The Game-Playing Technique

M. Bellare * P. Rogaway ${ }^{\dagger}$

November 15, 2004
(Draft 0.1)

Abstract

In the game-playing technique, one writes a pseudocode game such that an adversary's advantage in attacking some cryptographic construction is bounded above by the probability that the game sets a flag bad. This probability is then upper bounded by making stepwise, syntactical refinements to the pseudocode - a chain of games. The approach was first used by Kilian and Rogaway (1996) and has been used repeatedly since, but it has never received a systematic treatment. In this paper we provide one. We develop the foundations for game-playing, formalizing a general framework for doing game-playing proofs and providing general and useful lemmas that justify various kinds of game-refinement steps. We then use this to prove a significant new result, namely an improved security bound for the basic CBC MAC. We also show how the use of games yields simpler and more easily verifiable proofs of some classic existing results.

Keywords: CBC MAC, cryptographic analysis techniques, games, provable security.

[^0]
Contents

1 Introduction 3
1.1 The game-playing approach 3
1.2 Foundations of game playing 3
1.3 Applications 3
1.4 Related work 4
1.5 Discussion and outline 5
2 The PRP/PRF Switching Lemma 5
3 The Game-Playing Framework 7
3.1 Game syntax 7
3.2 Running a game 8
3.3 Identical-until-bad-is-set games 8
3.4 The fundamental lemma 9
4 Improved Bound for the CBC MAC 10
4.1 Even better bounds 14
References 15
A Game-Rewriting Techniques 16
A. 1 After bad is set, nothing matters 16
A. 2 Coin fixing 16
A. 3 Lazy sampling 17
A. 4 Basic techniques 19
A. 5 Further advice 20
B Elementary Proof of the CBC MAC 20
C OAEP 23
D Equation (1) is true if the adversary asks a fixed number of queries 26

1 Introduction

This paper is about the game-playing approach for analyzing cryptographic constructions. We develop a theory of game-playing, elevating it from examples to a general and readily usable technique, and we showcase the use of the method with some illustrative applications. Our work supports the thesis that game-playing, done right, is a powerful tool, capable of delivering more complete and easily verifiable proofs of strong results than are obtainable by competing conventional methods.

1.1 The game-playing approach

The first step in our program is to distill from different approaches in the literature a single paradigm to capture what we want to call game playing. Roughly it works like this. Suppose we wish to upper bound the advantage of an adversary A in attacking some cryptographic construction. This is a number between 0 and 1 that is computed as the difference between the probabilities that A outputs 1 in two different "worlds." ${ }^{1}$ We proceed as follows:
(1) Write some pseudocode - a game - that captures the behavior of world 1. The game initializes variables, interacts with the adversary, and then runs some more.
(2) Write another piece of pseudocode - a second game - that captures the behavior of world 0 . Arrange that games 1 and 0 are syntactically identical programs apart from statements that follow the setting of a flag bad to true.
(3) Invoke a fundamental lemma of game playing to say that, in this setup, the adversary's advantage is upper-bounded by the probability that bad gets set (in either game).
(4) Choose one of the two games and slowly transform it, modifying it in ways that increase or leave unchanged the probability that bad gets set, or decrease the probability that bad gets set by a bounded amount.
(5) In this way you produce a game chain, ending at some terminal game. Bound the probability that bad gets set in the terminal game.
It is central to our approach that games are code, not some equivalent functional description; the method, as we develop it, centers around making disciplined transformations to code to get a cryptographic bound.

1.2 Foundations of game playing

We begin by giving a general framework for game-playing proofs. A game G is formalized as a tuple of programs, each written in some programming language. ${ }^{2}$ The programs have a common set of global, static variables. A game G can be run with an adversary A (look ahead to Figure 2), the adversary calling out to the programs that are provided. We define what it means for two games to be identical-until-bad-is-set, where bad is a boolean variable in the games. This is a syntactical condition. We prove a fundamental lemma for game-playing that says that if two games are identical-until-bad-is-set then the difference in the probabilities of a given outcome is bounded by the probability that bad gets set (in either game). The fundamental lemma is the central tool justifying the game-playing technique.

We go on to give some general lemmas and techniques for analyzing the probability that bad gets set. Principle among these is a simple lemma that lets you change anything you want after the flag bad gets set, and a lemma that justifies, in some cases, a commonly-used technique of "lazy" coin-flipping. We comment that while elements of this framework have been used before, nothing has been done with much care or formality.

1.3 Applications

The applications we provide are chosen to illustrate the applicability of games in a wide variety of environments: they range across the standard model and the random oracle model [BeR1], and across both

[^1]symmetric and asymmetric cryptographic primitives.
PRP/PRF Switching Lemma. We begin with a motivating observation, due to Tadayoshi Kohno, that the standard proof of the $P R P / P R F$ switching lemma, as given in [BKiR, HWKS], contains an error in reasoning about conditional probabilities. (The lemma says that an adversary that asks at most q queries can distinguish with advantage at most $q^{2} / 2^{n+1}$ a random permutation on n-bits from a random function of n-bits to n-bits. It is frequently employed in the analysis of constructions that use blockciphers and model them as PRPs.) We regard this as evidence that reasoning about cryptographic constructions via conditional probabilities can be subtle and error-prone even in the simplest of settings, and motivates the use of games as an alternative. We re-prove the switching lemma with a very simple game-based proof.

CBC MAC. A result of [BKiR] says that an adversary that asks at most q queries, each of exactly $m n$-bit blocks, can distinguish with advantage at most $2 m^{2} q^{2} / 2^{n}$ the CBC MAC of a random permutation from a random function of $m n$-bits to n-bits. The constant of 2 was reduced to 1 in [Ma]. The proof of [BKiR] was complex and did not directly capture the intuition behind the security of the scheme. In this paper we use games to give an elementary proof of the $m^{2} q^{2} / 2^{n}$ bound which captures this intuition. We then go on to provide a significant improvement: using a carefully chosen game chain, we improve the bound from $m^{2} q^{2} / 2^{n}$ to $m q^{2} / 2^{n}$ (ignoring a small leading constant). We note that improving the security bound for the CBC MAC has been a well-known open problem for ten years. This improved bound is the main new result of our paper.

The quantitative difference in the security guaranteed by these bounds can be significant when dealing with long messages. For example, if $n=64$ and messages are 128 KBytes ($m=2^{14}$) then a $m^{2} q^{2} / 2^{n}$ bound ceases to justify the CBC MAC at around $q=2^{18}$ messages, while our bound justifies the CBC MAC to around $q=2^{25}$ messages.
OAEP. Finally, we give an example of using games in the public-key, random-oracle setting by proving that OAEP [BeR2] with any trapdoor permutation is an IND-CPA secure encryption scheme. The original proof [BeR2] of this (known) result was hard to follow or verify; the new proof is simpler and clearer, and illustrates the use of games in a computational rather than information-theoretic setting.

1.4 Related work

The first use of the game-playing technique is due to Kilian and Rogaway [KR], who used the approach to analyse DESX. Shoup was the first to analyse a public-key construction [Sho] in the random-oracle with a game chain. Nowadays several authors describe cryptographic proofs in terms of games; see [PP, Bo, GMMV, HR, Sho, JJV] as a relatively random sample. Only in a few cases, however, (e.g. [HR]) do these conform to our version of games as pseudocode objects to be formally manipulated.

With motivation similar to our own, Maurer develops a framework for the analysis of cryptographic constructions and applies it to the CBC MAC and other examples [Ma]. Vaudenay has likewise developed a general framework for the analysis of blockciphers and blockcipher-based constructions, and has applied it to the encrypted CBC MAC [Va]. Neither Maurer's nor Vaudenay's approach are widely employed, and neither is geared towards making stepwise, code-directed refinements for computing a probability.

A more limited and less formal version of our fundamental lemma appears in [BKrR, Lemma 7.1]. A lemma by Shoup [Sho, Lemma 1] functions in a somewhat similar way but, to apply it, one must be able to argue that certain conditional probabilities in two games are the same. In contrast, to apply our lemma one needs only look at the code and verify that the games are identical-until-bad-is-set.

Works like [PR, Va, BIR] analyse variants of the basic CBC MAC. Their methods seem not to apply to the basic CBC MAC and in any case they all get bounds of (a constant times) $m^{2} q^{2} / 2^{n}$. Improved security bounds for the collision probability of the CBC MAC [JJV, DGHKR] give rise to improved security bounds for the encrypted CBC MAC (which has security of q^{2} times the collision probability for messages of m or fewer blocks-a fact easily shown using the game-playing technique), but there is no obvious way to use a good bound on the collision probability of the CBC MAC to derive a good bound on its security as a PRF. One can also break the $m^{2} q^{2} / 2^{n}$ "barrier" by moving to stateful or probabilistic schemes, as [JJV] did. The $m q^{2} / 2^{n}$ analysis of the CBC MAC was motivated by [JJV], and our proof uses an idea from that paper.

1.5 Discussion and outline

Why games? We advocate the game-playing paradigm for several reasons. First, we believe that the approach can lead to more easily verified, less error-prone proofs than those grounded in more conventional probabilistic language. In our opinion, many proofs in cryptography are essentially unverifiable, and we view well-executed game-playing arguments as an approach to help remedy this problem. Second, we believe that game-playing is very widely applicable. Games can be used in the standard model, the random-oracle model, the ideal-blockcipher model, and more; they can be used symmetric settings, public-key settings, and further trust models; they can be used for simple schemes and complex protocols. Proving the correctness of a zero-knowledge simulator or a key-distribution protocol could be done with games. Third, game-playing is readily applicable; one needn't spend weeks to learn some supporting theory. Finally, as we demonstrate, the game-playing technique can lead to significant new results that would seem to be hard to get to using any other technique.
Why Should this work? It is fair to ask if anything is actually "going on" when using games-couldn't you recast everything into more conventional mathematical language and drop all that ugly pseudocode? Our experience is that it doesn't work to do so. The kind of probabilistic statements and thought encouraged by the game-playing paradigm seems to be a better fit, for many cryptographic problems, than that which is encouraged by (just) defining random-variables, writing conventional probability expressions, conditioning, and the like. The power of the approach ultimately stems from the fact that pseudocode is the most precise and easy-to-understand language we know for describing the sort of probabilistic, reactive environments encountered in cryptography, and by remaining in that domain to do ones reasoning you are better able to see what is happening, manipulate what is happening, and validate the changes. In short, form matters.
Challenges. The extent to which games deliver easily verifiable proofs depends on the way they are used. One should make small, easily-checked adjustments as one moves from one game to the next; longer game chains with small changes between adjacent games are easier to verify than short chains with big jumps between adjacent games. This can be tedious and lead to lengthy proofs. To be fully rigorous, each adjustment to a game should be justified by a formally proven rule - the sort of rule that an optimizing compiler might employ to justify reusing a register or doing some code motion. There is not yet a rich enough theory to support all of the modifications to the code that you might want to make in a game. We believe that this will get better in time; this paper is one step.
Outline. We begin with the PRP/PRF switching lemma as a motivating example and gentle introduction to games. We then provide a general framework for game playing, where we state and prove the fundamental lemma. Next we prove our improved security bound for the CBC MAC. We use this example to illustrate and highlight certain kinds of game-refinement steps. These are treated in more abstraction and generality in Appendix A, where we formulate and prove lemmas justifying a variety of game-defining and refining steps. The proof of OAEP is in an appendix, as are additional results, including the simple proof for the weaker $m^{2} q^{2} / 2^{n}$ bound on the CBC MAC.

2 The PRP/PRF Switching Lemma

Let $\operatorname{Perm}(n)$ be the set of all permutations on $\{0,1\}^{n}$. Let $\operatorname{Rand}(n)$ be the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{n}$. By $A^{f} \Rightarrow 1$ we refer to the event that adversary A, equipped with an oracle f, outputs the bit 1 . In what follows, assume that π is randomly sampled from $\operatorname{Perm}(n)$ and ρ is randomly sampled from $\operatorname{Rand}(n)$.

Lemma 1 [PRP/PRF Switching Lemma] Let $n \geq 1$ be an integer. Let A be an adversary that asks at most q oracle queries. Then $\left|\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]\right| \leq q(q-1) / 2^{n+1}$. 【

The result is folklore, and is used extensively. Its value is the following. In analyzing a blockcipher-based construction C we need to bound how well an adversary A can do in breaking $\mathrm{C}[\pi]$, for a random permutation π on n bits. But it is often technically easier to upper bound how well the adversary can do in attacking $\mathrm{C}[\rho]$, for a random function ρ from n bits to n bits. Doing this suffices because we can then apply the Switching Lemma to conclude that the difference is small.

Initialize
Game S1

$$
\begin{array}{ll}
100 \quad \text { bad } \leftarrow \text { false } \\
101 \quad \text { for } X \in\{0,1\}^{n} \text { do } \pi(X) \leftarrow \text { undefined }
\end{array}
$$

On query $f(X)$
$Y \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
if $Y \in \operatorname{Range}(\pi)$ then $b a d \leftarrow$ true,$Y \stackrel{\S}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
$\pi(X) \leftarrow Y$
return Y

Game S0
drops the highlighted statement

Figure 1: Games used in the proof of the Switching Lemma.
In this section we point to some subtleties in the "standard" proof, as given for example in [HWKS, BKiR], of this apparently simple result, showing that one of the claims made in these proofs is incorrect. We then show how to prove the lemma using games. This example provides a gentle introduction to the game-playing technique and a warning about perils of following ones intuition when dealing with conditional probability in provable-security cryptography.

The standard analysis proceeds as follows. Let Coll ("collision") be the event that an adversary, interacting with an oracle ρ, asks distinct queries X and X^{\prime} that return the same answer. Let Dist ("distinct") be the complementary event. Now

$$
\begin{equation*}
\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid \text { Dist }\right] \tag{1}
\end{equation*}
$$

since a random permutation is indistinguishable from a random function in which one observes no collisions. Letting x be this common value and $y=\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid\right.$ Coll $]$ we have

$$
\begin{aligned}
\left|\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]\right| & =\mid x-x \operatorname{Pr}[\text { Dist }]-y \operatorname{Pr}[\text { Coll }]|=| x(1-\operatorname{Pr}[\text { Dist }])-y \operatorname{Pr}[\text { Coll }] \mid \\
& =\mid x \operatorname{Pr}[\text { Coll }]-y \operatorname{Pr}[\text { Coll }]|=|(x-y) \operatorname{Pr}[\text { Coll }] \mid \leq \operatorname{Pr}[\text { Coll }]
\end{aligned}
$$

where the final inequality follows because $x, y \in[0,1]$. One next argues that $\operatorname{Pr}[\operatorname{Coll}] \leq q(q-1) / 2^{n+1}$ and so the Switching Lemma follows.

Where is the error in the simple proof above? It's at (1); it needn't be the case that $\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]=$ $\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid\right.$ Dist $]$, and the sentence we gave by way of justification was mathematically meaningless. Here is a simple example to demonstrate that $\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]$ can be different from $\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid\right.$ Dist $]$. Let $n=2$, name the four points of $\{0,1\}^{2}$ as $0,1,2$, and 3 , and consider the following adversary A with oracle f :

$$
\text { if } f(0)=0 \text { then return } 1 \text { else if } f(1)=1 \text { then return } 1 \text { else return } 0
$$

Then $\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]=5 / 12 \approx 0.42$ because there are 12 possibilities for $\pi(0) \pi(1)$ and A returns 1 for five of them: $01,02,03,21,31$. On the other hand, $\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid\right.$ Dist $]=\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \wedge\right.$ Dist $] / \operatorname{Pr}[$ Dist $]=(6 / 16) /(13 / 16)=$ $6 / 13 \approx 0.46$ because there are 16 possible values $\rho(0) \rho(1)$ and $A^{\rho} \Rightarrow 1 \wedge$ Dist is true for six of them, 00,01 , $02,03,21,31$, while Dist is true for 13 of them: $00,01,02,03,10,12,13,20,21,23,30,31,32$.

Notice that the number of oracle queries made by the adversary of our counterexample varies, being either one or two, depending on the reply it receives to its first query. As we show in Appendix D (this was also pointed out by Kohno), if A always makes exactly q oracle queries (regardless of A 's coins and the answers returned to its queries) then (1) is true. Since one can always first modify A to make exactly q queries, we would be loth to say that the proofs in [HWKS, BKiR] are incorrect, but the authors make claim (1), and view it as "obvious," without restricting the adversary to exactly q queries, masking a subtlety that is not apparent at a first (or even second) glance.

The fact that one can write something like (1) and people assume this to be correct, and even obvious, coupled with the fact that this example is both typical elementary, suggests to us that the language of conditional probability may often be unsuitable for thinking about and dealing with the kind of probabilistic scenarios that arise in cryptography. Games may more directly capture the desired intuition. Let's use them to give a correct proof. Assume without loss of generality that A never asks an oracle query twice.

We imagine answering A 's queries by running one of two games. Instead of thinking of A interacting with a random permutation oracle $\pi \stackrel{\&}{\leftarrow} \operatorname{Perm}(n)$ think of A interacting with the Game S1 shown in Figure 1. Instead of thinking of A interacting with a random function oracle $\rho \stackrel{\Phi}{\leftarrow} \operatorname{Rand}(n)$ think of A interacting with the game S 0 shown in the same figure. Game S 0 is game S 1 without the shaded statement.

In both games S1 and S0 we start off performing the initialization step, setting a flag bad to false and setting a variable π to be undefined at every n-bit string. (We will soon establish conventions that eliminate the need to write these steps.) As the game runs, we fill-in values of $\pi(X)$ with n-bit strings. At any point in time, we let Range (π) be the set of all n-bit strings Y such that $\pi(X)=Y$ for some X. Let $\overline{\text { Range }(\pi) \text { be }}$ the complements of this set relative to $\{0,1\}^{n}$.

Notice that the adversary never sees the flag bad. The flag will play a central part in our analysis, but it is not something that the adversary can observe. It's only there for our bookkeeping. What does adversary A see as it plays game S 0 ? Whatever query X it asks, the game returns a random n-bit string Y. So game S 0 perfectly simulates a random function $\rho \stackrel{\&}{\leftarrow} \operatorname{Rand}(n)$ (remember that the adversary isn't allowed to repeat a query) and $\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{S 0} \Rightarrow 1\right]$. Similarly, if we're in game $S 1$, then what the adversary gets in response to each query X is a random point Y that has not already been returned to A. The behavior of a random permutation oracle is exactly this, too. (This is guaranteed by what we will call the "principle of lazy sampling.") So $\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{\mathrm{S} 1} \Rightarrow 1\right]$. At this point we have that $\left|\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]\right|=$ $\left|\operatorname{Pr}\left[A^{\mathrm{S} 1} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{S} 0} \Rightarrow 1\right]\right|$. We next claim that $\left|\operatorname{Pr}\left[A^{\mathrm{S} 1} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{S} 0} \Rightarrow 1\right]\right| \leq \operatorname{Pr}\left[A^{\mathrm{S} 0}\right.$ sets bad $]$. We refer to the lemma that makes this step possible as the fundamental lemma of game playing. The lemma says that whenever two games are written so as to be syntactically identical except for things that immediately follow the setting of bad, the difference in the probabilities that A outputs 1 in the two games is bounded by the probability that bad is set in either game. (It actually says something a bit more general, as we will see.) So we have left only to bound $\operatorname{Pr}\left[A^{\mathrm{S} 0}\right.$ sets bad $]$. By the union bound, the probability that a Y will ever be in Range (π) at line 111 is at most $(1+2+\cdots+(q-1)) / 2^{n}=q(q-1) / 2^{n+1}$. This completes the proof.

3 The Game-Playing Framework

3.1 Game syntax

A program P is a finite, valid sequence of statements written in some programming language, \mathcal{L}. We identify a program with its parse tree. Programs take zero or more strings as input and produce zero or more strings as output. We only consider programs that always terminate. We will not formally specify the programming language \mathcal{L}; our language will be "pseudocode" and we will keep it simple enough that there won't be any ambiguity about how to run a program. Certainly one could rigorously define the programming language that one wanted to use for specifying games, and one could then endow it with a proper execution semantics, but this won't be necessary for us. We will, however, need to explain some basic characteristics and conventions for our pseudocode.

We include the usual repertoire of constructs one finds in a procedural programming language: variables, assignment statements, if-statements, for-statements, and so forth. We also include a sample-then-assign operator $\stackrel{\&}{\leftarrow}$ where $X \stackrel{\&}{\leftarrow} \mathcal{X}$ means to select a random element from the finite set \mathcal{X} (all elements equally probable) and assign the resulting value to the variable X. This is the only source of randomness in programs, so probabilities are taken over the choices associated to sample-then-assign statements. Variables in programs are understood to be static and global: their values "hang around" from call to call and have a scope of all programs in an associated game, which we will define shortly. We'll assume a relatively rich set of types: booleans, integers, strings, arrays (including arrays indexed by strings), finite sets, and partial functions from finite sets to finite sets. We won't explicitly declare variables, but each variable will have a fixed type, that type being clear from the context. We'll use a comma as a statement separator, and $\mathrm{S}, \mathrm{S}^{\prime}$ is a statement when S and S^{\prime} are. The empty statement ε is also a statement, and we regard S and S, ε as the same. We use indentation to indicate grouping. Boolean variables are automatically initialized to false and other variables are initially everywhere undefined (an array is undefined for all possible indices and a function is undefined at all domain points).

Definition 2 [Games] A game $\mathrm{G}=\left(\right.$ Initialize, $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$, Finalize) is a sequence of programs.
Programs $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$ are the oracles of the game. If we omit specifying Initialize or Finalize it means that the program does nothing: it computes the identity function. We let param denote the input to Initialize and we let inp denote its output. We let out be the input to Finalize and we let outcome be its output. If we describe a game by giving a single unlabeled program, that program is the Finalize program. For all of our games, the Initialize and Finalize programs will have those names, but we will choose suggestive names for $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$. To see examples of games, look ahead to any of the games appearing later in this paper, which we name as in C 4 or S 1 .

Figure 2: Running a game G with an adversary A. The game-the box that surrounds A-consists of pseudocode procedures Initialize, $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$, and Finalize. The adversary A receives an (optional) input from the game, interacts with its oracles $\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$, and produces an output. The outcome of the game is determined by Finalize.

3.2 Running a game

To run a game G we need an adversary A to interact with it. See Figure 2. An adversary is a probabilistic algorithm equipped with the ability to query some number $n \geq 0$ of oracles. For convenience, we assume that an adversary is described by a program - in particular, its source of randomness is sample-then-assign statements $X \stackrel{\&}{\leftarrow} \mathcal{X}$ where the adversary has constructed the finite set \mathcal{X} using the constructs of the programming language. ${ }^{3}$ The pair consisting of a game G and an adversary A is called a runnable game. We will refer to a runnable game between G and A by writing either G_{A} or A^{G}. We'll use the first notation if we want to emphasize what the game is doing, and we'll use the second notation if we want to emphasize what the adversary is doing.

To run $\mathrm{G}=\left(\right.$ Initialize $, \mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{n}$, Finalize $)$ with A and string parameter param, begin by calling program Initialize with input param. (In the asymptotic setting, this might be a security parameter k. For all of our non-asymptotic examples param is empty.) We now run A, passing it any (string) return value inp produced by Initialize. When adversary A calls its $i^{\text {th }}$ oracle with a given string, we pass that string to program P_{i} and run it. We return to A whatever string the program P_{i} says to return. We assume that an adversary eventually terminates, regardless of what it receives from its environment. (That is, adversary A should terminate even if we were to run it in some other, arbitrary game.) When A halts, possibly with some output out, we call Finalize, providing it any output produced by A. The outcome of the game is the string value returned by Finalize. The outcome of a game can be regarded as a random variable, the randomness taken over the sample-then-assign statements of the adversary A and the game G. Often the outcome of the game is the return value of A, procedure Finalize not doing anything beyond passing on its input as its output.

We write $\operatorname{Pr}\left[\mathrm{G}_{A} \Rightarrow 1\right]$ for the probability that the outcome of game G is 1 when we run G_{A}. We say that games G and H are equivalent if for any adversary A it is the case that $\operatorname{Pr}\left[\mathrm{G}_{A} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathrm{H}_{A} \Rightarrow 1\right]$.

We write $\operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right]$ to refer to the probability that the adversary A outputs 1 when we run G_{A}. The advantage of A in distinguishing games G and H is the real number $\operatorname{Adv}_{\mathrm{G}, \mathrm{H}}^{\text {dist }}(A)=\operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{H}} \Rightarrow 1\right]$. We say that games G and H are (perfectly) adversarially indistinguishable if for any adversary A it is the case that $\operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{\mathrm{H}} \Rightarrow 1\right]$.

3.3 Identical-until-bad-is-set games

A boolean variable bad in a game G is called a flag if starts off as false and changes values at most once: once a flag becomes true, it can never revert to false. We are interested in programs that are syntactically identical until a flag bad has been set to true. The formal definition is as follows.
Definition 3 [Identical-until-bad-is-set] Let P and Q be programs and let bad be a flag in each of them. Then P and Q are identical-until-bad-is-set if their parse trees are the same except for the following: wherever program P has a statement bad \leftarrow true, S in its parse tree, program Q has at the corresponding position of its parse tree that statement bad \leftarrow true, T for a T that is possibly different from S . Games

[^2]$\mathrm{G}=\left(\right.$ Initialize $, \mathrm{P}_{1}, \ldots, \mathrm{P}_{n}$, Finalize) and $\mathrm{H}=\left(\right.$ Initialize $^{\prime}, \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n}$, Finalize ${ }^{\prime}$) are identical-until-bad-is-set if each of their corresponding programs are identical-until-bad-is-set.
As an example, games S0 and S1 from Figure 1 are identical-until-bad-is-set. For one of these games, S0, we have the empty statement following $b a d \leftarrow$ true in the parse tree of S 0 ; for S 1 , we have the statement $Y \stackrel{\&}{\leftarrow} \overline{\text { Range }}(\pi)$. Since this is the only difference in the programs, the games are identical-until-bad-is-set.

We'll also say that G and H are are identical-until-bad-is-set if one game has the statement if bad then S where the other has the empty statement ε. One can consider if bad then S to be the same as if $b a d$ then $b a d \leftarrow$ true, S and one can consider the empty statement ε to be the same as if $b a d$ then $b a d \leftarrow$ true, ε and under this convention the games are identical-until- $b a d$-is-set under the given definition.

We write $\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets $\left.b a d\right]$ to refer to the probability that the flag $b a d$ is true at the end of the execution of the runnable game G_{A}, when Finalize terminates. The following is easy to see:
Proposition 4 Identical-until-bad-is-set is an equivalence relation on games.

3.4 The fundamental lemma

The lemma that justifies the game-playing technique is the following.
Lemma 5 [Fundamental lemma of game-playing] Let G and H be identical-until-bad-is-set games, and let A be an adversary. Then

$$
\operatorname{Pr}\left[\mathrm{G}_{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{H}_{A} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\mathrm{G}_{A} \text { sets bad }\right]
$$

More generally, $\left|\operatorname{Pr}\left[\mathrm{G}_{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{H}_{A} \Rightarrow 1\right]\right| \leq \operatorname{Pr}\left[\mathrm{I}_{A}\right.$ sets bad $] \mid$ for any identical-until-bad-is-set games $\mathrm{G}, \mathrm{H}, \mathrm{I}$. 【
Proof of Lemma 5: Ignore for now the second statement in the lemma; it will follow immediately from the first statement by using Proposition 9.
We have assumed that the adversary and all programs comprising a game always terminate, and so there exists a smallest number b such that A and G_{A} and G_{B} perform no more than b sample-then-assign statements, each of these sample-then-assign statements sampling from a set of size at most b. Let $C=\operatorname{Coins}(A, \mathrm{G}, \mathrm{H})=$ $[1 . . b!]^{b}$ be the set of b-tuples of numbers, each number between 1 and $b!$. We call C the coins for $(A, \mathrm{G}, \mathrm{H})$. A random execution of G_{A} can be determined in the following way. First, draw a random sample $c=\left(c_{1}, \ldots, c_{b}\right)$ from C. Then, using c, deterministically execute G_{A} as follows: On the $i^{\text {th }}$ sample-then-assign statement, $X_{i} \stackrel{\oiint}{\leftarrow}\left\{X_{0}, \ldots, X_{n_{i}-1}\right\}$, let X_{i} be $X_{c_{i} \bmod n_{i}}$ This way to perform sample-then-assign statements is done regardless of whether A is the one performing the sample-then-assign statement or one of the programs from G is performing the statement. Now notice that n_{i} divides b ! and so the mechanism above will return a uniform point X_{i} from $\left\{X_{0}, \ldots, X_{n_{i}-1}\right\}$. The return values for each sample-then-assign statement are independent, so we have properly simulated G_{A} using the random point from C and no other source of randomness. Similarly, starting from a random point $\left(c_{1}, \ldots, c_{b}\right)$ from C we can run H_{A} without any further coins by performing the $i^{\text {th }}$ sample-then-assign statement $X_{i} \stackrel{\&}{\leftarrow}\left\{X_{0}, \ldots, X_{n_{i}-1}\right\}$ statement as before. From now on in the proof, assume that we realize G_{A} and H_{A} as we have described, by sampling $\left(c_{1}, \ldots, c_{b}\right)$ from the coins C for $(A, \mathrm{G}, \mathrm{H})$. We let $\mathrm{G}_{A}(c)$ and $\mathrm{H}_{A}(c)$ denote the run of G and H , respectively, with A and the indicated coins $c \in C$.

Let $C G_{\text {one }}=\left\{c \in C: \mathrm{G}_{A}(c) \Rightarrow 1\right\}$ be the coins that cause G_{A} to output 1 , and similarly define $C H_{\text {one }}$ for H_{A}. Partition $C G_{\text {one }}$ into $C G_{\text {one }}^{\text {bad }}$ and $C G_{\text {one }}^{\text {good }}$ according to whether bad is set to true in the run, and similarly define $C H_{\text {one }}^{\text {bad }}$ and $C H_{\text {one }}^{\text {good }}$. Define $C G^{\text {bad }}=\left\{c \in C: \mathrm{G}_{A}(c)\right.$ sets $\left.b a d\right\}$. Observe that because games H and G are identical-until-bad-is set games, an element $c \in C$ is in $C G_{\text {one }}^{\text {good }}$ iff it is in $C H_{\text {one }}^{\text {good }}$, so $\left|C G_{\text {one }}^{\text {good }}\right|=\left|C H_{\text {one }}^{\text {good }}\right|$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{G}_{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{H}_{A} \Rightarrow 1\right] & =\frac{\left|C G_{\text {one }}\right|-\left|C H_{\text {one }}\right|}{|C|}=\frac{\left|C G_{\text {one }}^{\text {bad }}\right|+\left|C G_{\text {one }}^{\text {good }}\right|-\left|C H_{\text {one }}^{\text {good }}\right|-\left|C H_{\text {one }}^{\text {bad }}\right|}{|C|} \\
& =\frac{\left|C G_{\text {ore }}^{\text {bad }}\right|-\left|C H_{\text {one }}^{\text {bad }}\right|}{|C|} \leq \frac{\left|C G_{\text {one }}^{\text {bad }}\right|}{|C|} \leq \frac{\left|C G^{\text {bad }}\right|}{|C|}=\operatorname{Pr}\left[\mathrm{G}_{A} \text { sets bad }\right] .
\end{aligned}
$$

The final claim in the lemma, that $\mid \operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{H}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[A^{\mathrm{I}}\right.$ sets bad $] \mid$ when G , H , and I are identical-until-bad-is-set, follows directly from Lemma 9 (to be given later). That lemma ensures that
$\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets bad $]=\operatorname{Pr}\left[\mathrm{H}_{A}\right.$ sets bad $]=\operatorname{Pr}\left[\mathrm{I}_{A}\right.$ sets bad $]$ and so $\operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{H}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[A^{\mathrm{I}}\right.$ sets bad $]$ and, by symmetry, $\operatorname{Pr}\left[A^{\mathrm{H}} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{G}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[A^{\mathrm{I}}\right.$ sets bad $]$. This completes the proof.
Terminology. The power of the game-playing technique stems, in large part, from our ability to incrementally rewrite games, constructing chains of games that are at the center of a game-playing proof. Using the fundamental lemma, you first arrange that the analysis you want to carry out amounts to bounding $\epsilon=\operatorname{Pr}\left[\mathrm{G} 1_{A}\right.$ sets bad] for some first game G1 and some adversary $A .{ }^{4}$ You want to bound ϵ as a function of the resources expended by A. To this end, you modify the game G1, one step at a time, constructing a chain of games G1 $\longrightarrow \mathrm{G} 2 \longrightarrow \mathrm{G} 3 \longrightarrow \cdots \longrightarrow \mathrm{G} n$. Game G1 is the initial game and game $\mathrm{G} n$ is the terminal game. Game G1 is played against A; other games may be played against other adversaries (though they usually are not). Consider a transition $\mathrm{G}_{A} \rightarrow \mathrm{H}_{B}$. Let $p_{G}=\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets bad $]$ and let $p_{H}=\operatorname{Pr}\left[\mathrm{H}_{B}\right.$ sets bad $]$. We want to bound p_{G} in terms of p_{H}. (1) Sometimes we show that $p_{G} \leq p_{H}$. In this case, the transformation is said to be safe. A special case of this is when $p_{G}=p_{H}$, in which case the transformation is said to be conservative. (2) Sometimes we show that $p_{G} \leq p_{H}+\epsilon$ or $p_{G} \leq c \cdot p_{H}$ for some particular $\epsilon>0$ or $c>1$. Either way, we call the transformation lossy. For an additive lossy transformation, ϵ is the loss term; for a multiplicative lossy transformation, c is the dilation term. When a chain of safe and additively lossy transformations is performed, a bound for bad getting set in the initial game is obtained by adding up all the loss terms and the bound for bad getting set in the terminal game. If there are multiplicative losses then we bound bad getting set in the initial game in the natural way. We use the words conservative, safe, and lossy to apply to pairs of games even in the absence of an adversary: the statement is then understood to apply to all adversaries, or to all adversaries with understood resources. For example, the transformation $G \rightarrow H$ is conservative if for all adversaries A we have that $\operatorname{Pr}\left[G_{A}\right.$ sets $\left.b a d\right]=\operatorname{Pr}\left[H_{A}\right.$ sets bad $]$.
Game rewriting techniques. Appendix A provides guidelines and methods for conservative, safe, and lossy transforms of one game into another, with justifications for their use.

4 Improved Bound for the CBC MAC

Fix $n, m \geq 1$ and a function $E: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ where \mathcal{K} is a finite set. Then the m-fold $C B C M A C$ of E is the function $\mathrm{CBC}^{m}[E]: \mathcal{K} \times\{0,1\}^{m n} \rightarrow\{0,1\}^{n}$ defined by $\mathrm{CBC}^{m}[E]\left(K, M_{1} \cdots M_{m}\right)=C_{m}$ where $\left|M_{1}\right|=\cdots=\left|M_{m}\right|$ and $C_{0}=0^{n}$ and $C_{i}=E_{K}\left(C_{i-1} \oplus M_{i}\right)$ for all $i \in[1 . . m]$.

Let $\operatorname{Perm}(n)$ denote the set of all permutations on $\{0,1\}^{n}$ and let $\operatorname{Rand}(m n, n)$ denote the set of all functions from $\{0,1\}^{m n}$ to $\{0,1\}^{n}$. Given an algorithm A having oracle-access to a function $F:\{0,1\}^{m n} \rightarrow$ $\{0,1\}^{n}$ let $\mathbf{A d v}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[K \stackrel{\&}{\leftarrow} \mathcal{K}: A^{\mathrm{CBC}^{m}[E](K, \cdot)} \Rightarrow 1\right]-\operatorname{Pr}\left[\rho \stackrel{\S}{\leftarrow} \operatorname{Rand}(m n, n): A^{\rho(\cdot)} \Rightarrow 1\right]$. To avoid working out uninteresting special cases, we assume throughout that the adversary asks $q \geq 2$ oracle
 over all adversaries A that ask at most q queries, regardless of oracle responses.

Let us explain the idea for the game-based $m q^{2} / 2^{n}$ analysis for the basic CBC MAC. An adversary adaptively asks for the CBC MACs of a sequence of q messages, each m blocks. As we CBC MAC our way down the $s^{\text {th }}$ message M^{s}, let X_{i}^{s} denote the input to the $i^{\text {th }}$ blockcipher call. A game-based analysis proving an $m^{2} q^{2} / 2^{n}$ bound would "give up"-set bad-whenever there is a "nontrivial internal collision." By a nontrivial internal collision we mean that $X_{i}^{r}=X_{j}^{s}$ even though M^{r} and M^{s} don't share a common prefix of $i=j$ blocks. We give such a proof in Appendix B (and we advise the reader that it makes for a gentler introduction to the game-playing technique). To deliver a better bound we set bad more stingily: we do this only when an X_{m}^{s} equals a prior X_{i}^{r}. In particular, collisions between and X_{i}^{r} value and an X_{j}^{s} value will be not cause bad to be set if i and j are less than m.

The idea is simple, but getting it to work out is tricky, and it provides a good illustration of the gameplaying technique. In general, one is often faced with a choice when doing a game-based proof: set bad liberally and get an easier analysis for a weaker result, or set bad more reluctantly and things get harder. The pair of proofs illustrates the dichotomy.

Theorem 6 [CBC MAC, strong bound] $\mathbf{A d v}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\mathrm{prf}}(q) \leq 4.5 m q^{2} / 2^{n}$. I

[^3]

On the $s^{\text {th }}$ query $F\left(M^{s}\right) \quad$ Game D3

for $s \leftarrow 1$ to q do	
$C_{0}^{s} \leftarrow 0^{n}$	
for $i \leftarrow 1$ to $m-1$ do	
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus \mathrm{M}_{i}^{s}$	
if $X_{i}^{s}=X_{m}^{r}$ for an $r<s$ then $b a d \leftarrow$ true	
if $X_{i}^{s} \in \operatorname{Domain}(\pi)$ then $C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$	
else $\pi\left(X_{i}^{s}\right) \leftarrow C_{i}^{s} \stackrel{\$}{\leftarrow} \overline{\text { Range }}(\pi)$	
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus \mathrm{M}_{m}^{s}$	
if $X_{m}^{s} \in \operatorname{Domain}(\pi)$ or $X_{m}^{s}=X_{m}^{r}$ for an $r<s$ then $b a d \leftarrow$ true	
$\pi \stackrel{\&}{\leftarrow} \operatorname{Perm}(n) \quad$ Game D7	
$C_{0} \leftarrow C_{0}^{\prime} \leftarrow 0^{n}$	
for $i \leftarrow 1$ to m do	
$X_{i} \leftarrow C_{i-1} \oplus \mathrm{M}_{i}$	
$C_{i} \leftarrow \pi\left(X_{i}\right)$	
for $i \leftarrow 1$ to m do	
$X_{i}^{\prime} \leftarrow C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}$	
$C_{i}^{\prime} \leftarrow \pi\left(X_{i}^{\prime}\right)$	
bad $\leftarrow X_{m}^{\prime} \in\left\{X_{1}\right.$,	

$C_{0}^{s} \leftarrow 0^{n}$
for $i \leftarrow 1$ to $m-1$ do
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus M_{i}^{s}$
if $X_{i}^{s}=X_{m}^{r}$ for an $r<s$ then bad \leftarrow true
if $X_{i}^{s} \in \operatorname{Domain}(\pi)$ then $C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$
else $\pi\left(X_{i}^{s}\right) \leftarrow C_{i}^{s} \stackrel{\S}{\leftarrow} \overline{\text { Range }}(\pi)$
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus M_{m}^{s}$
$C_{m}^{s} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
if $C_{m}^{s} \in \operatorname{Range}(\pi)$ or $C_{m}^{s}=C_{m}^{r}$ for an $r<s$ or $X_{m}^{s} \in \operatorname{Domain}(\pi)$ or $X_{m}^{s}=X_{m}^{r}$ for an $r<s$
then $b a d \leftarrow$ true
return C_{m}^{s}
$C_{0}^{s} \leftarrow 0^{n}$
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus \mathrm{M}_{i}^{s}$
if $X_{i}^{s}=X_{m}^{r}$ for an $r<s$ then $b a d \leftarrow$ true
$X_{i}^{s} \in \operatorname{Domain}(\pi)$ then $C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$
else $\pi\left(X_{i}^{s}\right) \leftarrow C_{i}^{s} \stackrel{\S}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus \mathrm{M}_{m}^{s}$
$X_{m} \in \operatorname{Domain}(\pi)$ or $X_{m}^{s}=X_{m}^{r}$ for an $r<s$

Game D7

800

805
$809 \quad$ bad $\leftarrow X_{m}^{*} \in\left\{X_{1}, \ldots, X_{m}, X_{1}^{\prime}, \ldots, X_{m-1}^{\prime}\right\}$

On the $s^{\text {th }}$ query $F\left(M^{s}\right)$
$200 \quad C_{0}^{s} \leftarrow 0^{n}$
for $i \leftarrow 1$ to $m-1$ do
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus M_{i}^{s}$
if $X_{i}^{s} \in \operatorname{Domain}(\pi)$ then $C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$
else $\pi\left(X_{i}^{s}\right) \leftarrow C_{i}^{s} \stackrel{\oiint}{\leftarrow} \overline{\text { Range }}(\pi)$
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus M_{m}^{s}$
$C_{m}^{s} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
if $C_{m}^{s} \in \operatorname{Range}(\pi)$ or
$X_{m}^{s} \in \operatorname{Domain}(\pi)$ then bad \leftarrow true
$\pi\left(X_{m}^{s}\right) \leftarrow C_{m}^{s}$
return C_{m}^{s}

On the $s^{\text {th }}$ query $F\left(M^{s}\right)$
Game D4

801
802
803
804
806
807
808
Game D2
$C_{0}^{s} \leftarrow 0^{n}$
for $i \leftarrow 1$ to $m-1$ do
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus M_{i}^{s}$
if $X_{i}^{s}=X_{m}^{r}$ for an $r<s$ then bad \leftarrow true
if $X_{i}^{s} \in \operatorname{Domain}(\pi)$ then $C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$
else $\pi\left(X_{i}^{s}\right) \leftarrow C_{i}^{s} \stackrel{\&}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus M_{m}^{s}$
if $X_{m}^{s} \in \operatorname{Domain}(\pi)$ or $X_{m}^{s}=X_{m}^{r}$ for an $r<s$ then $b a d \leftarrow$ true
$C_{m}^{s} \stackrel{\oiint}{\leftarrow}\{0,1\}^{n}$
return C_{m}^{s}
$\pi \stackrel{\$}{\leftarrow} \operatorname{Perm}(n)$
Game D6
for $s \in[1 . . q]$ do
$C_{0}^{s} \leftarrow 0^{n}$
for $i \leftarrow 1$ to $m-1$ do
$X_{i}^{s} \leftarrow C_{i-1}^{s} \oplus \mathrm{M}_{i}^{s}$
$C_{i}^{s} \leftarrow \pi\left(X_{i}^{s}\right)$
$X_{m}^{s} \leftarrow C_{m-1}^{s} \oplus \mathrm{M}_{m}^{s}$
$b a d \leftarrow(\exists(r, i) \neq(s, m))\left[X_{m}^{s}=X_{i}^{r}\right]$
$X_{m}^{*} \stackrel{\&}{\leftarrow}\{0,1\}^{n}, \quad C_{0} \leftarrow C_{0}^{\prime} \leftarrow 0^{n} \quad$ Game D8
for $i \leftarrow 1$ to m do
$X_{i} \leftarrow C_{i-1} \oplus \mathrm{M}_{i}$
if $X_{i} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}\right) \stackrel{\&}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
$C_{i} \leftarrow \pi\left(X_{i}\right)$
for $i \leftarrow\left\|\operatorname{Prefix}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)\right\|+1$ to $m-1$ do
$X_{i}^{\prime} \leftarrow C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}$
if $X_{i}^{\prime} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}^{\prime}\right) \stackrel{\oiint}{\leftarrow} \overline{\text { Range }}(\pi)$
$C_{i}^{\prime} \leftarrow \pi\left(X_{i}^{\prime}\right)$

Figure 3: Games D0-D8 used in the $m q^{2} / 2^{n}$ analysis of the CBC MAC.

Proof: The proof relies on the games in Figure 3, and we begin by explaining its notation. A block is a string of length n and a string of blocks has length divisible by n. If $P \in\left(\{0,1\}^{n}\right)^{*}$ is a string of blocks we let $\|P\|=|P| / n$ be the number of blocks in P. Each query M^{s} in the games is required to be a string of blocks, and we silently parse M^{s} to $M^{s}=M_{1}^{s} M_{2}^{s} \cdots M_{m}^{s}$ where each M_{i} is a block. We write $M_{1 \rightarrow i}^{s}$ for $M_{1}^{s} \cdots M_{i}^{s}$. The function $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is initially undefined at each point. The set Domain (π) grows as we define points $\pi(X)$, while $\overline{\operatorname{Range}}(\pi)$, initially $\{0,1\}^{n}$, correspondingly shrinks. Finally, Prefix $\left(M^{1}, \ldots, M^{s}\right)$ is the longest string of blocks $P=P_{1} \cdots P_{p}$ that is a prefix of M^{s} and is also a prefix of M^{r} for some $r<s$. If Prefix is applied to a single string the result is the empty string, $\operatorname{Prefix}\left(P^{1}\right)=\varepsilon$. As an example, letting A, B, and C be distinct blocks, $\operatorname{Prefix}(\mathrm{ABC})=\varepsilon$, $\operatorname{Prefix}(\mathrm{ACC}, \mathrm{ACB}, \mathrm{ABB}, \mathrm{ABA})=\mathrm{AB}$, and $\operatorname{Prefix}(\mathrm{ACC}, \mathrm{ACB}, \mathrm{BBB})=\varepsilon$.

Fix n, m, and q. Let A be an adversary that asks at most q queries and assume without loss of generality that it never repeats a query. Refer to games D0-D8 shown in Figure 3.
D1: We begin with game D1, which faithfully simulates the CBC MAC construction. Several techniques are used for creating this initial game. One is the lazy sampling of a random permutation, as described in Section A.3. Instead of choosing a random permutation π up front, we fill in its values at random asneeded, so as to not to create a conflict. Another idea employed is the resampling idiom, as discussed in Section A.4. Rather more specifically to game D1, one needs to observe that if bad = false at line 109111 then $\widehat{C}_{m}^{s}=C_{m}^{s}$ and so game D1 always returns C_{m}^{s}, regardless of bad. This makes it clear that $\operatorname{Pr}\left[A^{\mathrm{D} 1} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{\mathrm{CBC}} \pi \Rightarrow\right]$. D0: Game D0, which omits line 110 and the statements that immediately follow the setting of bad to true at lines 107 and 108, returns the random n-bit string $C_{m}^{s}=\widehat{C}_{m}^{s}$ in response to each query, so $\operatorname{Pr}\left[A^{\mathrm{D} 0} \Rightarrow 1\right]=\operatorname{Pr}\left[A^{\rho} \Rightarrow\right]$. So $\mathbf{A d v}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\mathrm{prf}}(A)=\operatorname{Pr}\left[A^{\mathrm{CBC}_{\pi}} \Rightarrow\right]-\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]=$ $\operatorname{Pr}\left[A^{\mathrm{D} 1} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\mathrm{D} 0} \Rightarrow 1\right] \leq \operatorname{Pr}\left[A^{\mathrm{D} 0}\right.$ sets bad $]$ where the last inequality is by the fundamental lemma. Our job is to now bound $\operatorname{Pr}\left[A^{\mathrm{D} 0}\right.$ sets $\left.b a d\right]$. $\mathbf{D} 0 \rightarrow \mathbf{D} 2$: We rewrite game D 0 as game D 2 by dropping variable \widehat{C}_{m}^{s} and using variable C_{m}^{s} in its place, as these are always equal. The change from D 0 to D 2 is conservative: $\operatorname{Pr}\left[A^{\mathrm{D} 0}\right.$ sets $\left.b a d\right]=\operatorname{Pr}\left[A^{\mathrm{D} 2}\right.$ sets bad]. D2 $\rightarrow \mathbf{D} 3$: Game D3 is a safe replacement for D2. We eliminate line 209 and then, to compensate, we set bad any time the value would have been accessed. This accounts for the new line 303 and the new disjuncts on lines 308 and 309 . $\mathbf{D} 3 \rightarrow \mathbf{D 4}$: Game D4 is a lossy modification to game D3. We remove the test at line 308. The probability that bad is set due due to the disjuncts at line 308 is at most $(m-1+(2 m-1)+\cdots+(q m-1)) / 2^{n}=(m(1+2+\cdots+q)-q) / 2^{n}=(0.5 m q(q+1)-q) / 2^{n}$. We therefore have, so far, that

$$
\begin{equation*}
\operatorname{Adv}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\mathrm{prf}}(A) \leq \operatorname{Pr}\left[A^{\mathrm{D} 3} \text { sets bad }\right] \leq \operatorname{Pr}\left[A^{\mathrm{D} 4} \text { sets bad }\right]+(0.5 m q(q+1)-q) / 2^{n} \tag{2}
\end{equation*}
$$

$\mathbf{D 4} \rightarrow \mathbf{D 5}$: The value C_{m}^{s} returned to the adversary in response to a query in D 4 is never referred to again in code responding to any later query, and thus has no influence on the game and the setting of bad. Accordingly, we could think of these values as being chosen upfront and being provided to the adversary. In that case, the adversary can also determine, and fix, an optimal choice of its own coins (and hence queries) to maximize the probability that bad gets set. Thus there are query values $\mathrm{M}^{1}, \ldots, \mathrm{M}^{q}$ that are fixed but distinct m-block strings, referred to in game D 5 such that $\operatorname{Pr}\left[A^{\mathrm{D} 4}\right.$ sets $\left.b a d\right] \leq \operatorname{Pr}\left[A^{\mathrm{D} 5}\right.$ sets bad $]$. In Section A. 2 we generalize this argument into a coin-fixing technique that works under the condition that the starting game is oblivious. $\mathbf{D 5} \rightarrow \mathbf{D 6}$: Game D6 is a conservative replacement of game D5 employing a postponed evaluation of bad and an early selection of π. $\mathbf{D 6} \rightarrow \mathbf{D 7}$: The next step is a multiplicatively lossy replacement of game D6. In game D6, some pair r, s must contribute at least an average amount to the probability that bad gets set. Namely, for any $r, s \in[1 . . q]$ where $r \neq s$ define

$$
b a d_{r, s}=\left(X_{m}^{s}=X_{i}^{r} \text { for some } i \in[1 . . m]\right) \text { or }\left(X_{m}^{s}=X_{i}^{s} \text { for some } i \in[1 . . m-1]\right)
$$

and note that $b a d$ is set at line $607 \mathrm{iff} b a d_{r, s}$ is true for some $r \neq s$. We conclude that there must be an $r \neq s$ such that $\operatorname{Pr}\left[\mathrm{D} 6\right.$ sets $\left.b a d_{r, s}\right] \geq(1 / q(q-1)) \operatorname{Pr}[\mathrm{D} 6$ sets $b a d]$. Fixing such an r, s and renaming $\mathrm{M}=\mathrm{M}^{r}$ and $\mathrm{M}^{\prime}=\mathrm{M}^{s}$ we arrive at game D7 knowing that

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{D} 4 \text { sets } b a d] \leq \operatorname{Pr}[\mathrm{D} 6 \text { sets } b a d] \leq q(q-1) \cdot \operatorname{Pr}[\mathrm{D} 7 \text { sets } b a d] \tag{3}
\end{equation*}
$$

We now claim the following:
Claim $7[\mathbf{D 7} \rightarrow \mathbf{D 8}] \quad$ Assume $m \leq 2^{n-2}$. Then $\operatorname{Pr}[\mathrm{D} 7$ sets bad $] \leq 2 \cdot \operatorname{Pr}[\mathrm{D} 8$ sets bad $]$.

```
for \(X \in\{0,1\}^{n}\) do \(\theta(X) \leftarrow\) undefined
Procedure D9
\(C_{0} \leftarrow 0^{n}\)
for \(i \leftarrow 1\) to \(m-1\) do
    \(X_{i} \leftarrow C_{i-1} \oplus \mathrm{M}_{i}\)
    Let \(C_{i}\) be the least value in \(\overline{\operatorname{Range}}(\theta)\) such that \(C_{i} \oplus \mathrm{M}_{i+1} \notin \operatorname{Domain}(\theta)\)
    \(\theta\left(X_{i}\right) \leftarrow C_{i}\)
\(X_{m} \leftarrow C_{m-1} \oplus \mathrm{M}_{m}\)
Let \(C_{m}\) be the least value in \(\overline{\operatorname{Range}}(\theta)\)
\(\theta\left(X_{m}\right) \leftarrow C_{m}\)
\(P \leftarrow \operatorname{Prefix}\left(\mathrm{M}, \mathrm{M}^{\prime}\right), \quad p \leftarrow\|P\|\)
\(C_{p}^{\prime} \leftarrow C_{p}\)
for \(i \leftarrow p+1\) to \(m-1\) do
    \(X_{i}^{\prime} \leftarrow C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}\)
    Let \(C_{i}^{\prime}\) be the least value in \(\overline{\operatorname{Range}}(\theta)\) such that \(C_{i}^{\prime} \oplus \mathrm{M}_{i+1}^{\prime} \notin \operatorname{Domain}(\theta)\)
    \(\theta\left(X_{i}^{\prime}\right) \leftarrow C_{i}^{\prime}\)
Arbitrarily extend the partial permutation \(\theta\) (now defined at \(2 m-1\) points) to a permutation
```

```
\(X_{m}^{*} \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
```

$X_{m}^{*} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
Procedure D10
Procedure D10
$C_{0} \leftarrow 0^{n}$
$C_{0} \leftarrow 0^{n}$
for $i \leftarrow 1$ to m do
for $i \leftarrow 1$ to m do
$X_{i} \leftarrow C_{i-1} \oplus \mathrm{M}_{i}$
$X_{i} \leftarrow C_{i-1} \oplus \mathrm{M}_{i}$
if $X_{i} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}\right) \stackrel{\S}{\stackrel{\text { Range }}{ }(\pi)}$
if $X_{i} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}\right) \stackrel{\S}{\stackrel{\text { Range }}{ }(\pi)}$
$C_{i} \leftarrow \pi\left(X_{i}\right)$
$C_{i} \leftarrow \pi\left(X_{i}\right)$
$P \leftarrow \operatorname{Prefix}\left(\mathrm{M}, \mathrm{m}^{\prime}\right), \quad p \leftarrow\|P\|, \quad C_{p}^{\prime} \leftarrow C_{p}$
$P \leftarrow \operatorname{Prefix}\left(\mathrm{M}, \mathrm{m}^{\prime}\right), \quad p \leftarrow\|P\|, \quad C_{p}^{\prime} \leftarrow C_{p}$
for $i \leftarrow p+1$ to $m-2$ do
for $i \leftarrow p+1$ to $m-2$ do
$X_{i}^{\prime} \leftarrow C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}$
$X_{i}^{\prime} \leftarrow C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}$
if $X_{i}^{\prime} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}^{\prime}\right) \stackrel{\oiint}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
if $X_{i}^{\prime} \notin \operatorname{Domain}(\pi)$ then $\pi\left(X_{i}^{\prime}\right) \stackrel{\oiint}{\leftarrow} \overline{\operatorname{Range}}(\pi)$
$C_{i}^{\prime} \leftarrow \pi\left(X_{i}^{\prime}\right)$
$C_{i}^{\prime} \leftarrow \pi\left(X_{i}^{\prime}\right)$
$X_{m-1}^{\prime} \leftarrow C_{m-2}^{\prime} \oplus \mathrm{M}_{m-1}^{\prime}$
$X_{m-1}^{\prime} \leftarrow C_{m-2}^{\prime} \oplus \mathrm{M}_{m-1}^{\prime}$
bad $\leftarrow X_{m}^{*} \in\left\{X_{1}, \ldots, X_{m}, X_{p+1}^{\prime}, \ldots, X_{m-1}^{\prime}\right\}$
bad $\leftarrow X_{m}^{*} \in\left\{X_{1}, \ldots, X_{m}, X_{p+1}^{\prime}, \ldots, X_{m-1}^{\prime}\right\}$
if $X_{m-1}^{\prime} \in \operatorname{Domain}(\pi)$ and $\pi\left(X_{m-1}^{\prime}\right) \neq X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$ then return (θ, false) $\quad / /$ fail: define X_{m}^{\prime} as per D9
if $X_{m-1}^{\prime} \in \operatorname{Domain}(\pi)$ and $\pi\left(X_{m-1}^{\prime}\right) \neq X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$ then return (θ, false) $\quad / /$ fail: define X_{m}^{\prime} as per D9
if $X_{m-1}^{\prime} \notin \operatorname{Domain}(\pi)$ and $X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime} \in \operatorname{Range}(\pi)$ then return(θ, false) $\quad / /$ fail: define X_{m}^{\prime} as per D9
if $X_{m-1}^{\prime} \notin \operatorname{Domain}(\pi)$ and $X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime} \in \operatorname{Range}(\pi)$ then return(θ, false) $\quad / /$ fail: define X_{m}^{\prime} as per D9
$C_{m-1}^{\prime} \leftarrow \pi\left(X_{m-1}^{\prime}\right) \leftarrow X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$
$C_{m-1}^{\prime} \leftarrow \pi\left(X_{m-1}^{\prime}\right) \leftarrow X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$
$X_{m}^{\prime} \leftarrow C_{m-1}^{\prime} \oplus \mathrm{M}_{m}^{\prime} \quad / /$ succeed: $X_{m}^{\prime}=X_{m}^{*}$
$X_{m}^{\prime} \leftarrow C_{m-1}^{\prime} \oplus \mathrm{M}_{m}^{\prime} \quad / /$ succeed: $X_{m}^{\prime}=X_{m}^{*}$
Randomly extend the partial permutation π (now defined on at most $2 m-p-1$ points) to a permutation
Randomly extend the partial permutation π (now defined on at most $2 m-p-1$ points) to a permutation
return ($\pi, b a d$)

```
    return ( \(\pi, b a d\) )
```

Figure 4: Procedures D9 and D10, used in the proof of Claim 7.

Before proving Claim 7, let's assume it to be so and conclude Theorem 6. We claim that

$$
\begin{equation*}
\operatorname{Pr}[\text { D8 sets bad }] \leq(2 m-1) / 2^{n} \tag{4}
\end{equation*}
$$

This is because there are at most $2 m-1$ values in $\left\{X_{1}, \ldots, X_{m}, X_{p+1}^{\prime}, \ldots, X_{m-1}^{\prime}\right\}$ and we are asking if any of them is the randomly chosen X_{m}^{*}. So assuming $m \leq 2^{n-2}$ and combining (2)-(4) and Claim 7 gives

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\mathrm{prf}}(A) & \leq q(q-1) \cdot 2 \cdot(2 m-1) / 2^{n}+(0.5 m q(q+1)-q) / 2^{n} \\
& =\left(4.5 m q^{2}+q-3.5 m q-2 q^{2}\right) / 2^{n} \leq 4.5 m q^{2} / 2^{n}
\end{aligned}
$$

The assumption that $m \leq 2^{n-2}$ can now be dropped because the equation above is vacuous for such large m. To show Claim 7 we introduce the following notion. Given strings of blocks $M=M_{1} \cdots M_{m}$ and $M^{\prime}=M_{1}^{\prime} \cdots M_{m}^{\prime}$ and a permutation $\pi \in \operatorname{Perm}(n)$, let $\operatorname{bad}_{\pi}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)$ be the boolean value $X_{m}^{\prime} \in\left\{X_{1}, \ldots, X_{m}, X_{1}^{\prime}, \ldots, X_{m-1}^{\prime}\right\}$ where, as one would expect, we set $C_{0}=C_{0}^{\prime}=0^{n}, X_{i}=C_{i-1} \oplus \mathrm{M}_{i}, C_{i}=\pi\left(X_{i}\right), X_{i}^{\prime}=C_{i-1}^{\prime} \oplus \mathrm{M}_{i}^{\prime}$ and $C_{i}^{\prime}=\pi\left(X_{i}^{\prime}\right)$ for all $i \in[1 . . m]$. As long as M and M^{\prime} are of "reasonable" length m, there is some permutation $\theta \in$ $\operatorname{Perm}(n)$ for which $b a d_{\theta}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)=$ false. (The assumption on m cannot be eliminated, as there are pairs of extremely long strings for which collide under CBC_{π} for any permutation π.)

Claim 8 Let M and M^{\prime} be distinct strings of blocks where $m=\|\mathrm{M}\|=\left\|\mathrm{M}^{\prime}\right\| \leq 2^{n-2}$. Then there exists a permutation $\theta \in \operatorname{Perm}(n)$ such that $b a d_{\theta}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)=$ false.

A proof for Claim 8 goes as follows. Given distinct $M=M_{1} \cdots M_{m}$ and $M^{\prime}=M_{1}^{\prime} \cdots M_{m}^{\prime}$ consider the procedure D9 shown in Figure 4, which iteratively builds a permutation θ such that $\operatorname{bad}_{\theta}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)=$ false. The algorithm works by always choosing a range value that, as one CBCs, will not produce a collision with any prior domain value. This will necessarily be possible as long as the co-range of θ has more points in it than the domain of θ. This is guaranteed to be so (ensuring the meaningfulness of lines 904, 907, 913, and 916) because $m \leq 2^{n-2}$ ensures that $|\overline{\operatorname{Range}}(\theta)|>|\operatorname{Domain}(\pi)|$ throughout the execution of procedure D9.
Moving on to Claim 7, fix the permutation θ guaranteed by Claim 8. Notice that $\operatorname{Pr}[\mathrm{D} 8$ sets bad] $=$ $\operatorname{Pr}[\mathrm{D} 10$ sets bad]. To see this, eliminate lines in D10 subsequent to the setting of bad and the correspondence will be obvious.
Let us now explain procedure D10 in more detail. When the algorithm is run it returns a permutation on n-bits and a flag bad associated to that permutation. The algorithm does not sample uniformly in Perm (n), but we will argue shortly that, among its outputs, is every permutation $\pi \in \operatorname{Perm}(n)$. In line 000 we choose a random "target value" X_{m}^{*} for X_{m}^{\prime}. Algorithm D10 will "try" to arrange that X_{m}^{\prime} ends up as X_{m}^{*}. Namely, when we get to filling in the value of $\pi\left(X_{m-1}^{\prime}\right)$, we will, if we can, make this $X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$. But we might be obstructed from doing this. First, the value of $\pi\left(X_{m-1}^{\prime}\right)$ might already have been determined. If so, the already-determined value probably won't yield the right X_{m}^{\prime}. Second, the range value $X_{m}^{*} \oplus \mathrm{M}_{m}^{\prime}$ that we'd like to assign to $\pi\left(X_{m-1}^{\prime}\right)$ might already have been used. If we are prevented from filling in X_{m-1}^{\prime} the way that we want, for either of these reasons, we return the fixed permutation θ that is guaranteed by Claim 8 .
Observe that when procedure D10 returns $(\pi, b a d)$ it will always be the case that $b a d=b a d_{\pi}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)$: either $X_{m}^{*}=X_{m}^{\prime}$ and we defined bad at line 013 so as to agree with the definition of $b a d_{\pi}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)$; or else we were unable to arrange that $X_{m}^{*}=X_{m}^{\prime}$ and we returned θ along with false, where θ is a permutation for which $\operatorname{bad}_{\theta}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)$ is indeed false.
As we have fixed M and M^{\prime}, every permutation π results in some particular value X_{m}^{\prime}, and so the $N=2^{n}$ values of X_{m}^{\prime} partition into disjoint sets the N ! permutations comprising Perm (n). As a consequence, every permutation π can be output as the first component of D10's output: if one guesses the correct X_{m}^{\prime}-value for π at line 000 and then fills in values according to π, one ultimately exits at line 018 with π and its flag $b a d=b a d_{\pi}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)$.

The number of possible runs of procedure D10 is more than the N ! just described; there are altogether $\mathcal{N} \leq N N!/(N-2 m+2)$ possible runs. The counting is done as follows. There are N choices for X_{m}^{*} at line 000 . Then there are N choices for filling $\pi\left(X_{1}\right)$; at most $N-1$ choices for $\pi\left(X_{2}\right)$; at most $N-2$ choices for $\pi\left(X_{3}\right)$; and continuing in this way, at most $N-m+1$ choices for $\pi\left(X_{m}\right)$. There are at most $N-m$ choices for $\pi\left(X_{p+1}^{\prime}\right)$; at most $N-m-1$ choices for $\pi\left(X_{p+2}^{\prime}\right)$; and continuing in this way, at most $N-2 m+3$ choices in $\pi\left(X_{m-2}^{\prime}\right)$. There are no choices in $\pi\left(X_{m-1}^{\prime}\right)$ because this value has already been determined. When we continue, there will be at most $N-2 m+1$ choices for filling in the next remaining undefined point of π, at most $N-2 m$ choices for filling in the point after that, and so forth. So the number of possible runs \mathcal{N} satisfies $\mathcal{N} \leq N!(N /(N-2 m+2))$, which is at most $2 N!$ when $m \leq N / 4$. Thus $\mathcal{N} / N!\leq 2$: algorithm D10 samples from a multiset containing more than the N ! possible permutations, but the set is at most twice as big as $\operatorname{Perm}(n)$.
The probability p that algorithm D10 sets bad is the number of vectors of coin tosses b that result in bad getting set to true, divided by \mathcal{N}. The number of different permutations that result in bad getting set to true is at most b, and the probability that a random permutation π has $b a d_{\pi}\left(\mathrm{M}, \mathrm{M}^{\prime}\right)=$ true is $b / N!\leq 2 b / \mathcal{N} \leq 2 p$. This finishes Claim 7 and Theorem 6.

4.1 Even better bounds

We believe that the $m q^{2} / 2^{n}$ bound for the CBC MAC still is not tight, and it remains an interesting open problem to improve it. It is tempting to conjecture that $\mathbf{A d v}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\mathrm{prf}}$ is at most q^{2} times V_{n}, the CBC MAC collision probability for m-block messages, but such a conjecture is definitely false: it is easy to see that $\mathrm{CBC}_{\pi}\left(\mathbf{0}^{\text {huge }}\right)=\mathbf{0}$ where $\mathbf{0}=0^{n}$ and huge $=2^{n}$! and, more generally, that $\operatorname{Pr}\left[\mathrm{CBC}_{\pi}\left(\mathbf{0}^{k}\right)=\mathbf{0}\right]$ is "large" when k is a highly composite number (a number having more divisors than any number less than it). Because of this one cannot hope to do a game-playing analysis for the CBC MAC by giving up only on collisions among $X_{m}^{1}, \ldots, X_{m}^{q}$.

References

[Ad] L. Adleman. Two theorems on random polynomial time. FOCS 78.
[BeR1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. ACM CCS '93.
[BeR2] M. Bellare and P. Rogaway. Optimal asymmetric encryption. Eurocrypt '94.
[BKiR] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code. Journal of Computer and System Sciences (JCSS), vol. 61, no. 3, pp. 362-399, 2000. Earlier version in Crypto '94.
[BKrR] M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff backwards: Increasing security by making block ciphers non-invertible. Eurocrypt '98.
[BIR] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the three-key constructions. CRYPTO '00, LNCS 1880, 2000
[Bo] D. Boneh. Simplified OAEP for the RSA and Rabin functions. Crypto '01.
[DGHKR] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using the CBC, Cascade, and HMAC modes. Crypto 04.
[DH] W. Diffie and M. Hellman. Exhaustive cryptanalysis of the data encryption standard. Computer, vol. 10, pp. 74-84, 1977.
[GMMV] D. Galindo, S. Martin, P. Morillo, and J. Villar. Fujisaki-Okamoto IND-CCA hybrid encryption revisited. Cryptology ePrint archive report 2003/107, 2003.
[HR] S. Halevi and P. Rogaway. A tweakable enciphering mode. Crypto 03.
[HWKS] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. Available from Wagner's web page. Earlier version in Crypto '98.
[JJV] E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC beyond the birthday paradox limit: a new construction. FSE '02.
[KR] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an analysis of DESX). Journal of Cryptology, vol. 14, no. 1, pp. 17-35, 2001. Earlier version in Crypto '96.
[Ma] U. Maurer. Indistinguishability of random systems. Eurocrypt '02.
[PP] D. Phan and D. Pointcheval. OAEP 3-round: a generic and secure asymmetric encryption padding. Asiacrypt 04.
[PR] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J. Cryptology, 13(3), pp. 315338, 2000.
[PV] B. Preneel and P. Van Oorschot. MDx-MAC and building fast MACs from hash functions. Crypto '95.
[Sha] C. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal, vol. 28, no. 4, pp. 656-715, 1949.
[Sho] V. Shoup. OAEP reconsidered. J. of Cryptology, vol. 15, no. 4, pp. 223-249, 2002. Earlier version in Crypto 01.
[Va] S. Vaudenay. Decorrelation over infinite domains: the encrypted CBC-MAC case. Communications in Information and Systems (CIS), vol. 1, pp. 75-85, 2001.

A Game-Rewriting Techniques

In this section we name and describe some of the techniques used to produce game chains. Our enumeration is not comprehensive, only aiming to hit some of the most interesting or widely applicable techniques.

A. 1 After bad is set, nothing matters

One of the most common manipulations of games is to modify what happens after bad gets set to true. Quite often the modification consists of dropping some code, but it is also fine to insert alternative code. Any modification following the setting of bad is conservative. The formal result is as follows.

Proposition 9 [After bad is set, nothing matters] Let G and H be identical-until-bad-is-set games. Let A be an adversary. Then $\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets bad $]=\operatorname{Pr}\left[\mathrm{H}_{A}\right.$ sets bad $]$.

Proof of Proposition 9: Using the definition from the proof of Lemma 5, fix coins $C=\operatorname{Coins}(A, \mathrm{G}, \mathrm{H})$ and execute G_{A} and H_{A} in the manner we described using these coins. Let $C G^{\text {bad }} \subseteq C$ be the coins that result in $b a d$ getting set to true when we run G_{A}, and let $C H^{\text {bad }} \subseteq C$ be the coins that result in bad getting set to true when we run H_{A}. Since G and H are identical-until-bad-is-set, each $c \in C$ causes bad to be set to true in G_{A} iff it causes bad to be set to true in H_{A}. Thus $C G^{\text {bad }}=C H^{\text {bad }}$ and hence $\left|C G^{\text {bad }}\right|=\left|C H^{\text {bad }}\right|$ and $\left|C G^{\text {bad }}\right| /|C|=C H^{\text {bad }}\left|/|C|\right.$, which is to say that $\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets bad $]=\operatorname{Pr}\left[\mathrm{H}_{A}\right.$ sets bad $]$. 【

A. 2 Coin fixing

Consider a game G with an oracle P . The adversary A hopes, running with G , to set bad. It adaptively asks P strings X_{1}, \ldots, X_{q} getting back strings Y_{1}, \ldots, Y_{q}. We would like to change G to a different game H in which $X_{1}, \ldots, X_{q}, Y_{1}, \ldots, Y_{q}$ are all fixed, constant strings. We do this-when we can-using the coin-fixing technique. It stems from a classical method in complexity theory to eliminate coins [Ad], hardwiring them in, as in the proof that $\mathrm{BPP} \subseteq \mathrm{P} /$ poly.

One can't always apply the coin-fixing; we now describe a sufficient condition in which one can. We first describe the basic setup. Suppose that the runnable game G_{A} has the following characteristics. There is a single oracle P There is no input param supplied to A and no output out received from it. The game contains a flag bad. Adversary A asks, in sequence, exactly q string queries to P , which the program stores in writeonce variables X_{1}, \ldots, X_{q}; and the program computes in response write-once string variables Y_{1}, \ldots, Y_{q}, providing these answers, one-by-one, to A. That there is a single oracle and that X_{i} and Y_{i} are in write-once variables are without loss of generality in our current context. Let \mathcal{C} be a set of ($X_{1}, \ldots, X_{q}, Y_{1}, \ldots, Y_{q}$) tuples such that every vector of queries X_{1}, \ldots, X_{q} and their responses Y_{1}, \ldots, Y_{q} that could arise in an execution of G_{A} occurs in \mathcal{C}. We call \mathcal{C} a query/response set for G_{A}. A query/response set does not need to be the smallest set that includes all possible queries and their response, it only has to include it.

Let \mathcal{Y} be the set of all variables $Y \notin\left\{X_{1}, \ldots, X_{q}, Y_{1}, \ldots, Y_{q}\right\}$ in the game G for which some Y_{i} depends on Y (here we speak of "depends on" in the information-flow sense of programming-language theory). We say that G_{A} is oblivious if the variable bad does not depend on any variable in \mathcal{Y}.

Informally, a game is oblivious if it doesn't use anything about how the Y_{i}-values were made in order to compute bad: no variable that influenced a $Y_{i^{-}}$-value (excluding $X_{i^{-}}$and $Y_{i^{-}}$values) also influences bad. A special case of an oblivious games is when the vector $\left(Y_{1}, \ldots, Y_{q}\right)$ is chosen at random from some finite set \mathcal{V} Note that in an oblivious program the X_{i} and Y_{i} values themselves may influence bad.

Given an oblivious game G_{A}, a query/response set \mathcal{C} for G_{A}, and a point $\mathrm{C}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{q}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{q}\right) \in \mathcal{C}$, we form a new game H^{C} as follows. Game H^{C} is like G except it has no oracle P . Each (R-value) use of an X_{i} or Y_{i} in G is replaced by the corresponding constant X_{i} or Y_{i}. Each (R-value) use of a variable $Y \in \mathcal{Y}$ is replaced by an arbitrary constant of the correct type. At the beginning of the Finalize program for H^{C} a for-loop is executed simulating the arrival of the sequence of P-queries $\mathrm{X}_{1}, \ldots, \mathrm{X}_{q}$ and doing whatever program P would have done on receipt of each of these queries (apart from the changes we have already mandated). This completes the description of H^{C}.

Let $\mathrm{H}=\operatorname{CoinFix}_{A}^{\mathcal{C}}(\mathrm{G})$ be H^{C} for the lexicographically first $\mathrm{C} \in \mathcal{C}$ that maximizes $\operatorname{Pr}\left[\mathrm{H}_{A}^{\mathrm{C}}\right.$ sets bad $]$. Since H_{A} no longer depends on A, we may omit mention of it and still have a runnable game. We can now state the coin-fixing lemma.

Lemma 10 [Coin-fixing technique] Let G_{A} be an oblivious game and let \mathcal{C} be a query/response set for it. Let $\mathrm{H}=\mathrm{CoinFix}_{A}^{\mathcal{C}}(\mathrm{G})$. Then $\operatorname{Pr}\left[\mathrm{G}_{A}\right.$ sets bad $] \leq \operatorname{Pr}[\mathrm{H}$ sets bad $]$.

Proof of Lemma 10: Using the technique of Lemma 5, define coin sets for the runnable game G_{A} as follows: let C_{A} be coins for running A; let C_{Y} be coins for sample-then-assign statements to variables Y_{i} and variables in \mathcal{Y}; and let C_{B} be any further coins used by G. Each of these is a finite set, and all that is required is that by choosing one random point from each of these sets, $c_{A} \stackrel{\&}{\leftarrow} C_{A}, c_{Y} \stackrel{\&}{\leftarrow} C_{Y}$, and $c_{B} \stackrel{\&}{\leftarrow} C_{B}$, one can deterministically run G_{A}, determining a final value for $b a d$ for this run, which we'll denote $b a d\left(c_{A}, c_{Y}, c_{B}\right)$. Coins c_{B} also determine an execution of H , determining, in particular, if bad gets set there: call the final value of that variable $b a d\left(c_{B}\right)$. Since some number in a set of real numbers must be at least as large as the average, there must exist a $\left(c_{A}, c_{Y}\right) \in C_{A} \times C_{Y}$ such that $\operatorname{Pr}_{c_{A}, c_{Y}, c_{B}}\left[\mathrm{G}_{A}\left(c_{A}, c_{Y}, c_{B}\right)\right.$ sets bad $] \leq$ $\operatorname{Pr}_{c_{B}}\left[\mathrm{G}_{A}\left(\mathrm{c}_{\mathrm{A}}, \mathrm{c}_{\mathrm{Y}}, c_{B}\right)\right.$ sets bad $]$. Let $\mathrm{C}=\left(\mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{q}^{\prime}, \mathrm{Y}_{1}^{\prime}, \ldots, \mathrm{Y}_{q}^{\prime}\right)$ be the queries and responses that result from running G_{A} with coins c_{A}, c_{Y}. Our notion of obliviousness ensures that $\operatorname{Pr}_{c_{B}}\left[\mathrm{G}_{A}\left(\mathrm{c}_{\mathrm{A}}, \mathrm{c}_{\mathrm{Y}}, c_{B}\right)\right.$ sets bad] $=$ $\operatorname{Pr}_{c_{B}}\left[\mathrm{H}^{\mathrm{C}}\left(c_{B}\right)\right.$ sets bad $]$, with notation as in the paragraph preceding the lemma. This is because coins C result in oracle queries $\mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{q}^{\prime}$, responses $\mathrm{Y}_{1}^{\prime}, \ldots, \mathrm{Y}_{q}^{\prime}$), and unspecified additional values to variables, and the execution of H^{C} proceeds identically apart for "incorrect" values for variables in \mathcal{Y} and the variables these impact, but, by definition of obliviousness, these incorrect values are not relevant when it comes to determining whether or not bad gets set. Now $\operatorname{Pr}_{c_{B}}\left[\mathrm{H}^{\mathrm{C}}\left(c_{B}\right)\right.$ sets bad $] \leq \operatorname{Pr}[\mathrm{H}$ sets bad $]$ because $\mathrm{C} \in \mathcal{C}$ must be in the query/response set by our definition of it. This completes the proof.

Coin-fixing is our primary method for eliminating adversarial adaptivity. Many times in analyzing a game, adaptivity is at the center of the analytic difficulty. It is worth pointing out that in using coin-fixing to banish adaptivity, one never establishes that the best non-adaptive adversary for the original game - or any other game - does no better than the best adaptive one. This may be false (or at least not ostensibly true) even though the coin-fixing technique can be used to expunge adaptivity in the analysis.

A. 3 Lazy sampling

Instead of making random choices up front, it is often convenient rewrite a game so as to delay making random choices until they are actually needed. We call such "just-in-time" flipping of coins lazy sampling.

As a simple but frequently used example-let's call it example 1-consider a game that surfaces to the adversary a random permutation π on n bits. One way to realize this game is to choose π at random from $\operatorname{Perm}(n)$ during Initialize and then, when asked a query $X \in\{0,1\}^{n}$, answer $\pi(X)$. The alternative, lazy, method for implementing π would start with a partial permutation π from n bits to n bits that is everywhere undefined. When asked a query X not yet in the domain of π, the oracle would choose a value Y randomly from the co-range of π, define $\pi(X) \leftarrow Y$, and return Y.

You can think of the current partial function π as imposing the "constraint" that $\pi(X) \notin \operatorname{Range}(\pi)$ on our choice of $\pi(X)$. We choose $\pi(X)$ at random from all points respecting the constraint.

For example 1, it seems obvious that the two ways to simulate a random permutation are equivalent. (Recall that equivalent is a technical term we have defined: it means that no adversary can distinguish, with any advantage, which of the two games it is playing.) But lazy sampling methods can get more complex and prospective methods for lazy sampling often fail to work. One needs to carefully verify any prospective use of lazy sampling. To see this, consider the following example 2 . The game provides the adversary with permutations $\pi_{1}, \pi_{2}:\{1,2,3\} \rightarrow\{1,2,3\}$ subject to the constraint that $\pi_{1}(x) \neq \pi_{2}(x)$ for all $x \in\{1,2,3\}$. The eager way to simulate the pair of oracles is to choose π_{1}, π_{2} uniformly at random from the set of pairs of permutations that obey the constraint. A possible lazy way, where we answer an oracle query with a random point not violating any constraint on already-defined points, may proceed like this. On query $\pi_{1}(1)$ we would return a random point in $\{1,2,3\}$. Say this is 1 . On query $\pi_{1}(2)$ we would return a random point in $\{2,3\}$, say 2 . On query $\pi_{1}(3)$ we would be forced to return 3 . On query $\pi_{2}(1)$ we would return a random point in $\{2,3\}$, say 2 . On query $\pi_{2}(2)$ we would return a random point in $\{1,3\}$, say 1 . But now we are stuck, for on query $\pi_{2}(3)$ there is nothing correct to return. Here lazy sampling, at least in the way we just implemented it, didn't work.

We now say, more precisely, what we mean by lazy sampling, and then give some conditions under which it works, in particular justifying the first example above while identifying what makes the second one fail.

Initialize \quad Game Eager
\mathcal{F}
$100 \quad\left(f_{1}, \ldots, f_{k}\right) \stackrel{\&}{\leftarrow} \mathcal{F}$
On query $f_{i}(x)$
110 return $f_{i}(x)$

```
Initialize
Game Lazy \(\mathcal{F}_{\mathcal{F}}\)
\(200 f_{i}: \mathcal{X} \rightarrow \mathcal{Y}\) is everywhere undefined for each \(i \in[1 . . k]\)
On query \(f_{i}(x)\)
210 if \(f_{i}(x)\) then return \(f_{i}(x)\)
211 return \(f_{i}(x) \stackrel{\S}{\leftarrow} \operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)\)
```

Figure 5: Eager and lazy sampling games associated to \mathcal{F}, where \mathcal{F} is given by constraint function F.

Let \mathcal{X}, \mathcal{Y} be finite, non-empty sets. A constraint function with locality parameter t is a function F that assigns a boolean output to any input of the form $i_{1}, x_{1}, y_{1}, \ldots, i_{s}, x_{s}, y_{s}$, where $i_{j} \in[1 . . k], x_{j} \in \mathcal{X}, y_{j} \in \mathcal{Y}$ and $s \in[1 . . t]$. Let $\mathcal{P}=\operatorname{rand}(\mathcal{X}, \mathcal{Y})$ be the set of all partial functions from \mathcal{X} to \mathcal{Y} and let $\mathcal{T}=\operatorname{Rand}(\mathcal{X}, \mathcal{Y})$ be the set of all total functions from \mathcal{X} to \mathcal{Y}. We say that a set \mathcal{F} of k-vectors of functions in \mathcal{T} is described by F if \mathcal{F} is exactly the set of all $\left(\bar{f}_{1}, \ldots, \bar{f}_{k}\right) \in \mathcal{T}^{k}$ such that

$$
(\forall s \leq t)\left(\forall i_{1}, \ldots, i_{s} \in[1 . . k]\right)\left(\forall x_{1}, \ldots, x_{s} \in \mathcal{X}\right)\left[F\left(i_{1}, x_{1}, \bar{f}_{i_{1}}\left(x_{1}\right), \ldots, i_{s}, x_{s}, \bar{f}_{i_{s}}\left(x_{s}\right)\right)=1\right]
$$

The framework we consider is that we provide adversary A with a sequence of oracles $\left(f_{1}, \ldots, f_{k}\right) \stackrel{\&}{\leftarrow} \mathcal{F}$ drawn at random, with uniform distribution, from a set \mathcal{F} that is described via a constraint function.

The examples we have given above can be put into this framework. For example 1 we have $\mathcal{X}=$ $\mathcal{Y}=\{0,1\}^{n}$ and for example 2 we have $\mathcal{X}=\mathcal{Y}=\{1,2,3\}$. The constraint function for example 1 has locality $t=2$ and is defined by $F_{1}\left(i, x_{1}, y_{1}, i, x_{2}, y_{2}\right)=1 \mathrm{iff}\left(x_{1} \neq x_{2}\right) \Rightarrow\left(y_{1} \neq y_{2}\right)$. The constraint function for example 2 has locality $t=2$ and is defined by $F_{3}\left(1, x_{1}, y_{1}, 2, x_{2}, y_{2}\right)=1$ iff (a) $\left(x_{1}=x_{2}\right) \Rightarrow\left(y_{1} \neq y_{2}\right)$ and (b) $F_{1}\left(i, x, y, i, x^{\prime}, y^{\prime}\right)=1$ for all $i \in\{1,2\}$.

Now we explain how lazy sampling works. If $\bar{f} \in \mathcal{T}$ is consistent with $f \in \mathcal{P}$ (meaning the two are equal on all points where partial function f is defined) then we write $\bar{f} \geq f$. For $f_{1}, \ldots, f_{k} \in \mathcal{P}, i \in[1 . . k], x \in \mathcal{X}$, and $y \in \mathcal{Y}$ let

$$
\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y)=\left\{\left(\bar{f}_{1}, \ldots, \bar{f}_{k}\right) \in \mathcal{F}: \bar{f}_{j} \geq f_{j}(1 \leq j \leq k) \text { and } \bar{f}_{i}(x)=y\right\}
$$

be the set of extensions of f_{1}, \ldots, f_{k} relative to (i, x, y). This can be viewed as the set of all possible ways to assign values to the as-yet-undefined points of the partial functions $\left(f_{1}, \ldots, f_{k}\right)$ subject to the constraint that $f_{i}(x)$ is assigned y. Let $\operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)$ be the set of all $y \in \mathcal{Y}$ such that $\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y) \neq \emptyset$. This is the set of possible answers to query $f_{i}(x)$, meaning those that have non-zero probability of occurring.

Figure 5 shows two games, one describing eager sampling and the other lazy sampling. We claim that lazy sampling, as formally described in this game, captures the way it was done in our first example, in that the set of possible answers is exactly the set of points that do not violate any constraint. In example 1, from the description of F_{1} we see that $\operatorname{Ans}_{F}^{\pi}(1, x)$ is exactly $\overline{\text { Range }}(\pi)$. However, the way we sampled in example 2 fails to implement what we have now formally defined as lazy sampling, explaining why it failed. To see this consider the stage where $\pi_{1}(i)=i$ for $i \in\{1,2,3\}$ and $\pi_{2}(1)=2$. Then $\operatorname{Ans}_{F}^{\pi_{1}, \pi_{2}}(2,2)=\{3\}$, while in the example we said that the candidate set from which to draw $\pi_{2}(2)$ was $\{1,3\}$. This shows that determining the set of possible answers purely by looking at the constraints on defined points does not work.

Now we move to saying under what conditions lazy sampling works. We say that F is admissible if for all $f_{1}, \ldots, f_{k} \in \mathcal{P}$, all $i \in[1 . . k]$, and all $x \in \mathcal{X}$

$$
\forall y_{1}, y_{2} \in \operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)\left(\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}\left(i, x, y_{1}\right)\right|=\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}\left(i, x, y_{2}\right)\right|\right)
$$

In other words, the number of ways to extend f_{1}, \ldots, f_{k} relative to (i, x, y) does not depend on y as long as y is allowed, or, intuitively, any two allowed values are equi-probable as answers to an oracle query. We say that \mathcal{F} is admissible if it is described by an admissible constraint function F. Our result about eager versus lazy sampling is the following. Its proof is given later.

Lemma 11 [Principle of lazy sampling] Let $\mathcal{F} \neq \emptyset$ be an admissible set. Then games Eager $_{\mathcal{F}}$ and $\operatorname{Lazy}_{\mathcal{F}}$ are equivalent.

We claim that the constraint functions F_{1} of example 1 is admissible, which explains why lazy sampling worked in these cases. Verifying this claim is quite easy. Suppose π has been defined on some $m-1$ points and $\pi(x)$ is the m-th query. Then for every $y \in \overline{\operatorname{Range}}(\pi)$ there are $(N-m)$! possible ways to assign values
to the undefined points while setting $\pi(x)=y$, meaning $\left|\operatorname{Ext}_{F_{1}}^{\pi}(1, x, y)\right|=(N-m)$! for every $y \in \operatorname{Ans}_{F}^{\pi}(1, x)$.
Proof of Lemma 11: Suppose the adversary has made some number of oracle queries, resulting in the partial functions f_{1}, \ldots, f_{k}. Now it makes another query, $f_{i}(x)$. We consider the probability that a particular point $y \in \mathcal{Y}$ is returned in response, and show this is the same in both games.
Any $y \notin \operatorname{Ans}_{F}{ }^{f_{1}, \ldots, f_{k}}(i, x)$ has zero probability of being returned in either game. Suppose $y \in \operatorname{Ans}_{F}{ }_{F}^{f_{1}, \ldots, f_{k}}(i, x)$. Let

$$
\mathcal{F}\left(f_{1}, \ldots, f_{k}\right)=\left\{\left(\bar{f}_{1}, \ldots, \bar{f}_{k}\right) \in \mathcal{F}: \bar{f}_{j} \geq f_{j}(1 \leq j \leq k)\right\}
$$

The assumption $\mathcal{F} \neq \emptyset$ implies that $\operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x) \neq \emptyset$. Now the probability that y is returned as the answer to query $f_{i}(x)$ in $\operatorname{Eager}_{\mathcal{F}}$ is

$$
\begin{align*}
\frac{\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y)\right|}{\left|\mathcal{F}\left(f_{1}, \ldots, f_{k}\right)\right|} & =\frac{\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y)\right|}{\sum_{y^{\prime} \in \operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)}\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}\left(i, x, y^{\prime}\right)\right|} \\
& =\frac{\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y)\right|}{\left|\operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)\right| \cdot\left|\operatorname{Ext}_{F}^{f_{1}, \ldots, f_{k}}(i, x, y)\right|} \tag{5}\\
& =\frac{1}{\left|\operatorname{Ans}_{F}^{f_{1}, \ldots, f_{k}}(i, x)\right|} . \tag{6}
\end{align*}
$$

The assumption that F is admissible justifies 5 . The proof is complete because (6) is the probability that y is returned as the answer to query $f_{i}(x)$ in $^{L^{2}}{ }^{\mathcal{F}}$.

A. 4 Basic techniques

We briefly survey a number of other interesting or commonly used techniques. Use of most of these techniques is illustrated in the examples of this paper.
Swapping dependent and independent variables. Instead of choosing a random value $X \stackrel{\&}{\leftarrow}\{0,1\}^{n}$ and then defining $Y \leftarrow X \oplus C$, one can choose $Y \stackrel{\oiint}{\leftarrow}\{0,1\}^{n}$ and define $X \leftarrow Y \oplus C$. This can be generalized in natural ways. Swapping dependent and independent variables is invariably a conservative change (it doesn't affect the probability that bad gets set).

Resampling idiom. Let $\mathcal{S} \subseteq T$ be finite, nonempty sets. Then the code fragment $X \stackrel{\leftrightarrow}{\leftarrow} \mathcal{S}$ can be replaced by the equivalent code fragment $X \stackrel{\&}{\leftarrow} \mathcal{T}$, if $X \notin S$ then $X \stackrel{\oplus}{\leftarrow} S$. We call this motif resampling. It is a basic "idiom" employed in games, often with bad getting set, too: $X \stackrel{\S}{\leftarrow} \mathcal{T}$, if $X \notin S$ then bad \leftarrow true, $X \stackrel{\circledR}{\leftarrow} S$. Introducing or removing resampling is invariably a conservative change.

Code motion. It is often convenient to move around statements, as an optimizing compiler might. Permissible code motion is usually trivial to verify because games need not need to employ the programming-language constructs (aliasing and side-effects) that complicate seeing whether or not code motion is permissible. One particular form of code motion that is often used is to postpone until Finalize making random choices that had been made earlier. Permissible code motion conservative.

Marking instead of recording. Suppose that a variable π is being used in a game to record a lazily-defined permutation: we start off with π everywhere undefined, and then we set some first value $\pi\left(X_{1}\right)$ to Y_{1}, and later we set some second value $\pi\left(X_{2}\right)$ to Y_{2}, and so forth. Sometimes an inspection of the code will reveal that all we are paying attention to is which points are in the domain of π and which points are in the range. In such a case, we didn't need to record the association of Y_{i} to X_{i}; we could just as well have "marked" X_{i} as being a now-used domain-point, and marked Y_{i} as being a now-used range-point. Dropping the use of Y_{i} may now permit other changes in the code, like code motion. The method is conservative.
Derandomizing a variable. Suppose a game G chooses a variable $X \stackrel{\&}{\leftarrow} \mathcal{X}$ and never re-defines it. We may eliminate the sample-then-assign statement that defines X and replace all uses of X by a fixed constant X , obtaining a new game H^{X}. Given an adversary A, let H be H^{X} for the lexicographically first X that
maximizes $\operatorname{Pr}\left[H_{A}^{\mathrm{X}}\right.$ sets $\left.b a d\right]$. We say that game H is obtained by derandomizing the variable X. It is easy to see that $\operatorname{Pr}\left[G_{A}\right.$ sets $\left.b a d\right] \leq \operatorname{Pr}\left[H_{A}\right.$ sets $\left.b a d\right]$; that is, derandomizing a variable is a safe transformation. Derandomizing a variable is reminiscent of coin-fixing, but it is simpler to explain and justify. It does nothing to eliminate adaptivity.
Unplayable games. The games in a game chain do not normally have to be efficient: a game chain is a thought experiment that, typically, is not performed by any user or adversary. We refer to a game that seems to have no efficient implementation as an unplayable game. In many cases, it is perfectly fine to use unplayable games.

Coin-efficient sampling. A final game-modification technique that we mention, implicit in [JJV, Appendix A], is to turn a game G into a game H in such a way that every run in G with coins C can be associated to a run in H with coins C^{\prime} with bad getting set in G if and only if it is set in the corresponding run of H , but there are additional runs in H that may or may not set bad. The probability that bad gets set in G is then bounded by the probability that bad gets set in H times $\left|C^{\prime}\right| /|C|$, the ratio of the number of coins used in H to the number of coins used in G. To use the technique effectively one must therefore find a coin-efficient (and more readily analyzable) embedding of runs of G into runs of H . The method is most clearly illustrated by an example (it is probably too abstract to appreciate a formal description of the method), and we provide this in Section 4.

A. 5 Further advice

We have already given a number of pieces of advice concerning the construction of games chains, such as (1) keeping each game-transition simple (at the expense of having more games) and (2) being particularly cautious with the use of lazy sampling, which doesn't apply as often as one might wish. We briefly give a few other pieces of practical advice. (3) A game chain is most easily verified when, as much as possible, games are typeset side-by-side and on as few pages as possible. Doing this may require special-purpose conventions for achieving compact notation, as well as clever typesetting, but it seems to be worth it. (4) Avoid use of else-clauses in if-statements that set bad; they only cause confusion. (5) Number lines, put games in a box, and never describe a game in prose as opposed to clear pseudocode. (6) Avoid deeply nested for loops and any nontrivial flow-of-control: either makes a game much harder to understand. (7) When the analysis of a terminal game requires a case analysis, as it often seems to, it is easy to get careless by this point in a proof and make errors, overlooking necessary cases or mishandling a case.

B Elementary Proof of the CBC MAC

Here we use games to give a straightforward proof of the (known) $m^{2} q^{2} / 2^{n}$ bound for the CBC MAC. Namely, with definitions and notation as in Section 4, we show:

Theorem 12 [CBC MAC, standard bound] $\mathbf{A d v}_{\mathrm{CBC}^{m}[\operatorname{Perm}(n)]}^{\operatorname{prf}}(q) \leq m^{2} q^{2} / 2^{n}$.
Our Theorem 6 improves on the above, but the argument there is rather complex. Here we show that, using games, one can match the usual $m^{2} q^{2} / 2^{n}$ bound quite easily. The proof we give is simple enough to do in a classroom lecture, and it follows rather closely the intuition for "why" the CBC MAC is secure.

Proof: Fix positive numbers n, m, and q. Let A be an adversary that asks exactly q queries and assume without loss of generality that it never repeats a query. Refer to games $\mathrm{C} 0-\mathrm{C} 8$ in Figure 6. Game C 0 is obtained from game C1 by dropping the assignment statements that immediately follow the setting of bad.
Let us first explain the notation of Figure 6. (It is the same as in Section 4 but to make this section selfcontained we repeat ourselves.) A block is a string of length n and a string of blocks is a string of length divisible by n. When $P \in\left(\{0,1\}^{n}\right)^{*}$ is a string of blocks we let $\|P\|$ be the number of blocks in P, namely $\|P\|=|P| / n$. Each query M^{s} in Games C0-C4 is required to be a string of blocks, and we silently parse M^{s} to $M^{s}=M_{1}^{s} M_{2}^{s} \cdots M_{m}^{s}$ where each M_{i} is a block. We write $M_{1 \rightarrow i}^{s}$ for $M_{1}^{s} \cdots M_{i}^{s}$. The value bad is a boolean that is initialized to false. The function $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is initially undefined at each point. The set Domain (π) grows as we define points $\pi(X)$, while $\overline{\operatorname{Range}}(\pi)$, initially $\{0,1\}^{n}$, correspondingly shrinks. The table \mathbb{Y} stores blocks and is indexed by strings of blocks P having at most m blocks. A random block will

On the $s^{\text {th }}$ query $F\left(M^{s}\right)$	Game C1		
$100 P \leftarrow \operatorname{Prefix}\left(M^{1}, \ldots, M^{s}\right)$			
$101 C \leftarrow \mathbb{Y}[P]$			
102 for $j \leftarrow\\|P\\|+1$ to m do			
103	$X \leftarrow C \oplus M_{j}^{s}$		
104	$C \leftarrow\{0,1\}^{n}$		
105	if $C \in \operatorname{Range}(\pi)$ then $b a d \leftarrow \operatorname{true}, C \stackrel{\&}{\leftarrow} \overline{\operatorname{Range}}(\pi)$		
106	if $X \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow \operatorname{true}, C \leftarrow \pi(X)$		
107	$\pi(X) \leftarrow C$		
108	$\mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \leftarrow C \quad$		
109	return C		

```
the \(s^{\text {th }}\) query \(F\left(M^{s}\right)\)
```

the $s^{\text {th }}$ query $F\left(M^{s}\right)$
$P \leftarrow \operatorname{Prefix}\left(M^{1}, \ldots, M^{s}\right)$
$P \leftarrow \operatorname{Prefix}\left(M^{1}, \ldots, M^{s}\right)$
$C \leftarrow \mathbb{Y}[P]$
$C \leftarrow \mathbb{Y}[P]$
for $j \leftarrow\|P\|+1$ to m do
for $j \leftarrow\|P\|+1$ to m do
$X \leftarrow C \oplus M_{j}^{s}$
$X \leftarrow C \oplus M_{j}^{s}$
$C \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
$C \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
if $X \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow$ true
if $X \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow$ true
$\pi(X) \leftarrow$ defined
$\pi(X) \leftarrow$ defined
$\mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \leftarrow C$
$\mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \leftarrow C$
return C

```
    return \(C\)
```

```
    for \(s \leftarrow 1\) to \(q\) do
```

 for \(s \leftarrow 1\) to \(q\) do
 \(\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)\)
 \(\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)\)
 \(C \leftarrow \mathbb{Y}\left[\mathrm{P}^{s}\right]\)
 \(C \leftarrow \mathbb{Y}\left[\mathrm{P}^{s}\right]\)
 for \(j \leftarrow\left\|\mathrm{P}^{s}\right\|+1\) to \(m\) do
 for \(j \leftarrow\left\|\mathrm{P}^{s}\right\|+1\) to \(m\) do
 \(X \leftarrow C \oplus \mathrm{M}_{j}^{s}\)
 \(X \leftarrow C \oplus \mathrm{M}_{j}^{s}\)
 if \(X \in \operatorname{Domain}(\pi)\) then bad \(\leftarrow\) true
 if \(X \in \operatorname{Domain}(\pi)\) then bad \(\leftarrow\) true
 \(\pi(X) \leftarrow\) defined
 \(\pi(X) \leftarrow\) defined
 \(C \leftarrow \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
    ```
                \(C \leftarrow \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
```

```
    for \(X \in\{0,1\}^{+}\)do \(\mathbb{Y}[X] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
```

 for \(X \in\{0,1\}^{+}\)do \(\mathbb{Y}[X] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
 for \(s \leftarrow 1\) to \(q\) do
 for \(s \leftarrow 1\) to \(q\) do
 \(\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)\)
 \(\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)\)
 if \(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{S^{1}} \in \operatorname{Domain}(\pi)\) then \(b a d \leftarrow\) true
 if \(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{S^{1}} \in \operatorname{Domain}(\pi)\) then \(b a d \leftarrow\) true
 \(\pi\left(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right) \leftarrow\) defined
 \(\pi\left(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right) \leftarrow\) defined
 for \(j \leftarrow\left\|\mathrm{P}^{s}\right\|+2\) to \(m\) do
 for \(j \leftarrow\left\|\mathrm{P}^{s}\right\|+2\) to \(m\) do
 if \(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j-1}^{s}\right] \oplus \mathrm{M}_{j}^{s} \in \operatorname{Domain}(\pi)\) then bad \(\leftarrow\) true
 if \(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j-1}^{s}\right] \oplus \mathrm{M}_{j}^{s} \in \operatorname{Domain}(\pi)\) then bad \(\leftarrow\) true
 \(\pi\left(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j-1}^{s}\right] \oplus \mathrm{M}_{j}^{S}\right) \leftarrow\) defined
    ```
            \(\pi\left(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j-1}^{s}\right] \oplus \mathrm{M}_{j}^{S}\right) \leftarrow\) defined
```

$$
\begin{aligned}
& \text { for } X \in\{0,1\}^{+} \text {do } \mathbb{Y}[X] \stackrel{\&}{\leftarrow}\{0,1\}^{n} \\
& \text { for } s \leftarrow 1 \text { to } q \text { do } \mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right) \\
& b a d \leftarrow \exists(r, i) \neq(s, j)(r \leq s)\left(i \geq\left\|\mathrm{P}^{r}\right\|+1\right)\left(j \geq\left\|\mathrm{P}^{s}\right\|+1\right) \\
& \mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathbb{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s} \text { and } r<s \text { or } \\
& \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s} \text { or } \\
& \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathrm{M}_{j+1}^{s} \text { or } \\
& \mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{S}\right] \oplus \mathrm{M}_{j+1}^{s}
\end{aligned}
$$

On the $s^{\text {th }}$ query $F\left(M^{s}\right)$
Game C2
$200 \quad P \leftarrow \operatorname{Prefix}\left(M^{1}, \ldots, M^{s}\right)$
$C \leftarrow \mathbb{Y}[P]$
for $j \leftarrow\|P\|+1$ to m do
$X \leftarrow C \oplus M_{j}^{s}$
$C \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
if $X \in \operatorname{Domain}(\pi)$ then $\mathrm{bad} \leftarrow$ true
$\pi(X) \leftarrow C$
$\mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \leftarrow C$
return C

On the $s^{\text {th }}$ query $F\left(M^{s}\right)$
Game C4
$400 \quad P \leftarrow \operatorname{Prefix}\left(M^{1}, \ldots, M^{s}\right)$
$C \leftarrow \mathbb{Y}[P]$
for $j \leftarrow\|P\|+1$ to m do
$X \leftarrow C \oplus M_{j}^{s}$
if $X \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow$ true
$\pi(X) \leftarrow$ defined
$C \leftarrow \mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}$
$Z^{s} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
return Z^{s}
for $s \leftarrow 1$ to q do \quad Game C6
$\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)$
$C \leftarrow \mathbb{Y}\left[\mathrm{P}^{s}\right]$
$X \leftarrow C \oplus \mathbb{M}_{\| \mathrm{P}^{s}}^{s} \|+1$
if $X \in \operatorname{Domain}(\pi)$ then $\mathrm{bad} \leftarrow$ true
$\pi(X) \leftarrow$ defined
$C \leftarrow \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow\left\|\mathrm{P}^{s}\right\|+1}^{s}\right] \stackrel{\oiint}{\leftarrow}\{0,1\}^{n}$
for $j \leftarrow\left\|\mathrm{P}^{s}\right\|+2$ to m do $X \leftarrow C \oplus \mathrm{M}_{j}^{s}$ if $X \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow$ true $\pi(X) \leftarrow$ defined $C \leftarrow \mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \stackrel{\oiint}{\leftarrow}\{0,1\}^{n}$

```for \(s \leftarrow 1\) to \(q\) do \(\mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)\) if \(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\\|\mathrm{P}^{s}\right\|+1}^{s} \in \operatorname{Domain}(\pi)\) then \(b a d \leftarrow\) true \(\pi\left(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right) \leftarrow\) defined for \(j \leftarrow\left\|\mathrm{P}^{s}\right\|+1\) to \(m-1\) do if \(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathrm{M}_{j+1}^{s} \in \operatorname{Domain}(\pi)\) then \(b a d \leftarrow\) true \(\pi\left(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathrm{M}_{j+1}^{s}\right) \leftarrow\) defined```

801 for $s \leftarrow 1$ to $q$ do
$802 \quad \mathrm{P}^{s} \leftarrow \operatorname{Prefix}\left(\mathrm{M}^{1}, \ldots, \mathrm{M}^{s}\right)$
803 if $\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{\mathrm{s}} \in \operatorname{Domain}(\pi)$ then bad $\leftarrow$ true
$804 \pi\left(\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right) \leftarrow$ defined
$805 \quad$ for $j \leftarrow\left\|\mathrm{P}^{s}\right\|+1$ to $m-1$ do
$806 \quad$ if $\mathbb{Y}\left[M_{1 \rightarrow j}^{s}\right] \oplus M_{j+1}^{s} \in \operatorname{Domain}(\pi)$ then $b a d \leftarrow$ true
$807 \quad \pi\left(\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathbb{M}_{j+1}^{s}\right) \leftarrow$ defined

Figure 6: Games used in the CBC MAC analysis. Let Prefix $\left(M^{1}, \ldots, M^{s}\right)$ be $\varepsilon$ if $s=1$, else the longest string $P \in\left(\{0,1\}^{n}\right)^{*}$ s.t. $P$ is a prefix of $M^{s}$ and $M^{r}$ for some $r<s$. In each game, Initialize sets $\mathbb{Y}[\varepsilon] \leftarrow 0^{n}$.
come to occupy selected entries $\mathbb{Y}[X]$ except for $\mathbb{Y}[\varepsilon]$, which is initialized to the constant block $0^{n}$ and is never changed. The value defined (introduced at line 306) is an arbitrary point of $\{0,1\}^{n}$, say $0^{n}$. Finally, Prefix $\left(M^{1}, \ldots, M^{s}\right)$ is the longest string of blocks $P=P_{1} \cdots P_{p}$ that is a prefix of $M^{s}$ and is also a prefix of $M^{r}$ for some $r<s$. If Prefix is applied to a single string the result is the empty string, $\operatorname{Prefix}\left(P^{1}\right)=\varepsilon$. As an example, letting A, B, and C be distinct blocks, Prefix $(A B C)=\varepsilon$, $\operatorname{Prefix}(A C C, A C B, A B B, A B A)=A B$, and $\operatorname{Prefix}(\mathrm{ACC}, \mathrm{ACB}, \mathrm{BBB})=\varepsilon$.
We briefly explain the game chain up until the terminal game. Game $\mathbf{C 1}$ is a realization of $\mathrm{CBC}^{m}[\operatorname{Perm}(n)]$ and game $\mathbf{C 0}$ is a realization of $\operatorname{Rand}(m n, n)$. The games use lazy sampling of a random permutation (as described in Section A.3) and the resampling idiom (as described in Section A.4). Games C1 and C0 are designed so that the fundamental lemma applies, so the advantage of $A$ in attacking the CBC construction is at most $\operatorname{Pr}\left[A^{\mathrm{C} 0}\right.$ sets bad $] . \mathbf{C} 0 \rightarrow \mathbf{C 2}$ : The $\mathrm{C} 0 \rightarrow \mathrm{C} 2$ transition is a lossy transition that takes care of bad getting set at line 105 , which clearly happens with probability at most $(0+1+\cdots+q) / 2^{n} \leq 0.5 q^{2} / 2^{n}$, so $\operatorname{Pr}\left[A^{\mathrm{C} 0}\right.$ sets $\left.b a d\right] \leq \operatorname{Pr}\left[A^{\mathrm{C} 2}\right.$ sets $\left.b a d\right]+0.5 q^{2} / 2^{n} . \mathbf{C} 2 \rightarrow \mathbf{C} 3$ : Next notice that in game C 2 we never actually use the values assigned to $\pi$, all that matters is that we record that a value had been placed in the domain of $\pi$, and so game C3 does just that, dropping a fixed value defined $=0^{n}$ into $\pi(X)$ when we want $X$ to join the domain of $\pi$. This is the technique we called "marking instead of recording" in Section A.4. The change is conservative. $\mathbf{C 3} \rightarrow \mathbf{C 4}$ : Now notice that in game C3 the value returned to the adversary, although dropped into $\mathbb{Y}\left[M_{1}^{s} \cdots M_{m}^{s}\right]$, is never subsequently used in the game so we could as well choose a random value $Z^{s}$ and return it to the adversary, doing nothing else with $Z^{s}$. This is the change made for game C4. The transition is conservative. $\mathbf{C 4} \boldsymbol{\rightarrow} \mathbf{C 5}$ : Changing game C 4 to C 5 is by the coin-fixing technique of Section A.2. It is a particularly simple application of the technique: game C 4 is oblivious since no variables are used to form $Z^{s}$-values. Coin-fixing in this case amounts to letting the adversary choose the sequence of queries $\mathrm{M}^{1}, \ldots, \mathrm{M}^{m}$ it asks and the sequence of answers returned to it. The queries still have to be valid: each $M^{s}$ is an $m n$-bit string different from all prior ones: that is the query/response set. For the worst $M^{1}, \ldots, M^{m}$, which the coin-fixing technique fixes, $\operatorname{Pr}\left[A^{\mathrm{C} 4}\right.$ sets $\left.b a d\right] \leq \operatorname{Pr}[\mathrm{C} 5$ sets bad $]$. Remember that, when applicable, coinfixing is safe. $\mathbf{C 5} \rightarrow \mathbf{C 6}$ : Game C6 unrolls the first iteration of the loop at lines 503-507. This transformation is conservative. $\mathbf{C 6} \rightarrow \mathbf{C} 7$ : Game C 7 is a rewriting of game C 6 that omits mention of the variables $C$ and $X$, directly using values from the $\mathbb{Y}$-table instead, whose values are now chosen at the beginning of the game. The change is conservative. $\mathbf{C} \mathbf{7} \rightarrow \mathbf{C 8}$ : Game C 8 simply re-indexes the for loop at line 705 . The change is conservative. $\mathbf{C 8} \rightarrow \mathbf{C 9}$ : Game C9 restructures the setting of bad inside the loop at $802-807$ to set bad in a single statement. Points were into the domain of $\pi$ at lines 804 and 807 and we checked if any of these points coincide with specified other points at lines 803 and 806. The change is conservative.
At this point, we have only to bound $\operatorname{Pr}\left[A^{\mathrm{C} 9}\right.$ sets bad $]$, knowing that We bound $\operatorname{Pr}\left[A^{\mathrm{C} 9}\right.$ sets bad $]$ using the sum bound and a case analysis. Fix any $r, i, s, j$ as specified in line 902 . Consider the following ways that bad can get set to true.
Line 903. We first bound $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]$. If $\mathrm{P}^{r}=\mathrm{P}^{s}=\varepsilon$ then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\right.$ $\left.\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=\operatorname{Pr}\left[\mathrm{M}_{1}^{r}=\mathrm{M}_{1}^{s}\right]=0$ because $\mathrm{M}^{r}$ and $\mathrm{M}^{s}$, having only $\varepsilon$ as a common block prefix, must differ in their first block. If $\mathrm{P}^{r}=\varepsilon$ but $\mathrm{P}^{s} \neq \varepsilon$ then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=\operatorname{Pr}\left[\mathrm{M}_{1}^{r}=\right.$ $\left.\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=2^{-n}$ since the probability expression involves the single random variable $\mathbb{Y}\left[\mathrm{P}^{s}\right]$ that is uniformly distributed in $\{0,1\}^{n}$. If $\mathrm{P}^{r} \neq \varepsilon$ and $\mathrm{P}^{s}=\varepsilon$ the same reasoning applies. If $\mathrm{P}^{r} \neq \varepsilon$ and $\mathrm{P}^{s} \neq \varepsilon$ then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=2^{-n}$ unless $\mathrm{P}^{r}=\mathrm{P}^{s}$, so assume that to be the case. Then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=\operatorname{Pr}\left[\mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}\right]=0$ because $\mathrm{P}^{r}=\mathrm{P}^{s}$ is the longest block prefix that coincides in $\mathrm{M}^{r}$ and $\mathrm{M}^{s}$.
Line 904. We want to bound $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}\right]$. If $\mathrm{P}^{s}=\varepsilon$ then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}=\right.$ $\left.\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}\right]=\operatorname{Pr}\left[\mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}\right]=2^{-n}$ because it involves a single random value $\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right]$. So assume that $\mathrm{P}^{s} \neq \varepsilon$. Then $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{s}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}\right]=2^{-n}$ unless $\mathrm{P}^{s}=\mathrm{M}_{1 \rightarrow i}^{r}$ in which case we are looking at $\operatorname{Pr}\left[\mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s}=\mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{r}\right]$. But this is 0 because $\mathrm{P}^{s}=\mathrm{M}_{1 \rightarrow i}^{r}$ means that the longest prefix that $\mathrm{M}^{s}$ shares with $\mathrm{M}^{r}$ is $\mathrm{P}^{s}$ and so $\mathrm{M}_{\left\|\mathrm{P}^{s}\right\|+1}^{s} \neq \mathrm{M}_{\| \mathrm{P}}^{r} \|+1$.
Line 905. What is $\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathrm{M}_{j+1}^{s}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow i}^{r}\right] \oplus \mathrm{M}_{i+1}^{r}$. It is $2^{-n}$ unless $i=j$ and $\mathrm{M}_{1 \rightarrow j}^{s}=\mathrm{M}_{1 \rightarrow i}^{r}$. In that case $\left\|\mathrm{P}^{s}\right\| \geq j$ and $\left\|\mathrm{P}^{r}\right\| \geq i$, contradicting our choice of allowed values for $i$ and $j$ at line 902.

Line 906. We must bound $\operatorname{Pr}\left[\mathbb{Y}\left[\mathrm{P}^{r}\right] \oplus \mathrm{M}_{\left\|\mathrm{P}^{r}\right\|+1}^{r}=\mathbb{Y}\left[\mathrm{M}_{1 \rightarrow j}^{s}\right] \oplus \mathrm{M}_{j+1}^{s}\right]$. As before, this is $2^{-n}$ unless $\mathrm{P}^{r}=\mathrm{M}_{1 \rightarrow j}^{s}$ but we can not have that $\mathrm{P}^{r}=\mathrm{M}_{1 \rightarrow j}^{s}$ because $j \geq\left\|\mathrm{P}^{s}\right\|+1$.
There are at most $0.5 m^{2} q^{2}$ tuples $(r, i, s, j)$ considered at line 902 and we now know that for each of them bad gets set with probability at most $2^{-n}$. So $\operatorname{Pr}[$ Game C9 sets bad $] \leq 0.5 m^{2} q^{2} / 2^{n}$. Combining with the loss from the $\mathrm{C} 0 \rightarrow \mathrm{C} 2$ transition we have that $\operatorname{Pr}[$ Game C 0 sets $b a d] \leq m^{2} q^{2} / 2^{n}$, completing the proof.

## C OAEP

We recall the needed background for the asymmetric encryption scheme OAEP [BeR2]. A trapdoorpermutation generator with associated security parameter $k$ is a randomized algorithm $\mathcal{F}$ that takes a number, the security parameter, as input and returns a pair $\left(f, f^{-1}\right)$ where $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ is (the encoding of) a permutation and $f^{-1}$ is (the encoding of) its inverse. Let

$$
\mathbf{A d v}_{\mathcal{F}}^{\text {owf }}(I)=\operatorname{Pr}\left[\left(f, f^{-1}\right) \stackrel{\&}{\leftarrow} \mathcal{F}(k) ; x{\left.\stackrel{\S}{\leftarrow}\{0,1\}^{k}: I(f, f(x))=x\right]}^{s} ;\right.
$$

be the advantage of adversary $I$ in inverting $\mathcal{F}$. Let $\rho<k$ be an integer. The key-generation algorithm of asymmetric encryption scheme $\operatorname{OAEP}^{\rho}[\mathcal{F}]$ is simply $\mathcal{F}$, meaning it returns $f$ as the public key and $f^{-1}$ as the secret key. The encryption and decryption algorithms have oracles $G:\{0,1\}^{\rho} \rightarrow\{0,1\}^{k-\rho}$ and $H:\{0,1\}^{k-\rho} \rightarrow\{0,1\}^{\rho}$ and work as follows (for the basic, no-authenticity scheme):

```
Algorithm }\mp@subsup{\mathcal{E}}{f}{G,H}(M)\quad/*M\in{0,1\mp@subsup{}}{}{k-\rho}*
 R\leftarrow{0,1\mp@subsup{}}{}{\rho},S\leftarrowG(R)\oplusM,T\leftarrowH(S)\oplusR
 Y\leftarrowf(S|T)
 return Y
```

```
Algorithm \(\mathcal{D}_{f-1}^{G, H}(Y) \quad / * Y \in\{0,1\}^{k} * /\)
```

Algorithm $\mathcal{D}_{f-1}^{G, H}(Y) \quad / * Y \in\{0,1\}^{k} * /$
$X \leftarrow f^{-1}(Y), S \leftarrow X[1 . . k-\rho], T \leftarrow X[k-\rho+1 . . k]$
$X \leftarrow f^{-1}(Y), S \leftarrow X[1 . . k-\rho], T \leftarrow X[k-\rho+1 . . k]$
$R \leftarrow H(S) \oplus T, M \leftarrow G(R) \oplus S$
$R \leftarrow H(S) \oplus T, M \leftarrow G(R) \oplus S$
return $M$

```
 return \(M\)
```

Security of an asymmetric encryption scheme $\mathrm{AE}=(\mathcal{F}, \mathcal{E}, \mathcal{D})$ is defined via the following game. Keys ( $f, f^{-1}$ ) are chosen by running $\mathcal{F}$, and a bit $b$ is chosen at random. Adversary $A$ is given input $f$ and a left-or-right oracle $E(\cdot, \cdot)$ which on input a pair $M_{0}, M_{1}$ of equal-length messages computes $Y \stackrel{\&}{\leftarrow} \mathcal{E}_{f}\left(M_{b}\right)$ and returns $Y$. The output of adversary is a bit $b^{\prime}$ and $\operatorname{Adv}_{\mathrm{AE}}^{\mathrm{fg}-\mathrm{cpa}}(A)=2 \operatorname{Pr}\left[b^{\prime}=b\right]-1$.

Theorem 13 Let $A$ be an adversary with running time $t_{A}$, making at most $q_{G}$ queries to its $G$ oracle, $q_{H}$ to its $H$ oracle, and exactly one query to its left-or-right oracle. Then there is an adversary $I$ with running time $t_{I}$ such that

$$
\operatorname{Adv}_{\mathcal{F}}^{\text {owf }}(I) \geq \frac{1}{2} \mathbf{A d v}_{\mathrm{OAEP} \rho[\mathcal{F}]}^{\mathrm{fg}-\text { cpa }}(A)-\frac{2 q_{G}}{2^{\rho}}-\frac{q_{H}}{2^{k-\rho}} \quad \text { and } \quad t_{I} \leq t_{A}+c q_{G} q_{H} t_{\mathcal{F}}
$$

where $t_{\mathcal{F}}$ is the time for one computation of a function output by $\mathcal{F}$ and $c$ is an absolute constant depending only on details of the model of computation.

Proof of Theorem 13: The proof is based on games shown in Figures 7 and 8. As usual, we have striven to makes steps between adjacent games small at the cost of a somewhat longer game chain, a tradeoff that we believe increases easy verifiability. For the analysis let $p_{i}=\operatorname{Pr}[$ out $=b$ in Ri $](0 \leq i \leq 5)$. R0: Game R0 perfectly mimics the game defining the security of $\operatorname{OAEP}^{\rho}[\mathcal{F}]$. Thus
the last step by the fundamental lemma. Since game R0 chooses $R^{*}, S^{*}$ at random, $\operatorname{Pr}[\mathrm{R} 0$ sets $b a d] \leq$ $q_{G} / 2^{\rho}+q_{H} / 2^{k-\rho}$. R2: Game R2 differs from game R1 only in the setting of bad, so $p_{1}=p_{2}$, and using the fundamental lemma again we have

$$
p_{1}=p_{2}=p_{3}+\left(p_{2}-p_{3}\right) \leq p_{3}+\operatorname{Pr}[\mathrm{R} 3 \text { sets bad }] .
$$

R4: In game R4 the string $G R^{*}$ is chosen but not referred to in responding to any oracle queries of the adversary. Thus R4 is a conservative replacement for $\mathrm{R} 3, p_{3}=p_{4}$, and $\operatorname{Pr}[\mathrm{R} 3$ sets bad $]=\operatorname{Pr}[\mathrm{R} 4$ sets bad $]$. However, the bit $b$ is not used in R4, and hence $p_{4}=1 / 2$. In summary

$$
p_{3}+\operatorname{Pr}[\mathrm{R} 3 \text { sets } b a d]=p_{4}+\operatorname{Pr}[\mathrm{R} 4 \text { sets bad }]=\frac{1}{2}+\operatorname{Pr}[\mathrm{R} 4 \text { sets bad }] .
$$



Figure 7: Games used in the analysis of OAEP. Initialize is the same in all of these games: $\left(f, f^{-1}\right) \stackrel{\&}{\leftarrow} \mathcal{F}(k), b \stackrel{\&}{\leftarrow}\{0,1\}$, return $i n p \leftarrow f$. Finalize is also the same: return out $=b$.


Figure 8: Games used in the analysis of OAEP. Initialize is the same in all of these games: $\left(f, f^{-1}\right) \stackrel{\oiint}{\leftarrow} \mathcal{F}(k), b \stackrel{\S}{\leftarrow}\{0,1\}$, return $i n p \leftarrow f$. Finalize is also the same: return out $=b$.


Figure 9: Games used in the analysis of OAEP, continued. Initialize is the same in all of these games: $\left(f, f^{-1}\right) \stackrel{₫}{\leftarrow} \mathcal{F}(k)$, $b \stackrel{\&}{\leftarrow}\{0,1\}$, return $\operatorname{inp} \leftarrow f$. Finalize is also the same: return out $=b$.

Putting all this together we have

$$
\begin{equation*}
\frac{1}{2} \mathbf{A d v}_{\mathrm{OAEP} \rho[\mathcal{F}]}^{\mathrm{fg}-\mathrm{cpa}}(A)-\frac{q_{G}}{2^{\rho}}-\frac{q_{H}}{2^{k-\rho}} \leq \operatorname{Pr}[\mathrm{R} 4 \text { sets } b a d] \tag{7}
\end{equation*}
$$

We proceed to upper bound the right-hand-side of the above. We have

$$
\operatorname{Pr}[\mathrm{R} 4 \text { sets } b a d]=\operatorname{Pr}[\mathrm{R} 5 \text { sets } b a d] \leq q_{G} / 2^{\rho}+\operatorname{Pr}[\mathrm{A} 0 \text { sets } b a d]
$$

Next we have a series of conservative changes, giving A0, A1, A2, A3, A4, A5 leading to

$$
\operatorname{Pr}[\mathrm{A} 0 \text { sets } b a d]=\operatorname{Pr}[\text { A } 5 \text { sets } b a d] \leq \operatorname{Pr}[\mathrm{A} 6 \text { sets } b a d]=\operatorname{Pr}[\mathrm{A} 7 \text { sets } b a d]
$$

To conclude the proof we design $I$ so that

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{A} 7 \text { sets } b a d] \leq \mathbf{A d v}_{\mathcal{F}}^{\text {owf }}(I) \tag{8}
\end{equation*}
$$

On input $f, Y^{*}$, inverter $I$ runs $A$ on input public key $f$, responding to its oracle queries as follows.

```
On query E(M , ,M1)
 Inverter I
0 0 0 ~ r e t u r n ~ Y * * * *)
On query G(R) On query H(S)
010 if \existsS s.t. f(S|H[S]\oplusR)=\mp@subsup{Y}{}{*}\mathrm{ then 020 return H[S] & {0,1} }\mp@subsup{}}{}{\rho}
 bad}\leftarrow\mathrm{ true, S** |T* }\mp@subsup{T}{}{*}\leftarrowS|H[S]\oplus
011 return }G[R]\stackrel{\oiint}{\hookleftarrow}{0,1\mp@subsup{}}{}{k-\rho
```

When $A$ halts, inverter $I$ returns $S^{*} \| T^{*}$ if this has been defined. By comparison with A7 we see that (8) is true, completing the proof.

## D Equation (1) is true if the adversary asks a fixed number of queries

Let adversary $A$ and other notation be as in Section 2, where we showed by example that if the number of oracle queries made by $A$ depends on the answers it receives in response to previous queries, then (1) may
not hold. Here we show that if the number of oracle queries made by $A$ is always $q$-meaning the number of queries is this value regardless of $A$ 's coins and the answers to the oracle queries - then (1) is true.

Since $A$ is computationally unbounded, we may assume wlog that $A$ is deterministic. We also assume it never repeats an oracle query. Let $V=\left(\{0,1\}^{n}\right)^{q}$ and for a $q$-vector $a \in V$ let $a[i] \in\{0,1\}^{n}$ denote the $i$-th coordinate of $a, 1 \leq i \leq q$. We can regard $A$ as a function $f: V \rightarrow\{0,1\}$ that given a $q$-vector $a$ of replies to its oracle queries returns a bit $f(a)$. Let a denote the random variable that takes value the $q$-vector of replies returned by the oracle to the queries made by $A$. Also let

$$
\begin{aligned}
\text { dist } & =\{a \in V: a[1], \ldots, a[n] \text { are distinct }\} \\
\text { one } & =\{a \in V: f(a)=1\}
\end{aligned}
$$

Let $\operatorname{Pr}_{\text {rand }}[\cdot]$ denote the probability in the experiment where $\rho \stackrel{\S}{\leftarrow} \operatorname{Rand}(n)$. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A^{\rho} \Rightarrow 1 \mid \text { Dist }\right] & =\operatorname{Pr}_{\text {rand }}[f(\mathbf{a})=1 \mid \mathbf{a} \in \text { dist }]=\frac{\operatorname{Pr}_{\text {rand }}[f(\mathbf{a})=1 \wedge \mathbf{a} \in \text { dist }]}{\operatorname{Pr}_{\text {rand }}[\mathbf{a} \in \text { dist }]} \\
& =\frac{\sum_{a \in \text { dist } \cap o n e} \operatorname{Pr}_{\text {rand }}[\mathbf{a}=a]}{\sum_{a \in \text { dist }} \operatorname{Pr}_{\text {rand }}[\mathbf{a}=a]}=\frac{\sum_{a \in \text { dist } \cap \mathrm{one}} 2^{-n q}}{\sum_{a \in \text { dist }} 2^{-n q}}=\frac{\mid \text { dist } \cap \text { one } \mid}{\mid \text { dist } \mid}
\end{aligned}
$$

On the other hand let $\operatorname{Pr}_{\text {perm }}[\cdot]$ denote the probability in the experiment where $\pi \stackrel{\&}{\leftarrow} \operatorname{Perm}(n)$. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right] & =\operatorname{Pr}_{\text {perm }}[f(\mathbf{a})=1]=\sum_{a \in \text { distกone }} \operatorname{Pr}_{\text {perm }}[f(\mathbf{a})=a] \\
& =\sum_{a \in \text { distnone }} \prod_{i=0}^{q-1} \frac{1}{2^{n}-i}=\sum_{a \in \text { distnone }} \frac{1}{\mid \text { dist } \mid}=\frac{\mid \text { dist } \cap \text { one } \mid}{\mid \text { dist } \mid} .
\end{aligned}
$$


[^0]:    *Department of Computer Science \& Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA. E-mail: mihir@cs.ucsd.edu WWW: www.cse.ucsd.edu/users/mihir/
    ${ }^{\dagger}$ Department of Computer Science, University of California at Davis, Davis, California, 95616, USA; and Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: rogaway@cs.ucdavis.edu WWW: www.cs.ucdavis.edu/~rogaway/

[^1]:    ${ }^{1}$ Sometimes the advantage might be something else, such as the probability that the adversary forges, but the case we consider is very common.
    ${ }^{2}$ We actually use pseudocode as our programming language. We could have formally specified the desired programming language, and there would seem to be some advantages to doing so, but we have not followed that path.

[^2]:    ${ }^{3}$ This definition excludes the possibility of an adversary being able to to flip a coin with bias $p=1 / \pi$, for example. It is possible to show that an optimal adversary for a game G need not flip coins with irrational biases; in that sense, assuming an adversary's source of randomness to be to be sample-then-assign statements is without loss of generality.

[^3]:    ${ }^{4}$ In fact, a game chain may be used also for this first phase, before we apply the fundamental lemma; an example is given in our OAEP analysis.

