αl)yλl
)1/ρl

=

(

A1,l

gαl

)1/ρl

= µl .

We have νl = yζ
∗

l γl+1 for some γl+1, i.e., (µl, νl) = (yτ
∗

l gζ
∗

l , yζ
∗

l γl+1). This implies
that ul+1 = A2,ly

−ωl = yαlνρll y
−ωl = yαlyζ

∗

l ρlγρll+1 = yαl+ζ
∗

l ρl−ωlγρll+1 = γρll+1.
Define γ∗l+1 by vl = gρlγ∗l+1, i.e., (ul, vl) = E(γl,g)(γ

∗
l+1, ρl). What remains is

to argue that ζ∗l = ζl, τ
∗
l = τl, and γ∗l+1 = γl+1 to connect the “links in the chain”.

The first two equalities follow from gζlyτl = µl = gζ
∗

l yτ
∗

l , since otherwise we could
use the extractor to extract the discrete logarithm (ζl − ζ

∗
l )/(τl − τ∗l ) = logg y,

which is a contradiction. The last equality follows from ul = gρl , vl/νl = gρly−ζl ,
and µl = gζlyτl . Thus, the protocol is special-sound.

Simulation is straightforward. Choose al ∈ Zq randomly and set (A1,l, A2,l) =
E(g,y)(ul, al). Then choose (d1,l, d2,l, d3,l, d4,l, d5,l, d6,l), where di,l ∈ Zq, and c ∈ Zq
randomly and define B0,

(

A1,l, A2,l, B1,l, B2,l, B3,l, B4,l, B5,l, B6,l

)

by solving
Equations (9)-(11). It is easy to see that the resulting simulation is perfectly
distributed. Thus, the protocol is special honest verifier perfect zero-knowledge.

Next we consider the problem of proving that the values yα ∈ Gq3 and gyα2 ∈ Gq2
committed to in two commitments (µ, ν) = (yt3g

s
3, y

s
3yα) and (µ′, ν ′) = (yt

′

2 g
s′
2 ,

ys
′

2 g
yα
2 ) respectively satisfy an exponential relation. Stadler [39] studied a simpler

problem, namely, given Ey3(m) and gm2 , prove that an exponential relation holds
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between the cleartext and the exponent. Although we consider a more complex
problem, our protocol is based on his ideas. Note that proving that our relation
holds is equivalent to proving knowledge of s, t ∈ Zq2 and s′, t′ ∈ Zq3 such that

(θ, ω, φ) = ((µ′)ν
−1
, (ν ′)ν

−1
, µ−1) is on the form (yt

′

2 g
s′
2 , y

s′
2 g

ys3
2 , y

t
3g
s
3). For clarity we

state this observation as a protocol.

Protocol 6.9 (Exponential Relation Between Committed Values).
Common Input: g2, y2, µ

′, ν ′ ∈ Gq2 and g3, y3, µ, ν ∈ Gq3 .
Private Input: t′, s′ ∈ Zq2 such that (µ′, ν ′) = (yt

′

2 g
s′
2 , y

s′
2 g

yα
2 ) and t, s ∈ Zq3 such

that (µ, ν) = (yt3g
s
3, y

s
3yα).

1. Invoke Protocol 6.10 on common input g2, y2, θ, ω ∈ Gq2 and g3, y3, φ ∈ Gq3 ,

where (θ, ω, φ) =
(

(µ′)ν
−1
, (ν ′)ν

−1
, µ−1

)

, and private input −t,−s ∈ Zq3 and

t′ν−1, s′ν−1 ∈ Zq2. .

We now give the double-decker exponentiation protocol called from within the
protocol above. Here κ2 is a security parameter that determines the soundness of
the protocol.

Protocol 6.10 (Double-Decker Exponentiation).
Common Input: g2, y2, θ, ω ∈ Gq2 and g3, y3, φ ∈ Gq3 .

Private Input: t′, s′ ∈ Zq2 and t, s ∈ Zq3 such that (θ, ω, φ) = (yt
′

2 g
s′
2 , ys

′

2 g
ys3
2 ,

yt3g
s
3).

1. The prover chooses el, fl ∈ Zq3 and e′l, f
′
l ∈ Zq2 randomly for l = 1, . . . , κ2,

computes F1,l = y
e′l
2 g

f ′l
2 , F2,l = y

f ′l
2 g

y
fl
3

2 , and Al = yel3 g
fl
3 . Then it hands

(F1,l, F2,l, Al)
κ2
l=1 to the verifier.

2. The verifier chooses b = (b1, . . . , bκ2) ∈ {0, 1}
κ2 randomly and hands b to the

prover.

3. The prover computes d1,l = el − blt, d2,l = fl − bls, d3,l = f ′l − bly
d2,l
3 s′, and

d4,l = e′l − bly
d2,l
3 t′, and hands (d1,l, d2,l, d3,l, d4,l)

κ2
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κ2 that

θbly
d2,l
3 y

d4,l
2 g

d3,l
2 = F1,l, y

d3,l
2 (ωblg

(1−bl)
2 )y

d2,l
3 = F2,l, (13)

φbly
d1,l
3 g

d2,l
3 = Al . (14)

Since Protocol 6.9 only calls Protocol 6.10, we only need to consider Protocol
6.10:

Lemma 6.11. Protocol 6.10 is a {0, 1}κ2 -Σ-protocol with soundness 1− 2κ2 .

Proof. We prove special soundness first. Suppose that we are given the outputs
from two executions (F1,l, F2,l, Al)

κ2
l=1, b, (d1,l, d2,l)

κ2
l=1 and b′, (d′1,l, d

′
2,l)

κ2
l=1 with

b 6= b′ that satisfy Equations (13)-(14). Thus, for some l, bl 6= b′l.
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Let (ε, τ) and (ψ, ζ) ∈ Zq3 be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b

′
lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b

′
ls

}

,

This implies that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′l − bly
d2,l
3 s′

d′3,l = f ′l − b
′
ly
d′2,l
3 s′

}

.

Note that bly
d2,l
3 is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
2 ωy

d2,l
3 = y

ψ′−y
d2,l
3 ζ′

2 ωy
d2,l
3 = y

ψ′−yψ−ζ
3 ζ′

2 ωy
ψ−ζ
3

F2,l = y
d′3,l
2 g

y
d′2,l
3

2 = yψ
′

2 g
y
d′2,l
3

2 = yψ
′

2 g
yψ3
2

Solving for ω gives ω = yζ
′

2 g
yζ3
2 . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − bly
d2,l
3 t′

d′4,l = e′l − b
′
ly
d2,l′
3 t′

}

.

Then we have

F1,l = θy
d2,l
3 y

d4,l
2 g

d3,l
2 = θy

d2,l
3 y

ε′−y
d2,l
3 τ ′

2 g
ψ′−y

d2,l
3 ζ′

2

F1,l = y
d′4,l
2 g

d′3,l
2 = yε

′

2 g
ψ′

2

Solving for θ gives θ = yτ
′

2 g
ζ′

2 . We conclude that the protocol is special-sound.
The simulator is defined as follows. For l = 1, . . . , κ2 choose bl ∈ {0, 1} and

d1,l, d2,l ∈ Zq3 and d3,l, d4,l ∈ Zq2 randomly and define (F1,l, F1,l, Al) by Equations
(13)-(14). We conclude that the protocol is special honest verifier perfect zero-
knowledge.

Our next protocol shows that the cleartext of an ElGamal encryption is the
value hidden in a commitment. Since the protocol is used in conjunction with
Cramer-Shoup cryptotexts, we use a notation that is consistent with the Cramer-
Shoup cryptosystem.

Protocol 6.12 (Equality of Committed and Encrypted Cleartexts).
Common Input: g3, y3, u

′, v′, ḡ1, h̄, u, v ∈ Gq3 .
Private Input: t′, s′, r such that (u′, v′) = (gt

′

3 y
s′
3 , g

s′
3 m) and (u, v) = (ḡr1, h̄

rm).

1. The prover chooses a, e, f ∈ Zq3 randomly, computes A1 = ga3y
e
3, A2 = ge3h̄

f ,

A3 = ḡf1 , and hands (A1, A2, A3) to the verifier.
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2. The verifier chooses c ∈ Zq3 randomly and hands it to the verifier.

3. The prover computes d1 = ct′ + a, d2 = cs′ + e, d3 = −cr + f and hands
(d1, d2, d3) to the verifier.

4. The verifier checks that

(u′)cA1 = gd13 y
d2
3 , (v′/v)cA2 = gd23 h̄

d3 , ucA3 = ḡd31 . (15)

Lemma 6.13. Protocol 6.12 is a Zq3-Σ-protocol.

Proof. Consider special soundness. Given (A1, A2, A3), (c, d1, d2, d3), and (c′, d′1,
d′2, d

′
3), with c 6= c′, that satisfy the check above, we can solve the corresponding

equation systems to find τ ′, ζ ′, τ ∈ Zq3 such that

(u′, v′/v, u) = (gτ
′

3 y
ζ′

3 , g
ζ′

3 h̄
τ , ḡτ1 ) .

This implies that the cryptotext and commitment holds the same value v/h̄τ as
prescribed. Thus, thus the protocol is special-sound.

The simulator chooses c, d1, d2, d3 ∈ Zq3 and defines A1, A2, A3 by Equation
(15). It is easy to see that the protocol is special honest verifier perfect zero-
knowledge.

Our next protocol shows that a Cramer-Shoup cryptotext is valid. We define
it for an arbitrary hash function, although we will later instantiate it with a HCHP

hash function.

Protocol 6.14 (Validity of Cramer-Shoup Cryptotext).
Common Input: H : G3

q3 → Zq3 , ḡ1, ḡ2, u, µ, v, ν ∈ Gq3 , and c̄, d̄ ∈ Gq3 .

Private Input: r ∈ Zq3 such that (u, µ, v, ν) = (ḡr1, ḡ
r
2, v, c̄

r d̄rH(u,µ,v)).

1. The prover randomly selects a ∈ Zq3 and computes B1 = ḡa1 , B2 = ḡa2 ,
B3 =

(

c̄d̄H(u,µ,v)
)a

and hands (B1, B2, B3) to the verifier.

2. The verifier randomly selects c ∈ Zq3 and hands it to the prover.

3. The prover computes d = cr + a and hands d to the verifier.

4. The verifier checks that ucB1 = ḡd1 , µcB2 = ḡd2 and νcB3 =
(

c̄d̄H(u,µ,v)
)d

.

Lemma 6.15. Protocol 6.14 is a Zq3-Σ-protocol.

Proof. It can easily be verified that the protocol never fails on valid input.
Assuming the output of two executions B1, B2, B3, c, d and B1, B2, B3, c

′, d′ for
c 6= c′ both satisfying the verification of Step 4, we can compute ρ = (d−d′)/(c−c′)
such that (u, µ, ν) = (ḡρ1 , ḡ

ρ
2 , c̄

ρd̄ρH(u,µ,v)). Thus, the protocol is special-sound.
The simulator chooses c, d ∈ Zq3 randomly and defines B1, B2, and B3 by the

equations in Step 4. It follows that the protocol is special honest verifier perfect
zero-knowledge.
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The next protocol combines the protocols above and provides a solution to the
goal of this section, i.e., proving the relations in Step 3 in Algorithm 5.15 involving
only elements from Gq1 , Gq2 , and Gq3 .

Protocol 6.16 (Commitment to Hash of Chained Keys).
Common Input: g3, y3, yα0 ∈ Gq3 , g2, y2 ∈ Gq2 , g1, y1 ∈ Gq1 , H

CHP = (h1, . . .,
hδ) ∈ G

δ
q2 , (ul, vl)

δ−1
l=0 ∈ G

2δ
q3 , (µ′′, ν ′′) ∈ G2

q1 , ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ = (ū, µ̄, v̄, ν̄) ∈
G4
q3 .

Private Input: r0, . . . , rδ ∈ Zq3 , r, yα1 , . . . , yαδ ∈ Gq3 satisfying the equations in
Step 3 in Algorithm 5.15, and s′′, t′′ ∈ Zq2 such that

(µ′′, ν ′′) = (yt
′′

1 g
s′′

1 , ys
′′

1 g
HCHP(yα1 ,...,yαδ )
1 ) .

1. The prover chooses yαδ+1
∈ Gq3 and rδ ∈ Zq3 randomly, computes (uδ, vδ) =

Eyαδ
(

yαδ+1
, rδ

)

, and hands (uδ, vδ) to the verifier.

2. The prover chooses sl, tl ∈ Zq2 , computes commitments

(µl, νl) =
(

gsl3 y
tl
3 , y

sl
3 yαl+1

)

for l = 0, . . . , δ − 1, and hands (µl, νl)
δ−1
l=0 to the verifier.

3. The prover chooses s′l, t
′
l ∈ Zq3 randomly, computes commitments (µ′

l, ν
′
l) =

(y
t′l
2 g

s′l
2 , y

s′l
2 h

yαl+1

l+1 ) for l = 0, . . . , δ − 1, and hands (µ′
l, ν

′
l)
δ
l=1 to the verifier.

4. The prover and verifier computes (µ′, ν ′) =
(

∏δ−1
l=0 µ

′
l,

∏δ−1
l=0 ν

′
l

)

. The prover

computes s′ =
∑δ−1

l=0 s
′
l and t′ =

∑δ−1
l=0 t

′
l.

5. Invoke the following protocols in parallel:

(a) Protocol 6.7 on public input yα0 , g3, y3,
(

(ul, vl), (µl, νl)
)δ−1

l=0
, and private

input (rl, sl, tl)
δ−1
l=0 to show that the chain is a valid chain of encrypted

keys.

(b) Protocol 6.9 for l = 0, . . . , δ − 1 on public input g3, y3, µl, νl ∈ Gq3 and
g2, y2, hl, µ

′
l, ν

′
l ∈ Gq2 , and private input sl, tl ∈ Zq3 and s′l, t

′
l ∈ Zq2 .

(c) Protocol 6.9 on public input g2, y2, µ
′, ν ′ ∈ Gq2 and g1, y1, g1, µ

′′, ν ′′ ∈
Gq1 , and private input s′, t′ ∈ Zq2 and s′′, t′′ ∈ Zq1 . These two protocols
show that (µ′′, ν ′′) is a commitment of the hash value of the public keys
in the commitments (µl, νl).

(d) Protocol 6.12 on common input g3, y3, µδ, νδ ∈ Gq3 , ḡ1, h̄ ∈ Gq3 , ū, v̄ ∈
Gq3 , and private input tδ, sδ, r ∈ Zq3 to show that the CScs

HCHP encryption
is an encryption of the value committed to in (µδ, νδ).

(e) Protocol 6.14 on common input ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ = (ū, µ̄, v̄, ν̄) ∈
G4
q3 , and private input r ∈ Zq3 to show that the CScs

HCHP encryption is
correctly formed.
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Lemma 6.17. Protocol 6.16 is a {0, 1}κ2 × Zq3-Σ-protocol.

Proof. From Lemma 6.8, Lemmas 6.11, 6.13, 6.15 and Observations 6.4 and 6.5 it
follows that Step 5 may be considered a single combined {0, 1}κ2 ×Zq3-Σ-protocol.
However, we must show that the extracted values satisfy additional equations.

From the combined protocols we can extract τl, ζl, ψl ∈ Zq3 , γl ∈ Gq3 , ζ
′
l , ψ

′
l,

ζ ′, ψ′ ∈ Zq2 , ζ
′′, ψ′′ ∈ Zq1 , ψ

∗
δ , ζ

∗
δ , τ ∈ Zq3 , Γ ∈ Gq2 such that for l = 0, . . . , δ − 1

(ul, vl) = E(γl,g3)(γl+1, τl) = (γτll , g
τl
3 γl+1)

(µl, νl) = (yψl3 g
ζl
3 , y

ζl
3 γl)

(µ′l, ν
′
l) = (y

ψ′

l

2 g
ζ′l
2 , y

ζ′l
2 h

γl
l )

(µ′, ν ′) = (yψ
′

2 g
ζ′

2 , y
ζ′

2 Γ)

(µ′′, ν ′′) = (yψ
′′

1 gζ
′′

1 , yζ
′′

1 gΓ
1 )

(ū, v̄) = (ḡτ1 , h̄
τγ∗δ ) .

If
∏δ
l=1 h

γl
l 6= Γ, then either ψ′ 6=

∑δ
l=1 ψ

′
l or ζ ′ 6=

∑δ
l=1 ζ

′
l . In either case this

implies that we can extract logg2 y2, which is a contradiction. Under Lemma 6.13
it must hold that γδ = γ∗δ . Thus, the protocol is special-sound.

To simulate the proof the simulator chooses uδ, vδ, µl, νl ∈ Gq3 , µ
′
l, ν

′
l ∈ Gq2

randomly instead of as defined in the protocol. It is easy to see that these ele-
ments are identically distributed to the corresponding elements in an execution
of the protocol. The simulator invokes the simulator for the combined proof of
knowledge of Step 5. It follows that the protocol is special honest verifier perfect
zero-knowledge.

6.3 Proof of Equality of Exponents Over Distinct Groups

In several of our subprotocols, we need to prove relations over an RSA modulus.
These proofs differ slightly from proofs over a group of prime order. When per-
forming proofs over an RSA modulus the order of the multiplicative group is not
known, and therefore we cannot reduce the exponents.

One way to get around this problem is illustrated in the example below, where
we prove knowledge of how to open a Pedersen commitment. Here κ1, κ2 and κ3

are three security parameters. The completeness depends on κ1, the soundness
depends on κ2 and the amount of information disclosed depends on κ3.

Zero-knowledge proofs over such moduli have been studied by Fujisaki and
Okamoto [22]. Here we use techniques that are similar, although not identical to
theirs. In [22] the equivalent to a Pedersen commitment over a composite modulus
such as ZN is studied. To commit to a number s the prover computes gsyr where r
is drawn from [0, 2κ3N −1] for a security parameter κ3. The following two lemmas
are proven.

Lemma 6.18 (cf. [22]). There exists a polynomial-time algorithm that takes as
input a composite number N and r1, s1, r2, s2, r1 6= r2 and s1 6= s2, such that
gr1ys1 = gr2ys2 that with high probability outputs the factorization of N .
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Lemma 6.19 (cf. [22]). If κ3 = Θ(logN), then gsyr statistically reveals no
information about s.

First consider the problem of proving equality of exponents over distinct groups.
This is used as a bridge between the two parts of our protocol. Two Pedersen
commitments are given: one over Gq denoted C and one over ZN denoted C. The
task is to prove that the committed values are equal when interpreted over the
integers. This problem has been studied by Boudot and Traoré [8] as well as by
Camenisch and Michels [11] and we follow their example.

Protocol 6.20 (Equality of Exponents Over Distinct Groups).
Common Input: g,y,C ∈ QRN and g, y, C ∈ Gq, where q < N .
Private Input: e ∈ [0, q− 1], s ∈ [0, 2κ3N − 1], and s′ ∈ Zq. such that C = geys

and C = geys
′

.

1. The prover chooses a ∈ [0, 2κ1+κ2+κ3q − 1], b ∈ [0, 2κ1+κ2+κ3N − 1] and b′ ∈
[0, 2κ1+κ2+κ3q − 1] randomly, computes A = gayb, A = gayb

′

, and hands
(A, A) to the verifier.

2. The verifier chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.

3. The prover computes

d1 = a+ ce mod 2κ1+κ2+κ3q, (16)

d2 = b+ cs mod 2κ1+κ2+κ3N, (17)

d3 = b′ + cs′ mod 2κ1+κ2+κ3q (18)

and hands (d1, d2, d3) to the verifier.

4. The verifier checks that gd1yd2 = CcA (in ZN ) and gd1yd3 = CcA (in Gq).

Lemma 6.21. Protocol 6.20 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 3 ·
2−κ2 .

Proof. If the prover is honest the verifier accepts if there is no reduction in the
computation of d1, d2 or d3. By the union bound this happens with probability
not more than 3 · 2−κ1 , which gives a completeness of 1− 3 · 2−κ2 .

To prove that the protocol is special-sound, assume we have A, A, c, d1, d2, d3

as well as c′ 6= c, d′1, d
′
2, d

′
3, each list satisfying the equations of Step 4. Then by

solving the equations system consisting of Equations (16) to (18) over Z we get

ε =
d1−d′1
c−c′ , ζ =

d2−d′2
c−c′ and ζ ′ =

d3−d′3
c−c′ .

We now show that ε and ζ ′ are integers. In [22] the following lemma is proven:

Lemma 6.22 (cf. [22]). Let P ∗ be an oracle that on input N,g,y outputs u,µ
and two lists (c, d1, d2), (c′, d′1, d

′
2) satisfying the equations of Step 4 with (c− c′) -

(d1−d
′
1) or (c−c′) - (d2−d

′
2). Then there exists a polynomial-time machine which

on input C, N and access to P ∗ outputs z, e such that ze = C and e > 1.
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From the above Lemma it follows that ζ, τ are integers since otherwise a prover
that is able to construct such proofs can easily be made into the oracle of Lemma
6.22 and hence used to break the strong RSA assumption.

A prover able to construct a proof such that the extracted value ζ ′ is a non-
integer can also compute logg y, so we conclude that also β is an integer and hence

C = gεyζ , C = gεyζ
′

, which concludes the extraction.
The protocol can be simulated by choosing the challenge c ∈ [0, 2κ2 − 1], and

the prover’s response d1, d2 ∈ [0, 2κ1+κ2+κ3q − 1], d3 ∈ [0, 2κ1+κ2+κ3N − 1]. Then
A and A are computed according to the equations of Step 4. This gives the same
distribution as an execution of the protocol.

6.4 Zero-knowledge proofs over an RSA modulus

Sometimes it is more convenient to keep the committed number in the base rather
than in the exponent. In this case a commitment to a number z can be computed
as (grys,grz) where r, s are chosen at random from [0, 2κ3N − 1].

Protocol 6.23 (Commitment over ZN).
Common Input: g,y,u,v ∈ QRN .
Private Input: s, t ∈ [0, 2κ3N − 1], r ∈ QRN such that (u,v) = (gsyt,gtr).

1. The prover randomly chooses a, b ∈ [0, 2κ1+κ2+κ3N−1], computes µ = gayb,
and hands µ to the verifier.

2. The verifier chooses c ∈ [0, 2κ2 − 1] randomly and hands it to the prover.

3. The prover computes

d1 = cs+ a mod 2κ1+κ2+κ3N ,

d2 = ct+ b mod 2κ1+κ2+κ3N

and hands (d1, d2) to the verifier.

4. The verifier checks that ucµ = gd1yd2 .

Lemma 6.24. Protocol 6.23 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 2 ·
2−κ1 .

Proof. It is easy to check that the verifier accepts when there is no reduction
modulo 2κ1+κ2+κ3N in the computation of d1 or d2. Therefore we want to compute
the probability of such a reduction to occur. There are at most 2κ2+κ3N values
of a (corresponding to ct = 2κ2+κ3N) for which a reduction occurs for d1. With
2κ1+κ2+κ3N possible values of a the probability for such a reduction to occur is
bounded by 2κ2+κ3N

2κ1+κ2+κ3N
= 2−κ1 . Since the same reasoning holds for d2 the union

bound gives an upper bound of 2 · 2−κ1 for a reduction to occur in one of the two
computations. Hence the completeness is at least 1− 2 · 2−κ1 .

For the extraction of s, t and r to prove special soundness, assume that we
have two lists (µ, c, d1, d2) and (µ, c′, d′1, d

′
2) where c 6= c′ which both satisfy the

equations in Step 4. By solving the equations in Step 3 (over Z) we get ζ =
d′1−d1
c′−c
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and τ =
d′2−d2
c′−c . By Lemma 6.22 it follows that ζ and τ are integers. We now have

that the value of r can now be computed as vg−τ .
The protocol can be simulated by choosing c ∈ [0, 2κ2 − 1] and d1, d2 ∈

[0, 2κ1+κ2+κ3N − 1] at random and computing µ = gd1yd2u−c. This gives a distri-
bution of µ, c, d1, d2 equal to that of an execution.

It is possible to write the protocol without the reduction in the computations of
d1 and d2. Then we get perfect completeness, but since d1 and d2 are not uniformly
distributed our simulation will not yield the exact distribution of an execution. It
seems that we are forced to choose between perfect zero-knowledge and perfect
completeness. It our description we choose perfect zero-knowledge. By choosing
κ1 large enough, say κ1 = 64, we can in practice ignore the risk of failure with
only a minor increase in running time.

Next we give a protocol that shows that two committed values are equal. The
idea of the proof is to show that their ratio is one. The protocol is not a proof of
knowledge of the committed value nor of the exponents of the commitments, only
of the difference between the exponents. Note that we parametrize the protocol
on z to allow for different sizes of the exponents. The different sizes appear when
the protocol is applied to products of commitments.

Protocol 6.25 (Equality of Committed Values over ZN).
Common Input: g,y,∈ QRN and (u,v), (u′,v′) ∈ QR2

N .
Private Input: r ∈ QRN such that (u,v) = (gsyt,gtr), (u′,v′) = (gs

′

yt
′

,gt
′

r)
for some s, t, s′, t′ ∈ [−2κ3z + 1, 2κ3z − 1].

1. The prover chooses a, b at random from [0, 2κ1+κ2+κ3z − 1], computes µ =
(gayb) and hands µ to the verifier.

2. The verifier randomly selects c ∈ [0, 2κ2 − 1] and hands it to the prover.

3. The prover computes d1 = c(s−s′)+a mod 2κ1+κ2+κ3z and d2 = c(t−t′)+b
mod 2κ1+κ2+κ3z and hands (d1, d2) to the verifier.

4. The verifier checks that (u/u′)cµ = gd1yd2 .

Lemma 6.26. Protocol 6.25 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 2 ·
2−κ1 .

Proof. An honest prover fails to convince the verifier if there is a reduction in the
computation of d1 or d2. For d1 this happens either if c(s− s′) + a > 2κ1+κ2z − 1
or c(s− s′) + a < 0. The first case can happen only if c(s− s′) > 0, and then with
probability at most 2−κ1 . The second case can happen only if c(s − s′) < 0, and
also then with probability at most 2−κ1 . The same reasoning holds for d2, giving
by the union bound a probability of at most 2 · 2−κ1 for a reduction to happen.
Therefore the completeness is 1− 2 · 2−κ1 .

To show special soundness assume that we have (a, b), c and (d1, d2) satisfying
the equations of Step 4 as well as c′ 6= c and d′1, d

′
2 satisfying the same equations.

By solving the equations of Step 3 we get ζ, τ satisfying the equations u/u′ = gζyτ
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and v/v′ = gτ . By Lemma 6.22 ζ and τ are integers. This shows that (u/u′,v/v′)
is a commitment of the value 1, and hence that (u,v) and (u′,v′) commit to the
same value.

For the simulation choose d1, d2 at random from [0, 2κ1+κ2+κ3z−1] and c from
[0, 2κ2 − 1]. Compute µ,ν to satisfy the equations from Step 4. The distribution
we get this way is equal to the distribution from an honest execution.

The above protocol can also be used to prove that a pair u,v is a commitment to
a public value w. For clarity we state this as a protocol, also this time parametrized
on z:

Protocol 6.27 (Committed Value over ZN).
Common Input: g,y,u,v,w ∈ QRN .
Private Input: s, t ∈ [−2κ3z + 1, 2κ3z − 1] such that (u,v) = (gsyt,gtw).

1. Invoke protocol 6.25 on public input g,y, (u,v), (1,w) and private exponents
s, t, 1, 1.

Lemma 6.28. Protocol 6.27 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 2 ·
2−κ1 .

Proof. Follows directly from Lemma 6.26.

In Protocol 6.9 we showed how to prove that two committed values have an
exponential relation. We need to be able to do this also over ZN . Also in this
case we use a protocol for double-decker expontial relations similar to Protocol
6.10 as base to construct the following protocol. Once again we use the fact that
proving (u, v) = (gs

′

Ny
t′

N , y
s′

Ng
r
N ), (u,v) = (gsyt,ysr) is equivalent to proving that

(θ, ω,φ) = (uv−1
, vv

−1
,u−1) is on the form (yf

′

N g
e′
N , y

e′
Ng

ye

N ,y
fge).

Protocol 6.29 (Exponential Relations over ZN).
Common Input: g,y,h ∈ QRN , (u,v), (u′,v′) ∈ QR2

N , and gN , yN ∈ GN .
Private Input: s, t, s′, t′ ∈ [0, 2κ3N − 1] such that (u,v) = (gsyt,gtr) and
(u′,v′) = (gs

′

yt
′

,ys
′

hr).

1. The prover generates s′′, t′′ ∈ ZN , computes (u, v) = (gs
′′

N y
t′′
N , g

t′′
N y

r
N ) and

hands (u, v) to the verifier.

2. The following two protocols are executed in parallel:

(a) Protocol 6.31 on common input g,y,φ ∈ QRN and gN , yN , θ, ω ∈ GN
where (θ, ω,φ) = (uv−1

, vv
−1

, u−1) and private input t′′v−1, s′′v−1 ∈
ZN and −t,−s ∈ [0, 2κ3N − 1].

(b) Protocol 6.20 on common input y,h,v′ ∈ QRN , gN , yN , v ∈ GN and
private input r, t′, t′′.

The idea behind the above protocol is that the value r first is “lifted” to GN .
The relation is then shown between an element in GN and an element in ZN , as
shown in Figure 7.
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Figure 7: Structure of Protocol 6.29

Lemma 6.30. Protocol 6.29 is a {0, 1}κ2-Σ-protocol with completeness 1− (2κ2 +
3)2−κ1 .

Proof. Follows from Lemma 6.21 and Lemma 6.32 by using the union bound for
the completeness.

Protocol 6.31 (Double-Decker Exponentiation over ZN).
Common Input: g,y,φ ∈ QRN and gN , yN , θ, ω ∈ GN .
Private Input: t, s ∈ [0, 2κ3N − 1] and t′, s′ ∈ ZN such that (θ, ω,φ) =
(yt

′

Ng
s′
N , y

s′
Ng

ys

N ,y
tgs).

1. The prover chooses el, fl ∈ [0, 2κ1+κ3N − 1] and e′l, f
′
l ∈ ZN randomly for

l = 1, . . . , κ2. Then it computes F1,l = y
e′l
Ng

f ′l
N , F2,l = y

f ′l
N g

yfl

N , Al = yelgfl

and hands (F1,l, F2,l,Al)
κ2
l=1 to the verifier.

2. The verifier randomly chooses b = (b1, . . . , bκ2) ∈ {0, 1}
κ2 and hands b to the

prover.

3. The prover computes d1,l = el − blt mod 2κ1+κ3N , d2,l = fl − bls mod
2κ1+κ3N , d3,l = f ′l − bly

d2,ls′ mod N , d4,l = e′l − bly
d2,lt′ mod N and hands

(d1,l, d2,l, d3,l, d4,l)
κ2
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κ2 that

θbly
d2,l
y
d4,l
N g

d3,l
N = F1,l ,

y
d3,l
N (ωblg1−bl

N )y
d2,l

= F2,l ,

φblyd1,lgd2,l = Al .

Lemma 6.32. Protocol 6.31 is a {0, 1}κ2 -Σ-protocol with completeness 1−2κ22
−κ1 .

Proof. If there is no reduction in the computations of d1,l and d2,l the verifier will
accept if the prover is honest. The probability of a reduction in one computation
is 2−κ1 . By the union bound this gives that the probability for a reduction in one
of the 2κ2 computation is at most 2κ22

−κ1 , giving a completeness of’ 1− 2κ22
−κ1 .

Now we prove special soundness by describing the extraction. For this we follow
the proof of Lemma 6.11, taking into account that the multiplicative order of ZN

is unknown.
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Suppose that we are given two outputs (F1,l, F2,l, Al)
κ2
l=1, b, (d1,l, d2,l)

κ2
l=1 and

b′, (d′1,l, d
′
2,l)

κ2
l=1 with b 6= b′ that satisfy the equations of Step 4. Thus, for some l,

bl 6= b′l.
Let (ε, τ) and (ψ, ζ) be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b

′
lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b

′
ls

}

,

i.e., τ =
d1,l−d

′

1,l

bl−b
′

l
and ζ =

d2,l−d
′

2,l

bl−b
′

l
. Since |bl − b

′
l| = 1 this gives integral values of

τ, ζ when the system is solved over Z. We now have that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′l − bly
d2,ls′

d′3,l = f ′l − b
′
ly
d′2,ls′

}

.

Note that bly
d2,l is zero if bl = 0 and non-zero otherwise, and that the inverse of

y over ZN can be found in polynomial time. Thus, the system is solvable. Let
(ψ′, ζ ′) be a solution and assume without loss that b′l = 0. Then we have

F2,l = y
d3,l
N ωy

d2,l
= yψ

′−y
d2,lζ′

N ωy
d2,l

= yψ
′−yψ−ζζ′ωyψ−ζ

F2,l = y
d′3,l
N gy

d′2,l

N = yψ
′

N g
y
d′2,l

= yψ
′

N g
yψ

N

Solving for ω gives ω = yζ
′

Ng
yζ

N . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − bly
d2,lt′

d′4,l = e′l − b
′
ly
d2,l′ t′

}

.

Then we have

F1,l = θy
d2,l
y
d4,l
N g

d3,l
N = θy

d2,l
yε

′−y
d2,lτ ′

N gψ
′−y

d2,lζ′

N

F1,l = y
d′4,l
N g

d′3,l
N = yε

′

Ng
ψ′

N

Solving for θ gives θ = yτ
′

N g
ζ′

N . We conclude that the protocol is special-sound.

Protocol 6.33 (Knowledge of a Root of a Committed Value over ZN).
Common Input: g,y,u,v,u′ ,v′,C ∈ QRN .
Private Input: s, t, s′, t′, s′′, e ∈ [0, 2κ3N − 1] and r ∈ QRN such that (u,v) =
(gsyt,gtr), (u′,v′) = (gs

′

yt
′

,gt
′

re) and C = gs
′′

ye.

1. The prover chooses a, b, f, h, i, j ∈ [0, 2κ1+κ2+κ3N − 1] randomly and com-
putes

A1 = gaybue (19)

A2 = gbve (20)

B1 = gfyhui (21)

B2 = ghvi (22)

B3 = gjyi . (23)
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Then it hands A1,A2,B1,B2,B3 to the verifier. The following protocols
are executed in parallel with the protocol below:

(a) Protocol 6.25 parameterized with z = (2κ2N)2 + 2κ1+κ2+κ3N on public
input g, y, (A1,A2), (u′,v′) and private input re where the secret
exponents are (se+ a, te+ b) and (s′, t′).

(b) Protocol 6.23 on public input g,y, (u,v) and private input s, t, r.

(c) Protocol 6.23 on public input g,y, (u′,v′) and private input s′, t′, re.

2. The verifier chooses c ∈ [0, 2κ2 − 1] randomly and hands it to the prover.

3. The prover computes

d1 = ca+ f mod 2κ1+κ2+κ3N (24)

d2 = cb+ h mod 2κ1+κ2+κ3N (25)

d3 = ce+ i mod 2κ1+κ2+κ3N (26)

d4 = cs′′ + j mod 2κ1+κ2+κ3N . (27)

4. The verifier checks that

A1
c ·B1 = gd1yd2ud3 (28)

A2
c ·B2 = gd1yd2vd3 (29)

Cc ·B3 = gd4yd3 . (30)

Lemma 6.34. Protocol 6.33 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 10 ·
2−κ1 .

Proof. The verifier rejects if one of the three subprotocols fail or there is an overflow
in the computation of d1, d2, d3 or d4. Each of the subprotocols has a probability
of failure of 2 · 2−κ1 , and the probability for an overflow for each di is 2−κ1 . The
union bound then gives a completeness of at least 1− 10 · 2−κ1 .

Extraction of s, t, s′, t′, r follows from Lemmas 6.24 and 6.26. Extraction of s′′

and e, assuming two lists (A1, A2, B1, B2, B3, c, d1, d2, d3, d4) and (A1, A2,
B1, B2, B3, c′, d′1, d

′
2, d

′
3, d

′
4) satisfying equations in Step 4, c 6= c′, is by solving

equations in Step 3 to get ζ, ε such that C = gζyε. By Lemma 6.22. ζ and ε are
integers. Thus the protocol is special-sound.

We now show that the protocol is zero-knowledge. The protocol can be sim-
ulated by choosing randomly a, b, a′, b′ ∈ [0, 2κ1+κ2+κ3N ] and setting A1 = gayb,
A2 = ga

′

yb
′

. Then we pick at random d1, d2, d3, d4 ∈ [0, 2κ1+κ2+κ3N − 1] and
c ∈ [0, 2κ2 − 1]. B1,B2,B3 can then be computed from the equations in Step 4.
This distribution is equal to the distribution from an honest execution of the pro-
tocols. The subprotocols can be simulated using the same c according to Lemmas
6.24 and 6.26.

Protocol 6.35 (Equality of Exponents of Committed Values over ZN).
Common Input: g,y,h,u,v,C ∈ QRN

Private Input: r, s, t, w ∈ [0, 2κ3N − 1] such that (u,v) = (grys,gshw) and
C = gwyt.
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1. The prover chooses a, b, e, f ∈ [0, 2κ1+κ2+κ3N −1], sets (µ,ν) = (gayb,gbhe)
and B = geyf and hands (µ,ν),B to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.

3. The prover computes

d1 = cr + a mod 2κ1+κ2+κ3N ,

d2 = cs+ b mod 2κ1+κ2+κ3N ,

d3 = ct+ e mod 2κ1+κ2+κ3N ,

d4 = cw + f mod 2κ1+κ2+κ3N

and hands (d1, d2, d3, d4) to the verifier.

4. The verifier checks that ucµ = gd1yd2 , vcν = gd2hd4 and CcB = gd4yd3

Lemma 6.36. Protocol 6.35 is a [0, 2κ2 − 1]-Σ-protocol with completeness 1− 4 ·
2−κ1 .

Proof. An honest verifier will convince the verifier except possibly when there is
a reduction in the computation of d1, d2, d3, or d4. Since the probability of a
reduction in the computation of any of these values is 2−κ1 , the union bound gives
a completeness of at least 1− 4 · 2−κ1 .

Now we show that the protocol is special-sound. Assume we have two lists
(µ,ν), B, c, d1, d2, d3, d4 and (µ,ν), B, c′, d′1, d

′
2, d

′
3, d

′
4 with c 6= c′ both

satisfying the equations of Step 4. Then we can compute ρ, ζ, τ, ω such that
(u,v) = (gρyζ ,gζhω) and C = gωyτ . By Lemma 6.22 ρ, ζ, τ, ω are all integers.

The simulator first chooses d1, d2, d3, d4 from [0, 2κ1+κ2+κ3 − 1] and c from
[0, 2κ2 − 1]. Then µ, ν and C are computed by solving the equations of Step 4.
This gives a distribution equal to that of an honest execution.

The following is a protocol (parameterized on k and l) to show that a committed
value can be written as ka+ l for some a.

Protocol 6.37 (A Committed Value Can Be Written as ka+l over ZN).
Common Input: g,y,C ∈ QRN .
Private Input: a, t ∈ [0, 2κ3N − 1] such that C = gka+lyt.

1. The prover selects e, f, h ∈ [0, 2κ1+κ2+κ3N − 1], i ∈ [0, 2κ1+κ2+κ3kN − 1] at
random, computes

A = gaye (31)

B1 = gfyh (32)

B2 = yi (33)

and hands (A,B1,B2) to the verifier. Both prover and verifier computes
C′ = glAk/C.

2. The verifier randomly chooses c ∈ [0, 2κ2 − 1] and hands it to the prover.
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3. The prover computes

d1 = ca+ f mod 2κ1+κ2+κ3N (34)

d2 = ce+ h mod 2κ1+κ2+κ3N (35)

d3 = c(ek − t) + i mod 2κ1+κ2+κ3kN (36)

and hands (d1, d2, d3) to the verifier.

4. The verifier checks that AcB1 = gd1yd2 and (C′)cB2 = yd3 .

Lemma 6.38. Protocol 6.37 is an [0, 2κ2 − 1]-Σ-protocol with completeness 1− 3 ·
2−κ2 .

Proof. The prover succeeds to convince the verifier unless there is an overflow in
one of the computations of di. By the union bound, this probability is at most
3 · 2κ2 , giving a completeness of 1− 3 · 2−κ2 .

For the extraction assume we have two lists A, B1, B2, c, d1, d2, d3 and A,
B1, B2, c′, d′1, d

′
2, d

′
3, c 6= c′, satisfying the equations of Step 4. From this we

can compute α, ε, θ such that A = gαyε and C′ = yθ. By Lemma 6.22 α, ε and θ
are all integers. If we set τ = kε − θ it holds that C = gεyτ . This concludes the
extraction.

The verifier’s view can be simulated by randomly choosing v ∈ ZN and set-
ting A = gv . Then c ∈ [0, 2κ2 − 1] is chosen at random together with d1, d2 ∈
[0, 2κ1+κ2N − 1], d3 ∈ [0, 2κ1+κ2N2 − 1]. Finally B1,B2 are computed from the
equations in Step 4. This gives a distribution equal to that of an honest execution
of the protocol.

We also need the protocol that a committed value lies in an interval by Boudot.
Instead of giving the complete protocol, we only give the interface and refer the
reader to [7] for complete details.

Protocol Head 6.39 (A Committed Number Lies in an Interval).
Common Input: g,y,C ∈ QRN and a, b ∈ Z.
Private Input: s ∈ [a, b] and r ∈ [0, 2κ3N − 1] such that C = gsyr.

Lemma 6.40 (cf. [7]). Protocol 6.39 is a {0, 1}κ2 -Σ-protocol with perfect com-
pleteness.

From these building blocks we can now present the proof that a committed
signature is valid.

Protocol 6.41 (Validity of Committed Signature from Hash).
Common Input: g,y,h, z,u,v,u′ ,v′,C,C′ ∈ QRN , N,H

Sh, e′ ∈ [2κ, 2κ+1 − 1].
Private Input: r, s, r′, s′, t, t′ ∈ [0, 2κ3N − 1], e ∈ [2κ, 2κ+1 − 1], and wα ∈ Zq2
such that

(u,v) = (gsyr,grσ)

(u′,v′) = (gs
′

yr
′

,gr
′

σ′)

C = ytge

C′ = yt
′

gwα

and the signature is valid, i.e., Vfcs(id,HSh, N,h, z, e′, wα, (e,σ,σ
′)) = 1.
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1. Let z′ denote (σ′)e
′

h−wα . The prover chooses ζ, τ , ζ ′, τ ′, ζ ′′, τ ′′, ζ ′′′, τ ′′′,
ζ ′′′′, τ ′′′′ ∈ [0, 2κ3N − 1] and sets

(µ,ν) = (gζyτ ,gτh−wα) ,

(µ′,ν ′) = (gζ
′

yτ
′

,gτ
′

z′) ,

(µ′′,ν ′′) = (gζ
′′

yτ
′′

,gτ
′′

σe) ,

(µ′′′,ν ′′′) = (gζ
′′′

yτ
′′′

,yζ
′′′

HSh
(N,g)(z

′)) ,

(µ′′′′,ν ′′′′) = (gζ
′′′′

yτ
′′′′

,yζ
′′′′

h
−HSh

(N,g)
(z′)

) .

Then it hands (µ,ν), (µ′,ν ′), (µ′′,ν ′′), (µ′′′,ν ′′′), and (µ′′′′,ν ′′′′) to the
verifier.

2. The following protocols are run in parallel (using a common challenge c ∈
[0, 2κ2 − 1]):

(a) Protocol 6.23 on the public input g,y, (u,v) and private input s, r,σ
to show that the prover knows how to open the commitment (u,v).

(b) Protocol 6.23 on the public input g,y, (u′,v′) and private input s′, r′,σ′

to show that the prover knows how to open the commitment (u′,v′).

(c) Protocol 6.35 on public input g,y,h, (µ,ν), (C′)−1 and private input
ζ, τ , t′, wα to show that (µ,ν) is a commitment of h−wα .

(d) Protocol 6.25 with z = N + N2κ+1 on public input g, y, (µ′, ν ′),
(µ(u′)e

′

, ν(v′)e
′

) and private input ζ ′, τ ′, ζ + se′, τ + re′ to show that
(µ′,ν ′) is a commitment of z′.

(e) Protocol 6.33 on public input g,y, (u,v), (µ ′′,ν ′′),C and private expo-
nents s, r, ζ ′′, τ ′′, t. This shows that (µ′′,ν ′′) hides the value hidden in
(u,v) to the power of the value hidden in C.

(f) Protocol 6.29 on public input g,y,g, (µ ′,ν ′), (µ′′′,ν ′′′), gN , yN and ζ ′,
τ ′, ζ ′′′, τ ′′′ as private input to show that (µ′′′,ν ′′′) is a commitment of
a Shamir hash of z′.

(g) Protocol 6.29 on public input g,y,h−1, (µ′′′,ν ′′′), (µ′′′′,ν ′′′′), gN , yN and
private input ζ ′′′, τ ′′′, ζ ′′′′, τ ′′′′ to show that (µ′′′′,ν ′′′′) commits to h to
the power of HSh(z′).

(h) Protocol 6.27 with z = 2N on public input g,y, (µ ′′µ′′′′,ν ′′ν ′′′′), z with
private input ζ ′′ + ζ ′′′′, τ ′′ + τ ′′′′ to finally show that the signature is
valid.

(i) Protocol 6.37 with k = 4 and l = 3 on public input g,y,C and private
input e, t to prove that e is odd and different from e′.

(j) Protocol 6.39 on public input g,y,C, 2κ, 2κ+1 − 1. and private input
e, t to prove that e belongs to the correct interval.

Lemma 6.42. Protocol 6.41 is [0, 2κ2−1]-Σ-protocol with completeness 1− (4κ2 +
24)2−κ2 .
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Proof. By using the union bound on the probability of failure of the subprotocols,
we get a completeness of at least 1− (4κ2 + 24)2−κ2 .

We now describe the extraction to show that the protocol is special-sound. By
Lemmas 6.24, 6.36, and 6.34 we can extract ρ, ζ, ρ′, ζ ′, τ, τ ′, ε such that u = gρyζ ,
u′ = gρ

′

yζ
′

, C = gτyε, and C′ = gτ
′

yω from Steps 2a, 2b, 2c, and 2e. Now also
ς, ς ′ such that v = gζς and v′ = gζ

′

ς ′ can be computed.
It now remains to be shown that (ε,σ,σ ′) is a valid signature of ω. We do that

by checking that the two steps of Algorithm 5.11 holds. Steps 2i and 2j ensure
that Step 1 of the verification algorithm for Cramer-Shoup signatures holds. From
Steps 2c and 2d and Lemmas 6.36 and 6.26 it follows that (µ′,ν ′) is a commitment
of z′ = (σ′)e

′

h−ω. Step 2e and Lemma 6.34 give that (µ′′,ν ′′) is a commitment of

hε, and Steps 2f, 2g with Lemma 6.30 shows that (µ′′′′,ν ′′′′) commits to hH
Sh(z′).

Finally Step 2g shows that the equality of Step 2 of Algorithm 5.11 holds. Hence
(ε,σ,σ′) is valid signature of ω.

Since all subprotocols are Σ-protocols, the constructed protocol can also be
simulated. Also all protocols are either of type [0, 2κ2 − 1]-Σ or {0, 1}κ2 -Σ. Since
there is a natural bijection between [0, 2κ2 − 1] and {0, 1}κ2 , the resulting protocol
is a [0, 2κ2 − 1]-Σ-protocol.

6.5 Final Protocol

We are finally ready to give the complete proof of a correct signature corresponding
to the proof in Step 3 of Algorithm 5.15. The common input consists of a chain of
cryptotexts and commitments of a SS cs signature of the public keys corresponding
to the path of the signer in the tree.

Protocol 6.43 (Valid HGS Signature).
Common Input:

• g,y,h, z ∈ QRN

• e′ ∈ [2κ, 2κ+1 − 1]

• (ul, vl)
δ−1
l=0 ∈ G

2δ
q3

• Cδ ∈ G
4
q3

• (u,v) ∈ QR2
N

• (u′,v′) ∈ QR2
N

• C ∈ QRN

• H = (h1, . . . , hδ) ∈ G
δ
q2

• g1, y1 ∈ Gq1

• g2, y2 ∈ Gq2
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• g3, y3 ∈ Gq3

• yα0 ∈ Gq3

• Y ∈ G5
q3 .

Private Input:

• (τ0, . . . , τδ) ∈ Zδ+1
q3

• (γ1, . . . , γδ) ∈ G
δ
q3

• ε ∈ [2κ/2, 2κ/2+1 − 1],

• (τ, ζ, τ ′, ζ ′, ψ) ∈ [0, 2κ3N − 1]6

such that

γ0 = yα0

(ul, vl) = E(γl,g3)(γl+1, τl) for l = 0, . . . , δ − 1

Cδ = Ecs
Y (γδ, τδ)

u = gζyτ

u′ = gζ
′

yτ
′

C = gεyψ

and Vfcs(H,HSh
(g,N), N,h, z, e, (γ1, . . . , γδ), (ε,v/y

τ ,v′/yτ
′

)) = 1.

1. The prover randomly selects s, t ∈ Zq2 , t
′ ∈ [0, 2κ3N − 1] and computes

(µ, ν) = (gt1y
s
1, y

t
1g
H(γ1 ,...,γδ)
1 ), C′ = gH(γ1 ,...,γδ)yt

′

. The prover hands (µ, nu)
and C′ to the verifier.

2. The following protocols are executed in parallel

(a) Protocol 6.16 on public input g3, y3, yα0 , g2, y2, g1, y1, H, (ul, vl)
δ−1
l=0 ,

(µ, ν), Y , Cδ and private input τ0, . . . , τl, γ1, . . . , γδ, s, t.

(b) Protocol 6.20 on public input g,y,C′, g1, y1, ν and private input H(γ1,
. . ., γδ), t, t

′.

(c) Protocol 6.41 on public input g,y, (u,v), (u′ ,v′),C,C′ and private in-
put τ, ζ, τ ′, ζ ′, ψ, s, ε.

Lemma 6.44. Protocol 6.43 is a [0, 2κ2 − 1] × Zq2-Σ-protocol with completeness
1− (4κ2 + 27)2−κ2 .

Proof. Since the completeness of Steps 2a, 2b, 2c are 1, 1 − 3 · 2−κ2 and.1 −
(4κ2 + 24)2−κ2 respectively, the union bound gives a completeness of at least
1− (4κ2 + 27)2−κ2 for the constructed protocol.

Extraction of τ0, . . . , τδ and γ1, . . . , γδ with the necessary properties follows
from Lemma 6.17, from which is also follows that ν is a commitment of H(γ1, . . .,
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γδ). Extraction of τ, ζ, τ ′, ζ ′, ε, ψ follows from Lemma 6.42. By Lemma 6.42 we
can also extract ξ such that

Vfcs(id,HSh
(g,N), N,h, z, e, ξ, (ε,v/y

τ ,v′/yτ
′

)) = 1

and C′ is a commitment of ξ.
Finally from Step 2b and Lemma 6.21 it follows that C′ and ν are commitments

of the same number, i.e., ξ = H(γ1, . . . , γδ). This implies that

Vfcs(H,HSh
(g,N), N,h, z, e, (γ1 , . . . , γδ), (ε,v/y

τ ,v′/yτ
′

)) = 1 .

Therefore we can conclude that the protocol is special-sound.
The protocol can be simulated since it is constructed from subprotocols that

can be simulated.

7 An Alternative Construction

In this section we sketch an alternative provably secure construction. Let SS =
(Kg,Sig,Vf) be a signature scheme. For each group manager Mα (or signer Sα),
(spkα, sskα) ← Kg(1κ), and (pkα, skα) ← GMKg(1κ) are generated. Then for
each child α of β ∈ T , σβ(α) = Sigsskβ

(pkα, spkα) is computed. Finally, for each
α ∈ T\{ρ} set hpk(α) = (spkα,pkα, σβ(α)), where α ∈ β, and hsk(α) = (skα).
For the root ρ we set hpk(ρ) = (spkρ,pkρ) and hsk(ρ) = (sskρ, skρ).

Consider a signer Sα corresponding to a path α0, . . . , αδ, where α0 = ρ and
αδ = α. To sign a message m the signer computes

C = (C0, . . . , Cδ) = (Epk0
(σα0(α1)), . . . , Epkδ−1

(σαδ−1
(αδ)), Epkδ(Sigsskα(m))) ,

and provides a NIZK π that C is formed as above with pk0 = pkρ and α0 = ρ.
The signature consists of the pair (C, π).

To verify a signature (C, π) the verifier simply checks the NIZK π. To open a
signature, a group manager Mβ on depth l first verifies the signature. If it is not
valid, it returns ⊥. Otherwise it computes σ = Dskβ (Cl). If σ is equal to σβ(α)
for some α ∈ β, then it returns α and otherwise ⊥.

This construction is a strict generalization of the construction in [5] except that
we require that the cryptosystem used is cross-indistinguishable. The construction
is provably secure under the existence of a family of trapdoor permutations. How-
ever, as part of the proof we must essentially redo the analysis of the CCA2-secure
cryptosystem of Sahai [37], and the group signature scheme of Bellare et al. [5],
which makes the proof more complex than the proof for the construction we detail
in this paper.

A potential advantage of this scheme is that key generation need not be per-
formed centrally. Each group manager Mβ could also be given the secret signature
key sskβ which allows it to generate (spkα,pkα) and (sskα, skα) for a child Mα or
Sα by itself. Thus, a group manager could issue keys without interacting with any
other group manager. However, as we will see in the next section, it is far from
obvious how to define the security of such a scheme.
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8 Eliminating the Trusted Key Generator

We have defined hierarchical group signatures using a trusted key generator. This
is a natural first step when trying to understand a new notion, but there are
situations where one would like a (hierarchical) group signature scheme without a
trusted party.

If there exists a set of parties of which the majority is trusted, general multi-
party techniques can be used to replace the trusted key generator by the secure
evaluation of a function. However, this introduces a trust hierarchy that is incon-
sistent with the hierarchy of the group managers and signers.

Consider now the security of the construction when there is no trusted key
generator. In this case hierarchical anonymity and hierarchical traceability (full
anonymity and full traceability) do not suffice to ensure security. The problem is
that the experiments only consider the advantage of an adversary when all keys
are generated honestly. Thus, all bets are off if this is not the case. It is however
not clear what a definition of security for (hierarchical) group signatures without
a trusted key generator should look like.

The adversary should probably have the power to choose its keys adaptively,
based on the keys and signatures of honest parties. There are many subtle issues.
For example, without a trusted key generator the default for hierarchical group
signatures is that not only trees but general acyclic graphs of group managers are
allowed. Is this what we want? If only trees are supposed to be allowed, certificates
must embed additional information that restricts how a certificate chain may look
and the NIZK must consider this as well. Other interesting questions are: Is there a
well defined tree? Do all participants know what the tree look like? Who generates
the common random string used by the NIZKs?

We believe that the alternative construction described above is well suited to
a setting without a trusted key generator. However, without a rigorous definition
of security we cannot claim anything, and currently there exists as far as we know
not even a rigorous definition of security for group signatures without a trusted
party, even less so for hierarchical group signatures.

9 Conclusion

We have introduced and formalized the notion of hierarchical group signatures and
given two constructions. The first construction is provably secure under general as-
sumptions, whereas the second is provably secure under the DDH assumption, the
strong RSA assumption and the 4-Cunningham chain assumption in the random
oracle model.

Although the latter construction is practical, i.e., it can be implemented and
run on modern workstations, it is still relatively slow. Thus, an interesting open
problem is to find more efficient constructions of hierarchical group signatures.
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