
Efficient Identity Based Ring Signature

Sherman S.M. Chow?, S.M. Yiu, and Lucas C.K. Hui

Department of Computer Science
The University of Hong Kong

Pokfulam, Hong Kong
{smchow,smyiu,hui}@cs.hku.hk

(January 19th, 2005 Version)

Abstract. Identity-based (ID-based) cryptosystems eliminate the need of validity checking of
the certificates and the need of registering for a certificate before getting the public key. These
two features are desirable especially for the efficiency and the real spontaneity of ring signature,
where a user can anonymously sign a message on behalf of a group of spontaneously conscripted
users including the actual signer.
To the best of authors’ knowledge, the number of pairing computations of all existing ID-based
ring signature schemes from bilinear pairings grows linearly with the group size, which made the
efficiency of ID-based schemes over traditional schemes questionable.
In this paper, we construct an efficient ID-based ring signature which only needs two pairing
computations for any group size. The proposed scheme is proven to be existential unforgeable
against adaptive chosen message-and-identity attack under the random oracle model, using the
forking lemma for generic ring signature schemes. Extension to support general access structure
is also discussed.

Key words: Identity-based signature, ring signature, bilinear pairings, efficiency, real spontaneity,
general access structure, anonymity

1 Introduction

Ring signature is a group-oriented signature with privacy concerns: any user can anonymously
signs a message on behalf of a group of spontaneously conscripted users including the actual
signer. Any verifier can be convinced that the message has been signed by one of the member
in this group, but the actual signer remains unknown. However, the theory of ring signature
faced two problems when it comes to reality.

In traditional public key infrastructure (PKI), the public key is usually a “random”
string that is unrelated to the identity of the user, so there is a need for a trusted-by-all
certificate authority (CA) to assure the relationship between the cryptographic keys and the
user. Therefore, any verifier of a signature must obtain a copy of user’s certificate and check
the validity of the certificate before checking the validity of the signature. In ring signature,
not only the verifier must verify all the public keys of the group. The signer must do so as
well or his/her anonymity is jeopardized (consider the extreme case that all certificates used
are indeed invalid except the signer’s one). The communication and the validation of a large
number of public keys greatly affect the efficiency of the scheme. Moreover, real spontaneity
is not always possible for ring signature under traditional PKI. Any signer can spontaneously
conscript users who have already registered for a certificate.

Identity-based (ID-based) ring signature solved these problems: the public key of each
user can be easily and publicly computed from a string corresponding his/her identity (for
? corresponding author
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example, an email address). This property avoids the necessity of certificates, and associates
an implicit public key to each person over the world.

Unfortunately, the theory of ID-based ring signature also faced obstacle in real application.
ID-based ring signature schemes are usually derived from bilinear pairings, a powerful but
computationally expensive cryptographic primitive. The important properties of bilinear
pairings and associated intractable problems are recalled in Section 3.

From the review in the next section, we know that the number of pairing computations of
all existing ID-based ring signature from bilinear pairings grows linearly with the group size,
which made the efficiency of ID-based schemes over traditional schemes questionable. It is fair
to say devising an ID-based ring signature using sublinear numbers of pairing computation
remains an open question.

We close this open problem in this paper. An efficient ID-based ring signature is proposed
in Section 5, which only takes two pairing computations for any group size, and the generation
of the signature involves no pairing computations at all. The proposed scheme is proven to be
existential unforgeable against adaptive chosen message-and-identity attack under the random
oracle model. The framework and the security notion of ID-based ring signature are discussed
in Section 4.

In the literature, 1-out-of-n-groups ring signature was also considered, which supports an
ad-hoc access structure consisting of groups of different sizes. The verifier can be convinced
that the signature is generated from all members of a certain group, but cannot know which
group has indeed participated in the signing. We notice that an ID-based ring signature for
general access structure can be implemented by an 1-out-of-n-groups ring signature. Extension
of the proposed scheme to support this general access structure is shown in Section 6.

2 Related Work

ID-based ring signature was introduced in [17] and a more efficient version was proposed
in [11]. Small inconsistencies in [17] and [11] were fixed by [1], together with a new proxy
ring signature scheme from the delegation function due to [19]. Another ring signature with
formally proven security was proposed in [9], where ID-based ring signature from anonymous
subsets (i.e. 1-out-of-n-groups ring signature) was also considered. The scheme in [9] supports
parallel pairing operations, which is not possible in schemes like [1, 11, 17].

Threshold ring signature is the t-out-of-n threshold version of ring signature, where t or
more entities can jointly generate a valid signature but t− 1 or fewer entities cannot. These
schemes are applied in pervasive computing applications and mobile ad-hoc networks, where
ad-hoc groups are very common. The first ID-based threshold ring signature was proposed in
[6]. It is robust. Moreover, it supports trusted authority compatibility, which enables the signer
to conscript non-participating signers under different trusted authorities. The scheme’s time
and space complexity are up to the state-of-the-art of existing pairing-based ring signature
and threshold ring signature, if not better than. Actually, the scheme in [6] was the most
efficient (in terms of number of pairing operations required) ID-based ring signature scheme
(when t = 1).

Taken into account the total computational costs for signature generation and verification,
existing solutions [1, 6, 9, 11, 17] need a number of pairing computations ranging from n + 1
to 4n− 1 where n is the group size of the ring signature. Since pairing computation is usually
the most expensive one among others in ID-based cryptosystems, this linear dependence with
the group size is undesirable.
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We remark that there are non-ID-based ring signature schemes from bilinear pairings, for
examples, [2, 12, 15, 16, 18, 19].

Indeed, the real spontaneity of ID-based ring signature also relies on the assumption that
the trusted authority (the private key generator) will not reveal any information about who
has requested for his/her private key and who has not. In [8], an separable and anonymous ID-
based key issuing protocol was proposed such that any eavesdropper cannot learn what is the
identity associated with the private key being issued even though the key is not transmitted
via a secure channel.

Ring signature scheme can be used to derive other primitives as well. It had been utilized
to construct non-interactive deniable ring authentication [13], perfect concurrent signature
[14] and multi-designated verifiers signature [4, 10].

3 Preliminaries

Before presenting our results, we review the definitions of bilinear pairing and related complexity
assumptions. The definition of generic ring signature and the forking lemma for such class of
ring signature will be discussed as well.

3.1 Bilinear Pairings

Bilinear pairing is an important primitive for many cryptographic schemes [1–19]. Here, we
describe some of its key properties.

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing is given
as ê : G1 ×G1 → G2, which satisfies the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P + Q,R) = ê(P,R)ê(Q,R), and ê(P,Q + R) =
ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) ∀P,Q ∈ G1.

3.2 Complexity Assumptions

Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the Decisional
Diffie-Hellman problem (DDHP) is to decide whether c = ab.

Definition 2. Given a generator P of a group G, (P, aP, bP, cP ) is defined as a valid Diffie-
Hellman tuple if c = ab.

Definition 3. Given a generator P of a group G and a 2-tuple (aP, bP ), the Computational
Diffie-Hellman problem (CDHP) is to compute abP .

Definition 4. If G is a group such that DDHP can be solved in polynomial time but no
probabilistic algorithm can solve CDHP with non-negligible advantage within polynomial time,
then we call G a Gap Diffie-Hellman (GDH) group.

We assume the existence of a bilinear map ê : G1×G1 → G2 that one can solve Decisional
Diffie-Hellman Problem in polynomial time.



4 Sherman S.M. Chow et. al.

3.3 Forking Lemma for Ring Signature Schemes

The unforgeability of (ID-based) ring signature schemes can be proven with the help of the
forking lemma for generic ring signature scheme [9]. Here we review the required conditions
for a ring signature scheme to be considered as generic. Denote H(·) be a cryptographic
hash function that outputs k bits, where k is the security parameter. Consider a group L of
n members (L = {ID1, ID2, · · · , IDn}) and a message m, a generic ring signature scheme
will produce ring signatures in the form of {L,m,R1, R2, · · · , Rn, h1, h2, · · · , hn, σ} where for
i ∈ {1, 2, · · · , n}, Ris are distinct and no Ri can appear in a signature with probability greater
than 2/2k; hi = H(L,m,Ri) and σ is dependent on all of {Ri}, {hi} and m.

Theorem 1 Consider a generic ring signature scheme with security parameter k. Let A be
a probabilistic polynomial time algorithm which takes as the identity of each members in the
group of L and the public parameters that can ask for at most Q queries to the random oracle;
if A can produce a valid ring signature {L,m,R1, · · · , Rn, h1, · · · , hn σ}, for some L∗ ⊂ L of
n users within time bound T and with non-negligible probability of success ε = 7CQn

2k
Then,

within a time period of 2T and with probability greater than ε2

66CQn
, we can use A to obtain two

valid ring signatures {L,m,R1, · · · , Rn, h1, · · · , hn σ} and {L,m,R1, · · · , Rn, h′1, · · · , h′n σ′}
such that hj 6= h′j, for some j ∈ {1, · · · , n} and hi = h′i for all i ∈ {1, · · · , n}\{j}.

In the practical implementation, we usually omit {hi} in the ring signature as they can
be correctly recovered during the verification process.

4 Framework and Security Notions of ID-based Ring Signature Schemes

Hereafter the definition and the security notion of ID-based ring signature schemes are
reviewed.

4.1 ID-based Ring Signature

Framework An ID-based ring signature scheme consists of four algorithms: Setup, KeyGen,
Sign, and Verify.

– Setup: On an unary string input 1k where k is a security parameter, it produces the master
secret key s and the common public parameters params, which include a description of a
finite signature space and a description of a finite message space.

– KeyGen: On an input of signer’s identity ID ∈ {0, 1}∗ and the master secret key s, it
outputs the signer’s secret signing key SID. (The corresponding public verification key
QID can be computed easily by everyone.)

– Sign: On input of a message m, a group of n users’ identities {ID i}, where 1 ≤ i ≤ n,
and the secret keys of one members SIDs , where 1 ≤ s ≤ n; it outputs an ID-based ring
signature σ on the message m.

– Verify: On a ring signature σ, a message m and the group of signers’ identities {ID i}
as the input, it outputs > for “true” or ⊥ for “false”, depending on whether σ is a valid
signature signed by a certain member in the group {ID i} on a message m.

These algorithms must satisfy the standard consistency constraint of ID-based ring signature
scheme, i.e. if σ = Sign(m, {ID i}, SIDs), we must have Verify(σ, {ID i},m) = >.

For an ID-based ring signature scheme to be considered as secure, we need to consider its
unforgeability and signer ambiguity.
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Security Notions The following EUF-IDRS-CMIA2 game played between a challenger C
and an adversary A formally defines the existential unforgeability of ID-based ring signature
under adaptive chosen-message-and-identity attack.

EUF-IDRS-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to generate common
public parameters params and also the master secret key s. C sends params to A.

Attack: The adversary A can perform a polynomially bounded number of queries in an
adaptive manner (that is, each query may depend on the responses to the previous queries).
The types of queries allowed are described below.

– Hash functions queries: A can ask for the values of the hash functions (e.g. H(·) and H0(·)
in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes Extract(ID) = SID and sends the result
to A.

– Sign: A chooses a group of n users’ identities {ID i} where 1 ≤ i ≤ n, and any message
m. C outputs an ID-based ring signature σ.

Forgery: The adversary A outputs an ID-based ring signature σ and a group of n users’
identities {ID i} where 1 ≤ i ≤ n. The only restriction is that (m, {ID i}) does not appear in
the set of previous Sign queries and each of the secret keys in {SIDi} is never returned by any
KeyGen query. i.e. no private keys in {SIDi}) is known. It wins the game if Verify(σ, {ID i})
is equal to >. The advantage of A is defined as the probability that it wins.

Definition 5. An ID-based ring signature scheme is said to have the existential unforgeability
against adaptive chosen-message-and-identity attacks property (EUF-IDRS-CMIA2 secure) if
no adversary has a non-negligible advantage in the EUF-IDRS-CMIA2 game.

Definition 6. An ID-based ring signature scheme is said to have the unconditional signer
ambiguity if for any group of n users’ identities {ID i} where 1 ≤ i ≤ n, any message m and
any signature σ, where σ = Sign(m, {ID i}); any verifier A even with unbounded computing
resources, cannot identify the actual signer with probability better than a random guess. That
is, A can only output the actual signer indexed by s with probability no better than 1

n .

4.2 ID-Based Ring Signature for General Access Structure

Framework An ID-based ring signature scheme for general access structure consists of four
algorithms: Setup, KeyGen, Sign, and Verify.

– Setup: On an unary string input 1k where k is a security parameter, it produces the master
secret key s and the common public parameters params, which include a description of a
finite signature space and a description of a finite message space.

– KeyGen: On an input of signer’s identity ID ∈ {0, 1}∗ and the master secret key s, it
outputs the signer’s secret signing key SID. (The corresponding public verification key
QID can be computed easily by everyone.)

– Sign: On input of a message m, n group of users’ identities {Ui}, where 1 ≤ i ≤ n and
Ui = {ID ij}, and the secret keys {SIDsj

} of all members of one of the group Us, where
1 ≤ s ≤ n; it outputs an ID-based ring signature for general access structure σ on the
message m.
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– Verify: On input of a ring signature σ, a message m and n group of users’ identities {Ui},
where 1 ≤ i ≤ n and Ui = {ID ij}, it outputs > for “true” or ⊥ for “false”, depending on
whether σ is a valid signature signed by all members of a certain group in the {Ui} on a
message m.

These algorithms must satisfy the standard consistency constraint of ID-based ring signature
scheme for general access structure, i.e. if σ = Sign(m, {Ui}, SIDsj

), we must get “true” from
the verification algorithm taking the signature, the message and the groups of identities as
the input, i.e. Verify(σ, {Ui},m) = >.

For an ID-based ring signature scheme for general access structure to be considered as
secure, we need to consider its unforgeability and signer ambiguity.

Security Notions The following EUF-IDRSG-CMIA2 game played between a challenger C
and an adversary A formally defines the existential unforgeability of ID-based ring signature
under adaptive chosen-message-and-identity attack.

EUF-IDRSG-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to generate common
public parameters params and also the master secret key s. C sends params to A.

Attack: The adversary A can perform a polynomially bounded number of queries in an
adaptive manner (that is, each query may depend on the responses to the previous queries).
The types of queries allowed are described below.

– Hash functions queries: A can ask for the values of the hash functions (e.g. H(·) and H0(·)
in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes Extract(ID) = SID and sends the result
to A.

– Sign: A chooses n group of users’ identities {Ui}, where 1 ≤ i ≤ n and Ui = {ID ij}, and
any message m. C outputs an ID-based ring signature for general access structure σ.

Forgery: The adversaryA outputs an ID-based ring signature σ and n group of users’ identities
{Ui}, where 1 ≤ i ≤ n and Ui = {ID ij}. The only restriction is that (m, {Ui}) does not appear
in the set of previous Sign queries and for each group of identities {Ui}, at least one secret
key in {SIDij

} is never returned by any KeyGen query. It wins the game if Verify(σ, {Ui}) is
equal to >. The advantage of A is defined as the probability that it wins.

Definition 7. An ID-based ring signature scheme for general access structure is said to have
the existential unforgeability against adaptive chosen-message-and-identity attacks property
(EUF-IDRSG-CMIA2 secure) if no adversary has a non-negligible advantage in the EUF-
IDRSG-CMIA2 game.

Definition 8. An ID-based ring signature scheme for general access structure is said to have
the unconditional group of signers ambiguity if for any n group of users’ identities {Ui}, where
1 ≤ i ≤ n and Ui = {ID ij}, any message m and any signature σ, where σ = Sign(m, {Ui});
any verifier A not from the actual signer group, even with unbounded computing resources,
cannot identify the actual group of signers with probability better than a random guess. That
is, A can only output the actual signers group indexed by s with probability no better than 1

n .
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5 Efficient ID-based Ring Signature

5.1 Construction

Define G1,G2, and ê(·, ·) as in the Section 3 where G1 is a GDH group. H(·) and H0(·) are
two cryptographic hash functions where H : {0, 1}∗ → G1 and H0 : {0, 1}∗ → Z

∗
q .

Setup: The trusted authority (TA) randomly chooses x ∈R Z∗q , keeps it as the master secret
key and computes the corresponding public key Ppub = xP . The system parameters are:

params = {G1,G2, ê(·, ·), q, P, Ppub,H(·),H0(·)}.

KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to TA. TA sets the signer’s public
key QID to be H(ID) ∈ G1, computes the signer’s private signing key SID by SID = xQID .
Then TA sends the private signing key to the signer via a secure channel, or using the secure
and anonymous protocol proposed in [8].

Sign: Let L = {ID1, ID2, · · · , IDn} be the set of all identities of n users. The actual signer,
indexed by s (i.e. his/her public key is QIDs = H(IDs)), carries out the following steps to
give an ID-based ring signature on behalf of the group L.

1. Choose ri ∈R Z∗q , compute Ui = riQIDi and hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}\{s}.
2. Choose r′s ∈R Z∗q , compute Us = r′sQIDs −

∑
i6=s {(ri + hi)QIDi}.

3. Compute hs = H0(m||L||Us) and V = (hs + r′s)SIDs .
4. Output the signature for m and L as σ = {∪ni=1{Ui}, V }.

Verify: A verifier can check the validity of a signature σ = {∪ni=1{Ui}, V } for the message m
and a set of identities L as follows.

1. Compute hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}.
2. Checking whether ê(Ppub,

∑n
i=1 (Ui + hiQIDi)) = ê(P, V ).

3. Accept the signature if it is true, reject otherwise.

5.2 Consistency

The consistency of our scheme can be easily verified by the following equations.

ê(Ppub,
n∑
i=1

(Ui + hiQi)) = ê(Ppub, Us + hsQIDs +
∑
i6=s

(Ui + hiQIDi))

= ê(Ppub, hsQIDs + r′sQIDs −
∑
i6=s
{(ri + hi)QIDi}+

∑
i6=s

(Ui + hiQIDi))

= ê(Ppub, hsQIDs + r′sQIDs −
∑
i6=s

(Ui + hiQIDi) +
∑
i6=s

(Ui + hiQIDi))

= ê(Ppub, hsQIDs + r′sQIDs)
= ê(xP, (hs + r′s)QIDs)
= ê(P, (hs + r′s)xQIDs)
= ê(P, (hs + r′s)SIDs)
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5.3 Efficiency

We consider the costly operations which include point addition on G1 (G1 Add), point scalar
multiplication on G1 (G1 Mul), multiplication in G2 or Zq (G2/Zq Mul), hashing into the
group (Hash) and pairing operation (Pairing). We use the MapToPoint hash operation in BLS
short signature scheme [3]. Before our proposal, the scheme that requires the least number of
pairing operations is [6] (named S-IDTRS). Table 1 shows a summary of the efficiency of our
proposed scheme (named S-IDRS). Taken into account the total cost of signature generation
and verification, we can see that our proposed scheme is the only scheme using a constant
number of pairing operations, and with the least total amount of other operations. Moreover,
our scheme supports parallel operations for the computation about non-participating signers’
parts like [6] and [9], which is not possible in schemes like [1, 11, 17].

Efficiency

Schemes G1 Add G1 Mul G2/Zq Mul Hash Pairing Parallelism

Zhang-Kim [17] 1 2n 2n-1 2n 4n-1 ×
Lin-Wu [11] 2n-1 2n 3n 0 2n+1 ×
Herranz-Sáez [9] 3n-1 2n n 0 n+3 X

Awasthi-Lai [1] 2n-1 2n+1 2n-1 0 4n-1 ×
S-IDTRS [6] 2n 4n n-1 0 n+1 X

Proposed S-IDRS 3n-2 3n 0 0 2 X
Table 1. Efficiency of ID-based Ring Signature from Bilinear Pairings

Considering the signature size, we share the same order of space complexities as all other
schemes we considered [1, 6, 9, 11, 17], we are not sacrificing the signature size for lowering
time complexity.

5.4 Existential Unforgeability and Signer Ambiguity

The security of our proposed scheme is summarized in the following two theorems.

Theorem 2 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A that can win the EUF-IDRS-CMIA2 game in polynomial time, then
CDHP can be solved with non-negligible probability in polynomial time.

Proof. Suppose the challenger C receives a random instance (P, aP, bP ) of the CDHP and
has to compute the value of abP . C will run A as a subroutine and act as A’s challenger in
the EUF-IDRS-CMIA2 game. During the game, A will consult C for answers to the random
oracles H and H0. Roughly speaking, these answers are randomly generated, but to maintain
the consistency and to avoid collision, C keeps three lists to store the answers used. We assume
A will ask for H(ID) before ID is used in any other queries.
C gives A the system parameters with Ppub = bP . Note that b is unknown to C. This value

simulates the master key value for the TA in the game.

H requests: We embed part of the challenge aP in the answer of many H queries. When
A asks queries on the hash value of identity ID, C picks yi ∈R Z∗q and repeats the process
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until yi is not in the list L1. C then flips a coin W ∈ {0, 1} that yields 0 with probability
ζ and 1 with probability 1 − ζ. (ζ will be determined later.) If W = 0 then the hash value
H(ID) is defined as yiP ; else if W = 1 then returns H(ID) = yi(aP ). In either case, C stores
(ID, yi,W ) in the list L.

Note that when W = 0, the associated private key is yi(bP ) which C knows how to
compute. But when W = 1, since both a and b are unknown to C, a KeyGen request on this
identity will make C fails.

H0 requests: When A asks queries on these hash values, C checks the corresponding list L2.
If an entry for the query is found, the same answer will be given to A; otherwise, a randomly
generated value will be used as an answer to A, the query and the answer will then be stored
in the list.

Sign requests: A chooses a group of n users’ identities L = {ID i} where 1 ≤ i ≤ n, and any
message m. On input of (L,m), C outputs an ID-based ring signature σ as follows.

1. Choose an index s ∈R {1, 2, · · · , n}.
2. Choose ri ∈R Z∗q , compute Ui = riQIDi and hi = H0(m||L||Ui) ∀i ∈ {1, 2, · · · , n}\{s}.
3. Choose h′s ∈R Z∗q and z ∈R Z∗q , compute Us = zP − h′sQIDs −

∑
i6=s {(ri + hi)QIDi}.

4. Store the relationship hs = H0(m||L||Us) to the list L2 and compute V = z(bP ), repeat
Step 3 in case collision occurs.

5. Output the signature for m and L as σ = {∪ni=1{Ui}, V }.

Finally, A outputs a forged signature σ = {∪ni=1{Ui}, V } that is signed by a certain
member in the group {IDi} where QIDi = H(IDi) = yi(aP )∀i ∈ {1, 2, · · · , n}, i.e. A has
not requested for any one of the private keys of members in the group. It follows from the
forking lemma for generic ring signature schemes [9] that if A is a sufficiently efficient forger
in the above interaction, then we can construct a Las Vegas machine A′ that outputs two
signed messages σ = {∪ni=1{Ui}, V } and σ′ = {∪ni=1{Ui}, V ′}. Suppose hi = H0(m||L||Ui) and
h′i = H0(m||L||Ui) for all i ∈ {1, 2, · · · , n}, we have hi = h′i for all i ∈ {1, 2, · · · , n}\{s}.

Given the machine A′ derived from A, we can solve the CDHP by computing abP =
(hs − h′s)−1(V − V ′).

ut

Theorem 3 Our ID-based ring signature scheme satisfies the unconditional signer ambiguity
property.

Proof. Since ∪i6=s{ri} and also r′s are randomly generated, hence ∪ni=1{Ui} are also uniformly
distributed.

It remains to consider whether V = (hs + r′s)SIDs leaks information about the actual
signer. Since hs is publicly computable, we focus on the value of V − hsSIDs = r′sSIDs .
Obviously, r′sSIDs is related to Us. Any one can compute the value of r′sQIDs by Us +∑

i6=s (Ui + hiQIDi). Together with the fact that the bilinearity can relate r′sSIDs and r′sQIDs
by checking whether ê(r′sQIDs , P ) = ê(r′sSIDs , Ppub), one may be tempted to see if IDj is
the actual signer by checking whether the following equality holds.

ê(Uj +
∑
i6=j

(Ui + hiQIDi), Ppub) = ê(V, P )/ê(hjQIDj , Ppub)

However, we claim that this method is of no use, as the above equality not only holds when
j = s, but also ∀j ∈ {1, 2, · · · , n}\{s}. i.e. the signature is symmetric.
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ê(Uj +
∑
i6=j

(Ui + hiQIDi), Ppub) = ê(
∑

Ui +
∑
i6=j

hiQIDi , Ppub)

= ê(
∑
i6=s

Ui + Us +
∑
i6=j

hiQIDi , Ppub)

= ê(
∑
i6=s

Ui + r′sQIDs −
∑
i6=s
{(ri + hi)QIDi}+

∑
i6=j

hiQIDi , Ppub)

= ê(
∑
i6=s

Ui + r′sQIDs −
∑
i6=s

(Ui + hiQIDi) +
∑
i6=j

hiQIDi , Ppub)

= ê(r′sQIDs −
∑
i6=s

hiQIDi +
∑
i6=j

hiQIDi , Ppub)

= ê(r′sQIDs + hsQIDs − hjQIDj , Ppub)
= ê(r′sQIDs + hsQIDs − hjQIDj , xP )
= ê(r′sSIDs + hsSIDs − hjSIDj , P )
= ê(V − hjSIDj , P )
= ê(V, P )/ê(hjSIDj , P )
= ê(V, P )/ê(hjQIDj , xP )
= ê(V, P )/ê(hjQIDj , Ppub)

Indeed, the above equality is just the same as the equality to be checked in the verification
algorithm.

To conclude, for any fixed message m and fixed set of identities L, the distribution of
{∪ni=1{Ui}, V } are independent and uniformly distributed no matter who is the actual signer.
So we conclude that even an adversary with all the private keys corresponding to the set of
identities L and unbounded computing resources has no advantage in identifying any one of
the participating signers over random guessing. ut

6 Extension

In this section, we explain how to extend our basic scheme into one supporting an ad-hoc
access structure consisting of groups of different sizes. We employ the idea from [9], where the
access structure U is defined as {U1,U2, · · · Un} (where Ui denotes a set of signers) and all the
members of a particular set in U (says Us, where 1 ≤ s ≤ n) participate in the signing. The
signature can convince any one that all the members of a certain group in U have cooperated
to give the signature, but does not know which group is signing.

The Setup and Keygen algorithm are the same as the basic scheme, except the security
parameter in Setup should be chosen with the maximum number of subsets supported (n) in
mind. Below are the descriptions of Sign and Verify algorithm.

Sign: Let Us = {ID1, ID2, · · · , IDns} be the set of all identities of ns users. They choose an
access structure U is defined as {U1,U2, · · · Un} where Us ∈ U . The ID-based ring signature
for the access structure U can be generated as follows.

1. Compute Yi =
∑

IDj∈Ui (QIDj ), ∀i ∈ {1, 2, · · · , n}.
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2. Choose ri ∈R Z∗q , compute Ui = riYi and hi = H0(m||U||Ui) ∀i ∈ {1, 2, · · · , n}\{s}.
3. Each signer IDsk ∈ Us chooses r′sk ∈R Z∗q and computes Usk = r′skQIDsk , ∀k ∈ {1, 2, · · · , ns}.
4. Any particular signer who got the knowledge of ∪nssk=1{Usk} computes Us =

∑ns
sk=1 (Usk)−∑

i6=s {(ri + hi)Yi} and hs = H0(m||U||Us).
5. Each signer IDsk ∈ Us compute and Vsk = (hs + r′sk)SIDsk .
6. Output the signature for m and U as σ = {∪ni=1{Ui}, V =

∑
IDsk∈Us

(Vsk)}.

Verify: A verifier can check the validity of a signature σ = {∪ni=1{Ui}, V } for the message m
and the access structure U as follows.

1. Compute hi = H0(m||U||Ui) ∀i ∈ {1, 2, · · · , n}.
2. Checking whether ê{Ppub,

∑n
i=1 [Ui + hi

∑
IDj∈Ui (QIDj )]} = ê(P, V ).

3. Accept the signature if it is true, reject otherwise.

The scheme’s consistency, existential unforgeability and signer ambiguity can be shown in
a similar manner as the cases in our basic scheme.

7 Conclusion

For ring signature scheme to be practical, we need to eliminate the need of validity checking
of the certificates and the need of registering for a certificate before getting the public key.
ID-based solutions can provide these two features. Nonetheless, existing proposals of ID-based
ring signature are computationally inefficient, since the number of pairing computations grows
linearly with the group size. This paper closes the open problem of devising an ID-based ring
signature using sublinear numbers of pairing computation. We construct an efficient ID-based
ring signature which only needs two pairing computations for any group size. The proposed
scheme is proven to be existential unforgeable against adaptive chosen message-and-identity
attack under the random oracle model, using the forking lemma for generic ring signature
schemes. Extension to support general access structure is also discussed. Future research
directions include making a constant-size ID-based ring signature scheme or making the ring
signature scheme works in a hierarchical setting [7].
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