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Abstract. In identity-based (ID-based) cryptosystems, a local registration au-
thority (LRA) is responsible for authentication of users while the key genera-
tion center (KGC) is responsible for computing and sending the private keys to 
users and therefore, a secure channel is required. For privacy-oriented applica-
tions, it is important to keep in secret whether the private key corresponding to 
a certain identity has been requested. All of the existing ID-based key issuing 
schemes have not addressed this anonymity issue. Besides, the separation of 
duties for authentication and private key computation has not been discussed as 
well. In this paper, based on a signature scheme similar to a short blind signature, 
we propose a novel separable and anonymous ID-based key issuing scheme 
without secure channel. Our protocol supports the separation of duties between 
LRA and KGC. The private key computed by the KGC can be sent to the user 
in an encrypted form such that only the legitimate key requester authenticated 
by LRA can decrypt it, and any eavesdropper cannot know the identity corre-
sponding to the secret key. 
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1   Introduction 

Traditional certificate-based public key infrastructure (PKI) has succeeded in many 
applications, but it is ill-suited for cross-enterprise usage due to the administrative 
burden of certificates, revocation lists, and cross-certification problems. Besides, the 
requirement of PKI for pre-enrollment of all users limits its widespread adoption. On 
the other hand, ID-based cryptosystem eliminates the need for certificates and over-
comes those hurdles of PKI by allowing a public key to be derived from publicly 
known identifiers of the receiver, such as email addresses. A sender can send a secure 
message to a receiver even before the receiver obtains his/her private key from the key 
generation center (KGC). To read the encrypted messages, the receiver then obtains 
his private key from the KGC by authenticating himself in a similar way as in PKI sys-
tems. These ID-based systems are scalable, simple to administer, and users can carry 
out anytime/anywhere encryption.  



ID-based cryptosystem was introduced in 1984 by Shamir [1]; however, the first 
practical encryption scheme (IBE) was not available until 2001 which was developed 
by Boneh and Franklin [2]. Boneh and Franklin’s scheme (BF’s scheme) is based on 
bilinear mappings. Its security is based on a natural analogue of the computational 
Diffie-Hellman (CDH) assumption, Bilinear Diffie-Hellman (BDH) assumption. 

1.1   Motivations 

One of the advantages of ID-based cryptosystems over certificate based PKI systems 
appear in the signature schemes with anonymity concern. Let us investigate the case 
for ring signature. In ring signature, any user can anonymously sign a message on 
behalf of a group of spontaneously conscripted users. By spontaneity we mean no 
previous setup is involved in the generation of this group of “signers” and we do not 
relies on any form of action performed before the generation of signature by non-
participating signers. For non ID-based schemes, real spontaneity is not always pos-
sible [3]: the public key of each member of the group is required to be published by the 
underlying PKI before it can be used to generate the signature, i.e. the rest of the 
group other than the actual signer have actively enrolled the PKI (which is an “action 
performed before the generation of signature”). With the help of ID-based ring signa-
ture, this assumption is no longer necessary [3]. Every people, even those who do not 
know what PKI is, “have” their public key implicitly. 

But we need to solve another problem before getting the full solution: if an adver-
sary can gain knowledge on which “identities” have requested the corresponding 
private keys, then the anonymity of these privacy-oriented signature schemes is 
greatly affected. Hence, it is important to have an anonymous ID-based key issuing 
protocol. 

Though ID-based cryptosystems have so many advantages over Certificate based 
PKI systems in key distribution, they have an inherent drawback of requiring a secure 
channel between users and the KGC for the delivery of the private key from the KGC 
to users. 

In certificate based PKI system, the duties of authentication and certificate genera-
tion are usually separated: certificate authority (CA) is responsible for the generation 
of certificate while local registration authorities (LRAs) are responsible for the subject 
authentication. The word local shows that these registration authorities are usually 
geographically distributed for the convenience of the subscribers. On the other hand, 
CA may be geographically far from the subscribers. In ID-based cryptosystems, similar 
to certificate based PKI system, we need to authenticate the user before the generation 
of the private key corresponding to the purported identity. 

1.2   Existing Key Issuing Protocol in ID-Based Systems  

There are a few key ID-based key issuing protocols, most of them aimed to tackle the 
key escrow problem of ID-based systems . Some of them have tackled the secure chan-



nel issue but none of them addressed the anonymity issue and the separation of au-
thentication and key-issuing. 

In [2], the master key of the KGC is distributed into multiple authorities, and the pri-
vate key of a user is computed in a threshold manner, thus the key escrow problem of 
a single authority is prevented. Another proposal generates the private key of a user 
by adding multiple independent subkeys from multiple authorities [4]. The authorities 
work in a parallel mode. However, in the above two schemes, different authorities have 
to check and authenticate the user’s identity independently, which is quite a burden to 
the system. Lee et al. proposed a new scheme [5] in which a user’s private key is is-
sued by a KGC, and its privacy is protected by multiple key privacy authorities (KPAs). 
The authorities work in a sequential mode. Only one authority (the KGC) has to au-
thenticate the user and thus it greatly reduces the cost of user identification. The 
scheme also makes use of user-chosen secret information for constructing a secure 
channel for a user to retrieve his private key securely. However, it requires quite an 
amount of computation. 

Gentry [6] proposed a certificate-based encryption using some user-chosen secret 
information. Certificateless public key cryptography [7] successfully removed the 
necessity of certificate and use user-chosen information. But they both lose the ad-
vantages of ID-based cryptography since in both cases; the public key is not solely 
determined by the publicly available information of the user’s identity.  

In this paper, we propose an anonymous and secure key issuing protocol without 
secure channel. Our construction is inspired from a variation of blind signature scheme. 
In the following, we first review some of the existing short signature schemes before 
presenting our contributions. 

1.3 Short Signatures Based on GDH Groups  

While researchers are trying to improve the IBE system, some new signature schemes 
based on the idea of IBE are proposed. In particular, Boneh et al. [8] introduced a 
short signature scheme based on the co-Gap Diffie-Hellman (co-GDH) assumption on 
certain elliptic and hyper-elliptic curves. The signature length is approximately 170 bits, 
which provides a level of security similar to that of 320-bit DSA signatures. Thus it 
helps to reduce the communication cost by half for transmitting the signature. This is 
essentially important for constrained channels. The scheme is secure against existen-
tial forgery under a chosen-message attack in the random oracle model. Generating a 
signature is a simple multiplication on the curve, which is very similar with the private 
key extraction in IBE scheme [2]. Verifying the signature is done using a bilinear pair-
ing on the curve. Based on the short signature scheme in [8], Boldyreva [9] developed 
a blind signature scheme. Our scheme makes use of these ideas developed in [8, 9]. 

Remark. Recently, both [10] and [11] tried to improve the scheme in [8] by providing a 
more efficient system generating signatures of the same length. Their security is based 
on stronger assumptions. Key generation is identical to that in [8], except that they 
use a simpler hash function, :{0,1}* pH Z→ , which is a great simplification compared 



to MapToPoint mapping in [8]. However, it is not trivial how these schemes can be 
used in our construction. We leave this as an open problem.  
 

The rest of the paper is organized as follows. Some background on bilinear map and 
relevant concepts that we use in our scheme are introduced in Section 2. Section 3 
describes our building block in the key-issuing protocol. In Section 4, we describe our 
ID-based key issuing scheme based on short blind signature over the GDH groups 
proposed in Section 3. We also extend the protocol to address the key-escrow problem. 
and the separation of duties for authentication and private key computation. Finally, 
Section 5 concludes the paper. 

2   Preliminaries 

We summarize some concepts of GDH assumption and short signature in this section. 
We use a similar set of notations as in [8] and [9]: 

1. 1G and 2G are two cyclic groups of prime order p. 

2. 1g is a generator of 1G and 2g is a generator of 2G . 

3. ψ  is an isomorphism from 2G to 1G , with 2 1( )g gψ = .  

4. e  is a bilinear map 1 2: Te G G G× → , where TG  is a group of order p . 

2.1   Gap Diffie-Hellman (GDH) Groups and Bilinear Maps  

GDH Group. We first give some definitions as in [8].  
 Computational co-Diffie-Hellman (co-CDH) on ( 1 2,G G ): Given 2 2 2, ag g G∈  and 

1h G∈ , compute 1
ah G∈ .  

Decision co-Diffie-Hellman (co-DDH) problem on ( 1 2,G G ): Given 2 2 2, ag g G∈  and 

1, bh h G∈ , output “yes” if a b= and “no” otherwise. When the answer is “yes”, we 

say that ( 2 2, , ,a ag g h h ) is a co-Diffie-Hellman tuple. 

When 1 2G G=  and 1 2g g= , one could take ψ to be the identity map. The above 

problems reduce to standard CDH and DDH [2].  
Next we define a Gap co-Diffie-Hellman group (co-GDH group) pair to be a pair of 

groups ( 1 2,G G ) on which co-DDH is easy to compute but co-CDH is hard. Two 

groups ( 1 2,G G ) are said to be a ( ,t ε ) co-GDH pair if they satisfy the following proper-

ties: 
1. The group action on both 1G and 2G and the map ψ from 2G to 1G can be com-

puted in constant number of steps.  
2. The Decision co-Diffie-Hellman problem on ( 1 2,G G ) can be solved efficiently. 



3. No algorithm can ( ,t ε )-break the co-CDH problem on ( 1 2,G G ), that is, no algo-

rithm running in time at most t can solve co-CDH with an advantage at leastε . 
When ( 1 1,G G ) is a ( ,t ε ) co-GDH pair, we say 1G is a ( ,t ε )-Gap-Diffie-Hellman 

group (GDH group). The first example of a GDH group is given in [12] and more details 
on the existence and composition of GDH groups can be found in [2, 8, 13]. 

Bilinear Map. Currently, the only examples of GDH groups arise from bilinear maps. 
Let 1G and 2G be two groups as above, with a multiplicative group TG  such that 

1 2 TG G G= = . A bilinear map is a map 1 2: Te G G G× →  with the following 

properties: 
1. Bilinear: for all 1 2,u G v G∈ ∈ , and ,a b Z∈ , ( , ) ( , )a b abe u v e u v= . 

2. Non-degenerate: 1 2( , ) 1e g g ≠ . 

An efficiently computable bilinear map e  provides an algorithm for solving the co-
DDH problems by using the following property: 2 2mod ( , ) ( , )a ba b p e h g e h g= ⇔ = . 

Consequently, if two groups ( 1 2,G G ) are a ( ,t ε )-bilinear group pair, then they are also 

a ( /2,t ε ) co-GDH group pair [12]. 

2.2   Short Signature and Short Blind Signature 

We denote the basic signature scheme of [8] as GS = (K,V,S), which comprises three 
algorithms, KeyGeneration (K), Signing (S), and Verifying (V). It works on co-GDH 
groups ( 1 2,G G ). A full-domain hash function 1:{0,1}*H G→  is used. The global 

information GSI contains { 1 2 1 2, , , , ,G G g g p H }. Details of the algorithms K, S, V are as 

follows: 
( )GSK I : Pick random *

px Z∈ , and compute 2
xy g= . Return ( 2( , , , )pk p g H y= , 

sk x= ) 
( , , )GSS I sk m : Given a message *{0,1}m ∈ , compute 1( )h H m G= ∈ , and the signa-

ture 1
xh Gσ = ∈ . Output (m,σ ) 

( , , )V pk m σ : Compute 1( )h H m G= ∈  and verify that ( 2 , , ,g y h σ ) is a valid co-

Diffie-Hellman tuple (i.e. verify co-DDH( 2 , , ,g y h σ ) using bilinear map). If so, output 

valid. 
Using the Weil and Tate pairings, [8] obtains co-GDH groups from a family of non-

supersingular curves over a prime finite field to construct short signatures. Signature 
generation is just a simple multiplication on an elliptic curve and is faster than RSA 
signature generation. Verification requires two computations of the bilinear map and is 
slower than RSA signature verification. 

Security of the signature scheme follows from the hardness of co-GDH on ( 1 2,G G ). 

Note that when 1 2G G= , the security is based on the standard CDH assumption in 1G . 

Boldyreva [9] proposed a blind signature BGS=(BK,BS,BV) which works in the special 



case 1 2G G= .  The algorithms BK and BV are the same as those of short signature on 

G . The blind signing algorithm BS is defined as follows. User holds a public 
key ( , , , )pk p g H y= . In order to blindly sign a message *{0,1}m ∈ , the user picks a 

random number *
pr Z∈ , computes ( ) rm H m g= ⋅ and sends it to the signer. The signer 

knows ( , , )BGSI p g H= and sk x= . The signer computes ( )xmσ = and sends it to the 

user. User then computes ryσ σ −= ⋅  and outputs (m, σ ). The scheme is proved to be 

blind and secure against one-more-forgery (based on chosen-target CDH assumption, 
to be defined later). In this paper, the blind signature is revised to work on elliptic 
curves to construct an ID-based key issuing scheme.  

3 Building Block 

Due to the nice properties of the above short signature scheme [8], our scheme pro-
posed below is simple and efficient. 

3.1 Short Blind Signature (SBS)  

We call the scheme SBS=(BK,BS,BV), and BK, BS,  BV are the KeyGeneration, Sign-
ing, and Verifying algorithms respectively. The setup procedure is as follows. Let 

( )qE F  be an elliptic curve and let ( )qP E F∈  be a point of prime order p , 

where , | 1p q p q≠ −/ . Let , 2 ,...,G P P P pP= = . Then G is an abelian additive 

group generated by P . Define :{0,1}*H G→ in the way as described in [2, 8]. Let 

sgnP be the public key of the signer. The global information is sgn( , , , , )BSECI G p P H P= . 

The signature scheme works as follows.  
( )BSECBK I : Pick *

ps Z∈  randomly, compute sgnP sP= , and return 

( sgn( , , , , )pk G p P H P= , sk s= ). 

( , , )BSECBS I sk m : The user picks a random number *
pr Z∈ , computes 

( )M rH m G= ∈ , where *{0,1}m ∈ , and sends M to the signer. The signer computes 

( )X s Mσ = ⋅ and sends it to the user, where ( )X ⋅  denotes the x-coordinate of the 

element. Note that qFσ ∈ . User then computes the signature 1rσ σ−= ⋅ . 

( , , )BV pk m σ : The verifying process is similar to that in [8]. Find a qy F∈  such that 

( , )S yσ= is a point of order p  in ( )qE F . Test if either sgn( , ) ( ( ), )e S P e H m P=  or 
1

sgn( , ) ( ( ), )e S P e H m P− = , where e  is a Weil Pairing, a bilinear map constructed over 

elliptic curves [2]. This is because that the signature σ could have come from either 
the point S  or S− . 



3.2 Analysis 

We use similar techniques in [9] to prove the security of the short blind signature. 
Two main properties, namely blindness and security against one-more-forgery [14, 15], 
which is a special form of unforgeability, are considered. Blindness means that the 
signer and also any other third party should not learn any information about the mes-
sages the user obtains signatures on.  Unforgeability means that the user who has 
been engaged in l runs of the blind signing protocol should not be able to obtain more 
than l signatures.  
 
Blindness. Since r  is chosen randomly from *

pZ , ( )M rH m=  is also a random ele-

ment in the group G . The signer receives only random information that is independ-
ent of the output of the user (m, σ ). 

Unforgeability. This property provides the security of our ID-based key issuing pro-
tocol in Section 3.2. It means that there exists no polynomial-time adversary A with 
non-negligible advantage ( )BSEC

IAdv A , where ( )BSEC
IAdv A is the probability of A to 

output l valid message-signature pairs while the number of invoked blind signing 
protocols is strictly less than l. 

To prove the unforgeability of the blind signature, [9] defines the chosen-target 
CDH assumption and proved an equivalence relation between the unforgeability and 
chosen-target CDH assumption. Here we define the chosen-target CDH assumption 
for our blind signature in the similar way.  

Definition 1.   Let G P= be a group of order p. Let s be a random element of *
pZ  and 

sgnP sP= . Let H be a random instance of a hash function family *[{0,1} ]G→ . 

Define the target oracle GT  that returns random points iR G∈  and the helper oracle 

( )cts ⋅ . The adversary B is given ( sgn, , ,p P H P ) and has access to GT and ( )cts ⋅ . Let 

( ,T Hq q ) be the number of queries B made to GT and ( )cts ⋅ . The advantage of B 

attacking the chosen-target CDH problem ( )ctCDH
GAdv B is defined as the probability of 

B to output l pairs 1 1(( , ),...( , ))l lV j V j , where for 1 i l≤ ≤ , 1 i Tj q∃ ≤ ≤ , such that 

ii jV sR= (all iV are distinct) and H Tq q< . 

The chosen-target CDH assumption states that there is no polynomial-time adver-
sary B with non-negligible ( )ctCDH

GAdv B . 

Theorem 1. If the chosen-target CDH assumption is valid in G, then SBS is secure 
against one-more forgery chosen message attack.  

The proof is to construct a polynomial-time adversary B for the chosen-target CDH 
problem such that ( ) ( )BSEC ctCDH

I GAdv A Adv B= . 

Proof:  



The adversary A has access to a blind signing oracle ( )s ⋅ . We analyze security of 

SBS in the random oracle model, so A is also given access to the random hash ora-
cle ( )H ⋅ . We now construct the algorithm B to simulate A in order to solve the chosen-

target CDH problem. B is given ( sgn, , ,p P H P ), GT and ( )cts ⋅ . B first provides A with 

the public key sgn( , , , )pk p P H P= . B has to simulate the random oracle hash oracle 

( )H ⋅ and the blind signing oracle ( )s ⋅ . 

1. When A makes a new hash oracle query, B forwards it to its target oracle GT , re-

turns the reply to A and adds this query and the reply to the stored list of such 
pairs. 

2. When A makes a query to the blind signing oracle ( )s ⋅ , B forwards it to its helper 

oracle ( )cts ⋅ and returns the reply to A. 

At some point, A outputs a list of message-signature pairs 1 1(( , ),...,( , ))l lm mσ σ . For 

each 1 i l≤ ≤ , B finds im  in the list of stored hash oracle queries and re-

plies 1 1( , ),...,( , )l lj jσ σ , where ij be the index of the found pair. From A’s viewpoint, 

the above simulation is indistinguishable from the real protocol, and B is successful 
only if A is successful. Thus ( ) ( )BSEC ctCDH

I GAdv A Adv B= . 

4 Separable and Anonymous ID-based Key Issuing 

In this section, we present our separable and anonymous ID-based key issuing 
scheme. We denote it as SAKI. In SAKI, the KGC and the user cooperate to generate 
the private key for the user using the above short blind signature. Let A be a user and 
KGC be the trusted authority. 

4.1 Proposed ID-Based Key Issuing Protocol (SAKI) 

It is unavoidable for a trusted party to authenticate the identity of the user in an offline 
manner. However, this authentication authority may not be necessary the same party 
as the KGC for generation of private key. This is where the concept of local registra-
tion authority (LRA) comes to play. A one-time password can be established between 
the LRA and the user after the offline authentication. Then this  password (may be in 
the form of a hash value instead of the password itself) together with the identity of 
the user is redirected to the KGC. With the help of this information, KGC can know the 
identity associated to the private key to be requested when the user present this one-
time password to the KGC. This information also helps the KGC to check the correct-
ness of the “blinded” identity. Note that the one-time password should be stored 
securely by the user but it is not necessary to be sent in encrypted form if the key 
issuing protocol can be implemented as an all-or-none transaction. 



The setup procedure is a probabilistic polynomial algorithm, run by KGC, that takes 
a security parameterk , and returns params (system parameters) and the master-key. 

Let G be a GDH group of prime order p . Public information is  ISAKI = (G, p, H, PKGC). 

P is generator of G and *:{0,1}H G→  is a one-way hash function and ( )A AQ H id= . 

We use the MapToPoint method in [8] to construct this hash function. PKGC = sP is 
the system public keys.  

The key generation procedure is a probabilistic polynomial algorithm that takes as 
input params , the master-key and an arbitrary *{0,1}ID∈ ; and returns a private 

key IDs . Here password  is the user’s chosen password during off-line authentication 

and the tuple (ID, password) is stored in KGC’s database of “pending private key”. 
KGC may choose to pre-compute the value of e(H(ID), H(password)). 

 
1. A: selects a random number r, AàKGC: Q = rH(ID), T = r-1H(password). 
2. KGC: checks the validity of the request by checking whether e(Q,T) = e(H(ID), 

H(password)) holds for a certain tuple in KGC’s database. 
3. KGC: computes s1Q. KGCàA: S = sQ. 
4. A: verifies the blinded private key by checking e(S, P) = e(Q, PKGC). If it holds, 

A unblinds the encrypted private key and obtains sH(ID). 
 
Then the user can delete password  after obtained the private key. The KGC can 

also remove the tuple (ID, password) from the database after the protocol, so the da-
tabase is always holding the tuples corresponding to “private key to be issued”. It will 
not grow to the gigantic size of the certificate repository of traditional certificate based 
system. 

4.2 Analysis 

Since our scheme preserves the property that the public key can be determined by the 
identity of the user, it can be used with existing ID-based cryptosystems, in contrast 
with some of the non ID-based solutions [6, 7]. Now we discuss the efficiency, confi-
dentiality, soundness and the blindness of SAKI. We also provide extensions to re-
move the inherent key-escrow problem of ID-based cryptosystem. 
 
Efficiency of SAKI. On users’ side, 2 scalar multiplications, 2 modular inversions and 2 
pairing computations are needed (notice that these 2 pairing computations are also 
necessary for checking the validity of the private key obtained in other key issuing 
protocols). On KGC side, 1 pairing computation is needed (if pre-computations are 
performed), and 1 scalar multiplication is needed for the private key generation (again, 
which is also needed in other key issuing protocols). Note that the user does not need 
to perform pairing computations to decrypt the encrypted private key, while it is nec-
essary in the previous scheme [5]. On the other hand, KGC does not need to have 
pairing comp utation for encryption of the private key, but it is needed in [5]. In our 
scheme, the pairing computation is needed for the sake of anonymity requirement only. 



Confidentiality of SAKI. The SAKI scheme is directly inspired from the above blind 
signature scheme. It is obvious that the blinding process cannot serve as a 
semantically secure encryption scheme against adaptive chosen ciphertext attack. 
However, in our scenario, the things to be encrypted are the private keys on users’ 
demands. It is reasonable to assume that there exists no oracle helping the adversary 
to launch the adaptive chosen ciphertext attack. Moreover, the “encryption key” r is 
used once only. So even in the case some partial information has leaked, it cannot help 
in another invocation of the protocol. 

With a careful design of *:{0,1}H G→ , a user’s identity information is mapped to 

a point ( )ID IDQ H id= on G . The order of IDQ  is the same as that of G , say p , a 

prime number large enough that the elliptic curve is secure. Due to ECDLP (the Elliptic 
Curve Diffie-Hellman Problem), an attacker cannot derive w fromwQ .  So only the 

legitimate user who knows the blinding parameter can unblind the messages and re-
trieve the private key.  

The messages over the channel are not part of the private key, in contrast with BF’s 
basic scheme [2], and its follow-on schemes, such as BF’s threshold scheme [2] and 
Chen’s parallel subkeys addition scheme [4]. The messages can be transmitted in 
plaintext and secure channels are not needed. 
 
Soundness of SAKI. It is not possible for the user to request for any private key which 
does not correspond to his/her identity by the validity check of KGC in Step 2 of the 
protocol. 
 
Blindness of SAKI. From the blindness property of the blind signature, it is easy to 
see that our ID-based key issuing protocol achieves the anonymity requirement. 

4.3 Separable and Anonymous ID-based Key Issuing without Key-Escrow 

One major problem of the ID based key scheme is the key escrow, i.e. the trusted au-
thority can impersonate a user. Here we present the extension of our proposed SAKI 
to support multiple KGC so as to avoid the key-escrow problem. 

Let P is generator of G and *:{0,1}H G→  is a one-way hash function 

and ( )A AQ H id= . Public information is ISAKI = (G, p, H, PKGC1 = s1P, PKGC2 = s2P) where 

(s1, PKGC1) is the private-public key of the first KGC (KGC1) and (s2, PKGC2) is the pri-
vate-public key of the second KGC (KGC2). PKGC = s1 s2P is the system public keys.  

The key generation procedure is a probabilistic polynomial algorithm that takes as 
input params , the KGC private key and an arbitrary *{0,1}ID∈ ; and returns a user 

private key IDs . Here password  is the user’s chosen password during off-line authenti-

cation and the tuple (ID, password) is stored in KGC1 and KGC2’s databases of 
“pending private key” (possibly with pre-computation as the basic version). The order 
of interactions between user A and the KGCs does not really matter. 

 



1. A: selects a random number r1, AàKGC1: Q1 = r1H(ID), T1 = r1
-1H(password). 

2. KGC1: checks the validity of the request by checking whether e(Q1,  T1) = 
e(H(ID), H(password)) holds for a certain tuple in KGC1’s database. 

3. KGC1: computes  s1Q and s1T. KGC1à A: S1 = s1Q, σ’1= s1T1, 
4. A: verifies the blinded partial private key by checking e(S1,,P)= e(Q1, PKGC1). 

And verifies the KGC1’s signature on the password by e(σ’1,,P) = e(T1, 
PKGC1) .If both of them hold, A unblinds the encrypted partial private key and 
the KGC1’s blinded signature on the password to obtain the partial private key 
s1H(ID) and KGC1’s signature on the password σ1= s1H(password). 

5. A: selects a random number r2, AàKGC2: σ1, Q2 =  r2s1H(ID), T2 =  r2
-1 

H(password). 
6. KGC2: checks the validity of the request by checking whether e(Q2,  T2) = 

e(H(ID), σ1) holds and checks the validity of KGC1’s signature by verifying 
e(σ1, P) = e(H(password), PKGC1) where password  is obtained from KGC2’s da-
tabase (possibly from pre-computed results). 

7. KGC2: computes s2Q2. KGC2à A: S2 = s2Q2. 
8. A: verifies the blinded private key by checking e(S2 P) = e(Q2 PKGC2). If it holds, 

A unblinds the encrypted private key and obtains the final private key S = s2 
s1H(ID). 

 
Notice that the KGCs blindly sign on the “message” password  chosen by the user 

in the above protocol (the resulting signature is in the form of the short signature we 
reviewed), so preferably some restrictions (e.g. padding the password with the key-
word “PASSWORD: “) is necessary for the password. 

5 Conclusions 

An ID-based key issuing scheme, combining the properties of anonymity and confi-
dentiality, is proposed in the paper. Moreover, our scheme is separable: the authenti-
cation and the private key generation can be computed by two different entities. The 
scheme is based on a short blind signature. User chosen information contributes for 
blinding purpose to eliminate the need for secure channels . The security relies on the 
Gap Diffie-Hellman assumptions over elliptic curves. Since the user’s public key is 
solely dependent on the publicly available information, the scheme can work with 
other existing ID-based cryptosystems  and preserving their advantages. 
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