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Abstract

Symbolic analysis of cryptographic protocols is dramatically simpler than full-fledged cryp-
tographic analysis. In particular, it is readily amenable to automation. However, symbolic
analysis does not a priori carry any cryptographic soundness guarantees. Following recent work
on cryptographically sound symbolic analysis, we demonstrate how Dolev-Yao style symbolic
analysis can be used to assert the security of cryptographic protocols within the universally
composable (UC) security framework. Consequently, our methods enable security analysis that
is completely symbolic, and at the same time cryptographically sound with strong composability
properties.

More specifically, we define a mapping from a class of cryptographic protocols to Dolev-
Yao style symbolic protocols. For this mapping, we show that the symbolic protocol satisfies
a certain symbolic criterion if and only if the corresponding cryptographic protocol is UC-
secure. We concentrate on mutual authentication and key-exchange protocols that use public-
key encryption as their only cryptographic primitive. For mutual authentication, our symbolic
criterion is similar to the traditional Dolev-Yao criterion. For key exchange, we demonstrate
that the traditional Dolev-Yao style symbolic criterion is insufficient, and formulate an adequate
symbolic criterion.

Finally, to demonstrate the viability of the treatment, we use an existing automated verifi-
cation tool to assert UC security of some prominent key exchange protocols.

∗This work was presented at the DIMACS workshop on protocol security analysis, June 2004.
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1 Introduction

Analyzing the security of cryptographic protocols is a slippery business. One of the main reasons
for the complexity and subtlety of this task is the need to capture adversarial behavior which is
very powerful in terms of its control of the communication environment, while being computation-
ally bounded. Furthermore, security typically holds only in a probabilistic sense, and only under
computational intractability assumptions.

An essential first step towards meaningful security analysis is to formulate a mathematical model
for representing cryptographic protocols, and a method for translating the security requirements
of a given task into mathematical criteria in that model. Indeed, developing such mathematical
models and security requirements has been a main endeavor in modern cryptography from its
early stages, beginning with the notions of pseudo-randomness and semantic security of encryption
[14, 15, 42, 28], through zero-knowledge, non-malleability, and general cryptographic protocols, e.g.
[30, 31, 25, 29, 43, 10, 17, 49, 18]. Indeed, we now have a variety of mathematical models where one
can represent cryptographic protocols, specify the security requirements of cryptographic tasks, and
then potentially prove that (the mathematical representation of) a protocol meets the specification
in a way that is believed to faithfully represent the security of actual protocols in actual systems.

However, the models above directly represent adversaries as resource-bounded and randomized
entities, and directly bound their success probabilities with a function of the consumed resources.
This entails either asymptotic formalisms or alternatively parameterized notions of concrete secu-
rity. Both are relatively complex, even for relatively simple protocols and simple tasks. Further-
more, these notions are typically satisfied only under some underlying hardness assumptions. Thus,
proofs of security typically require “human creativity” (e.g., in coming up with a reduction to the
underlying hard problem) and are hard to mechanize. Consequently, full-fledged cryptographic
analysis of even moderately complex cryptographic systems is a daunting prospect.

Several alternatives to this “computational” approach to protocol security analysis have been
proposed, such as the Dolev-Yao model [26] and its many derivatives (e.g. [53, 24]), the BAN logic
[16], and a number of process calculi and other models, e.g. [2, 35, 36, 39]. In these approaches,
cryptographic primitives are represented as symbolic operations which guarantee a set of idealized
security properties by fiat. (For instance, transmission of encrypted data is modeled as communica-
tion that is inaccessible to the adversary, e.g. [16], or as a symbolic operation that completely hides
the message, e.g. [26].) Consequently, the model becomes dramatically simpler. There is no need
for computational assumptions; randomization can be replaced by non-determinism; and protocols
can be modeled by simple finite constructs without asymptotics. Indeed, protocol analysis in these
models is much simpler, more mechanical, and amenable to automation (see e.g. [38, 41, 52, 46, 12]).
These are desirable properties when attempting to analyze large-scale systems.

However, there has been (until recently) no concrete justification for this high level of abstrac-
tion. Thus, these models could not be used to prove that protocols remain secure when the abstract
security primitives are realized by actual algorithms. (Still, many of these models were instrumental
in finding flaws in protocols.)

There have been several recent efforts towards devising symbolic models that enjoy the relative
simplicity of “abstract cryptography” while maintaining cryptographic soundness. One attractive
approach towards this goal was introduced in the ground-breaking work of Abadi and Rogaway [4]
in the context of passive security of symmetric encryption schemes. They (with several follow-up
works, e.g. [44, 3, 34]) essentially showed that proving indistinguishability of distribution ensembles
of a certain class can be done by translating these ensembles to symbolic forms and verifying a
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symbolic criterion on these forms. Micciancio and Warinschi [45] extend this approach to include
active adversaries. Specifically, they provide a formal criteria for two-party protocols, and show
that symbolic protocols which satisfy this criteria achieve mutual authentication (as defined in [11])
if they are implemented with public-key encryption secure against the chosen-ciphertext attack (as
in [50, 25]).

An alternative approach was taken in the works of Backes, Pfitzmann and Waidner, and Canetti
(e.g. [49, 18, 5, 7, 20]). Here, the idea is to define idealized abstractions of cryptographic primitives
directly in a full-fledged cryptographic model. These abstractions are realizable by actual concrete
protocols in a cryptographic setting, but can at the same time be used as abstract primitives by
higher-level protocols. Soundness for this abstraction process is guaranteed a strong composition
theorem. This approach is attractive due to its generality and the strong compositional secu-
rity properties it provides. Furthermore, the analysis of the higher-level protocols becomes more
straightforward and mechanical when the lower-level primitives are replaced by their abstractions.
However, this model still requires the analyst to directly reason about protocols within a full-fledged
cryptographic model. Consequently, this approach retains much of the original complexity of the
problem.

Our approach. This work demonstrates how formal and symbolic reasoning in a simple finite
model can be used to simplify analyzing the security of protocols within a full-fledged cryptographic
model with strong composability properties. Specifically, we use the universally composable (UC)
security framework [18]. In a nutshell, the approach proceeds as follows: Our overall goal is to
assert whether a given concrete, fully specified protocol satisfies a concrete security property. (In
our case, the concrete property is realizing a given ideal functionality within the UC framework.)
Instead of proving this assertion directly within the UC framework, we proceed in three steps.
First, we translate the protocol to a simpler, symbolic protocol (a “Dolev-Yao protocol”). Next,
standard tools for symbolic protocol analysis are used to prove that the symbolic protocol satisfies a
certain symbolic criterion. Finally, we show that this implies that the concrete protocol satisfies the
concrete security property (i.e., realizes the given ideal functionality). The main gain here is that
the first and third steps are general and can be done once and for all. Only the second step needs
to be done per protocol. This step is typically considerably simpler than full-fledged cryptographic
analysis (say, within the UC framework). The approach is summarized in Figure 1.

In a way, this approach takes the best of the two approaches described above: On the one hand,
it guarantees the strong security and composition properties of the ideal-functionality approach.
On the other hand, we end up with a relatively simple, finite symbolic model, and symbolic criteria
to verify within that model. In fact, we obtain an even simpler symbolic analysis than current
ones: We carry out the entire analysis, including the symbolic criteria, in terms of a single instance
of the protocol in question. Security in a setting where an unbounded number of instances may
run concurrently with arbitrary other protocols is guaranteed via the UC and UC with joint state
theorems [18, 23]. In contrast, existing symbolic models (e.g. [26, 53, 24]) directly address the more
complex multi-session case, even in the symbolic model. Consequently, our symbolic modeling
involves considerably fewer runtime states and thus lends to a more effective mechanical analysis.

A simple example. We demonstrate the above approach via a relatively simple example. As in
[45], we concentrate on a restricted class of cryptographic protocols. These protocols use public-
key encryption as their only cryptographic operations and conform to a restrictive format. Despite
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Symbolic protocol Symbolic criterion

Concrete protocol Concrete security

General

Protocol-specific, simple

General
Protocol-specific, complex

Figure 1: Using symbolic (formal) analysis to simplify cryptographic analysis.

being strict, this format also allows the expression of interesting and known protocols. (The goal of
the restrictive format is to allow the use of standard symbolic protocol syntax. Our results can be
easily extended to richer formats.) We show how to translate such protocols (which we call simple
protocols) to symbolic protocols in a relatively simple formal model.

We further provide two symbolic criteria in the formal model: a symbolic mutual authentication
property much like the standard symbolic property in the literature, and a symbolic key exchange
property which is actually quite different from the standard symbolic property in the literature.
Finally we show that:

1. The original, concrete protocol obtains UC mutual authentication (i.e., it securely realizes the
mutual authentication ideal functionality in the UC framework) if and only if the symbolic
protocol obtains symbolic mutual authentication.

2. The original, concrete protocol obtains UC key exchange (i.e., it securely realizes the key
exchange ideal functionality in the UC framework) if and only if the symbolic protocol obtains
symbolic key exchange.

It is stressed that, as in [4], the symbolic criterion is formulated in terms of a finite and relatively
simple model, whereas the concrete criterion (realizing an ideal functionality) is formulated in the
standard asymptotic terms of cryptographic security. Still, equivalence holds.

The translation from concrete to symbolic protocols. The translation from the “bare”
cryptographic model to the symbolic model is done in two steps. The first step is to translate the
original protocol into a protocol where the use of the encryption scheme is replaced by use of the
ideal public-key encryption functionality, Fpke as in [18, 22]. This step is justified by the equivalence
between Fpke and CCA-secure encryption (see [18]). For convenience, we will use in the body of
this paper a variant of Fpke, called Fcpke, which guarantees ideal binding between public keys and
the identities of the corresponding decryptors. However, we show (in Appendix A) that Fcpke can
be realized in a straightforward way, using Fpke and a “registration” functionality Freg.

The second step of the translation is to translate a protocol in the Fcpke-hybrid model to a
“symbolic protocol” in our formal model. In this latter model internal operations are implicit,
protocol messages are modeled as parse-trees of compound symbolic expressions, and the adversary
is represented as a non-deterministic sequence of operations on the message space.

The symbolic security criteria. Our symbolic mutual authentication criterion is quite stan-
dard, requiring that if a party successfully completes a session then its intended peer has initiated
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this session. (Essentially the same criterion appears in [7, 8] and [45], except that there it relates
to a multi-session execution whereas here it relates to a single-session execution.) In contrast, our
symbolic key-exchange criterion is stronger than the standard criterion in the symbolic-encryption
literature. The standard criterion only requires that it is impossible to derive the symbol represent-
ing the session-key from the adversary’s view. We demonstrate that this criterion is insufficient for
obtaining reasonably secure concrete key-exchange protocols. Instead, our symbolic criterion has
the flavor of a “real-or-random” test, where the adversary can continue interacting with the system
after the test value is known, as is common in cryptographic modeling (see e.g. [50, 51, 48, 21]).
Still, the criterion is cast in a symbolic model, and relates to single session of the protocol. (We
adhere to the standard symbolic formalization that does not address adaptive corruption of sessions
and parties. Extending the symbolic treatment to the case of adaptive corruptions is left for future
work.)

A main technical tool that enables our result is a mapping from probability ensembles that
describe executions of a concrete protocol in the UC framework to “traces” of the corresponding
symbolic protocol. These traces are finite sequences of symbols, and do not involve probabilities
or asymptotics. Still, it is guaranteed that any ensemble describing an execution of the concrete
protocol is mapped to some valid trace of the symbolic protocol.

Automated analysis. To demonstrate the effectiveness of tour treatment, we encoded our sym-
bolic security condition for key exchange protocols into the automated tool of Blanchet [12, 13], and
then used this tool to assert security of two variants of the Needham-Schroeder-Lowe key-exchange
protocol, one of which was found to be secure and one was not. This provides an automated proof
of the fact that a protocol achieves universally composable key exchange. In fact, to the best of
our knowledge, this is the first report of an automated security proof of a non-trivial cryptographic
protocol that provides a cryptographical soundness guarantee. (See more details in Appendix B.)

Related work. Pfitzmann and Waidner [49] provide a general definition of integrity proper-
ties and prove that such properties are preserved under protocol composition in their framework.
Our symbolic mutual authentication criterion can be cast as such an integrity property. In addi-
tion, Backes, Pfitzmann and Waidner [8, 6], building on the idealized cryptographic library in [5],
demonstrate that several known protocols satisfy a property that is similar to our symbolic mutual
authentication criterion. However, these results do not shed light on the question which is the focus
of this work, namely whether a given concrete cryptographic protocol realizes an ideal functionality
(say, the mutual authentication functionality) in a cryptographic model (say, the UC framework.)
Furthermore, since the [5] abstraction is inherently multi-session, the [7] analysis has to directly
address the more complex multi-session case.

Our results for mutual authentication protocols follow the lines of Micciancio and Warinschi [45].
However, since we use the UC abstraction of idealized encryption, our characterization results are
unconditional (rather than computational), can be stated in the simpler terms of a single session,
and provide the stronger security guarantees of the UC framework.

Blanchet [12] provides a symbolic criterion (cast in a variant of the spi-calculus [1]) that captures
a secrecy property, called “strong secrecy”, that is similar to our symbolic secrecy criterion for the
exchanged key. Essentially, the criterion says that the view of any adversarial environment remains
unchanged (modulo renaming of variables) when the symbol representing the secret key is replaced
by a fresh symbol that’s unrelated to the protocol execution. Indeed, Blanchet’s tool is the one we
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used for the automated analysis reported above.
Backes and Pfitzmann [9] proposed a secrecy criterion for abstract key-exchange protocols that

use their cryptographic library, and demonstrate that this criterion suffices for guaranteeing cryp-
tographic security. Their criterion seems overly restrictive; in particular, it rejects some natural key
exchange protocols (such as, say, Version 1 of the Needham-Schroeder-Lowe key-exchange protocol
as described in Section 3.3, that satisfies the secrecy condition in this work).

Finally, Herzog, Liskov and Micali [33] provide an alternative cryptographic realization of the
Dolev-Yao abstraction of public-key encryption. Their realization makes stronger cryptographic
requirements from encryption scheme in use (namely, they require “plaintext aware encryption”),
and assumes a model where both the sender and the receiver have public keys. Herzog later relaxes
this requirement to standard CCA-2 security [32], but this work (lacking any composition theorems)
still considers the multi-session case. Furthermore, it only connects executions of protocols in the
concrete setting to executions of protocols in the symbolic setting. It fails to discuss whether
security in the symbolic setting implies or is implied by security in the concrete setting, which the
main focus of this work.

Organization. We begin with some background on the frameworks of Universal Composition
(Section 2.1) and the Dolev-Yao model of symbolic cryptography (Section 2.2).

We then introduce and describe the certified public-key functionality, Fcpke (Section 3.1). With
this, we can define the class of “simple protocols,” protocols which will be meaningful in both the
Dolev-Yao and UC models (Section 3.2). We illustrate this definition by expressing within it the
Needham-Schroeder-Lowe protocol (Section 3.3) and the Dolev-Dwork-Naor protocol (Section 3.4).
Finally, we present the mapping from executions of simple protocols in the UC framework to
executions in the symbolic model (Section 4).

Having done this, we define the security goal of mutual authentication in the UC framework
(Section 5.1) and the symbolic model (Section 5.2) and prove their equivalence.

Lastly, we define the goal of secure key-exchange in both the UC framework (Section 6.1) and
the symbolic model (Section 6.2). As we explain (Section 6.2.1) our definition of symbolic secure key
exchange must be strictly stronger than the traditional symbolic definition. However, we show that
the UC definition of key exchange and the new symbolic definitions of key exchange are equivalent
(Section 6.3).

We finish (Section 7) with some directions for future work.

2 Preliminaries

2.1 The UC framework

We review of the UC security framework [18]. The presentation is informal for clarity and brevity.
Full details (as well as a history of works leading to that framework) appear there. We first present
the model of computation, ideal protocols, and the general definition of securely realizing an ideal
functionality. Next we present hybrid protocols and the composition theorem.

Protocol syntax. Following [30, 27], a protocol is represented as a system of interactive Turing
machines (ITMs), where each ITM represents the program to be run within a party when partic-
ipating in some protocol instance. Specifically, the input and output tapes model inputs and
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outputs that are received from and given to other programs running within the same party (say,
the same physical computer), and the communication tapes model messages sent to and received
from the network. Adversarial entities are also modeled as ITMs. Each ITM has a session-identifier
(SID) that identifies which session (or, protocol instance) the ITM belongs to. It also has a party
identifier (PID) that typically identifies the party within which the program is running. The pair
(SID,PID) is a unique identifier of the ITM in the system. (That is, no two ITMs in the system
can share both the same SID and the same PID.) In the case of mutual authentication and key
exchange protocols, each ITM will also have a role identifier (RID) which will determine whether
the ITM is an initiator or a responder in the protocol.

We assume that all ITMs run in probabilistic polynomial time (PPT). An ITM is PPT if there
exists a constant c > 0 such that, at any point during its run, the overall number of steps taken by
M is at most nc, where n is the overall number of bits written on the input tape of M in this run,
plus k, where k is the security parameter.

2.1.1 The Basic Framework

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in the presence of an adversarial environment
is formalized. Next, an “ideal process” for carrying out the task at hand is formalized. In the
ideal process the parties do not communicate with each other. Instead they have access to an
“ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed to
capture the desired functionality of the task at hand. A protocol is said to securely realize an ideal
functionality if the process of running the protocol amounts to “emulating” the ideal process for
that ideal functionality. We overview the model for protocol execution (called the real-life model),
the ideal process, and the notion of protocol emulation.

The model for protocol execution. We sketch the process of executing a given protocol p
(run by some set of parties) with an adversary A and an environment machine Z with input z.
All parties have a security parameter k ∈ N. The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some party) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is the first to be activated. In each activation it may read the contents of the
output tapes of all parties, it may invoke a new party that runs the current instance of the protocol,
or it may write information on the input tape of either one of the parties or of the adversary.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on its
output tape. (The full UC model as described in [18, 23] also allows the adversary to adaptively
corrupt honest participants. However, in order to be compatible with existing symbolic analysis
methods we consider only static party corruptions in this work.) The delivered messages need not
bear any relation to the messages sent by the parties. (This essentially means that the underlying
communication model is unauthenticated.)

Once a party is activated (either due to an input given by the environment or due to a message
delivered by the adversary), it follows its code and possibly writes a local output on its output tape

6



or an outgoing message on its outgoing communication tape.
The protocol execution ends when the environment halts. The output of the protocol execution

is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let execp,A,Z(k, z, ~r) denote the output of environment Z when interacting with parties running
protocol p on security parameter k, input z and random input ~r = rZ, rA, r1, r2, ... as described
above (z and rZ for Z; rA for A, ri for party Pi). Let execp,A,Z(k, z) denote the random vari-
able describing execp,A,Z(k, z, ~r) when ~r is uniformly chosen. Let execp,A,Z denote the ensemble
{execp,A,Z(k, z)}k∈N ,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. A key ingredient in the ideal process is the ideal
functionality that captures the desired functionality, or the specification, of that task. The ideal
functionality is modeled as another ITM (representing a “trusted party”) that interacts with the
parties and the adversary. For convenience, the process for realizing an ideal functionality is repre-
sented as a special type of protocol, called an ideal protocol. In the ideal protocol for functionality F
all parties simply hand their inputs to an ITM running F. (We will simply call this ITM F. The SID
of F is the same as the SID of the ITMs running the ideal protocol.) In addition, F can interact with
the adversary according to its code. Whenever F outputs a value to a party, the party immediately
copies this value to its own output tape. We call the parties in the ideal protocol dummy parties.
The adversary interacting with the ideal protocols is called the simulator and denoted S.

Let IF denote the ideal protocol for functionality F. Let idealF,S,Z(k, z) denote the random vari-
able describing execIF,S,Z(k, z). Let idealF,S,Z denote the ensemble {idealF,S,Z(k, z)}k∈N ,z∈{0,1}∗ .

Securely realizing an ideal functionality. We say that a protocol p securely realizes an ideal
functionality F if there exists an ideal-process adversary S such that no environment Z, on any
input, can tell with non-negligible probability whether it is interacting with § and parties running
p, or it is interacting with S and parties running IF. This means that, from the point of view of
the environment, running protocol p is ‘just as good’ as interacting with an ideal protocol for F.

A distribution ensemble is called binary if it consists of distributions over {0, 1}. We have:

Definition 1 Two binary distribution ensembles {X(k, a)}k∈N ,a∈{0,1}∗ and {Y (k, a)}k∈N ,a∈{0,1}∗

are called indistinguishable (written X ≈ Y ) if for any c ∈ N there exists k0 ∈ N such that for all
k > k0 and for all a we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c.

Definition 2 Let n ∈ N . Let F be an ideal functionality and let p be an n-party protocol. We say
that p securely realizes F if there exists an ideal-process simulator S such that for any environment
Z we have

idealF,S,Z ≈ execp,A,Z.

This definition is quite strong, and implies many properties that one might desire in a protocol.
In particular, it implies that a protocol is universally composable: that it can be used as a sub-
protocol by an arbitrary higher-level protocol with no ill effects. More specifically, suppose that a
protocol p securely realizes a functionality F as defined above, and P is some higher-level protocol.
Then the case where P calls p as a sub-protocol is indistinguishable from the case where P uses the
functionality F, even when P uses multiple instances of p or F.
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Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to multiple copies of an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make set-up assumptions on the underlying network. They are also instrumental
in stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F.

The communication between the parties and each one of the copies of F mimics the ideal process.
That is, giving input to a copy of F is done by directly writing the input value on the input tape of
that copy. Similarly, each copy of F writes the output values directly to a tape of the corresponding
party. It is stressed that the adversary does not see the interaction between the copies of F and the
honest parties.

The copies of F are differentiated using their SIDs (the PIDs of all copies of F are null.) All
inputs to each copy and all outputs from each copy carry the corresponding SID. The model does
not specify how the SIDs are generated, nor does it specify how parties “agree” on the SID of
a certain protocol copy that is to be run by them. These tasks are left to the hybrid protocol.
This convention seems to simplify formulating ideal functionalities—and designing protocols that
securely realize them—by freeing the functionality from the need to choose the SIDs and guarantee
their uniqueness. In addition, it seems to reflect common practice of protocol design in existing
networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. Let p be an F-hybrid protocol, and let r be a protocol
that securely realizes F. The composed protocol pr is constructed by modifying the code of each
ITM in p so that the first message sent to each copy of F is replaced with an invocation of a new copy
of r with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding copy
of r, with the contents of that message given to r as new input. Each output value generated by
a copy of r is treated as a message received from the corresponding copy of F. The copy of r will
start sending and receiving messages as specified in its code. Notice that if r is a G-hybrid protocol
model (i.e., r uses ideal evaluation calls to some functionality G) then so is pr.

The universal composition theorem. Let F be ideal functionality. In its general form, the
composition theorem basically says that if r is a protocol that securely realizes F then, for any F-
hybrid protocol p, we have that an execution of the composed protocol pr “emulates” an execution
of protocol p. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol
pr or with S and protocol p. As a corollary, we get that if protocol p securely realizes some ideal
functionality G, then so does protocol pr

Theorem 1 (universal composition [18]) Let F,G be ideal functionalities. Let p be a protocol
in the F-hybrid model, and let r be a protocol that securely realizes F. Then for any adversary A
there exists a simulator S such that for any environment Z we have

exec
F
p,S,Z ≈ exec

G
pr ,A,Z.
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In particular, if p securely realizes functionality G then so does pr.

We do not discuss the general implications of Theorem 1 in this work. Still, let us mention two
implications that are particularly relevant to this work. First, the composition theorem implies
that it is sufficient to analyze the security of a protocol in the single-instance case. That is, it is
unnecessary to consider any interaction between one protocol and another, or between concurrent
runs of a single protocol. If a single run of the protocol (in isolation) securely realizes a single
instance of the functionality, then it does so when composed with multiple instances of itself or
other protocols.

The second implication of the composition theorem is that we, in this work, do not need to
consider specific implementations of encryption. Instead, we can define protocols in terms of access
to an ideal encryption functionality. The composition theorem implies that our protocols retain all
their security properties even when the functionality is replaced by an actual encryption scheme,
so long as the encryption scheme securely realizes the ideal encryption functionality.

2.2 The Dolev-Yao model for symbolic encryption

There are several variations on the Dolev-Yao model, each tailored to a specific tool or application.
We provide and discuss a variant which is appropriate for our needs. In particular, we limit our
attention to public-key encryption (ignoring e.g., symmetric encryption, signatures and so on) and
we add the notion of a local output. We first define the basic symbolic algebra that underlies the
model.

Definition 3 (The Message Algebra) The messages of the Dolev-Yao algebra are assumed to
be elements of an algebra A of values. There are several types of atomic message:

• Identifiers (M) which are thought of as public and predictable. These are denoted by P1,
P2. . . and so on. We assume there to be a finite number of names in the algebra. With each
identifier Pi we associate a role oi which is a value in some finite set O. In the present work
we are concerned with the case O = {Initiator,Responder}.1

• Random-string symbols (R) which are thought of as private and unpredictable. These symbols
are denoted by R1, R2. . . and so on. They have two purposes: First, they can be used as nonces
to ensure freshness of messages and responses. Second, they can also be used as symmetric
keys (i.e., output by key-exchange protocols). We assume there to be a finite number of random
strings in the algebra.

• Public keys (KPub) of which we assume there to be a finite number,

• A garbage term, written G, to represent ill-formed messages,

• ⊥, to represent an error or failure,

• Starting, to indicate that a protocol execution has begun, and

• Finished, to indicate that a protocol execution has ended.

1In general, a party carrying a given identity can of course participate in multiple interactions, where in different
interactions it plays different roles. However, since we are using the symbolic model to analyze a single protocol
instance, we can assume that each party has a single role.
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Compound messages are created by two operations:

• encrypt : KPub ×A → A

• pair : A×A → A

We write {|m|}K for enc(K ,m) and m1|m2 for pair(m1,m2).
2 We require that there be a mapping

keyof :M→KPub which maps each name to one public key.

The algebra is assumed to be free: every compound message has a unique representation.
(Consequently, each compound message can be equated with the “parse tree” which describes the
unique way in which the message was constructed.)

Symbolic Protocols Figuratively, parties running a symbolic protocol (i.e., a protocol in the
symbolic model) have four components:

• An input port, where the party obtains its initial input and state.

• A communications port, by which it can send and receive messages in the algebra A.

• A local output port, by which it can output elements of A.

• Some internal state. Without loss of generality the internal state consists of all the messages
received in the execution so far.

• An identity.

• A role in the protocol.

In keeping with the UC framework, we will assume that in each activation participants either output
a local output or send a message via the communications port, but not both. More formally:

Definition 4 A symbolic protocol P is a mapping from the set of states S = (A)∗, the set O of
roles, an element in the algebra A representing the incoming message, and the set M of identities,
to a value in {output ,message} (indicating whether the party generates output or an outgoing
message), plus a value in the algebra (describing the output of outgoing message generated in this
activation) plus a new state (which is the old state with the addition of the new incoming message).
That is:

P : S ×O ×A×M→ {output ,message} × A× S.

The intended semantics is that, when an honest participant receives a message in the algebra A,
it produces, based on its identity and role, either a local output or an outgoing message that goes
on the network, and transitions to a new state. It might also terminate, which is represented as a
special state which transitions only to itself and outputs only ⊥.

Remark: As is usual in Dole-Yao style modeling, the definition of a symbolic protocol does not
require that the protocol be efficiently implementable. For example, it is perfectly valid to define a
protocol in which a participant can receive the encryption of any message under any public key and
output the plaintext as its next action. In this work, we wish to only consider protocols that have
an efficient implementation in the UC framework. Thus, we will limit our attention to protocols
that are derived from some concrete, efficiently implementable protocol (see Section 3).

2When three or more terms are written together, such as m1|m2|m3, we assume they are grouped to the left. That
is, m1|m2|m3 = pair(pair(m1, m2), m3).
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The Symbolic Adversary. As in the UC framework, the adversary in the Dolev-Yao model
completely controls the network: the honest participants send their messages only to the adversary
and receive messages only from the adversary. However, here the adversary has less power over
the creation of new messages. In particular, every message transmitted by the adversary must be
derivable from the adversary’s initial knowledge and the messages previously received from honest
participants. The initial knowledge of the adversary includes:

1. All the public keys (KPub),

2. The identifiers of all the principals (M), and

3. The random-string symbols which the adversary itself generates (RAdv ⊆ R), which are as-
sumed to be distinct from all the random-string symbols generated by honest participants.
(The fact that the adversary cannot generate the random-string symbols assigned to uncor-
rupted parties represents the fact that in a concrete protocol the adversary’s probability of
guessing random strings generated by an honest party is negligible.)

4. The decryption keys of all the parties in MAdv , which includes all the parties in M except
for the legitimate (and honest) participants in the protocol.

To derive new message, the adversary has access only to a small number of re-write rules:

• decryption of messages with known private keys.

• encryption with public keys,

• pairing of two known elements, and

• separation of a pair into its components.

The following notion of a closure captures more formally the expressions derivable by the ad-
versary given a set S of symbolic expressions. Informally, the meaning of a closure is that, if the
adversary has “seen” the expressions (or, messages) in S ⊆ A, then it can only create messages in
C[S ].

Definition 5 (Closure) Let RAdv ⊂ R denote the set of random-string symbols associated with
the adversary, and let KAdv = {K : ∃A ∈MAdv s.t. keyof (A) = K} be the the set of private keys
known to the adversary. Then the closure of a set S ⊆ A of expressions, written C[S ], is the
smallest subset of A such that:

1. S ⊆ C[S ],

2. M∪KPub ∪KAdv ∪RAdv ⊆ C[S ],

3. If {|m|}K ∈ C[S ] and K ∈ KAdv , then m ∈ C[S ],

4. If m ∈ C[S ] and K ∈ C[S ], then {|m|}K ∈ C[S ],

5. If m|m′ ∈ C[S ], then m ∈ C[S ] and m′ ∈ C[S ], and

6. If m ∈ C[S ] and m′ ∈ C[S ], then m|m′ ∈ C[S ], where m, m′ are elements of A.
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Execution of a symbolic protocol. The execution of a protocol in the Dolev-Yao model needs
to first provide an initial state to each participant involved. Then, each participant sends mes-
sages to the adversary and reacts to messages from the adversary according to their current state
and transition function. The adversary, on the other hand, can non-deterministically perform
any sequence of actions, including computation of new messages and sending of known/computed
messages. Essentially, a Dolev-Yao trace of an execution contains three things:

1. The initial states/inputs to the participants,

2. The sequence of messages exchanged between the symbolic adversary and the honest partic-
ipants, and

3. The internal operations of the adversary in deriving the delivered messages.

More formally:

Definition 6 A Dolev-Yao trace for protocol P is a sequence of events

H0 H1 H2 H3 . . . Hn−2 Hn−1 Hn

where Hi is either

• An event of the form [“input”,P , oi,P
′, S], which indicates the input of participant P (here

oi is the role of P in the protocol, P ′ is the identity of the peer with which to interact, and S
is a general additional internal state),

• an event of one of the following forms, called adversary events (where j, k < i):

– [“enc”, j, k,mi], in which case mk ∈ KPub and mi = {|mj |}mk
,

– [“dec”, j, k,mi], in which case mk ∈ KPub, m−1
k ∈ KAdv , and mj = {|mi|}mk

,

– [“pair”, j, k,mi], in which case mi = mj |mj

– [“extract-l”, j,mi], in which case mj = mi|mk for some mk ∈ A,

– [“extract-r”, j,mi], in which case mj = mk|mi for some mk ∈ A,

– [“random”,mi], in which case mi = R for some R ∈ RAdv ,

– [“name”,mi], in which case mi = A for some A ∈M,

– [“pubkey”,mi], in which case mi = K for some K ∈ KPub,

– [“deliver”, j, Pi], in which case the message mj is delivered to party Pi.

• An event of the form (Pi,Li,mi), called participant events, where

– Pi ∈M is a participant name,

– mi is an element of A, and

– Li ∈ {output ,message} indicates whether mi is a local output or a message,

in which case
P(Sj , oi,m, Pi) = (Li,m

′, Si)

where
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1. [“deliver”, k,Pi] is the most recent adversary event in the trace , for some k.

2. m is the second element of the kth adversary event in the current trace.

3. Sj is the current state of Pi. Without loss of generality, we think of the current state of
Pi as the sequence of inputs and messages received by Pi, as appears in the transcript so
far.

4. oi is the role of Pi in this instance of the protocol. (The value of oi is taken from the
transcript of the execution so far.)

3 Simple Protocols

Both the Dolev-Yao model and the UC framework allow protocols a great deal of flexibility, though
in different ways. The Dolev-Yao model strictly regulates the forms of legal messages, restricting
messages to the algebra A. However, protocols can consist of any sequence of messages, including
sequences that cannot be efficiently computed. The UC framework, on the other hand, requires only
that participants run efficiently. So long as it obeys this one restriction, the protocol can consist of
any sequence of bit-strings (or distribution on bit-strings). To find a common denominator for these
two models, we must restrict our attention to those protocols that are allowed in both settings.
That is, the protocol must both be efficiently executable and use only Dolev-Yao-style messages.

Inspired by [45], we restrict our attention to a class of protocols that use only operations
from a small set. In particular, we will provide a “programming language” which can be used
to define the behavior of participants in the UC framework model. First, the parties will have
access to encryption only via an ideal funcitonality, the certified public-key encryption functionality
Fcpke, which provides an “idealized application interface” for public key encryption with certified
public keys. Furthermore, this programming language provides only small number of operations:
randomness generation; encryption and decryption; joining and separation; sending, receiving, and
outputting of messages; equality testing; and branching.

Because our language has no loops, all programs must be bound by some fixed number of
operations which is constant with respect to the security parameter. Furthermore, all of the allowed
operations will execute in time polynomial in the security parameter. Hence, any “simple” protocol
(a UC protocol that can be described by our language) will be efficiently implementable. However,
we also show that such protocols have a valid interpretation in the Dolev-Yao model. That is, we
show how any “simple” protocol p can be mapped to its symbolic interpretation p̂.

It is stressed that the restrictive format of simple protocols is put in place for the sole reason of
complying with existing Dolev-Yao style symbolic models. It can be easily extended in a number
of ways (e.g., adding randomness in the control, allowing public-keys that are generated on the fly,
addressing adaptive party corruptions.) Also, to demonstrate the expressive power of the present
format, we use it to represent two popular protocols: the Needham-Schroeder-Lowe public-key
protocol and the Dolev-Dwork-Naor protocol.

The rest of this section is organized as follows. In Section 3.1 we define the certified public-key
encryption functionality. In Section 3.2 we define the actual syntax of simple protocols. Sections
3.3 and 3.4 exemplify how the syntax is used to specify the Needham-Shroeder-Lowe and the
Dolev-Dwork-Naor protocols, respectively.
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3.1 The Certified Public-Key Encryption Functionality

We present the certified public-key encryption ideal functionality, Fcpke. This functionality can
be viewed as providing a “bridge” between the cryptographic notion of CCA-security and the
Dolev-Yao abstraction of public-key encryption.

Functionality Fcpke

Fcpke proceeds as follows, when parameterized by message domain D. The SID is assumed to consist
of a pair SID = (PIDowner, SID′), where PIDowner is the identity of a special party, called the owner
of this instance.

Initialization: Expect the first message received from the adversary to contain a description of a
deterministic polytime algorithm, D.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P proceed as follows:

1. If m /∈ D then return an error message to P.

2. If m ∈ D then

• Hand (Encrypt, SID, P) to the adversary. (If the owner of this instance of Fcpke is
corrupted, then hand also the entire value m to the adversary.)

• Receive a tag c from the adversary, record the pair (c, m), and hand c to P. (If
ciphertext already appears in a previously recorded pair then return an error mes-
sage to P.)

Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this instance, proceed as
follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c, m), then hand m to P.

2. Otherwise, compute m = D(c), and hand m to P.

Figure 2: The certified public-key encryption functionality, Fcpke

Functionality Fcpke is presented in Figure 2. The formalization here is based on past formaliza-
tions of the public-key encryption functionality, Fpke [18, 22], but differs from those formulations in
a number of respects, outlined below. We assume familiarity with the formulations of [18, 22] and
the motivating discussions for the approach that appear there. The main difference from Fpke is
that in Fcpke there is no explicit key generation. Instead, the session identifier (SID) of Fcpke explic-
itly contains the identity of the legitimate receiver of encrypted messages. That is, if an instance of
Fcpke has session identifier SID, then SID is of the form

〈
PIDowner,SID′

〉
where PIDowner is the party

identifier (PID) of the legitimate decryptor. Thus, it is guaranteed that only the legitimate receiver
can decrypt messages. This represents an instance of a public-key encryption scheme together with
a “key registration service” which provides ideal binding between the public-key and the identity
of the owner of the corresponding decryption key. Providing a level of abstraction that hides the
process of key generation and registration is done in order to provide a closer correspondence to
the Dolev-Yao model. Indeed, in that model the key generation and registration process is not part
of the model. Instead, it is assumed that the parties know in advance their private keys and the
public keys of all other parties.3

3The distinction between Fpke and Fcpke is analogous to the distinction between Fsig and Fcert in [20]. There,
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In addition, Fcpke differs from Fpke in another, more technical aspect. In Fpke, if a decryption
request arrives where the ciphertext c is not registered (i.e., it was not generated via running the
protocol), then the adversary is allowed to determine the decryption value on the spot. In contrast,
Fcpke requires the adversary to provide a deterministic algorithm, D in advance; the decryption
value of unregistered ciphertexts is then determined by applying D to to the ciphertext. This extra
restrictiveness of Fcpke makes sure that a ciphertexts gets decrypted to a value that was uniquely
determined no later than at time of encryption. While this distinction is moot when dealing with the
standard case where the decryption algorithm is local and depends only on the ciphertext and the
decryption key, it becomes important when moving to the Dolev-Yao model where the specification
is completely functional and does not depend on such implementation details. Indeed, the fact that
the decryption value of a ciphertext is determined as soon as the ciphertext is generated (either
legitimately or illegitimately) is necessary for our equivalence theorems to hold.

Recall that a public-key encryption scheme securely realizes Fpke (with respect to non-adaptive
corruptions) if and only if it is CCA-secure [18, 22]. Using techniques similar to those of [20] we
have that Fcpke is realizable given any CCA-secure encryption scheme, plus an ideal “registration
service” that allows parties to register their public keys, and obtain in an ideally authenticated
way the values registered by other parties. See Appendix A for more details on how Fcpke can be
realized.

3.2 The Definition of Simple Protocols

A simple protocol is basically a program from a language (Figure 3) that allows concrete cryp-
tographic operations and unsecured inter-process communication. Still, the encryption operation
remains abstract even in the concrete setting, being simply a call to the certified public-key encryp-
tion functionality Fcpke. The composition theorem allows us to replace these abstract operations
with actual encryption schemes while maintaining soundness.

For simplicity we restrict the presentation to two-party protocols, where a participant in a
protocol instance has only one peer. Extending the formalism to the case of multiple peers is
straightforward. We also restrict the presentation to “semi-deterministic” protocols, or protocols
where the only random choices are in choosing random nonces and in realizing Fcpke. In particular,
the “control” is deterministic. Extending the treatment to protocols which make other random
choices, including random choices at the control level, is also straightforward.

We enforce a type-scheme like that of the Dolev-Yao framework by “tagging” bit-string values
with their type. That is, we assume that all well-formed values of a simple protocol have, as a
prefix, a string describing their type. A PID is tagged as “name,” the SID for an instance of
Fcpke is tagged as “pubkey,” a random value is tagged as a “random,” and the output of a Fcpke

instance is tagged both as an “ciphertext” and with the SID of the Fcpke instance that produced it.
Furthermore, messages that represent pairs also contain enough information to uniquely determine
the two components of the pair.

Definition 7 (Simple protocols) A simple protocol is a pair of interactive Turing machines
(ITMs) {M1, M2}, one for each role, where each machine Mi implements an algorithm described
by a pair (Σ,Π):

Fsig represents a “bare” signature scheme, and Fcert represents a signature scheme augmented with a trusted
registration service that allows parties to register their public keys. Indeed, Fcpke can be realized given Fpke and a
“registration authority” in the same way that Fcert is realized thre given Fsig and a registration authority.
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Π ::= begin; statementlist

begin ::= input(SID,RID,PID0,PID1,RID2, ...);
(Store 〈“role”,RID〉, 〈“name”,PID0〉, 〈“name”,PID1〉, 〈“name”,PID2〉,...
in local variables MyRole, MyName, PeerName, OtherName2,... respectively.

statementlist ::= statement statementlist

| finish

statement ::= newrandom(v)
(generate a k-bit random string r and store 〈“random”, r〉 in v)

| encrypt(v1, v2, v3)
(Send (Encrypt, 〈PID,SID〉 , v2) to Fcpke where v1 = 〈“pid”,PID〉,
receive c, and store 〈“ciphertext”, c, 〈PID1,SID〉〉 in v3)

| decrypt(v1, v2)
(If the value of v1 is 〈“ciphertext”, c′〉 then send (Decrypt, 〈PID0,SID〉 , c′) to
Fcpke instance 〈PID0,SID〉 receive some value m, and store m in v2
Otherwise, end.

| send(v)
(Send value of variable v)

| receive(v)
(Receive message, store in v)

| output(v)
(send value of v to local output)

| pair(v1, v2, v3)
(Store 〈“pair”, σ1, σ2〉 in v3, where σ1 and σ2 are the values of v1 and v2,
respectively.)

| separate(v1, v2, v3)
(if the value of v1 is 〈“join”, σ1, σ2〉, store σ1 in v2 and σ2 in v3 (else end))

| if (v1 == v2 then statementlist else statementlist

(where v1 and v2 are compared by value, not reference)
finish ::= output(〈“finished”, v〉); end.

The symbols v, v1, v2 and v3 represent program variables. It is assumed that 〈“pair”, σ1, σ2〉
encodes the bit-strings σ1 and σ2 in such a way that they can be uniquely and efficiently recovered.
A party’s input includes its own PID, the PID of its peer, and other PIDs in the system. Recall
that the SID of an instance of Fcpke is an encoding 〈PID,SID〉 of the PID and SID of the legitimate
recipient.

Figure 3: The grammar of simple protocols
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• Σ is a store, a mapping from variables to tagged values (explained further below) and

• Π is a program that expects as input

– The security parameter k,

– Its SID SID, its PID PID, and its RID RID,

– PID1 which represents the name for the other participant of this protocol execution.

The programs tags the input values, binds them to variables in the store, and then acts ac-
cording to a sequence of commands consistent with the grammar in Figure 3.

The structure of simple protocols makes it simple to find the Dolev-Yao counterpart to a simple
protocol:

Definition 8 (Mapping of simple protocols to symbolic protocols) Let p = {M0, M1} be a
simple protocol. Then p̂ is the Dolev-Yao protocol

Pi : S ×O ×A×M→ {output ,message} × A× S

which implements ITM M, except that:

• The variables of M are interpreted as elements of the symbolic message algebra A.

• Instead of receiving as input SID, PID0, PID1, RID, the store is initialized with its own name
P0, its own key KP0

, and a name P1 and public key KP1
of the other participant. The symbols

P0 and P1 represent PID0 and PID1, respectively. Similarly, the symbols K0 and K1 represent
〈PID0,SID〉 and 〈PID1,SID〉, respectively.

• Instead of creating a new random bit-string, the symbolic protocol returns R(i,n) and incre-
ments n (which starts at 0),

• Instead of sending (Encrypt, 〈PID,SID〉 ,M) to Fcpke and storing the result, the composed
symbol {|Σ(M)|}KP1

is stored instead (where Σ(M) is the value bound to the variable M in the

store Σ).

• Instead of sending (Decrypt, 〈PID0,SID〉 ,C) to Fcpke and storing the result, the value stored
depends on the form of Σ(C). If Σ(C) is of the form {|M |}KP0

then the value M is stored.

Otherwise, the garbage value G is stored instead.

• Pairing and separation use the symbolic pairing operator.

• Lastly, the bit-strings “starting” and “finished” are mapped to the Dolev-Yao symbols Starting
and Finished, respectively.

Notice that simple protocols make no use of their session identifiers, other than to index the
copies of Fcpke. This is somewhat limiting, since using the session identifier in the protocol (e.g.,
including it in encrypted texts) is often very useful. We impose this restriction for the same reason
that we impose all other restrictions on simple protocols: We want to keep our variant of the
Dolev-Yao model as close as possible to existing models, and the existing models do not use session
identifiers. (Instead, binding messages to sessions is done directly via nonces.) Still, it is quite easy
to extend our results also to protocols that make full use if the SIDs, at the price of ending up with
a slightly more complex variant of the Dolev-Yao model.
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3.3 Example: The Needham-Schroeder-Lowe protocol

The Needham-Schroeder (public-key) protocol was originally proposed by Needham and Shroeder
in 1978 [47]. However, it was later broken by Lowe in 1995, who then proposed a fix and proved his
fix correct [37, 38]. By the “Needham-Schroeder-Lowe” protocol, we mean the Needham-Schroeder
protocol as fixed by Lowe.

At its most basic form, this protocol consists of three messages between an initiator A and a
responder B. Both parties are assumed to have the public key of the other party. We present the
version of the protocol that is geared towards obtaining mutual authentication, i.e. the each party
only verifies that its peer is “alive” and wishes to interact. A somewhat more intricate version of
the protocol, geared towards obtaining key exchange, is discussed below.

Presented in a symbolic form, the protocol begins with the initiator A generating a new random-
string symbol (denoted Na for it’s original designation as “A’s nonce”). The first message consists
of A’s name and this string, encrypted in B’s public key (KB)4:

A→ B : {|A|Na|}KB

B, upon receiving this message, creates a random string Nb of its own. It then sends back its name,
the received random string, and the new random string—all encrypted in A’s public key:

B → A : {|B|Na|Nb|}KA

A, upon receiving this message, checks two things: that the first component is the name of the
intended responder, and that second component is the random string that it recently created. If
so, it re-encrypts the third component in B’s public key:

A→ B : {|Nb|}KB

At this point, A terminates and signals a successful protocol execution. B will do the same upon
receiving the third message iff the plaintext is its recently-generated random string.

Figure 4 holds the simple programs for the Needham-Schroeder-Lowe initiator and responder
roles. (It actually holds two different versions of each, for reasons we explain in a moment.) These
programs also specify outputs for these roles.

It is unclear what formal security goals the protocol was originally proposed to fulfill: few
formal, appropriate definitions existed in 1975. In the intervening years, however, consensus has
settled upon the mutual authentication security goal. Informally speaking, this goal requires that
A only successfully complete a run of the protocol with input B only if B has begun a run of the
protocol with input A, and vice-versa. (We define this security goal more formally in Section 5.)
However, it has also been noted that the protocol could also achieve the key-exchange security goal.
Very roughly, this protocol should also guarantee secrecy of the encrypted random strings, which
can then be used for generating a symmetric key. We incorporate this observation into our simple
programs by having both roles output one of the two random strings to be used as a symmetric
key. Thus, the two versions. In the first version, the participants output the random string chosen
by the initiator, and in the second they output the random string chosen by the responder. In
Section 6 we show that Version 1 is a secure key-exchange protocol but that Version 2 is insecure.

4For convenience, we will use the Dolev-Yao notation for this exposition. It should be noted, however, that the
protocol was not originally expressed in any particular model.
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On input (p1 : PID; r1 : RID; s : SID), (p2 : PID; r2 : RID), do:

Initiator (Minit):

send((p1; r1; s), (p2; r2));
newrandom(na);
pair(p1, na, a na);
encrypt(p2, s, r2, a na, a na enc);
send(a na enc);
receive(b na nb enc);
decrypt(b na nb enc, b na nb);
separate(b na nb, b, na nb);
if (b == p2) then
separate(na nb, na2, nb);
if (na == na2) then
encrypt(p2, s, r2, nb, nb enc);
send(nb enc);
pair(p1, p2, a b);
pair(a b, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”,⊥〉); end.
else send(〈“finished”,⊥〉); end.

Responder (Mresp):

receive(a na enc);
decrypt(a na {|, |}a na);
separate(a na, a, na);
if (b == p2) then
newrandom(nb);
pair(p1, na, b na);
pair(b na, nb, b na nb);
encrypt(p2, s, r2, b na nb, b na nb enc);
send(b na nb enc);
receive(nb enc);
decrypt(nb enc, nb2);
if (nb == nb2) then
pair(p1, p2, b a);
pair(b a, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”,⊥〉); end.
else send(〈“finished”,⊥〉); end.

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

Figure 4: The Needham-Schroeder-Lowe protocol
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On input (p1 : PID; r1 : RID; s : SID), (p2 : PID; r2 : RID), (m), do:

Initiator (Minit):

send(m);
receive(m2 r enc);
decrypt(m2 r enc,m2 r);
separate(m2 r,m2, r)
if (m == m2) then
send(r);
output(〈“finished”,m〉)

else output(〈“finished”,⊥〉)

Responder (Mresp):

newrandom(r);
pair(m, r,m r);
encrypt(p2, s, r2,m r,m r enc);
send(m r enc);
receive(r2);
if (r == r2) then output(〈“finished”,m〉)
else output(〈“finished”,⊥〉)

Figure 5: The Dolev-Dwork-Naor protocol

3.4 Example: The Dolev-Dwork-Naor protocol

By the “Dolev-Dwork-Naor protocol” we mean the “message authentication” protocol from the
Dolev-Dwork-Naor paper on non-malleable encryption [25]. Although we do not consider the
specific goal of message authentication in this paper, we still find this protocol to be a useful
demonstration of simple protocols.

In this protocol, the initiator (A) wishes to authenticate5 a message (m) to the responder (B).
It begins with the initiator sending the message in question to the responder:

A→ B : m

The responder chooses a random bit-string (r) and encrypts the message and this string in the
initiator’s public key:

B → A : {|r|m|}KA

The initiator decrypts and verifies the ‘message’ component of the plaintext. If the message com-
ponent is the message in question, it releases the ‘random’ component:

A→ B : r

The simple protocols for the Dolev-Dwork-Naor protocol are in Figure 5.

4 The Mapping Lemma

This section states and proves a main technical tool in our analysis. In particular, we define a
translation from executions in the concrete model to executions in the Dolev-Yao model. This
translation operates by completely parsing each concrete message as it is generated and replacing
successfully parsed messages with symbolic expressions. We then show a useful property about

5In a way that guarantees to the responder message integrity and sender identification.
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executions: An environment in the concrete model has only a negligible chance of producing an
execution which does not translate to a valid symbolic trace of the corresponding symbolic protocol.
Phrased another way, we show that the concrete environment has only a negligible chance of creating
an execution which is not also available to the symbolic adversary. This property plays a central
role in our equivalence theorems of Sections 5 and 6.

We proceed to define the mapping from executions of a concrete simple protocol to Dolev-Yao
traces of the corresponding symbolic protocol. As a first step, we define the trace of an execution
of a protocol in the concrete setting:

Definition 9 (Traces of concrete protocols) Let p be a Fcpke-hybrid protocol. Then induc-
tively define tracep,A,Z(k, z, ~r), the trace of executing protocol p in conjunction with environment
Z and adversary A on random inputs ~r, input z, and security parameter k. Initially, the trace is
the null string. Then:

Suppose that the trace of the execution is t at the beginning of an activation of either the environment
or the adversary.

• If this is an activation of the environment and the environment provides m as input to party
(SID,RID), then the trace at the end of the activation is t||G where G = 〈“input”, (SID,RID),m〉.

• If this is an activation of the adversary and the adversary delivers a message m to party PID,
then the trace at the end of the activation is t||G where G = 〈“adv”, (PID,m〉.

• Suppose that the trace of the execution is t at the beginning of the activation of party (SID,
RID). The activation produces one of two things:

– A local output m, in which case the trace at the end of the activation is t||G where
G = 〈“output”,PID,m〉 ,

– A message m on the communication tape, in which case the trace at the end of the
activation is t||G where G = 〈“message”,PID,m〉.

• Suppose that the trace of the execution is t at the beginning of an activation of Fcpke by
party PID with call (Encrypt, 〈PID,SID〉 ,m). Then the next event (possibly after the retrieval
of D, above) will be a return of c. The trace at the end of Fcpke’s activation is t||G where
G = 〈“ciphertext”, 〈PID,SID〉 ,m, c〉. (If Fcpke returns ⊥, then the trace is simply t.)

• Suppose that the trace of the execution is t at the beginning of a subsequent activation of
Fcpke by party PID with call (Decrypt, 〈PID,SID〉 , c). Then if the next event (possibly after
the retrieval of D, above) is return of m then the trace at the end of Fcpke’s return is t||G
where G = 〈“dec”, 〈PID,SID〉 , c,m〉. (If Fcpke returns ⊥, then the trace is simply t.)

Let tracep,Z(k, z) denote the random variable describing tracep,Z(k, z, ~r) when ~r is uniformly
chosen. Let tracep,Z denote the ensemble {tracep,Z(k, z)}k∈N ,z∈{0,1}∗.

Next, we define a mapping from concrete traces to symbolic traces. This mapping clearly
produces something with the same basic form of a Dolev-Yao trace: a sequence of either participant
or adversary events. Furthermore, we will show that, if we start with a trace of an execution of
concrete protocol, then except with negligible probability we obtain a valid Dolev-Yao trace of the
corresponding symbolic protocol.
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Definition 10 (The mapping from concrete traces to symbolic traces) Let p be a concrete
Fcpke-hybrid protocol and let t be a trace of an execution of p with security parameter k, environ-
ment Z with input z, and random input vector ~r. We determine the mapping of t to a Dolev-Yao
trace in two steps. (These steps can be thought of as two “passes” on the string t.)

(I.) First, we read through the string t character by character, in order, and inductively define
the following partial mapping f from {0, 1}∗ to elements of the algebra A. (Note that the patterns
in t addressed below may be nested and overlapping. That is, the same substring may be part of
multiple patterns. A pattern is recognized as soon as the last character in the pattern is read.)

• Whenever we encounter a pattern of the form 〈“name”, σ〉 for some string σ and f(〈“name”, σ〉)is
not yet defined then set f(〈“name”, σ〉) = P for some new symbol P ∈ M not in the range
of f so far. (Recall that the pattern 〈“name”, σ〉 is generated by a simple protocol when it
receives its input.)

• Whenever we encounter in some event a pattern of the form 〈“random”, σ〉 for some string σ
and f(〈“random”, σ〉) is not yet defined then set f(〈“random”, σ〉) = N for some new symbol
N ∈ R that is not in the range of f so far. (Recall that the pattern 〈“random”, σ〉 is generated
by a simple protocol when it chooses a random string. See Figure 3.)

• Whenever we encounter a pattern of the form 〈〈“pid”,PID〉 , 〈“sid”,SID〉〉 for some strings
PID,SID, and f(〈“key”, 〈PID,SID〉〉) is not yet defined, then set f(〈“key”, 〈PID,SID〉〉) = K
for some new K ∈ KPub not in the range of f .

• Whenever we encounter a pattern of the form 〈“pair”, σ1, σ2〉, then proceed as follows. First,
if f(σ1) is not yet defined then set f(σ1) = G, where G is the garbage symbol. Similarly, if
f(σ2) is not yet defined then set f(σ2) = G. Finally, set f(〈“pair”, σ1, σ2〉) = f(σ1)|f(σ2).

• Whenever we encounter a pattern of the form 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 for some strings
PID,SID,m, c, then f is expanded so that f(〈“ciphertext”, 〈PID,SID〉 , c〉) = {|f(m)|}

f(〈“key”,〈PID,SID〉〉).

(Recall that such a pattern is generated whenever an encryption call to Fcpke is made. Also,
at this point both f(m) and f(〈“pubkey”, 〈PID,SID〉〉) must already be defined, since this is an
encryption call made by a party running a simple protocol.

• Whenever we encounter a pattern of the form 〈“dec”, 〈PID,SID〉 , c,m〉, then proceed as fol-
lows. First, if f(m) is not yet defined, then set f(m) = G, where G is the garbage symbol.
Next, set f(〈“dec”, 〈PID,SID〉 , c〉) = {|f(m)|}

f(〈“key”,〈PID,SID〉〉). (Recall that such a pattern

is generated whenever a decryption call to Fcpke is made. The case where f(m) = G occurs
when a ciphertext was not generated via the encryption algorithm. It includes both the case
where the decryption algorithm fails and the case where the decryption algorithm outputs a
message that cannot be parsed by simple protocols.)

(II.) In the second step, we construct the actual Dolev-Yao trace. Let t = G1||G2|| . . . tn be the
concrete trace. Then construct the Dolev-Yao trace t̂ by processing each G in turn, as follows:

• If Gi = 〈“input”, (SID,RID),m〉, then we find m = f(m), and generate the symbolic event
H = [“input”,P ,m] (where P is the symbolic name of the input recipient).

• If Gi = 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 or Gi = 〈“dec”, 〈PID,SID〉 , c,m〉, then no symbolic
event is generated.
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• If Gi = 〈“output”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉), output , f(m)).

• If Gi = 〈“message”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉),message , f(m)).

• If G = 〈“adv”,PID,m〉, let m = f(m). Then there are two cases:

1. m is in the closure of the symbolic interpretations of the messages sent by the parties in
the execution so far, i.e.

m ∈ C
[{

m′ : m′ = f(m′) and the event 〈“message”,PID,m′〉 is a prior event in t
}]

.

In this case there exists a finite sequence of adversary events that produces mi. Then G
is mapped to this sequence of events Hi1, Hi,2. . .Hi,n′ so that the message of Hi,n′−1 is mi

and Hi,n′ = [“deliver”, (i, n′ − 1),P ′] (where P ′ is the Dolev-Yao name of the concrete
participant who received the message from the concrete adversary).

2. Otherwise, m is not in the above closure. In this case, G maps to the Dolev-Yao event
[“fail”,mi].

We now show that the mapping defined above is valid. That is, we show that if t is a trace of
a simple protocol p then t̂ is a Dolev-Yao trace of the symbolic protocol p̂, except for negligible
probability. We need to take care of several issues. First, we need to show that the actions of the
concrete participants map to valid actions of the symbolic participants. That is, the messages from
the execution of concrete protocol p map only to symbolic messages that are compatible with the
symbolic protocol p̂. Secondly, we need to show that the concrete adversary is no more powerful
than the symbolic adversary. That is, the trace t does not contain adversary messages whose
symbolic interpretations are beyond the ability of the symbolic adversary to produce.

In the following lemma, we show that these failures occur with negligible probability, and thus
any concrete execution is almost always mapped to a valid symbolic interpretation. In fact, the
only potential cause for error is the event where the concrete adversary or environment guess the
value of a random string chosen by an uncorrupted party.

Lemma 2 For all simple protocols p, adversaries A, environments Z, and inputs z of length poly-
nomial in the security parameter k,

Pr
[
t← tracep,A,Z(k, z) : t̂ is a valid DY trace for p̂

]
≥ 1− neg(k)

Proof. Let t be a trace of a simple protocol p. We first show that the probability that t̂ includes
an event of the form [“fail”,mi] is negligible. Next, we show that whenever t̂ does not include such
an event, it is a valid DY trace of protocol p̂.

Let m1,m2, ... denote the messages that appear in the 〈“message”, ...〉 events in t̂, in order of
appearance. Suppose that adversary event of the form [“fail”,mi] occurs, which means that the
concrete adversary created a message m which is translated to f(m) = mi 6∈ C[mj : j < i]. We
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show that the odds of such an event are negligible: Examine the parse tree of mi.
6 By definition,

membership in C[{mj : j < i}] is closed under pairing and encryption. Thus, if two siblings in the
parse tree are both in C[{mj : j < i}], then their parent is in C[{mj : j < i}] as well. Consequently,
if every path from root to leaf in the parse tree of mi has a node in C[{mj : j < i}], then mi ∈
C[{mj : j < i}] as well—a contradiction. Thus, there exists some leaf m∗ in the parse tree of mi

such that the path to m∗ has no node in C[{mj : j < i}].
However, since mi is in t̂, we have that in t the adversary has generated a bit-string m that was

mapped to to mi. Call this adversary A0. Then there exists another adversary, A1 that produce a
bit-string m∗ which parses to m∗. A1 first simulates A0 to produce m, and then recursively walks
down the parse tree of mi to m∗ and applying the following deconstructors to m:

• If ml is a pair m1|m2, then A1 separates m = 〈“pair”, σ1||σ2〉 into σ1 and σ2 and recursively
operates on one of them (depending on whether m∗ is a leaf of m1 or m2).

• If m = 〈“ciphertext”, σ〉, then A1 adversary must “decrypt” σ to continue down to ml. That
is, A1 must produce what Fcpke would return to the appropriate honest party when called
with (Decrypt, σ). As mentioned before, mi 6∈ C[{mj : j < i}]. Thus, if the pair (m,σ) is
stored in Fcpke (for some m) it must be that the call (Encrypt,m) was made to Fcpke by A0.
Hence, A1 (which simulates A0) records and recalls the message m which is the “decryption”
of σ, and recursively operates on it. If, on the other hand, no pair (m,σ) is stored in Fcpke,
then the decryption of σ is the result of D(σ), where D is an algorithm supplied by A0. Thus,
A1 runs D itself to learn the decryption of σ.

By recursively applying the above deconstruction operations, A1 produces a string m∗ that maps to
m∗. But m∗ is an atomic symbol of the Dolev-Yao algebra which is not in C[{mj : j < i}]. Notice
that the only atomic symbols that are not in the initial view of the adversary are the random-
number symbols (i.e., symbols in R) that were not generated by the adversary. However, if m∗ is
not in the closure of the adversary’s view, then the view of A1 is completely independent from the
string m∗. (Independence is argues as follows. If m∗ is never included in the parse tree of a message
seen by A1 then independence is trivial. The only way for m∗ to be included in the parse tree of a
message seen by A1 and still not be in the closure of A1’s view is if m∗ is sent encrypted. However,
in this case independence is guaranteed by the code of Fcpke.) Also, since m∗ was generated by a
protocol participant, then we know it is chosen uniformly from {0, 1}k . Thus the probability that
A1 generates the string m∗ is 2−k. Since there are at most a polynomial number of k-bit strings
in the view of A1, we have that the overall probability that A1 generates a string that maps to m∗

is poly(k)2−k. This means that the probability that t̂ includes an event of the form [“fail”,mi] is
poly(k)2−k, which is a negligible function.

It remains to show that, whenever event [“fail”,mi] does not occur, the trace t̂ is a valid trace
for p̂. By definition of the fail event, we have that all the adversary events in t̂ are valid. We now
show that the participant events in t̂ are valid as well. Suppose that a participant event of the form
(P ′

i ,Li,mi) occurs. Then we need to show that

P(Sj , oi,m, Pi) = (Li,m
′, Si),

where
6The parse tree of a message is the tree whose root is the message, and there is an edge from node m to nodes m′

and m
′′ if there is a derivation rule in the algebra A that derives message m from messages m

′
, m

′′. Note that the
leaves of the tree are the basic symbols in A. Also, the out-degree of a node is at most 2.

24



1. [“deliver”, k,Pi] for some k is the most recent adversary event in the trace t̂.

2. m is the second element in the kth adversary event in the current trace.

3. Sj is the sequence of inputs and messages received by Pi, as they appear in the current prefix
of t̂.

4. oi is the role of Pi as appears in the current prefix of t̂.

However, this fact follows immediately from the definition of the symbolic counterpart of a simple
protocol (Definition 8). Indeed, the transition function P mimics the instructions of the concrete
protocol p. The only difference between the protocols is the naming of variables; furthermore, the
structure of simple protocols makes sure that any one-to-one renaming of variables does not affect
the messages or outputs generated by the protocol. �

5 Symbolic analysis of UC mutual authentication

This section demonstrates how one can use symbolic analysis to assert whether a given (concrete,
simple) protocol is a UC mutual authentication protocol. More precisely, we first formulate the
ideal mutual authentication functionality, F2ma. Next, we formulate a criterion (expressible in
terms of symbolic protocols), such that a concrete protocol p securely realizes F2ma in the Fcpke-
hybrid model if and only the corresponding symbolic protocol p̂ satisfies the symbolic criterion. We
note once more that this symbolic criterion is amenable to verification via automated tools, e.g.
[52, 41, 40, 46].

As discussed in the Introduction, the results in this section follow in the footsteps of Micciancio
and Warinschi [45] with three exceptions. First, our concrete protocols are protocols in the Fcpke-
hybrid model, rather than protocols in the plain real-life model. This allows our analysis to be simple
and unconditional, yet still concrete due to the composition theorem. Secondly, the composition
theorem allows us to simplify our analysis even further by considering only a single execution of
the protocol execution, while the analysis of [45] directly deals with the much more complex multi-
execution case. Lastly, our result provides a strong security and composition guarantee which is
not present in the results of [45].

Formalizing the definition of mutual authentication requires surprisingly many choices. The
intuition is simple: when one participant in a protocol terminates, it should be the case that
the other participant has at least begun and it has the right peer in mind. Some protocols may
guarantee more. For example, a protocol might guarantee that when one participant has finished
the protocol, the other participant has finished as well as begun. Although the protocol might
guarantee this for one of the two participants, however, it cannot guarantee this for both.

Other subtleties exist. For example, should the two participants agree on their respective roles?
For example, is it an error if two participants successfully complete the protocol, but both are
running the role “initiator?”

Also, should the protocol enforce a bijection between successful outputs of the protocol made
by the two participants? That is, if the initiator started the protocol, is it an error for there to be
two or more outputs by the responder?

For simplicity, we will use in this paper the most basic variant of mutual authentication. That
is, we only guarantee that if a party P outputs success then the other party at least began the
protocol with peer P . There is no guarantee that the roles are different, and multiple outputs are
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allowed. Our equivalence results, however, can be easily applied to more complex forms of mutual
authentication.

5.1 The ideal 2-party mutual authentication functionality

The UC definition of 2-party mutual authentication is embodied in the functionality F2ma (Figure 6).
The functionality simply waits until two parties P0 and P1 have provided input

(Authenticate,SID,P0,P1) and (Authenticate,SID,P1,P0)

respectively. Then, upon request of the simulator, it sends a (Finished) output to either party.
Note that it is possible for a party to get multiple (Finished) output, and that there is no require-
ment that a (Finished) message is received by both parties.

Functionality F2ma

1. The functionality F2ma begins with a variable Finished set to false.

2. Upon receiving an input (Authenticate, SID, P, P′, RID) from some party P, where RID ∈
{Initiator, Responder}, do:

(a) If this is the first input (i.e., no tuple is recorded) then denote P0 = P, P1 = P′, and
record the pair (P0, P1).

(b) Else, if the recorder pair (P0, P1) satisfies P = P1 and P′ = P0, set Finished to true.

(c) In either case, send the pair (P, P′), RID to the simulator.

3. Upon receiving from the simulator a request (Output, SID, X), if X is either P0 or P1, and
Finished is true then send Finished to X . Else, do nothing.

Figure 6: The 2-party mutual authentication functionality

5.2 Dolev-Yao mutual authentication

We specify the symbolic mutual authentication criterion:

Definition 11 (Dolev-Yao 2-party mutual authentication) A Dolev-Yao protocol P provides
Dolev-Yao mutual authentication (DY-MA) if all Dolev-Yao traces for P that include an output
message 〈Finished |P0|P1|m〉 by participant P0, where P0, P1 6∈ MAdv , include also a previous input
message 〈Starting |P1|P0|m

′〉 by P1.

That is, if one party outputs a “finished” message indicating a successful execution, the other party
has at least output a “starting” message indicating that an execution (with matching values for
the participants) has been at least initiated. (The “starting” message also contains the keys of the
participants to match the input format expected by a simple protocol in Definition 7, and both
messages contain additional messages m and m′ to represent additional arbitrary output.)
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5.3 Soundness and completeness of the symbolic criterion

Theorem 3 Let p be a simple two-party protocol. Then p realizes F2ma if and only if the corre-
sponding symbolic protocol p̂ satisfies Dolev-Yao 2-party mutual authentication.

Proof. Assume first that p̂ does not achieve Dolev-Yao secure key exchange. Then there exists
a valid Dolev-Yao trace where one party outputs (locally) 〈Finished |P |P ′|m〉 before P ′ outputs
〈Starting |P ′|P, |m′〉. Given this trace, we construct an environment Z in the UC framework that
simply follows the adversary instructions in the given Dolev-Yao trace. (More precisely, Z follows
the concrete operations that correspond to the given Dolev-Yao trace.)

When the environment is in the Fcpke-hybrid model, this strategy will produce the same result
as in the Dolev-Yao model: one participant will output Finished before the other party outputs
(Authenticate,SID, A,B). However, this same behavior is simply impossible when interacting
with the ideal protocol for F2ma, since in that protocol no simulator can force the dummy parties to
produce unmatched output. Thus, this environment can distinguish the ideal execution model from
the real execution model with probability 1, and so the protocol p cannot securely realize F2ma.
Finally, we point out that this environment is polynomial in the security parameter: the number
of operations in the Dolev-Yao trace is constant, and performing each operation takes polynomial
time in the security parameter.

For the other direction, we need to show that if p̂ satisfies Dolev-Yao mutual authentication
then p securely realizes F2ma. To show this, we must show that there exists a simulator such that
no environment can distinguish between the concrete protocol and the ideal protocol for F2ma.

The simulator S acts as follows (shown in Figure 7):

• S internally simulates the participants P′
0, P′

1, and a copy of Fcpke for each. At the beginning,
neither of these simulated participants are running.

• When the simulator receives a message (Pi,P1−i) from the functionality F2ma (indicating that
the external dummy participant Pi has received input from the environment and has passed it
on to F2ma) it activates both instances of Fcpke with SIDs 〈P0,SID〉 and 〈P1,SID〉 respectively
(if they have not been activated yet). It then activates the simulated participant P′

i on input
(Authenticate(SID,P′

i,P
′
1−i,RID).

• When the simulator receives a message from the environment sent to participant Pi, it for-
wards that input to the simulated copy P′

i.

• Likewise, when simulated participant P′
i produces a message to send on its communication

tape, the simulator sends this message to the environment.

• When simulated participant P′
i produces a message to send an instance of Fcpke, the simulator

forwards this to the appropriate instance of Fcpke that it is simulating.

• Likewise, when either instance of simulated Fcpke requires communication with its environ-
ment, this communication is sent directly to the external environment. Communication from
the external environment to either Fcpke-instance is forwarded directly to the simulated Fcpke-
instance.

• When the simulated participant P′
i produces local output Finished, the simulator sends the

message (Output,SID,Pi) to the functionality F2ma.
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Figure 7: Simulator for F2ma

It remains to show that the simulation is valid. Let Z be an environment. We show that if Z
distinguishes between the interaction with the simulator and F2ma, and the interaction with the
protocol, then Z violates the mapping lemma (Lemma 2), in the sense that is generates with non-
negligible probability a trace ensemble that translates to a symbolic trace that is not valid for the
symbolic version of the protocol:

Fix a value k for the security parameter. We observe that the above simulator produces a perfect
simulation except when the following bad event occurs: the simulator sends (Output,SID,Pi) to the
functionality F2ma, but F2ma does not send Finished to dummy party Pi. Furthermore, this event
only occurs if the functionality did not previously receive both (Authenticate,SID,Pi,P1−i,RID)
and (Authenticate,SID,P1−i,Pi,RID). Because the simulator sends (Output,SIDPi) to F2ma, the
simulated participant Pi produces an output indicating success. Hence, simulated participant
Pi must have been started by the simulator, which means that the simulator must have received
(Pi,P1−i,RID) from F2ma. Thus, the functionality must have received (Authenticate,SID,Pi,P1−i),
RID. Hence, it must have been (Authenticate,SID,P1−i,Pi) that was not received by the func-
tionality F2ma.

Thus, the simulated party P1−i was not initialized in the simulator. If we look at the trace
t of the simulated parties of the execution, it must be that party Pi output Finished before
party Pj output (Authenticate,SID,P1−i,Pi,RID). Thus, in the Dolev-Yao trace t̂ that is con-
structed from the trace t, participant Pi outputs 〈Finished |Pi|P1−i|m〉 before participant P1−i

outputs 〈Starting |P1−i|Pi|m
′〉. However, the protocol p̂ satisfies Dolev-Yao mutual authentication,
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and so this trace cannot be valid. Thus the probability that the the environment distinguishes the
ideal execution from the real one is the same as its probability to generate traces that translate to
invalid symbolic traces—i.e., negligible. �

6 Symbolic analysis of UC key exchange

This section demonstrates how one can use symbolic analysis to assert whether a given simple
protocol is also a UC key exchange protocol. At high level, the structure of this section is similar
to that of the previous section: We first recall the ideal key exchange functionality, F2ke; Next, we
demonstrate a criterion (expressible in terms of abstract protocols), such that a concrete protocol p
securely realizes F2ke in the Fcpke-hybrid model if and only if the corresponding abstract protocol
p̂ satisfies the criterion.

It turns out that in the case of key exchange, formulating the abstract criterion is non-trivial and
requires an approach that is quite different from existing ones. We demonstrate why the simplistic
approach fails and motivate our approach.

6.1 The ideal key exchange functionality

The UC notion of secure two-party key exchange is embodied in the functionality F2ke (Figure 8).
As with mutual authentication, many variants exist and we chose to study one basic variant. The
functionality generates and stores a single random key κ. Each party sends a simple message
indicating its willingness to establish a secret key. Once a given party has done so, the simulator
can cause the functionality to distribute the random key κ to that party. It is worth noting that the
functionality does not require both parties to activate before distributing κ, and thus our version
of key exchange does not guarantee mutual authentication. (Indeed, key exchange and mutual
authentication are arguably quite different tasks.) Also, parties may receive the key κ from F2ke

more than once.

Functionality F2ke

F2ke proceeds as follows, running with security parameter k.

1. Upon receiving an input (EstablishSession, SID, P, P′, RID) input from some party P send
this tuple to the adversary. In addition, let P0 = P and P1 = P′. if no tuple is recorded, or if
the tuple (P1−i, Pi) is recorded, then record (Pi, P1−i).

2. Upon receiving a request (SessionKey, SID, Pi) from the adversary, do:

(a) If no tuple (Pi, ∗) is recorded, ignore the request.

(b) Else, check if a key κ has been recorded. If not, choose κ
R

← {0, 1}k, record it, and
output (SessionKey, SID, κ) to Pi.

Figure 8: The Key Exchange functionality
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6.2 Dolev-Yao key exchange

Our definition of Dolev-Yao key exchange is somewhat more complex. As in the case of mutual
authentication, the intuition is simple: if both participants terminate, then they must output the
same secret symmetric key R. (Recall that in our version of the Dolev-Yao model, random strings
can also be used as symmetric keys.) However, our definition of “secrecy” will differ from existing
ones. Most previous work in the Dolev-Yao model postulate a definition of secrecy which only
requires the adversary to be unable to reproduce the secret in totality. This stands in contrast to
the standard definitional approach in cryptographic security, where it is typically required that a
secret value be indistinguishable from random. Indeed, it is tempting to believe that, since in the
symbolic model the security guarantees are “all or nothing” in flavor, the ability to reproduce a
secret and the ability to distinguish it from random should be equivalent. However, it turns out
that this is not the case: We show that the traditional criterion is insufficient for guaranteeing
security of key exchange protocols, even if all the cryptography is “perfect”.

We will thus use for our symbolic criterion the approach which requires that the adversary be
unable to distinguish the real secret key from a random one (from the same distribution) even when
presented with both during the protocol.

We first demonstrate the weakness of the traditional symbolic criterion, via an example. Next,
we formulate the new criterion.

6.2.1 The traditional symbolic criterion

Most previous attempts to formalize a symbolic security goal for key-exchange protocols have the
same basic intuition: A protocol is a secure key exchange protocol if there is no run of the protocol
between two honest and uncorrupted participants in which the adversary also learns the secret key.
In our terminology, this could be stated as follows.

A symbolic key-exchange protocol P is secure if there is no Dolev-Yao trace t valid for
P, where participant Pi produces an output message 〈finished|Pi|P1−i|R〉, and where
there is an adversary event containing the symbolic expression R.

That is, the trace may contain adversary events that have messages in which R appears as an
(encrypted) element, but none of these messages will be the expression R.

We show that this criterion is insufficient for guaranteeing that key exchange protocol will
remain secret in reasonable protocol environments. Specifically, we show an example of a protocol
that satisfies the above symbolic criterion, but which is arguably insecure in any reasonable sense.
The protocol is Version 2 of the Needham-Schroeder-Lowe protocol in Figure 4. (In this version,
the key is the random string Nb chosen by the responder.) It has been shown that this protocol
satisfies the above symbolic criterion and that Nb is not in the closure of any symbolic adversary
[53]. However, assume that the initiator completes an exchange, and locally outputs Nb as its
session key. Next, another protocol within the initiator uses Nb to send to the responder and
encrypted message M . Furthermore, the encryption method is one-time-pad, and M can be one
out of only two possible values (say, “buy” or “sell”). Then, the adversary obtains the ciphertext
C = M ⊕ Nb. If the adversary can distinguish Nb from a random nonce, then it can tell if M is
“buy” or “sell.”

Note that the initiator outputs the key Nb before the responder has received its third message.
The adversary knows that the plaintext of the third message is either C = Nb ⊕ “buy” or C =
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Nb ⊕ “sell”. Consequently, the adversary can generate two possible third messages in the protocol,
such that the value of M determines which of the two messages is a valid message (i.e., which of
the two messages will cause the responder to successfully complete the protocol). Now, assume
that the system is such that the adversary can tell whether the responder completed the protocol
successfully. Then, the adversary can deliver one of these two messages to the responder, see
whether it successfully completed the protocol, and thus determine the value of both M and Nb.

We note that the above attack scenario can be translated to an attack in the UC framework.
Indeed, it is possible to show that this protocol (or, rather, its concrete counterpart) does not
UC-realize F2ke. Specifically, suppose the environment lets the protocol execute normally until the
point where the initiator terminates and outputs N . The environment wishes to learn whether
N is the session key of the protocol or a random key generated by F2ke. It therefore follows the
following strategy:

• It chooses a random bit.

• If it chose 1, it encrypts N in the responders public key and sends the ciphertext to the
responder.

• If it chose 0, it chooses a random value N ′, encrypts that in the responders public key, and
sends that ciphertext to the responder.

If the protocol is being executed and N is the valid key, then the ciphertext sent to the responder will
be valid exactly half the time — and the environment knows which half. If the protocol execution
is being simulated, on the other hand, then both ciphertexts will be completely independent of
the simulated execution. Therefore, no simulator will be able to guess the expected response with
probability greater than 1

2 . Using this simple strategy, the environment will be able to distinguish
between the real and ideal settings with high advantage.

We remark that a slight variant of the protocols results in a secure one: Simply let the session
key be Na rather than Nb. (This is Version 2 of the protocol, as discussed in Section 3.)

6.2.2 The new symbolic criterion

Our symbolic criterion essentially translates to the symbolic model the approach of “real or random
security” that is typical in cryptographic notions of security. That is, we consider two worlds. In the
first, real, world, the adversary is given the real (symbolic) session key as soon as one participant
outputs it. In the other, fake, world, the adversary is given a symbolic key at the same point,
but the symbol so provided is a new fresh symbol. The key is ‘secret’ if the two situations looks
exactly the same to the adversary, no matter how the adversary behaves. That is, let an adversary
strategy be the sequence of adversary deductions and transmissions made by an adversary in one
execution. Then we wish to require that any adversary strategy will produce the same trace in
the both scenarios. While this captures the desired intuition, there are two technical complications
that must be considered:

1. Traces in the fake world will include a key symbol not found in the first world, and so direct
equivalence will be impossible. What we require instead is that, for any adversary strategy,
the trace produced in the real world and the trace produced in the fake world be the same
when the fresh key is ex post facto renamed to the real session key.
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2. Although equality after renaming is strong enough to imply security of a protocol in the
UC framework, it is too strong to allow the converse. That is, a Dolev-Yao protocol that
satisfies this definition will correspond to a concrete protocol that securely realizes F2ke, but
the opposite is not true. The reason for this is that the definition, as stated above, requires
that the ‘real’ trace and ‘fake’ trace be exactly the same (after renaming). This prohibits
the possibility that the two traces might differ, but only in a way that is unobservable by
the adversary. (For example, the two traces might have different encrypted messages, as
long as the encryption key is the same and is not known to the adversary.) Thus, our
final definition requires only that the two traces be equivalent in their observable behavior.
Fortunately, previous work by Abadi and Rogaway [4] (expanded upon by Herzog[32]) has
already captured the observable part of a trace in their definition of a pattern. Thus, we will
only require that the patterns of the ‘real’ trace and the ‘fake’ trace be the same.

We formalize this criterion as follows.

Definition 12 (Variable Renaming) Let R1, R2 be random-strings symbols, and let t be an
expression in the algebra A. Then t[R1 7→R2] is the expression where every instance of R1 is replaced
by R2.

Definition 13 (Adversary Strategy) Let an adversary strategy be a sequence of adversary events
that respect the Dolev-Yao assumptions. That is, a strategy Ψ is a sequence of instructions I1,
I2. . . In, where each Ii has one of the following forms, where i, j, k are integers:

• [“receive”, i]

• [“enc”, j, k, i]

• [“dec”, j, k, i]

• [“pair”, j, k, i]

• [“extract-l”, j, i]

• [“extract-r”, j, i]

• [“random”, i]

• [“name”, i]

• [“pubkey”, i]

• [“deliver”, j, Pi]

When executed against protocol P, a strategy Ψ produces the following Dolev-Yao trace Ψ(P). Go
over the instructions in Ψ one by one, and:

• For each [“receive”, i] instruction, if this is the first activation of party Pi, or Pi was just
activated with a delivered message m, then add to the trace a participant event (P ′

j ,L,m)
which is consistent with the protocol P. Else output the trace ⊥.
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• For any other instruction, add the corresponding event to the trace, where the index i is
replaced by mi, the message expression in the ith event in the trace so far. (If adding the
event results in an invalid trace then output the trace ⊥.)

Definition 14 (Public-key pattern[4, 32]) Let T ⊆ KPub and m ∈ A. We recursively define
the function p(m, T ) to be:

• p(K,T ) = K if K ∈ K

• p(A,T ) = A if A ∈M

• p(N,T ) = N if N ∈ R

• p(N1|N2, T ) = p(N1, T )|p(N2, T )

• p({|m|}K , T ) =

{
{|p(m, T )|}K if K ∈ T
〈|T |〉K (where T is the type tree of m) otherwise

Then patternpk (m, T ), the public-key pattern of an Dolev-Yao message m relative to the set T , is

p(m,KPub ∩ C[{m} ∪ T ]).

If t = H1,H2, . . .Hn is a Dolev-Yao trace where event Hi contains message mi then patternpk (t , T )
is exactly the same as t except that each mi is replaced by p(mi,KPub ∩ C[S ∪ T ]) where S =
{m1,m2, . . . mn}. The base pattern of a message m, denoted patternpk (m), is defined to be patternpk (m, ∅),
and patternpk (t) is defined to be patternpk (t , ∅).

Definition 15 (Symbolic Criterion for Key Exchange) A Dolev-Yao protocol P provides Dolev-
Yao two-party secure key exchange (DY-2SKE) if

1. (Agreement) For all P0 and P1 6∈ MAdv and Dolev-Yao traces valid for P in which P0 out-
puts 〈Starting |P0|P1|m〉 and P1 outputs 〈Starting |P1|P0|m

′〉, if participant P0 produces out-
put message 〈Finished |m0〉 and participant P1 produces output message 〈finished|m1〉, then
m0 = P0|P1|R and m1 = P1|P0|R for some R ∈ R.

2. (Real-or-random secrecy) Let Pf be the protocol P except that a fresh fake key Rf is released
instead. Then for every adversary strategy Ψ,

patternpk (Ψ(P)) = patternpk

(
Ψ(Pf )[Rf 7→Rr ]

)

Note that this criterion neither implies not is implied by our symbolic mutual-authentication
criterion. The MA criterion does not imply secrecy of any values. This criterion, on the other
hand, allows successful termination of one party without any participation by the peer.

6.3 Soundness and completeness of the symbolic criterion

Theorem 4 Let p be a simple protocol. Then p securely realizes F2ke. if and only if p̂ achieves
Dolev-Yao secure key-exchange.
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Proof. Suppose that p̂ does not satisfy Dolev-Yao key exchange. Then one of two possibilities
occur, each of which allows the environment to distinguish the ideal (F2ke) model from the real
(Fcpke-hybrid) model. Either:

• There exists a DY trace where participants Pi and P1−i produce outputs
〈
finished|Pi|P

′
1−i|R

〉

and 〈finished|P1−i|Pi|R
′〉, respectively, where either R′ 6= R or P ′

i 6= Pi or P ′
1−i 6= P1−i. The

strategy of this trace is easily mapped to an environment that simply performs the same
sequence of calculations, receptions, and transmissions. (Recall that this sequence has some
constant, finite length.) Thus, some environment can produce the same behavior in the real
(Fcpke-hybrid) model. However, this behavior will never arise in the F2ke case as the func-
tionality will always distribute the same κ to both dummy parties. Thus, the environment
can easily tell whether it is in the F2ke or Fcpke-hybrid model.

• Or, it might be the case that there exists an adversary strategy Ψ so that

patternpk (Ψ(P)) 6= patternpk

(
Ψ(Pf )[Rf 7→Rr]

)
.

Also here, there exists an environment that distinguishes between an execution of the concrete
protocol and the ideal protocol for F2ke: the environment simply performs the finite sequence
of calculations, receptions, and transmissions that is described in the strategy Ψ. It then
translates its view to a symbolic trace (using the transformation in Definition 8), and checks
whether the pattern of the symbolic trace equals patternpk (Ψ(P)). If the patterns are equal
than the environments outputs “real”. Otherwise, it outputs “ideal”.

To show that this environment is a good distinguisher between the real and the ideal cases,
we observe that: (a). If the environment interacts with the protocol and the adversary in
the Fcpke-hybrid model, then we are guaranteed that the patterns will be equal. (b). In
contrast, if the environment interacts with the ideal protocol for F2ke, then the key output
by the participants is independent from the simulator’s view, thus it will be translated to a
fresh key in the derived DY trace. Thus here the pattern of this trace cannot be equal to
patternpk (Ψ(P)).

Thus, if the Dolev-Yao protocol p̂ does not satisfy Dolev-Yao key exchange, then there exists an
environment which can distinguish the F2ke model from the Fcpke-hybrid model, and the protocol
does not securely realize F2ke.

To show the other direction, we need to provide a simulator such that no environment can
tell whether it is interacting with the ideal protocol for F2ke or with the concrete protocol. The
simulator proceeds as follows. (The simulator is similar to the simulator used in the proof of
soundness of the symbolic mutual authentication criterion.)

• S internally simulates the participants P0, P1, and two instances of Fcpke. At the beginning,
none of these simulated participants are running.

• When the simulator receives a message (Pi, P1−i,RID) from the functionality F2ke (indicating
that the external dummy participant Pi has received input from the environment and has
passed it on the F2ke) it activates the simulated participant Pi with input

(SID, Pj ,RID),SIDi, (P1−i,RIDi,SIDi)

where SID is some arbitrary SID and SIDj is the SID of the appropriate simulated instance
of Fcpke.
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Figure 9: The simulator for F2ke

• When the simulator receives input for the dummy adversary to send to participant Pi, it
sends that input to the copy Pi that it is simulating internally.

• Likewise, when simulated participant Pi produces a message to send on its communication
tape, the simulator sends this message to the environment.

• When simulated participant Pi produces a message to send an instance of Fcpke, the simulator
forwards this to the appropriate instance of Fcpke that it is simulating.

• Likewise, when either instance of Fcpke requires communication with the adversary, this
communication is provided to the simulated dummy adversary (and sent directly to the
environment). Communication from the environment to either Fcpke-instance is forwarded
directly to the simulated Fcpke-instance.

• When the simulated participant Pi produces local output 〈“finished′′, Pi||P1−i||v〉, the sim-
ulator sends the message (Session-key, sid, Pi, v) to the functionality F2ke.

It remains to show that the simulation is valid. Consider an environment Z that distinguishes
with advantage ǫ(k) between an interaction with the above simulator and the ideal protocol for
F2ke, and an interaction with the concrete protocol. We show that ǫ(k) is negligible in k. To see
this, fix some k. Assume for simplicity that Z is deterministic. (No generality is lost here since
Z gets arbitrary, non-uniform input.) By the mapping lemma (Lemma 2) we know that, except
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for probability ǫ′(k) which is negligible in k, traces of the interaction between Z and the concrete
protocol are mapped to a single symbolic trace t̂ of the corresponding symbolic protocol, P. Let Ψ
by the adversary strategy derived from t̂, i.e. the strategy Ψ such that Ψ(P) = t̂. Then, it can be
verified that:

1. The trace of the interaction between Z, the above simulator, and the ideal protocol for F2ke,
is mapped to the symbolic trace Ψ(Pf ). (This is so since in this interaction the view of Z is
identical to its view of an interaction with the concrete protocol, except that the keys in the
local outputs of the parties are random and independent from the rest of the view.)

2. Let t and t′ denote the random variables describing the trace of the interaction of Z with the
concrete protocol and the ideal protocol, respectively. Then, conditioned on the event that

patternpk

(̂
t
)

= patternpk

(
t̂′[Rf 7→Rr]

)
, the distributions of t and t′ are identical. (This is so

since Fcpke makes sure that Z’s view is statistically independent of the values encrypted by
the honest parties, thus Z’s view is independent of whatever is not in the pattern of t̂.)

We conclude that, whenever the trace t of Z’s interaction with the protocol is mapped to a valid trace
t̂ of the corresponding symbolic protocol, then Z’s view of the interaction is distributed identically
to its view of the interaction with the ideal protocol for F2ke. Consequently, Z’s distinguishing
probability ǫ(k) is at most ǫ′(k), the error probability in the mapping lemma. �

7 Future research

This work demonstrates that completely symbolic analysis of security properties within a simulation-
based, compositional cryptographic framework is possible. Furthermore, the chosen symbolic frame-
work is one that is very close to the language of known automated verification tools. As such, it
opens the door to a number of questions and challenges. A first challenge is to build tools that will
automatically verify whether a given abstract protocol satisfies the symbolic criteria we provide.
Some indications that this is feasible are (a) the Athena tool [52], which was built explicitly to
verify criteria such as our symbolic mutual authentication criterion in a model that is very similar
to ours, and (b) the tool of Blanchet [12], that is able to verify requirements that are closely related
to the secrecy requirement of our symbolic key-exchange criterion.

A second research direction is to generalize our results to a richer and less restrictive “pro-
gramming language” for protocols. One direction is to enlarge the set of allowed operations and
to incorporate other cryptographic primitives, while retaining the ability to analyze only a single
session of the protocol in question. Natural candidates include the Diffie-Hellman exchange, signa-
tures schemes, pseudo-random functions, and message authentication codes. Other generalizations
include adaptive security (i.e. security against adversaries that corrupt parties throughout the
computation), and protocols where even their symbolic counterparts are randomized.

A third direction is to apply a similar analytical methodology to other cryptographic tasks, and
even tasks that were never before addressed using formal tools. For instance, it may be possible to
come up with a symbolic representation of, say, two-party protocols that use commitment schemes,
and provide a symbolic criterion for when such protocols are zero-knowledge protocols (e.g., satisfy
the ideal zero-knowledge functionality). Similarly, one can potentially come up with symbolic
criteria as to when a protocol securely realizes an arbitrary given ideal functionality.
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A Realizing Fcpke

We show how to realize Fcpke given the plain, unauthenticated public-key functionality Fpke, and a
registration functionality Freg. Functionality is given in Figure 10. (Our formulation of Fpke is the
same as functionality Fpke from [22], except that here unregistered ciphertexts are decrypted using
a decryption algorithm that was provided by the adversary ahead of time. See more discussion in
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Section 3.1.) The treatment here closely mimics the the treatment in [19] of realizing certification
given signature schemes and a registration service.

Functionality Fpke

Fpke proceeds as follows, when parameterized by message domain ensemble D = {Dk}k∈N .

Key Generation: Upon receiving a value (KeyGen, SID) from some party P , verify that SID =
(P, SID′) for some SID′. If not then ignore the input. Else:

1. Hand (KeyGen, SID) to the adversary.

2. Receive a value e and a description of an algorithm D from the adversary.

3. record (e, D), and output e to P .

Encryption: Upon receiving from any party P ′ a value (Encrypt, SID, e′, m) proceed as follows:

1. If m /∈ Dk then return an error message to P ′.

2. If m ∈ Dk then hand (Encrypt, SID, e′, P ′) to the adversary. (If e′ 6= e or e is not yet
defined then hand also the entire value m to the adversary.)

3. Receive a “ciphertext” c from the adversary, record the pair (c, m), and hand c to P ′.
(If the tag c already appears in a previously recorded pair then return an error message
to P ′.)

Decryption: Upon receiving a value (Decrypt, SID, c) from P (and P only), proceed as follows:

1. If there is a recorded pair (c, m) then hand m to P .

2. Otherwise, compute m = D(c), record the pair (m, c), and hand m to P .

Figure 10: The public-key encryption functionality, Fpke

The primary difference between Fcpke and Fcpke is that in Fcpke there are no encryption keys;
instead messages are encrypted directly to the identity of the recipient. (In other words, Fcpke

provides ideal binding between a public key and its “owner.”) In contrast, Fpke does not provide
any binding between the public key and the identity of the intended decryptor. In particular, there
is no security guarantee regarding messages that were encrypted with public keys other that the
key given to the legitimate decryptor.

Recall that Fpke can be realized in a simple way (with respect to non-adaptive party corruptions)
given any CCA-secure encryption scheme [18, 22]. Here we show how to realize Fcpke given Fpke,
so long as one has access to an additional, simple “service” that ties public values to principals.
Such a ‘registration’ functionality, Freg, is give in Figure11. Our protocol, Prenc, for realizing Fcpke

given ideal access to both Fpke and Freg, is given in Figure 12. We show:

Claim 5 Protocol Prenc securely realizes Fcpke, when given ideal access to Fpke and Freg.

Proof. The proof proceeds along the lines of the proof in [19] for the case of constructing a
certification service from signature schemes and a registration service. To summarize, let A be
an adversary that interacts with parties running Prenc in the (Fpke,Freg)-hybrid model. Then we
construct a simulator S such that no environment Z can distinguish between an interaction with
the simulator S and Fcpke, and an interaction with the adversary A and the protocol Prenc. As
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Functionality Freg

Freg proceeds as follows:

• Upon receiving the first message (Register, SID, v) from party P , send (Registering, SID, v) to
the adversary. Upon receiving (ok) from the adversary, and if this is the first message from
P , then record the pair (P, v).

• Upon receiving the message (Retrieve, PID) from a party P ′, send message (Retrieve, PID) to
the adversary and wait for the adversary to return a message ok. Then, if there is a recorded
pair (PID, v) output (Retrieve, PID, v) to P ′. Otherwise, if there is no recorded pair, return
(Retrieve, PID,⊥).

Figure 11: The registration functionality, Freg

Protocol Prenc

Initialization: Party PIDowner sends message (KeyGen, (PIDowner, SIDowner)) to Fpke, gets message
e. Next, PIDowner sends (Register, (PIDowner, SIDowner), e) to Freg.

Encryption: When activated with message (Encrypt, (PID, SID), m), party P does:

• First, P sends (Retrieve, SID) to Freg and waits. It receives a message (Retrieve, SID, v)
checks that v 6= ⊥. If it is, return ⊥.

• Otherwise, send (Encrypt, (PID, SID), v, m) to Fpke. Receive value c from Fpke and output
it. Also, record the pair (m, c).

Decryption: Upon being activated with message (Decrypt, SID, c) where SID = (P, s), party P
sends (Decrypt, SID, c) to Fpke. It waits for and outputs the response.

Figure 12: The registered encryption protocol, Prenc
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usual, the simulator contains within it a copy of A, the parties, and for each party it simulates a
copy of Fpke and Freg. All messages from Z to A and back are forwarded. In addition, S acts as
follows:

Initialization The simulator, upon initialization, simulates the initialization process. That is,
the simulator simply forwards the messages between the parties, the Fpke and Freg function-
alities, and the adversary. By the end of initialization, the adversary has created (via the
simulated functionalities Fpke) a “public key” e, and this party is registered with Freg. This
entire process is visible to the environment, who can see all messages received or sent by the
simulated adversary A.

Encryption. Upon receiving message (Encrypt,SID, P ) from Fcpke, the simulator has the simulated
party P retrieve the public key of party SID. Let e be the public key. The simulator then passes
message (Encrypt,SID, e,m) to the appropriate copy of Fpke. When the Fpke functionality
returns a ciphertext c, this is given to the Fcpke functionality.

It is simple to verify that this simulator is a perfect simulation of the adversary A in the
(Fpke,Freg)-hybrid model. The initialization phase is exactly the same as that in the hybrid model,
and one can easily confirm that the simulated adversary A sees exactly the same sequence of
messages as it would in the hybrid model. This, protocol Prenc securely realizes Fcpke.

�

B Proof of Needham-Schroeder-Lowe Real-or-Random secrecy

In this section, we show how an automated protocol verification tool was used to verify that
the Needham-Schroeder-Lowe protocol (version 2 of Section 3.3) satisfies our new symbolic key-
exchange property. In particular, we note that our definition of “real-or-random” secrecy is very
close to Blanchet’s notion of “strong secrecy” [12]. A protocol maintains “strong secrecy” of a value
if, intuitively, a change to the value is undetectable to any “observational context” (i.e., adversary
strategy). Thus, a key-exchange protocol P maintains real-or-random secrecy for the session key if
and only if a protocol P ′ maintains strong secrecy, where P ′ is derived by adding to P a final event
where a candidate (real or random) session key is released to the adversary.

Thus, real-or-random secrecy of Needham-Schroeder-Lowe version 1 (NSLv1) is verified by the
ProVerif [13] specification of Figure 13.7 (This same specification verifies key-agreement as well.)
By way of contrast, we present the analogous specification for Needham-Schroeder-Lowe version 2
(NSLv2) in Figure 14. This protocol does not enforce real-or-random security for the session key,
and so the verification of this specification fails as expected.

Each specification has two parts: a header and a process specification. Each header specifies
a channel (c) and a session key (sesk) as free variables; a definition of asymmetric encryption; a
function (host) from keys to names; and a number of goals:

• Secrecy of the private keys,

• Real-or-random secrecy of the session key, and

7This specification was derived from the pineedham − corr− orig specification distributed with the ProVerif
source.
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• Key agreement

The form of the last two goals requires some explanation, but first we describe the process of the
specification. The process will consist of two communicating sub-processes: one for the initiator and
one for the responder. These sub-processes exactly execute the Needham-Schroeder-Lowe protocol
with two additions. First, the sub-processes will signal their successful completion and value for
session key via the keyA and keyB. Second, they will output a fixed constant (either Na or Nb)
which may or may not be the session key. (The actual process specification initiates these two
sub-processes and runs them in parallel.)

Having described the process specification, we can describe how the security goals are actually
phrased. The real-or-random secrecy goal is phrased as a non-interference property: that the
behavior of no context (adversarial strategy) depends on the value of the secret key. In particular,
the behavior of no adversary strategy will change when the value of the session key is changed from
the constant output at the end of the protocol to a different constant (either Naa or Nbb).

The key-agreement specification, on the other hand, is phrased as an implication: if the respon-
der outputs a key, then the initiator has already output the same key. Because each participant
can output a key exactly once, this is actually a stronger form of our key-agreement property.

44



(***** Header *******)

free c.

(*Session key*)

private free sesk.

(* Public key cryptography *)

fun pk/1.

fun encrypt/2.

reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)

fun host/1.

(* Secrecy assumptions *)

not skA.

not skB.

(* Prove real-or-random and agreement *)

noninterf sesk among (Na, Naa).

query ev:Bkey(x) ==> ev:Akey(x).

(******* Process specification *******)

let processA =

(* Message 1 *)

out(c, encrypt((sesk, hostA), pkB));

in(c, m);

let (=sesk, NX2, =hostB) = decrypt(m, skA) in

(* OK *)

event Akey(sesk);

out(c, encrypt(NX2, pkB));

out(c, Na).

let processB =

(* Message 1 *)

in(c, m);

let (NY, =hostA) = decrypt(m, skB) in

(* Message 2 *)

new Nb;

out(c, encrypt((NY, Nb, hostB), pkA));

(* Message 3 *)

in(c, m3);

if Nb = decrypt(m3, skB) then

(* OK *)

event Bkey(NY);

out(c, Na).

process new skA; let pkA = pk(skA) in

new skB; let pkB = pk(skB) in

let hostA = host(skA) in

let hostB = host(skB) in

new Na;

new Naa;

(processA | processB)

Figure 13: A ProVerif specification to verify NSLv1
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(***** Header *******)

free c.

(* Public key cryptography *)

fun pk/1.

fun encrypt/2.

reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)

fun host/1.

private reduc getkey(host(x)) = x.

(* Secrecy assumptions *)

not skA.

not skB.

(* Session key *)

private free sesk.

(* Prove real-or-random and agreement *)

noninterf sesk among (Nb, Nbb).

query ev:Bkey(x) ==> ev:Akey(x).

(******* Process specification *******)

let processA =

(* Message 1 *)

new Na;

out(c, encrypt((Na, hostA), pkB));

in(c, m);

let (=Na, NX2, =hostB) = decrypt(m, skA) in

(* OK *)

event Akey(NX2);

out(c, encrypt(NX2, pkB));

out(c, Nb).

let processB =

(* Message 1 *)

in(c, m);

let (NY, =hostA) = decrypt(m, skB) in

(* Message 2 *)

out(c, encrypt((NY, sesk, hostB), pkA));

(* Message 3 *)

in(c, m3);

if sesk = decrypt(m3, skB) then

(* OK *)

event Bkey(sesk);

out(c, Nb).

process new skA; let pkA = pk(skA) in

new skB; let pkB = pk(skB) in

let hostA = host(skA) in

let hostB = host(skB) in

new Nb;

new Nbb;

(processA | processB)

Figure 14: A ProVerif specification to verify NSLv2
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C Index of notation

C.1 Standard mathematical/cryptographic notation

D A domain of messages
~r Participant randomness

x
R

← X x is drawn randomly from distribution X
X ≈ Y Distributions X and Y are computationally indistinguishable
κ A key
σ A bitstring
k The security parameter
m A message
c A ciphertext

C.2 The UC framework

SID A session identifier
RID A role identifier
PID A participant identifier
p A concrete protocol (i.e., one in the UC framework)
Z The environment
z Environment input
P UC participant
F Ideal functionality
S The simulator
P A higher-level protocol
Fpke The public-key encryption functionality
Fcpke The certified public-key functionality
PIDowner,
SIDowner,
RIDowner

PID, SID and RID, respectively, of a Fcpke instance’s legitimate owner

D A computational decryption algorithm
F2ma The 2-party mutual-authentication functionality
F2ke The 2-party key-exchange functionality
D A computational decryption algorithm
(Encrypt,SID,m) A call to Fcpke to encrypt m
(Decrypt,SID, c) A call to Fcpke to decrypt c
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C.3 The Dolev-Yao Model

A The formal algebra of terms
m, m1, m2. . . Dolev-Yao messages; elements of A
M The set of names
A, B Names; elements of M
R The set of (symbolic) random strings
R, R1, R2. . . Nonces; elements of R
KPub The set of public keys
K A symbolic key; element of KPub)
KA Public key of A
G Symbolic garbage term
⊥ Symbol for error or failure
Starting , Finished Symbols for protocol beginning and end
{|m|}K Encryption of m under key K
m1|m2 Pair of messages m1 and m2

keyof Mapping from names to public keys
RAdv Random strings chosen by the adversary
MAdv Aliases of the adversary
KAdv Private keys associated with adversary aliases
P Symbolic protocol
Pi Transition function for role i in symbolic protocol
S The set of states for the transition function P
S State of symbolic participant
output Constant to represent local output
message Constant to represent communication
C[S] Closure of set S; all messages symbolic adversary can make from S
patternpk (m) Base pattern of a symbolic message
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C.4 Executions and Traces

t A symbolic trace
H Event on a symbolic trace
[“enc”, j, k,Mi] Symbolic adversary encryption event
[“dec”, j, k,Mi] Symbolic adversary decryption event
[“extract-l”, j,Mi] Symbolic adversary separation (left) event
[“extract-r”, j,Mi] Symbolic adversary separation (left) event
[“nonce”,Mi] Symbolic adversary creation of random string
[“name”,Mi] Symbolic adversary name creation
[“pubkey”,Mi] Symbolic adversary public key creation
[“privkey”,Mi] Symbolic adversary private key creation
[“deliver”, j, Pi] Symbolic adversary transmission
(P ′

i ,Li,mi, Si) Symbolic participant event
[“fail”,mi] Special symbolic event to indicate mapping failure
Ψ Adversary strategy
t Trace of concrete execution
G Event on a concrete trace
t̂ Symbolic interpretation of concrete trace t
〈“output”,PID, l〉 Concrete local output event
〈“message”,PID,m〉 Concrete participant communication event
〈“adv”,PID,m〉 Concrete adversary transmission event
t[M 7→N ] Symbolic trace t with every instance of message M replaced with mes-

sage N

C.5 Simple protocols

M1 Machine for one role of simple protocol
Σ The store for a simple protocol
Π The program for a simple protocol
SID, PID0, RIDi,
PID1

Program’s SID, PID and RID and peer’s PID

v Variable of a simple protocol’s program
σ bit-string
p A simple protocol
p̂ symbolic interpretation of protocol p
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