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Abstract. The conjugacy search problem in a group G is the problem of recovering
an x ∈ G from given g ∈ G and h = x−1gx. This problem is in the core of several
recently suggested public key exchange protocols, most notably the one due to Anshel,
Anshel, and Goldfeld, and the one due to Ko, Lee at al.

In this note, we make two observations that seem to have eluded most people’s
attention. The first observation is that solving the conjugacy search problem is not
necessary for an adversary to get the common secret key in the Ko-Lee protocol. It is
sufficient to solve an apparently easier problem of finding x, y ∈ G such that h = ygx
for given g, h ∈ G.

Another observation is that solving the conjugacy search problem is not sufficient
for an adversary to get the common secret key in the Anshel-Anshel-Goldfeld protocol.

1. Introduction

One of the possible generalizations of the discrete logarithm problem to arbitrary
groups is the so-called conjugacy search problem (CSP): given two elements g, h of a
group G and the information that gx = h for some x ∈ G, find at least one particular
element x like that. Here gx stands for x−1gx. The (alleged) computational difficulty
of this problem in some particular groups (namely, in braid groups) has been used in
several group based public key protocols, most notably in [1] and [8].

In this note, we show that solving the conjugacy search problem is unnecessary for an
adversary to get the common secret key in the Ko-Lee (or any similar) protocol, and, on
the other hand, is insufficient to get the common secret key in the more sophisticated
Anshel-Anshel-Goldfeld protocol. This raises the stock of the latter protocol and makes
one think there might be more to it than meets the eye.

2. Why solving CSP is unnecessary

First we recall the (generalized) Ko-Lee protocol. A group G (with efficiently solvable
word problem) and two commuting subsets A,B ⊆ G (i.e., ab = ba for any a ∈ A, b ∈
B) are public. An element w ∈ G is public, too.

(1) Alice selects a private a ∈ A and sends the element a−1wa to Bob.
(2) Bob selects a private b ∈ B and sends the element b−1wb to Alice.
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(3) Alice computes KA = a−1b−1wba, and Bob computes KB = b−1a−1wab. Since
ab = ba (and therefore, a−1b−1 = b−1a−1) in G, one has KA = KB = K (as an
element of G), which is now Alice’s and Bob’s common secret key.

Note that since we want the key space to be as big as possible, we may assume, to
simplify the language in what follows, that, say, the set A is maximal with the property
that ab = ba for any a ∈ A, b ∈ B.

Now suppose an adversary finds a1, a2 such that a1wa2 = a−1wa and b1, b2 such that
b1wb2 = b−1wb. Suppose also that both a1, a2 commute with any b ∈ B. Then the
adversary gets

a1b1wb2a2 = a1b
−1wba2 = b−1a1wa2b = b−1a−1wab = K.

We emphasize that these a1, a2 and b1, b2 do not have to do anything with the private
elements originally selected by Alice or Bob, which simplifies the search substantially.

In other words, to get the secret key K, the adversary does not have to solve the
conjugacy search problem, but instead, it is sufficient to solve an apparently easier
problem which some authors (see e.g. [2]) call the decomposition problem:

Given an element w of a group G and another element x · w · y, find any elements
x′ and y′ that would belong to a given subset A ⊆ G and satisfy x′ · w · y′ = x · w · y.

We note that the condition x′, y′ ∈ A may not be easy to verify for some subsets
A, but for the particular situation considered in [8] this is straightforward and can be
done just by inspection of the normal forms of x and y.

The claim that the decomposition problem should be easier than the conjugacy search
problem is intuitively clear since it is generally easier to solve an equation with two
unknowns than a special case of the same equation with just one unknown.

3. Why solving CSP is insufficient

The protocol that we describe below, due to Anshel, Anshel, and Goldfeld [1], is
more complex than the protocol in the previous section, but it is more general in the
sense that there are no requirements on the group G other than to have efficiently
solvable word problem. This really makes a difference and gives a big advantage to the
protocol of [1] over that of [8].

A group G and elements a1, ..., ak, b1, ..., bm ∈ G are public.
(1) Alice picks a private x ∈ G as a word in a1, ..., ak (i.e., x = x(a1, ..., ak)) and

sends bx
1 , ..., bx

m to Bob.
(2) Bob picks a private y ∈ G as a word in b1, ..., bm and sends ay

1, ..., a
y
k to Alice.

(3) Alice computes x(ay
1, ..., a

y
k) = xy = y−1xy, and Bob computes

y(bx
1 , ..., bx

m) = yx = x−1yx. Alice and Bob then come up with a common
private key K = x−1y−1xy (called the commutator of x and y) as follows: Alice
multiplies y−1xy by x−1 on the left, while Bob multiplies x−1yx by y−1 on the
left, and then takes the inverse of the whole thing: (y−1x−1yx)−1 = x−1y−1xy.

It appears to be a common belief (see e.g. [4, 6, 7]) that solving the conjugacy
search problem for bx

1 , ..., bx
m, ay

1, ..., a
y
k in the group G would allow an adversary to get
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the secret key K. However, if we look at Step (3) of the protocol, we see that the
adversary would have to know, say, x not simply as a word in the generators of the
group G, but as a word in a1, ..., ak. That means the adversary would also have to solve
the membership search problem:

Given elements x, a1, ..., ak of a group G, find an expression (if it exists) of x as a
word in a1, ..., ak.

We note that the (decision) membership problem is to determine whether or not a
given x ∈ G belongs to the subgroup of G generated by given a1, ..., ak. Even this,
apparently easier problem, turns out to be quite hard in most groups. For instance,
the membership problem in a braid group Bn is algorithmically unsolvable if n ≥ 6
because such a braid group contains subgroups isomorphic to F2 × F2 (that would be,
for example, the subgroup generated by σ2

1, σ
2
2, σ

2
4, and σ2

5, see [3]), where F2 is the
free group of rank 2. In the group F2×F2, the membership problem is algorithmically
unsolvable by an old result of Mihailova [9].

We also note that if the adversary finds, say, some x′ ∈ G such that bx
1 = bx′

1 , ...,

bx
m = bx′

m, there is no guarantee that x′ = x in G. Indeed, if x′ = cbx, where cbbi = bicb

for all i, then bx
i = bx′

i for all i, and therefore bx = bx′ for any element b from the
subgroup generated by b1, ..., bm; in particular, yx = yx′ . Now the problem is that if x′
does not belong to the subgroup A generated by a1, ..., ak (which may very well be the
case), then the adversary will not be able to obtain the common secret key K. On the
other hand, if x′ (and, similarly, y′) does belong to the subgroup A (respectively, to the
subgroup B generated by b1, ..., bm), then the adversary will be able to get the correct
K even though his x′ and y′ may be different from x and y, respectively. Indeed, if
x′ = cbx, y′ = cay, where cb centralizes B and ca centralizes A, then

x′−1y′−1x′y′ = (cbx)−1(cay)−1cbxcay = x−1c−1
b y−1c−1

a cbxcay = x−1y−1xy = K

because cb commutes with y and with ca (note that ca belongs to the subgroup B,
which follows from the assumption y′ = cay ∈ B, and, similarly, cb belongs to A), and
ca commutes with x.

We emphasize that the adversary ends up with the corrrect key K (i.e., x′−1y′−1x′y′ =
x−1y−1xy) if and only if cb commutes with ca. The only visible way to ensure this is
to have x′ ∈ A and y′ ∈ B.

Therefore, it appears that if the adversary chooses to solve the conjugacy search
problem in the group G to recover x and y, he will then have to face not only the
membership search problem, but also the (decision) membership problem, which may
very well be algorithmically unsolvable. All this seems to be pushing the adversary
toward trying to solve a more difficult version of the conjugacy search problem:

Given a group G, a subgroup A ≤ G, and two elements g, h ∈ G, find x ∈ A such
that h = x−1gx, given that at least one such x exists.

Finally, we note that what we have said in this section does not affect some heuristic
attacks on the Anshel-Anshel-Goldfeld protocol suggested by several authors [4, 5, 7]
because these attacks, which use “neighbourhood search” type (in a group-theoretic
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context also called “length based”) heuristic algorithms, are targeted, by design, at
finding a solution of a given equation (or a system of equations) as a word in given
elements. The point that we make in this section is that even if a fast (polynomial-time)
deterministic algorithm is found for solving the conjugacy search problem in, say, braid
groups, this will not be sufficient to break the Anshel-Anshel-Goldfeld protocol by a
deterministic attack. As for heuristic attacks, their limitations are explained in [10].
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