
Multicollision Attacks on Generalized Hash
Functions

M. Nandi1 and D. R. Stinson2

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
mridul r@isical.ac.in

2 School of Computer Science, University of Waterloo, Waterloo, Canada
dstinson@uwaterloo.ca

Abstract. In a recent paper in crypto-04, A. Joux [6] showed a multi-
collision attacks on the classical iterated hash function. He also showed
how the multicollision attack can be used to get a collision attack on
the concatenated hash function. In this paper we have shown that the
multicollision attacks exist in a general class of sequential or tree based
hash functions even if message blocks are used twice unlike the classical
hash function.

1 Introduction

A hash function is a function from an arbitrary domain into a small fixed size
domain. This has been popularly used in many public key crypto-systems like
digital signature schemes, public key encryption schemes etc. Usually it is used
as a preprocessor as it is much faster than the computation of the other pub-
lic key cryptographic primitives. To have the security of those primitives the
hash functions should satisfy some security assumptions. The most common se-
curity assumptions are collision resistance and pre-image resistance. Intuitively
it is computationally hard to find two different inputs of a collision resistant
hash function which give same output. For preimage resistant hash function it
is computationally hard to find an inverse of a randomly given image.

A hash function H : {0, 1}∗ → {0, 1}n is usually designed from a compression
function f : {0, 1}n+m → {0, 1}n. There are many constructions of compression
function from scratch e.g. SHA-1, SHA-256 [12] MD-family i.e. MD-4, MD-5,
RIPEMD [4] [14] etc. There are several collision attacks [2] [3] [7] [17] on some
of these compression functions. The most popular design of a hash function is
the classical iteration or MD method [1] [11]. Here, the compression function is
used sequentially and for each invocation of f a block (or a part) of the message
is used for hashing. There are other methods to design a hash function from
an underlying compression function which can be characterized by a directed
tree [15]. These are known as tree-based hash functions. One advantage of using
a tree based hash function is that it can be implemented in parallel.



Multicollision is a general concept of collision. A multicollision is a set of
elements whose output values are same. The multicollision has been used earlier
in many literatures [5] [8] [9] [13] [16] to find a collision attack. For a random
looking function H : {0, 1}∗ → {0, 1}n any K-way multicollision attack (i.e.
to find a set of size K whose outputs are same) requires Ω(2(K−1)n/K) many
queries of H. But recently, A. Joux [6] found a K-way multicollision of the clas-
sical iterated hash function in time O(log(K).2n/2). He also showed a collision
attack on bigger output hash function H||G where G can be any function. So
concatenation of two hash functions where one of them is a classical iterated hash
function is not maximally secure against collision attack. The attack on H||G
uses the multicollision on H and the complexity is O(log(K).2n/2) if G also has
output size n. So it is not desirable to use a hash function having multicollision
for extending the size of the output. Very recently, S. Lucks [10] constructed a
twin pipe hash function which is secure against multicollision attack assuming
the underlying compression function is a random function.

Motivation and Our Contribution.

In the light of the above discussion it would be interesting to construct a func-
tion secure against multicollision attack (like in [10]) or give some multicollision
attacks for different constructions. In this paper we have discussed some attacks
on a class of generalized hash functions which includes a large number of natural
extensions. We have shown that the multicollision attacks exist in generalized
sequential or tree based hash functions even if message blocks are used twice
unlike the classical hash function.

2 Multicollision of Classical Hash Function.

A collision on a function g : D → R is a doubleton subset {x, y} of D such that
g(x) = g(y). Similarly for r ≥ 2, a r-way collision (or multicollision) is a subset
{x1, . . . , xr} (we say, multicollision subset) of D such that g(x1) = g(x2) = . . . =
g(xr) = z (say). The common output value z is known as the collision value for
the multicollision set. Now consider the following attack :

r-way Collision Attack or multicollision attack : Find a multicollision sub-
set C of size r (≥ 2), for the function g. In case of r = 2 it is nothing but the
popularly known collision attack.

Complexity in a random oracle model. A function g : D → R is said to
be a random function if for any k > 0 and k distinct inputs x1, x2, · · · , xk ∈ D,
g(xi)’s are independently and uniformly distributed on R. So, unless the value
of g(x) is computed, g(x) will be uniformly distributed on R. We say a function
g is modelled as a random oracle if the function g is assumed to be a random
function. The complexity of an attack is the number of computations of the
function g(·) to be queried. If some function is defined based on g(·) which is



assumed to be a random function then complexity of any attack algorithm on
that function is the number of computations of g to be queried. Now we state
some facts regarding multicollision attack in a random oracle model.

Fact 1 Let g : D → R be a function which is modelled as a random oracle.
Then for any adversary finding r-way collisions has complexity Ω(|R| r−1

r ). The
complexity of the birthday attack for r-way collision is O(|R| r−1

r ).

So in the random oracle model the birthday attack is the best attack for
finding r-way collision. In case of hash functions we usually first design a com-
pression function f : {0, 1}n+m → {0, 1}n where m > 0 and then we design a
method which extends the domain into a large arbitrary domain. For example
the MD-method, where the hash function Hf : ({0, 1}m)∗ → {0, 1}n based on
the compression functions f is defined as in below. Here h0 is some fixed initial
value and |mi| = m.

Algorithm Hf (m1|| . . . ||ml)
For i = 1 to l
hi = f(hi−1,mi)
Return hl

2.1 Joux’s Multicollision attack on Hf

In a recent paper by Joux [6], it was shown that there is a 2r-way collision attack
for the above classical iterated hash function with complexity O(r2n/2) which is
much less than Ω(2

n(2r−1)
2r ) (the complexity for random oracle model, see Fact 1).

It also proves that Hf is not a random function. Here, by complexity we mean
the number of invocations of f as Hf is defined based on f which is assumed to
be a random function. The idea of the attack is to find first r successive collisions

f(hi−1,m
1
i ) = f(hi−1,m

2
i ) = hi, 1 ≤ i ≤ r

So H(mi1
1 || · · · ||mir

r ) = hr where, i1, · · · , ir ∈ {1, 2}. So, we have 2r-way col-
lision by finding only r successive 2-way collisions and hence the complexity of
the attack is O(r.2n/2).

Application of Multicollision.

In the same paper by Joux [6], it was shown that how multicollision can be
used. Let H : D → {0, 1}n be some hash function which has 2n/2-way multicol-
lision with time complexity q(n). Then for any other function G : D → {0, 1}n,
H(·)||G(·) has collision in the time complexity q(n) assuming one query is needed
to compute G and q(n) ≥ 2n/2. So if q(n) << 2n (which is the complexity for
birthday attack on H||G) then we have a better attack than the birthday attack.
Basically, we will search a collision for G(·) from the multicollision set of H(·)
and a collision is guaranteed in the random oracle model if the search space has



desirable size (here 2n/2). When H(·) is the classical hash function q(n) = n2n/2

and so the collision attack on the concatenated hash function H||G has com-
plexity O(n2n/2).

3 Multicollision Attack on Generalized Sequential Hash
Function.

For each l, we can correspond a sequence viz. < 1, 2, . . . , l > with the classical
algorithm. The ith value of the sequence represents the message-block number
involved in the ith loop of the algorithm. We can generalize this idea by consider-
ing an arbitrary sequence letting the block number repeated more than once. For
example, for each l consider the sequence < 1, 2, . . . , l, 1, 2, . . . , l >. If H(IV, M)
is the classical iterated hash function with the initial value IV then the hash
function based on the sequence < 1, 2, . . . , l, 1, 2, . . . , l > is H(H(IV,M),M).
At first glance, it looks secure against multicollision attack as the Joux’s attack
will not work here. But a variant of Joux’s attack can be applied to this hash
function. In fact we will prove that for a large class of sequential constructions
there are multicollision attacks. First we define the generalized sequential hash
function.

3.1 Generalized Sequential Hash Function.

For each positive integer l, we have a positive integer s = s(l) and a sequence
αl = < αl(1), αl(2), . . . ,αl(s) > where, αl(i) ∈ Zl := {1, 2, . . . , l}. We use α and
α(i) (or αi) instead of αl and αl(i) respectively when there is no confusion. We
can define the hash function H : {0, 1}n × ({0, 1}m)l → {0, 1}n based on the
sequence αl. Let M = m1|| . . . ||ml where |mi| = m for each i.

Algorithm H(m1|| . . . ||ml)
For i = 1 to s
hi = f(hi−1,mαi)
Return hs

The sequence corresponding to the classical hash function is < 1, 2, . . . , l >.
We can correspond a generalized sequential hash function H : {0, 1}n×({0, 1}m)∗ →
{0, 1}m by an infinite sequence < α1, α2 · · · >. Here an element of the sequence
is a finite sequence. The lth sequence represents the function which hashes the
l-block messages. We will assume that each element of Zl appears in the sequence
αl. In other words, all message blocks are used at least once to get the final hash
value otherwise there is a trivial collision attack on those hash functions and
hence no need to study those hash functions.

3.2 Some Terminologies on Sequence

Consider a finite sequence α = < α1, α2, · · · , αs > of Zl := {1, 2, · · · , l}. The
length of the sequence is s and it is denoted by |α|. The index set of the sequence



is [1, s] := {1, 2, · · · , s}. For any subset I = {i1, · · · , it} of the index set [1, s] we
have a subsequence α(I) = < αi1 , · · · , αit > where, i1 < · · · < it. I is said to be
a subinterval if I = [i, j] ⊂ [1, s] and a left-end subinterval if i = 1.

Definition 1. (Independent Elements in a Subsequence)
Distinct elements x1, . . . , xd from Zl are said to be independent in the subse-
quence α(I) if there exist d disjoint and exhaustive subintervals I1, . . . , Id (i.e.
union gives the whole set I) such that xi appears in the the subsequence α(Ii)
but not in α(Ik) for k 6= i.

We write N (α(I)) := max{d : ∃ d independent elements in the subsequence
α(I)}. x1, · · · , xt will not be independent in a sequence α if there is a subse-
quence < xi, xj , xi > of α for some 1 ≤ i 6= j ≤ t. Note, if there are k elements
which appear only once in the sequence α then N (α) ≥ k. For a sequence α of
Zl and x ∈ Zl we write, freq(x, α) (or simply, freq(x)) = |{i : α(i) = x}| (fre-
quency of x). It denotes the number of times x appears in the sequence α. We
also write freq(α) (frequency of the sequence) for the maximum frequency over
all elements from the sequence. More precisely, freq(α) = max{freq(x) : x ∈ Zl}.
We will show some multicollision attacks on sequential hash functions based on
sequences where frequency is at most two. Consider the following two examples.

Example 1. Let ϑ(1) =< 1, 2, . . . , l > (the sequence for classical hash function).
Note that, N (ϑ(1)) = l. Let ϑ(2) =< 1, 2, . . . , l, 1, 2, . . . , l >. It is easy to ob-
serve that there are no two independent elements in the sequence ϑ(2) and hence
N (ϑ(2)) = 1. But, N (ϑ(2)([1, l])) = N (ϑ(1)) = l.

Example 2. Let θl =< 1, 2, 1, 3, 2, 4, 3, . . . , l− 1, l− 2, l, l− 1, l >. Here, N (θl) =
b l+1

2 c as 1, 3, · · · , l (if l is odd) or 1, 3, · · · , l − 1 (if l is even) are independent
elements.

3.3 Multicollision Attack on Generalized Sequential Hash Function

Now we state a multicollision attack which says that for a sequence α, N (α) = r
we have 2r-way collision attack on the hash function based on the sequence α.
The complexity of the attack is O(s2n/2) where s = |α|. First we illustrate our
attack for the hash function based on θ5 =< 1, 2, 1, 3, 2, 4, 3, 5, 4, 5 > (also see
Example 2). Here 1, 3, 5 are independent elements in θ5. We first fix the message
blocks m2, m4 and m6 by a string IV . Then find m1

1 6= m2
1 such that

f(f(f(h0,m
1
1), IV ), m1

1) = f(f(f(h0,m
2
1), IV ),m2

1) = h1.

Then similarly find m1
3 6= m2

3 and m1
5 6= m2

5 such that

f(f(f(f(h1,m
1
3), IV ), IV )m1

3) = f(f(f(f(h1,m
2
3), IV ), IV )m2

3) = h2.
f(f(f(h2,m

1
5), IV ), m1

5) = f(f(f(h2,m
2
5), IV ),m2

5) = h3.



Now it is easy to note that {m : mi = m1
i or m2

i , i = 1, 3, 5, mi = IV, i =
2, 4, 6} is a multicollision set with collision value h3.

Proposition 1. Let H be a hash function based on a sequence α = αl where,
N (α) = r. Then we have a 2r-way multicollision attack on H with the complexity
O(s2n/2) where s = |α|.

Proof. The idea of the proof is similar to that of the multicollision attack
given by A.Joux [6] (also see Section 2). We define H(h∗, [a, b],M) := hb while
computing H(M) given that ha = h∗. Note that ha and hb are the intermediate
hash values at round a and b respectively. So, H(h∗, [a, b],M) is the hash value at
the round b provided we get the hash value h∗ at the round a. As N (α) = r, we
have r independent elements x1, . . . , xr and r disjoint and exhaustive intervals
I1 = [a1, b1], . . . , Ir = [ar, br] where, 1 = a1 ≤ b1 = a2 ≤ b2 · · · br−1 = ar ≤ br =
s. Now fix all message blocks mi by a string IV , where i /∈ {x1, . . . , xr}. As xi’s
are independent H(h∗, Ii,M) will only depend on mxi

for all i. So, for simplicity,
we write H(h∗, Ii,mxi

) instead of H(h∗, Ii,M). Now find r successive collisions
as follows:

H(hi−1, Ii, m
1
xi

) = H(hi−1, Ii,m
2
xi

) = hi, 1 ≤ i ≤ r.

Now, it is easy to check that, C = {m1|| . . . ||ml; mx1 = m1
x1

or m2
x1

, . . . ,mxr =
m1

xr
or m2

xr
otherwise mi = IV } is a multicollision set of size 2r. To get the ith

collision we need to query at most |α(Ii)|.2n/2. So in total we need to query at
most |α|2n/2. ut

In the above proposition if we take l = 2r− 1 then we have 2r-way collisions
on the hash function based on the sequence θl (See Example 2) with complex-
ity O(r.2n/2). But we can not apply the same idea to the hash function based
on the sequence ϑ(2) (Example 1). Here, we have a different attack. Note that,
N (ϑ(2)([1, l])) = l for any l. So we get multicollision up to some rounds and from
that multicollision set we can again get r successive collisions.

Proposition 2. Let H be a hash function based on αl with freq(αl) ≤ 2. If
there is a left-end subinterval I such that N (αl(I)) ≥ rn/2 then we have a
2r-way multicollision of H with the complexity O(r2n.2n/2).

Proof. Let x1, · · · , xk be independent elements in α(I) where k = rn/2. As in
Proposition 1 we have a set C = {M = m1|| . . . ||ml; mx1 = m1

x1
or m2

x1
, . . . , mxk

=
m1

xk
} of size 2k so that C is a multicollision set for the hash function based on the

sequence α(I). Let h′0 be the collision value for the multicollision set C. Without
loss of generality we assume that each xi appears exactly once in the sequence
α([a + 1, s]) in the same order as they appear in I where I = [1, a] and s is the
length of the sequence. Define, Ci+1 for 0 ≤ i ≤ r − 1 as below:

Ci+1 = {mj1
xin/2+1

|| · · · ||mjn/2
x(i+1)n/2 : j1, · · · , jn/2 ∈ Z2}



Now divide the interval [a + 1, s] into r disjoint and exhaustive subintervals
I ′1, I

′
2, · · · , I ′r so that xin/2+1, · · · , x(i+1)n/2 appear in I ′i+1, 0 ≤ i ≤ r−1. To make

notations simple we ignore all other message blocks as they are fixed by a string
IV . We write H(h∗, I ′i+1,mxin/2+1 || · · · ||mx(i+1)n/2) instead of H(h∗, I ′i+1,M).
Note, |Ci| = 2n/2. So, in the random oracle model we will get r successive colli-
sions:

H(h′i−1, I
′
i,M

1
i ) = H(h′i−1, I

′
i,M

2
i ) = h′i, 1 ≤ i ≤ r.

where, M1
i , M2

i ∈ Ci. Now it would be easy to observe that, C∗ = {M j1
1 || · · · ||M jr

r

: j1, · · · jr ∈ {1, 2}} is a multicollision set (of size 2r). ut

Till now we provide a multicollision attack if the underlying sequence satisfies
some conditions. Now we will show that these conditions are satisfied by any
sequence with frequency at most two.

Definition 2. Given any subsequence α(I) of α define, S(α(I)) = |{x ∈ Zl :
freq(x, α(I)) ≥ 1}|. Similarly, we can define Si(α(I)) = |{x ∈ Zl : freq(x, α(I)) =
i}|. So, when freq(α) ≤ 2 we have, S(α(i)) = S1(α(i)) + S2(α(i)).

Proposition 3. Let α be a sequence of Zl with freq(α) ≤ 2 then either N (α) ≥
M or there exists a left-end subinterval I such that N (α(I)) ≥ N whenever
l ≥ M.N .

Proof. We can assume that S(α) = l (the sequence represents the hash function
which hashes l block messages). We will prove it by induction on l. Let |α| = s.
Note that S1(α(I)) increases as the interval grows. So, there will be a left-end
subinterval I = [1, t] with S(α(I)) ≤ N such that either N (α(I)) ≥ S1(α(I)) =
N or there exists one element say x1 which appears twice in the sequence α(I).
In the former case we are done so, assume the later. Remove all elements from
α which appear in α(I) and call this new sequence by α1 = α(I1) for some
set I1. Note, S(α1) ≥ M.N − N = (M − 1)N . By induction hypothesis either
N (α1) ≥ M − 1 or there exists a left-end subinterval J of the subsequence
α1 such that N (α1(J)) ≥ N . In the later case N (α)([1, r]) ≥ N where, r is
the last element in the set J . So we are done. In the former case there exists
M−1 independent elements x2, . . . , xM in the subsequence α1. Also x1 does not
appear in the subsequence α[t + 1, s] and x2, . . . , xM do not appear in α([1, t]).
So, x1, x2, . . . , xM are independent elements in α. ut

Now we have the multicollision attack for generalized sequential hash func-
tions with frequency at most two. This is an immediate corollary of above Propo-
sitions 1, 2 and 3.

Theorem 1. Let H be a hash function based on the sequence < α1, α2, · · · >
with freq(αl) ≤ 2 for every l ≥ 1. Then we have a 2r-way multicollision of H
with the complexity O(r2n.2n/2).



4 Attacks on Generalized Tree-based Hash Functions

Similar results hold for generalized tree based hash function. First we define the
generalized tree based hash function and some terminologies on tree.

4.1 Generalized Tree-based Hash Function

Here we will consider a compression function f : {0, 1}n × {0, 1}n → {0, 1}n

based on which a (l-block) Generalized Hash Function H(·) is defined.

1. Suppose that m = m1||m2|| · · · ||ml is a l-block message with block size n
i.e. |mi| = n. We also have h1, h2, · · · ∈ {0, 1}n constants (fixed initial values
which only depends on l).

2. Define a list of s ordered pairs {(x1
j , x

2
j )}1≤j≤s. For 1 ≤ j ≤ s, x1

j , x
2
j ∈

{h1, h2, . . .}∪{m1,m2, · · · ,ml}∪{z1, . . . , zj−1} and zj = f(x1
j , x

2
j ). For j 6= s,

zj ’s are known as intermediate hash values and zs is known as the final hash
value.

3. The final message digest for the message m is defined by the final hash value
i.e. H(m) = zs.

We can assume that each intermediate hash value zi and each message block
mj are in the list and hence they are inputs of some invocations of f . So there
are no message blocks and intermediate hash values which are not hashed. The
above hash function also can be defined using a directed binary tree. We first
define the directed binary tree and some terminologies.

Directed Binary Tree :

A directed binary tree is a directed tree so that each vertex has indeg either two
or zero and outdeg exactly one except a vertex called the root which has zero
outdeg. A leaf is a vertex with indeg zero. All other vertices or nodes (except
the root) are known as intermediate nodes. So intermediate nodes have indeg 2
and outdeg 1. Now we state some terminologies on directed binary tree :

1. Let G = (V, E) be a rooted directed tree with root q ∈ V and the arc set
E ⊂ V × V . We write v → u for the arc (v, u) ∈ E and v ⇒ u either there
is a path from the vertex v to u or u = v.

2. For a vertex v, define the subtree G[v] = (V [v], E[v]) induced by the vertices
set V [v] = {u ∈ V : u ⇒ v}. We say the graph G[v] is rooted at v.

3. We use the notation L[G] (or simply L) for the set of leave of G and L[v] for
L[G[v]], the set of leave of the graph G[v]. Note, L[v] = L ∩ V [v].



Generalized Tree based Hash Function :

Let G = (V, E) be a rooted directed tree and ρ : L → [1, l] ∪ {0, 1}n. If ρ(v) ∈
[1, l] then it denotes the index of the message block. When ρ(v) ∈ {0, 1}n, it de-
notes an initial value. Given a pair (G, ρ) and a l-block message m = m1|| · · · ||ml

we will assign inductively a n-bit string on each vertex of G as follow:

1. For each leaf v assign an n-bit string mi if ρ(v) = i or assign h if ρ(v) = h.
2. For any other node v assign a n-bit string f(z, z′) where z and z′ are assigned

on the vertices u and u′ and u → v, u′ → v.

The output of the hash function H(·) is the value assigned on the root of the
tree. Given a pair (G, ρ) there can be more than one ways of computation of final
hash value. So (G, ρ) can be a characterization of several (l-block) generalized
hash functions but as a function they are identical. But two different pairs always
represent two different generalized hash functions. We say (G, ρ) is the algorithm
for H. Now we will state some more terminologies which will be used in the
multicollision attack.

1. For x ∈ [1, l] we write freq(x,G) or simply freq(x) for the number of times
x appears in the multi-set ρ(L) (frequency of x). That is, freq(x) denotes
the number of times the message block mx is hashed to get the final hash.
Define, freq(G) = max{freq(x) : x ∈ L}.

2. We define the hash output at v (i.e. the value assigned on v while the mes-
sage is m) by H(v,m). Note that, a message block mi is used to compute
H(v, m) if and only if i is in ρ(L[v]). Sometimes we also use H(v, mi) for
H(v, m) when H(v, m) only depends on the ith message block i.e. the only
index appearing in ρ(L[v]) is i.

3. Given any vertex v define, S(v, G) (or simply S(v)) = |{x ∈ [1, l] : freq(x,G[v])
≥ 1}|. Similarly, we can define Si(v) = |{x ∈ Zl : freq(x,G[v]) = i}|. So S(v)
(or Si(v)) denotes the number of message blocks which are hashed at least
once (or exactly i many times respectively) to compute H(v, m).

Definition 3. (independent sequence of message indices )
Given an algorithm (G, ρ), (x1, x2, . . . , xk) is an independent sequence of mes-
sage indices if there exists vertices v1, v2, . . . , vk ∈ V such that

1. All occurrences of xi are in ρ(L[vi]) for all i.
2. xi /∈ ρ(L[vj ]) for all i > j.
3. vk = q, the root of the directed binary tree G.

We use the notation N (v) to denote the maximum value of k such that
there exists an independent sequence of message indices in G[v] of length k.
In particular, N (q) denotes the maximum length of an independent sequence
of message indices in the graph G. We say vi as a corresponding vertex of xi.
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Fig. 1. An example of 6-block binary tree based hash function.

Because of condition 2 in the Definition 3, the order of independent elements are
important. So (x2, x1, x3, · · · , xk) may not be independent even if (x1, x2, · · · , xk)
is an independent sequence.

In the Figure 1, (1, 5, 4) is an independent sequence. Here the corresponding
vertices of 1, 5 and 4 are v1, v2 and v3 respectively (shown in the figure 1).
Note that (4, 1, 5) is not an independent sequence as only vertex v such that
all occurrence of 4 in ρ(L[v]) is v3. One can also check that (5, 4) is still an
independent sequence in G − G[v1] and 1 does not appear in G − G[v1]. In
general we have the following lemma :

Lemma 1. If (x1, x2, . . . , xk) is an independent sequence in G then (x2, · · · , xk)
is also an independent sequence in G−G[v1] where, v1 is a corresponding vertex
of x1. Also we have, x1 /∈ ρ(L[G−G[v1]]).

Proof. x1 /∈ ρ(L[G −G[v1]]) since all occurrences of x1 are in ρ(L[v1]) (by the
condition 1 of the Definition 3). Also it is easy to check that (x2, · · · , xk) is an
independent sequence in G−G[v1]. ut

Now we can state one of our main theorems of the section. It says that given a
pair (G, ρ) if we have r independent elements in G then there is a 2r-way collision
attack for the hash function H based on the algorithm (G, ρ). The complexity of
this attack is O((s+1).2n/2) where, s is the number of intermediate nodes in G.
The idea of the attack is very much similar to that of Joux’s attack that is we
will try to find r pairs (not collision pairs) (m1

x1
,m2

x1
), · · · (m1

xr
,m2

xr
). And then

we can combine all these pairs independently to have a 2r-way collision attack.

In the example shown in the Figure 1, we first fix the message blocks m2, m3

and m6 by a n-bit string say IV . Then find m1
1 6= m2

1 such that H(v1,m
1
1) =

H(v1, m
2
1) = h∗1 by using 3.2n/2 computations of f . Now consider the graph G2 =

G−G[v1]. Similarly we will find m1
5 6= m2

5 such that H(v2,m
1
5) = H(v2,m

2
5) = h∗2

by using 3.2n/2 computations of f . Now consider the graph G3 = G2 − G[v3]
and the mapping ρ3(v1) = h∗1, ρ3(v2) = h∗2. For this pair (G3, ρ3), we can find



m1
4 6= m2

4 such that H(v3,m
1
4) = H(v3,m

2
4) = h∗3 by using 5.2n/2 computations

of f . Now it is easy to check that the following set

{m : mi = IV, i = 2, 3 and 6,mj = m1
j or m2

j , j = 1, 4 and 5}

is a multicollision set with the collision value h∗3. In this example we need
O(11.2n/2) computations of f where 10 is the number of intermediate nodes.
Now we will prove the theorem in more detail.

Theorem 2. If N (q) = r then we have 2r-way multicollision attack of H with
the complexity O((s + 1).2n/2), where s is the number of the intermediate nodes
in the binary directed tree G and q is the root of the binary tree.

Proof. We will prove that if (x1, · · · , xr) is an independent sequence in G then
a 2r multicollision set of the form

{m : mj = m1
xi

or m2
xi

, if j = xi, for some i, otherwise mj = IV }

can be found in the complexity O((s + 1).2n/2). We will prove this by in-
duction on r. Let vi be a corresponding vertex of xi. For r = 1 it is just
a birthday attack on H varying the message block mx1 and fixing all other
message blocks by a string IV . For r > 1, we first fix all message blocks
mi by IV where, i /∈ {x1, · · · , xr}. Then we will find a pair (m1

x1
,m2

x1
) with

m1
x1
6= m2

x1
such that H(v1,m

1
x1

) = H(v1, m
2
x1

) = h∗1 (say) with complexity
t.2n/2 where, t = |V [v1] − L[v1]|. Now consider the graph G′ = G − G[v1] and
ρ′ : L[G′] → [1, l]∪{0, 1}n where, ρ′(v1) = h∗1 and ρ′(v) = ρ(v) for any other leaf
v in L[G′]. By lemma 1 we know that (x2, · · · , xr) is an independent sequence
for the algorithm (G′, ρ′). So by induction hypothesis we can find a 2r−1-way
collision set

{m : mj = m1
xi

or m2
xi

, if j = xi, 2 ≤ i ≤ r, otherwise mj = IV, j 6= x1}

with the collision value h∗ (say) in time complexity O(|V ′ − L[G′]|). Note
that there is no occurrence of index x1 in the multi-set ρ′(L[G′]) and if the
intermediate hash value at the vertex v1 is h∗1 then the final hash value for
(G′, ρ′) is same as the final hash value for (G, ρ). So,

{m : mj = m1
xi

or m2
xi

, if j = xi, 1 ≤ i ≤ r, otherwise mj = IV }

is a 2r-way collision set with the collision value h∗ and the complexity is O((|V ′−
L[G′]|+ |V [v1]− L[v1]|)2n/2) = O(|V − L[V ]|.2n/2) = O((s + 1)2n/2). ut

Now we will prove a simple fact related to a directed binary tree which would
be useful to have a multicollision attack on generalized tree based hash functions.
Recall that, S(v) denotes the number of indices which appears in ρ(L[v]).

Lemma 2. For any pair (G, ρ) with S(q) ≥ 2N , there will be a vertex v ∈ V
with N ≤ S(v) ≤ 2N where q is the root of the tree G = (V, E).



Proof. Let u1 → v, u2 → v. Then it is easy to check that S(v) ≤ S(u1)+S(u2).
So, if u1 → q, u2 → q then S(u1) + S(u2) ≥ 2N . There will be one vertex say
u1 with S(u1) ≥ N . If S(u1) ≤ 2N then the result follows for v = u1. If not, we
can continue and we will reach a vertex v with N ≤ S(v) ≤ 2N . ut

Proposition 4. Let l = |S(q)| where q is the root of the tree. If freq(G) ≤ 2
then there is a vertex v such that N (v) ≥ N or N (q) ≥ M whenever l ≥ 2M.N .

Proof. We will prove it by induction on l. For M = 1, the statement is trivial
as N (q) ≥ 1. So assume M > 1. Since S(q) ≥ 2MN ≥ 2N by Lemma 2 there
is a vertex v such that N ≤ S(v) ≤ 2N . Now if S1(v) = S(v) ≥ N then
N (v) ≥ S1(v) ≥ N . If S1(v) < S(v) then there is an element say x1 which
appears exactly twice in ρ(L[v]) (note, freq(G) ≤ 2). Let G′ = G − G[v]. After
we choose an index x1 in ρ(L[v]), we want to make sure that no xi (i > 1) that is
is chosen later on also occurs in ρ(L[v]). To prevent this from happening, we take
all indices of message blocks in ρ(L[v]) and ”remove” them from any other leaves
in the graph, by fixing their values, before applying the inductive hypothesis.
Formally, define ρ′(v) and ρ′(u) by a n bit string where, u ∈ ρ(L[v]) ∩ ρ(L[G′]),
otherwise, ρ′(v) = ρ(v). Note, S(G′) ≥ 2.M.N−2.N = 2.(M−1)N . By induction
hypothesis for the graph G′ either N (q) ≥ M − 1 or there exists a vertex u such
that N (u) ≥ N . In the later case N (u) ≥ N (for the graph G). Otherwise there
exists M −1 independent elements x2, . . . , xM in the graph G′. Also x1 does not
appear in ρ(L[G′]) and x2, · · · , xM do not appear in ρ(L[v]). So, x1, x2, . . . , xM

are independent elements in G. ut
So whenever l ≥ 2r2.n either N (q) ≥ r or there is a vertex v such that

N (v) ≥ rn = k (say). In the former case we already have a 2r-way collision
attack. In the later case we can do the same thing what we have done in the
sequential case. Let (x1, · · · , xk) be an independent sequence. Find r vertices
v1, v2, · · · , vr = q in G′ (=G−G[v]) such that the following happen :

1. xin+1, xin+2, · · · , xin+n/2 ∈ ρ(L(G′[vi])) for all i.
2. xin+1, xin+2, · · · , xin+n/2 /∈ ρ(L(G′[vj ])) for all j < i.

So, we first find 2k-way collision on v. Then, we will find r successive collisions
from the multicollision set. The idea of the attack is very much similar with that
of sequential case so we ignore the detail. So we have our main theorem as follow:

Theorem 3. If freq(G(H)) ≤ 2 then we have a 2r-way multicollision with the
complexity O(r2n.2n/2).

4.2 A Note on Multi-Preimage Attack

For the sake of completeness we briefly study about the multi-preimage attack
on generalized sequential or generalized tree-based hash function. we can define
the following attack for a hash function H : {0, 1}∗ → {0, 1}n.



r-way preimage (multi-preimage) attack : Given a random y ∈ {0, 1}n, find
a subset C = {x1, · · · , xr} of size r (≥ 1) such that H(x1) = · · · = H(xr) = y.

The complexity for r-way preimage attack for a random function is Ω(r2n)
where, for generalized tree based or sequential hash function there is a r-way
preimage attack with complexity O(2n/2). It is almost same with the multicol-
lision attack. It starts exactly same as the multicollision attack and at the end
instead of finding last collision we will look for output value as given image y.
The complexity for last step is O(2n) which will dominate the rest complexity
(r2n2n/2) of multicollision attack.

5 Future Work and Conclusion

We have found a multicollision attack on a sequential or tree based hash function
where the message blocks can be used two times unlike classical definition. All
these construction can be viewed by a rooted directed tree or directed acyclic
graph (DAG). One can look for other directed graphs in which there can be more
than one path from an intermediate vertex to the root. That is, we can use the
intermediate hash values more than once. Also one can try to give some attack
where the message blocks can be used more than twice.
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