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Abstract

In this paper, we discuss non-interactive updating of private keys in identity-based encryption
(IBE). IBE is a public key cryptosystem where a public key is an arbitrary string. Key revocation in
IBE, in practice, is unavoidable and also a problem that cannot be bypassed. Our main contribution
of this paper is to propose a novel constructions of IBE in which the private key is renewed without
having to make any changes to its public key, i.e. user’s identity. We achieve this by extending
the hierarchical IBE (HIBE). Regarding security, in addition to chosen ciphertext attack, we address
semantic security for a very strong attack environment which models all possible types of key exposures
in the random oracle model. Straightforward extension of the HIBE, however, is completely insecure
for such an attack model. Moreover, we show a method of constructing (partially collusion resistant)
HIBE from arbitrary IBE in the random oracle model. By the combination of this method and the
technique used in the above scheme we can construct an IBE with non-interactive key update from an
arbitrary IBE.

1 Introduction

Background. As to our best of knowledge, current public key infrastructures involve complex construc-
tion of certification authorities (CA), consequently requiring expensive communication and computation
costs for certificate verification. In 1984, Shamir introduced an innovative concept called, identity-based
encryption (IBE) [25], where any public key is determined as an arbitrary string, e.g. user’s name, e-mail
address, etc. Identity-based system can simplify certificate management in public key infrastructures.

In this paper, we address a crucial but heretofore undiscussed issue; non-interactive updating of
user’s private key in IBE. Revocation and renewal of private keys is a problem that cannot be bypassed
in practice. In conventional public key schemes, certification revocation list (CRL) is generally utilized
to minimize the damage due to key compromisation, and here, users become aware of the voided key by
referring to the CRLs, and abort it, if necessary. In IBE, however, some caution must be taken when
straightforward implementation of CRL is carried out, as it may be inefficient to do so, since invalidating
a user’s identity-based key and terminating the link between the user identity and the public key implies
loosing one of principal advantages of IBE. For example, one of suitable application of IBE is of a mobile
phone network system, in which case, phone number represents the identity unique to each user. It will
be both simple and convenient for the mobile phone users to be able to communicate with each other by
using their phone numbers only. The problem however arises when the user needs to renew his key. It is
necessary for him to be able to change his private key without changing his phone number and this will
be the main subject of our discussion.
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Our Results. Our main contribution of this paper is to study renewal of private keys in IBE. We begin
our discussion by looking into the difficulty in constructing an IBE with the most useful and essential
property as key revocation based on the conventional model of IBE. Then, we re-construct the model of
IBE and show a new generalized method that can efficiently renew the private keys in IBE. Based on this
model, we show a construction of IBE with non-interactive key update that lets the user update his key
on his own without the help of a central authority, and most importantly, without changing his identity.
In this scheme, similar to [13], we assume a private device which is different from the main hardware
where the actual decryption is carried out. Private device is not connected to the network and assumes
only a small storage and computation capacity. In stead, a private device stores a secret helper key which
assists the user to update his decryption key at each and fixed time period and only at times he needs his
private key to be renewed. All secret operations are still done by the user alone. Our proposed scheme
can be regarded as the first construction of an identity-based version of strongly secure key insulated
encryption [13]. Here, we mean “strongly” by system guaranteeing security even when the private device
is physically compromised. Our scheme is different from [13] in that the private device can be divided
into multiple levels forming a hierarchical structure, and hence, its security is improved.

In brief, our proposed scheme can be said as an extension of hierarchical identity-based encryption
schemes (HIBE) [24, 23]. Straightforward extension of a HIBE, however, will be completely vulnerable in
our attack model. In this paper, we propose two different secure constructions of IBE with non-interactive
key update. One is a generic construction built from HIBE. More precisely, we bring an arbitrary (chosen
plaintext secure) HIBE to construct a chosen ciphertext secure IBE with non-interactive key update. Also,
the underlying assumption of such scheme is flexibly selected depending on the requirement of the system.
As a by-product, this method can be further applied to generically construct a (standard) strongly secure
key-insulated encryption from arbitrary (H)IBE and standard public key encryption allowing unlimited
number of key updating. Second, we show a specific construction of IBE with non-interactive key update,
and its efficiency is improved compared to the above generic construction. In addition to the proposal
of these two constructions, we also show a technique that enables us to construct a (partially collusion
resistant) HIBE from an arbitrary IBE. Moreover, this result can be further applied to our generic
construction of IBE with non-interactive key update to convert an arbitrary IBE to have key-updating
property as well. Note that we mean “partial collusion resistant” in that we argue based on the security
definition in [24] and not in [23]. Security of our schemes is proved in the random oracle model.

Applications: Mobile Phone Scenario. Requiring a “private device” may seem inconvenient at first
glance, however, in practice, it may not be the case. Let’s go back to the example (see Background.)
of a mobile phone system. If you are a mobile phone user, then it is your routine job to re-charge your
battery once every now and then. Now, assume a battery charger that “intelligently” functions also as
the private device. Such a device can provide a convenient way of renewing the private key as well as
re-charging the battery at the same time. Security of this system is also guaranteed even if you lose your
battery charger. As you can see, this is already a practical and attractive application of IBE, but its
security can be further improved by constructing a hierarchical version of this scheme. We assume the
user’s private devices to be structured hierarchically into two levels. We let the first level private device,
the battery charger, be the one that does the actual decryption key updating, and second level private
device does the updating of the helper key of the first level private device. For example, decryption key
can be updated every day while the helper key of the battery charger every 2 or 3 months. This way,
second level private device can be kept somewhere safer while keeping the battery charger in places more
handy. Furthermore, our schemes even guarantee security against an adversary who obtains any of the
private devices including the one in the second level.

Related Works. Issue of revocability of private keys in identity-based schemes was initially discussed by
Shinozaki, Itoh, Fujioka and Tsujii [26], however, it required prior communication for revocation and did
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not show advantage over conventional public key schemes which also required prior interaction between
the user and the certificate authority. Furthermore, their scheme was specific to Fiat-Shamir identification
scheme [19, 20] and could not generally be applied to identity-based schemes. Recently, Baek and Zheng
[2] proposed a threshold decryption method for IBE which prevents the keys from getting exposed rather
than dealing with cases after key exposure has occured. In [16], Dodis and Yung proposed an interesting
method for refreshment of private keys in HIBE, and their scheme can efficiently deal with the problem
of gradual key exposure in which a secret key is assumed to be slowly compromised over time.

Boneh and Franklin in their paper ([6], Section 1.1.1) showed the first generalized method for key
revocation for identity-based encryption schemes. In their scheme, a privileged Private Key Generator
(PKG) generates each user’s private key and its corresponding public key. Public key is set to be the
concatenation of user identity and fixed length of time the key is available, e.g. “recipient@xxx.xxx ||
2004.01.01-2004.12.31”. In such a setting, the public key, despite of whether it is revoked or not, is
renewed regularly by the PKG, and also, the renewal interval must be set short (e.g. per day) to alleviate
the damage which may be caused by key exposure. Therefore, having to set the interval short and require
frequent contact with the PKG implies increase in the total communication and computation cost, con-
sequently, loosing one of primary advantages of identity-based schemes (i.e. low costs in communication
and computation). Further, it needs to work out a way to establish secure channel between the PKG
and the user. For instance, it needs to compensate for additional and requires complicated transactions
if the secret information required to setup a secure channel is exposed. Moreover, forward security must
also be considered. Hence, it is not desirable to require frequent communication via secure channel with
the PKG in identity-based schemes.

On the other hand, as a solution to key exposure and revocation problem in conventional public
key systems, Dodis, Katz, Xu and Yung [13] proposed a scheme called key-insulated encryption. Their
scheme assumes a private device in which a helper key is stored. The helper key assists the user to
renew his decryption key by generating the secret information needed to update the decryption key.
Here, the public key is fixed. In [14, 15], Dodis, Franklin, Katz, Miyaji and Yung further improved
[13] with forward secrecy as an additional property. Notice that being able to renew the private key
without having to make changes to the corresponding public key as seen in the key-insulated encryption
scheme, is the very technique, desired in IBE. Although, a possible harmonization of the advantages of
these two schemes, or an identity-based version of a (strongly secure) key-insulated encryption scheme,
has never been constructed. There also has never been a construction built of a hierarchical version of
key-insulated encryption where the private device is organized in a hierarchical tree structure. Besides
the related works shown so far, there are other interesting researches done on the topic of key exposure
and revocation as well, for example, [22, 1], but they are all looked from the point of view of conventional
public key infrastructure.

We mentioned earlier that our scheme can be seen as an extension of HIBE [24, 23, 4]. HIBE is a
powerful cryptographic tool and plays an important role and also forms basis of various cryptographic
techniques, e.g. [10]. Moreover, the only methods known to construct HIBE [24, 23, 4] are ones that
require specific assumptions in elliptic curve cryptography, e.g. Bilinear Diffie-Hellman (BDH), as the
underlying assumption, and therefore, lacks flexibility in the selection of underlying assumption. (Note
that for an identity-based encryption scheme, there is also a construction based on quadratic residuosity
problem [9].) As you can realize, building a novel HIBE construction is hard and is one of important
research topics in this area, especially, an open problem for a generic construction of HIBE based on an
arbitrary IBE.

2 Model and Definitions

Overview of the Model. Before we get into discussing the construction of our model of IBE with
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non-interactive key update, recall we said earlier that it was impossible to construct an IBE with useful
and essential property as key revocation based on the model of conventional IBE. To be more specific, in
a conventional IBE that only uses the public parameter distributed at system set up phase and the user’s
identity to encrypt a message, it is impossible for the user to immediately revoke and renew his private
key only at time he loses his key without loosing the advantage of IBE in terms of communication cost.
Hence, there is a need to build a new IBE model for an IBE to have key-updating property.

As already mentioned, the model of IBE with key renewal shown in [6] requires a secure channel
between the user and the PKG that needs to be available at all times, moreover, PKG in their model
needs to renew the users’ private keys at fixed and also frequent time intervals. This model is simple
and generally practical for some types of applications, however, there are other cases where frequent
communications via constantly available secure channel between the user and the PKG is neither preferred
nor available.

In our new model of IBE with non-interactive key update, we introduce a private device which
stores a helper key used to renew the decryption key. This model allows the decryption keys to be
renewed at regular time intervals without having to require any kind of interactions between other entities.
Furthermore, we consider a hierarchical construction of our model by letting the helper key stored in
each level of the hierarchy to be renewed using the helper key of a level higher. (See Applications:
Mobile Phone Scenario in Sec. 1.) Our model is, in fact, regarded as both a hierarchical and also an
identity-based extension of a key-insulated encryption [13]. Similarly to [13], we address random-access
key updating, namely, it allows one-step renewal of current private key to any of the private keys of any
time period (even the past keys). Such function lets any ciphertext of any time period to be decrypted
at any time.

Model. We assume the user’s private devices to be structured hierarchically into �-levels, and for
i = 1, · · · , �, i-th level helper key is stored in the i-th level private device. The actual decryption takes place
at the user’s terminal, the 0-level private device, in which the decryption key is stored. The data generated
using the i-th level helper key is used to renew the (i − 1)-th level helper key for i = 2, · · · , �. So the
data generated by the first-level helper key is used to renew the user’s decryption key. For simplicity, we
consider the specific case � = 2, where the first and second level private devices correspond to the battery
charger and the device that updates the battery charger’s helper key, respectively, in the mobile phone
scenario. (Note that our scheme can easily be generalized for arbitrary � ≥ 1.) Also, let T0(·) and T1(·)
be functions which map a time to the corresponding time periods used for decryption keys and first-level
helper keys, respectively. For example, in this scenario, T0(2004/Aug./26th/17 : 00) = 2004/Aug./26th
and T1(2004/Aug./26th/17 : 00) = 2004/Jul.-Sep., assuming that user’s decryption key is updated every
day, and the first-level helper key is updated every 3 months. In addition, let T2(·) be a function such
that for all time, T2(time) = 0. In our model, at time time, a user can update his decryption key only
if his first-level helper key is valid for time period T1(time). The first-level helper key can be updated at
any time.

Definition 1 (IKE) A 2-level identity-based key-insulated encryption scheme (IKE) IKE consists of
8 algorithms: IKE = (PGenIKE,GenIKE,∆-Geni

IKE,Updi
IKE (i = 1, 2),EncIKE,DecIKE), where each of the

algorithms are described as follows.
PGenIKE. The public-parameter generation algorithm PGenIKE(1k), where k is the security parameter,
outputs master key s and public parameter p. Note that PGenIKE and GenIKE are used by the PKG only.
GenIKE. The user-secret generation algorithm GenIKE takes as input s, p and a user’s identity U , and
outputs U ’s initial private keys (d0

0, d
1
0, d

2
0), where d0

0 is U ’s initial decryption key, and di0 (i = 1, 2) are
stored in U ’s i-th level private device as the initial i-th helper key.
∆-Geni

IKE. A helper key stored in the first (resp. second) level private device and the ∆-Gen1
IKE (resp.

∆-Gen2
IKE) are used to generate the data required to renew the decryption key (resp. a first-level helper
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key). More specifically, for i = 1, 2, the key-update information generation algorithm ∆-Geni
IKE takes dit,

p and time as inputs, and outputs key-update information δi−1
Ti−1(time) only if t = Ti(time).

Updi
IKE. U ’s decryption key (resp. U ’s first-level helper key), key-update information δ0T0(time) (resp.

δ1T1(time)) and Upd1
IKE (resp. Upd2

IKE) are used to generate U ’s decryption key (resp. U ’s first-level helper
key) for time. More specifically, for i = 1, 2, the key-update information generation algorithm Updi

IKE

takes di−1
t , p and δi−1

Ti−1(time) for any t, and outputs a new key di−1
Ti−1(time) for time period Ti−1(time).

EncIKE. The encryption algorithm EncIKE takes inputs m, U , p and time, where m is a plaintext, U is the
user identity and time indicates the time at which m is encrypted, and outputs ciphertext 〈c,time〉.
DecIKE. The decryption algorithm DecIKE takes 〈c,time〉, d0

t and p as inputs, and outputs m or ⊥ where
⊥ indicates failure. DecIKE correctly recovers the plaintext only if t = T0(time).

Security Definition. The security of an IKE is based on an assumption that it is difficult for an
adversary to illegally obtain all of the victim user’s keys which are managed in different manners. That
is, since the victim’s private devices in which the helper keys are stored are not connected to the network,
the adversary needs to physically steal each private device to obtain the key. It also becomes harder to
obtain the helper keys of the private devices as the level goes higher. Even if we assume that the
adversary may not succeed in obtaining all of the keys simultaneously, we still need to consider the
case of partial robbery (even the helper key in the highest level can be stolen). Therefore, in our attack
model, in addition to the standard IND-ID-CCA setting [6, 7], an adversary can access even to the victim’s
decryption keys and helper keys except for those that can trivially let the adversary guess what the target
decryption key is from the definition of IKE. Next, we give some examples of key exposures which we
mean by our security definition.
Examples of Key Exposures. We consider a 2-level IKE with a user’s second-level helper key which
is never updated, and a first-level helper key and a decryption key which are renewed every three months
and a day, respectively. Then, any ciphertext for 2004/Dec./31st should not be decrypted by dishonest
means even for the following cases:

1. Exposure of the victim’s first-level helper keys for 2004/Jan.-Mar., · · · , 2004/Jul.-Sep. and decryption
keys for 2004/Jan./1st, · · · , 2004/Dec./30th

2. Exposure of the victim’s second-level helper key and decryption keys for 2004/Jan./1st, · · · , 2004/Dec./30th

3. Exposure of the victim’s second-level helper key and first-level helper keys for 2004/Jan.-Mar., · · · ,
2004/Oct.-Dec.

It should be noticed that in case of the exposure of the victim’s first-level helper key for 2004/Oct.-Dec.
and decryption key for 2004/Dec./30th, the decryption key for 2004/Dec./31st can easily be computed
by the definition of IKE. These types of key exposures are out of our scope.

Next, we formally address our security definition. In our attack model, an adversary is allowed to have
access to the following four types of oracles: first, is a key generation oracle KG(·, s, p), which on input U ,
returns U ’s initial private keys (d0

0, d
1
0, d

2
0). The second is a left-or-right encryption oracle LR(·, ·, ·, ·, p, b)

[3], which for given U , time and equal length messages m0,m1, returns a challenge ciphertext c :=
EncIKE(mb, U, p, time) where b ∈R {0, 1}. This models encryption requests from the adversary for a
victim’s identity and message pairs of his choice. The third is a decryption oracle D(·, ·, s, p) which on
input U and 〈c,time〉, returns decryption result of c with its corresponding decryption key d0

t such that
t = T0(time). This models the chosen ciphertext attack. With these three oracles, KG, LR and D, the
standard IND-ID-CCA setting can be modeled. In addition to them, we introduce a key issue oracle
KI(·, ·, ·, s, p) which on input i, U and time, returns dit, where t = Ti(time). This models partial exposure
of honest user’s keys including the victim’s.
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The adversary may query the four oracles adaptively, in any order he wants, subject to the restriction
that he makes only one query to LR. Let U∗ be the user’s identifier of this query, and let 〈c∗, time∗〉
denote the challenge ciphertext returned by LR in response to this query. Also, the adversary is not
allowed to ask KG and KI for queries which can trivially let him compute U∗’s decryption key for time∗

from the definition of IKE. The adversary succeeds the attack by guessing the value b, and the scheme is
considered to be secure if any probabilistic polynomial time adversary has success probability negligibly
close to 1/2.

Definition 2 (KE-CCA security) Let IKE be a 2-level identity-based key-insulated encryption scheme.
Define adversary A’s probability as:

SuccA,IKE := Pr[(s, p)← PGenIKE(1k); b ∈R {0, 1}; b′ ← AKG(·,s,p),LR(·,·,·,·,p,b),D(·,·,s,p),KI(·,·,·,s,p) : b′ = b],

where U∗ is never asked to KG(·, s, p) and A is not allowed to query D(U∗, 〈c∗, time〉, s, p) if T0(time) =
T0(time∗). A can ask any key of any user to KI if there exists a “special level” j ∈ {0, 1, 2} such that

• KI(j,U∗, time, s, p) is never asked for any time, and

• KI(i, U∗, time, s, p) is never asked for any (i,time) such that i < j and Ti(time) = Ti(time∗).

Then, IKE is KE-CCA secure (KE-CCA stands for key exposure & chosen ciphertext attack) if, for any
probabilistic polynomial time adversary A, |SuccsA,IKE− 1/2| is negligible. (Note that the “special level”
means level of an uncompromised private device of U∗.)

Exposure of Key-Updating Information. If the security of the IKE is examined in a closer manner,
exposure of key-update information should also be addressed. However, if δiTi(time)

can be computed
from diTi(time)

and dit for any time and t, then, exposure of key-update information can be simulated by
the use of KI. Hence, the above security definition is sufficient even against exposure of the key-update
information if this property holds. All of our constructions satisfy this property.

3 Insecurity of Straightforward IKE from HIBE

As already mentioned, there is some likeness between HIBE and our IKE, however, we’d like to note again
that it is difficult to straightforwardly construct a KE-CCA secure IKE from a HIBE. In this section, we
clarify the relation between HIBE and IKE.
Brief Review of HIBE. HIBE is a technique which distributes the workload of the role of PKG in IBE
in the issuing of user private keys which is considered to be a burdensome task by organizing the PKGs
in a hierarchical tree structure. Here, we give the definition of HIBE and its security. This definition
runs parallel with [23] which is the hierarchical extension of Boneh and Flanklin’s [6, 7]. Note that 1-level
HIBE refers to a standard IBE.

In HIBE, a user has a position in the hierarchy which is defined as a tuple of identities: (Dt−1.Dt−2. · · · .D0),
where t denotes the depth of the hierarchy. The user’s ancestors in the hierarchy tree are the root-PKG
and users/sub-PKGs whose identities are {(Dt−1.Dt−2. · · · .Di : 0 ≤ i ≤ t− 1)}.
Definition 3 (HIBE) A t-level hierarchical identity-based encryption (HIBE) HIBE consists of 3 + t
algorithms: HIBE = (PGenHIBE,Geni

HIBE (1 ≤ i ≤ t),EncHIBE,DecHIBE) which are defined as follows:
PGenHIBE. The public-parameter generation algorithm PGenHIBE(1k), where k is the security parameter,
outputs root-master key s and public parameter p. PGenHIBE is used only by the root-PKG.
Geni

HIBE. The user-secret generation algorithm Gent
HIBE takes as input Dt−1, s and p, and outputs Dt−1’s
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key sDt−1 . Similarly, for 2 ≤ i ≤ t, Gent−i+1
HIBE takes as input Dt−1.Dt−2. · · · .Dt−i, sDt−1.Dt−2.···.Dt−i+1 and

p, and outputs Dt−1.Dt−2. · · · .Dt−i’s key sDt−1.Dt−2.···.Dt−i . Here, for 1 ≤ i ≤ t−1, sDt−1.Dt−2.···.Dt−i is the
sub-master key which enables Dt−1.Dt−2. · · · .Dt−i to generate his descendant’s keys, and sDt−1.Dt−2.···.D0

is the decryption key of Dt−1.Dt−2. · · · .D0.
EncHIBE. The encryption algorithm EncHIBE takes as input m, Dt−1.Dt−2. · · · .D0 and p, where m is a
plaintext, Dt−1.Dt−2. · · · .D0 is the receiver’s identity, and outputs a ciphertext c.
DecHIBE. The decryption algorithm DecHIBE takes as input c, sDt−1.Dt−2.···.D0 and p, and outputs m or
⊥ which means failure. DecHIBE recovers the plaintext only if c has correctly been encrypted by using
Dt−1.Dt−2. · · · .D0 as the encryption key.

Security of HIBE is defined as follows. An adversary adaptively selects a target user’s identity and
equal length messages m0,m1, and submits them to a left-or-right encryption oracle LR which returns
a ciphertext of mb such that b ∈R {0, 1} for a target user. The adversary may also have access to a
decryption oracle D which returns decryption results of any ciphertext except for the challenge ciphertext
from LR, and a key generation oracle KG which exposes any entity’s key except for the target’s and its
ancestors’. A HIBE is secure if any adversary can correctly guess the value of b with a probability at most
1/2 + neg such that neg is negligible. Especially, (secure) HIBE is IND-HID-CCA (resp. IND-HID-CPA)
if unlimited access to D and KG (resp. only KG) is allowed for the adversary [23]. Also, (secure) HIBE
is IND-wHID-CCA (resp. IND-wHID-CPA) if unlimited access (resp. no access) to D is allowed, while the
number of queries to KG is bounded as follows [24]. For at least one level of the hierarchy, unlimited
access is allowed, but for the rest of the levels, the number of queries may not exceed a threshold value
w such that w = O(poly(k)). See Appendix A for more details.

Insecurity of HIBE as IKE. Here, based on a 3-level HIBE, we consider the following (insecure)
2-level IKE: In the initial phase, PKG generates (s, p) := PGenHIBE(1k), and the user U ’s helper keys and
decryption key at time are set as d2

0 := Gen3
HIBE(U, s, p) and diTi(time)

:= Geni+1
HIBE(Ti(time), di+1

Ti+1(time), p)
for i = 1, 0. When encrypting a message m for U at time, a ciphertext c is generated as follows:
c = EncHIBE(m,U.T1(time).T0(time), p). Such a method of the renewal of decryption keys in IBE from
HIBE is described in [24] as well.

Above method described, that of a straightforward construction of IKE from HIBE, at first glance,
may seem secure, but it is, in fact, not. (In other words, this construction is not KE-CCA secure.) For ex-
ample, this construction does not provide security against 2. and 3. of the Examples of Key Exposures.
in the previous section. Namely, if the first-level private device (e.g. the battery charger) is stolen at
2004/Oct./1st/0:00, then confidentiality of all the ciphertexts which are generated during the period
2004/Oct.-Dec. will all be lost. Moreover, exposure of the second-level helper key implies completely
compromising the security for any time period just because of this one key. Hence, it is not secure.

4 Generic Construction

Basic Idea. As mentioned in the previous section, a straightforward construction from a HIBE is a
problem as it looses its security when a user’s private device is compromised. The trick behind our generic
construction is to bring three distinct HIBEs as composites to construct an IKE. In our proposed generic
construction of an IKE, each of HIBE plays a part in guaranteeing the security against different types of
key exposures, and even if a private device is compromised, system remains secure.

Namely, a careful consideration and secure integration of the embedded HIBEs is indispensable in
constructing a KE-CCA secure IKE. In order to achieve this, here, we extend multiple encryption tech-
nique proposed in [27] to achieve KE-CCA security. However, it should be noticed that the original
[27] scheme is applied only to standard public key encryption, and that it cannot be straightforwardly
adapted to our proposed scheme.
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Construction. Here, we show a generic construction of KE-CCA secure IKE from any HIBE that only
has chosen plaintext security, i.e. IND-HID-CPA (See Appendix A).

Generic Construction of KE-CCA secure IKE

Set up h-level HIBE HIBEh = (PGenHIBEh
,Geni

HIBEh
(1 ≤ i ≤ h),EncHIBEh

,DecHIBEh
) for 1 ≤ h ≤ 3. Then,

a 2-level IKE IKE = (PGenIKE,GenIKE,∆-Geni
IKE,Updi

IKE (i = 1, 2),EncIKE,DecIKE) can be constructed as
follows.
PGenIKE: For 1 ≤ h ≤ 3, run PGenHIBEh

(1k) = (sh, ph), and set cryptographic hash functions Hh :
{0, 1}2n+3k1 → COIN , where n denotes the size of a message of IKE, and COIN is the internal coin-
flipping space of EncHIBEh

, assuming that n + k1 is the size of a message in HIBEh (for simplicity, we
assume for all HIBEh (1 ≤ h ≤ 3), spaces of internal coin-flipping and messages are COIN and {0, 1}n+k1 ,
respectively). The security analysis will view Hh (1 ≤ h ≤ 3) as random oracles. Then, output s :=
(s1, s2, s3) and p := (p1, p2, p3,H1,H2,H3).
GenIKE: For input s, p and U , parse s = (s1, s2, s3) and p = (p1, p2, p3,H1,H2,H3), and for 1 ≤ h ≤ 3,
run Genh

HIBEh
(U, sh, ph) = sh,U . Then, set d0

0 = (s1,U , 0, 0), d1
0 = (s2,U , 0) and d2

0 = s3,U , and output U ’s
initial keys (d0

0, d
1
0, d

2
0).

∆-Geni
IKE: For input dit, p and time′, parse dit = (σi+1, · · · , σ3), and run Geni

HIBEh
(Ti−1(time′), σh, ph) = σ′h

for i+ 1 ≤ h ≤ 3. Then, output δi−1
Ti−1(time′) := (σ′i+1, · · · , σ′3).1

Updi
IKE: For input di−1

t , p and δi−1
Ti−1(time′), parse di−1

t = (σi, · · · , σ3) and δi−1
Ti−1(time′) = (σ′i+1, · · · , σ′3), and

output di−1
Ti−1(time′) := (σi, σ′i+1, · · · , σ′3).

EncIKE: For input m, U , p and time, pick m1,m2,m3 ∈ {0, 1}n uniformly at random such that ⊕1≤i≤3mi =
m. Also, pick r1, r2, r3 ∈R {0, 1}k1 . Then, by letting Rh := Hh(m,mh, r1, r2, r3), for 1 ≤ h ≤ 3 compute

ch = EncHIBEh
(mh||rh, Vh, ph;Rh),

where V1 := U , V2 := U.T0(time) and V3 := U.T1(time).T0(time). (“;R” denotes internal coin-flipping
with randomness R.) Finally, set c = (c1, c2, c3), and output 〈c,time〉 as ciphertext.
DecIKE: For input 〈c′, time〉, d0

t and p, output ⊥ if t 
= T0(time). Else, parse c′ = (c′1, c′2, c′3) and
d0
t = (σ1, σ2, σ3). Next, compute

DecHIBEh
(c′h, σh, ph) = (m′

h||r′h)

for 1 ≤ h ≤ 3, and compute ⊕1≤h≤3m
′
h = m′. Then, by letting R′

h := Hh(m′,m′
h, r

′
1, r

′
2, r

′
3)), compute

EncHIBEh
(m′

h||r′h, Vh, ph;R′
h) = νh for 1 ≤ h ≤ 3. Unless νh = c′h for all h, output ⊥, otherwise output m′.

The above scheme can easily be generalized to �-level IKE for arbitrary � ≥ 1.

Definition 4 (γ-uniformity [21]) Let HIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤ t),EncHIBE,DecHIBE) be a

t-level HIBE. For given Dt−1.Dt−2. · · · .D0, x, y and z, define γ(Dt−1.Dt−2. · · · .D0, x, y, z) = Pr[r ←R

COIN : z = EncHIBE(Dt−1.Dt−2. · · · .D0, x, y; r)], where COIN is the internal coin-flipping space for
EncHIBE. We say that HIBE is γ-uniform if γ(Dt−1.Dt−2. · · · .D0, x, y, z) ≤ γ for any Dt−1.Dt−2. · · · .D0,
x, y and z.

Theorem 1 The above scheme is a KE-CCA secure 2-level IKE in the random oracle model, assuming
that HIBEh (1 ≤ h ≤ 3) are IND-HID-CPA HIBEs. More precisely, suppose there is an adversary A who
breaks the above scheme with probability 1/2 + εA, and A runs in time at most tA. Suppose A makes
at most qKG, qKI, qD, qH1, qH2, qH3 queries to KG, KI, D, H1, H2, H3, respectively. Then, there is

1Namely, d1
t = (σ2, σ3) and δ0

T0(time′) = (σ′
2, σ

′
3) for i = 1, and d2

t = σ3 and δ1
T1(time′) = σ′

3 for i = 2.
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another adversary B who can break at least one of HIBEh (1 ≤ h ≤ 3) in the sense of IND-HID-CPA with
probability 1/2 + εB and running time tB where

εB ≥ 1
3
εA − 1

6
(
qH1 + qH2 + qH3

2k1
+ qDγmax),

tB ≤ tA + (2qKG + 5qKI)τGEN +O((2n+ 3k1)(qH1 + qH2 + qH3)),

assuming that γmax = max(γ1, γ2, γ3), HIBEi is γi-uniform, and running time of Geni
HIBEh

is at most
τGEN for any h and i such that 1 ≤ h ≤ 3 and 1 ≤ i ≤ h.
Proof. See Appendix B. ��

Random Oracle. If we want to eliminate random oracle, multiple encryption technique in [12] can be
extended instead of the one used in [27] to construct a KE-CCA secure IKE, assuming that underlying
HIBEs are all IND-HID-CCA in the standard model, e.g. [11, 4, 5], while the above construction using
[27] requires only IND-HID-CPA HIBEs. Furthermore, by applying a similar method to the our proposed
scheme, we can construct yet another KE-CCA secure IKE from HIBE that only need to have one-wayness
under chosen plaintext attacks. All of these constructions will be shown in the full version of this paper.

Strongly Secure Hierarchical “Standard” Key-Insulated Encryption. By extending the tech-
nique used in the above, we can construct a generic construction of a strongly secure key-insulated
encryption [13] from a chosen plaintext secure IBE and a chosen plaintext secure standard public key
encryption. This method can also be applied to the Cocks IBE [9] to construct a strongly secure key-
insulated encryption. (The Boneh-Franklin IBE based scheme was proposed earlier in [8]).

In the following, we give a general idea of the generic construction of strongly secure key-insulated
encryption: Let PKE := (GenPKE,EncPKE,DecPKE) be a semantically secure public key encryption scheme,
where GenPKE,EncPKE,DecPKE are algorithms for key generation, encryption and decryption, respectively,
and IBE := (PGenIBE,GenIBE, EncIBE,DecIBE) be an IND-ID-CPA identity-based encryption scheme [7]
(i.e. IND-HID-CPA for t = 1), where PGenIBE,GenIBE,EncIBE,DecIBE are algorithms for public-parameter
generation, user-secret generation, encryption and decryption, respectively (note that IBE is equivalent
to 1-level HIBE). Next, the user computes GenPKE(1k) = (dk, ek) and PGenIBE(1k) = (s, p) for a security
parameter k, and publicizes (ek, p). User keeps dk and stores s in his private device. For the renewal of his
private key at time period t, his private device computes GenIBE(t, s, p) = st and sends the value obtained
back to the user. He will then use this value (key-update information) to update/generate his decryption
key, (dk, st) at time t. When encrypting a message m for time period t, then m1, m2, r1 and r2, such
that m1 +m2 = m, are picked uniformly at random, and EncPKE(m1||r1, ek;H1(m,m1, r1, r2)) = c1 and
EncIBE(m2||r2, t, p;H2(m,m2, r1, r2)) = c2 are computed, where H1 and H2 are random oracles. Finally,
a ciphertext, (c1, c2) is generated. It is obvious that m can be recovered from (c1, c2) with decryption
key (dk, st), in addition, any chosen ciphertext attacks can be prevented even for the following cases:
(1) exposure of unlimited number of decryption keys for any time periods except for t, (2) exposure of
s. This is the first generic construction ever been built of a strongly secure key-insulated encryption
from IBE and standard public key encryption (in the random oracle model). Security of this scheme will
appear in the full version of this paper (proof technique is similar to Theorem 1). Moreover, by using
a similar method used in the previous subsection, we can extend the above scheme to be hierarchical as
well. This will also be the first hierarchical construction of a strongly secure key-insulated encryption.

5 Efficient Construction from Bilinear Mapping

Construction. In the previous section, we showed a construction of a KE-CCA secure IKE using HIBE
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as a black-box. Here, we propose a construction of a KE-CCA secure IKE by directly extending Gentry-
Silverberg HIBE [23] (see also Appendix C) and Fujisaki-Okamoto conversion [21]. This method is more
efficient than the one we have shown in the previous section, however, it is based on a very specific
assumption, i.e. BDH assumption, and may lack flexibility in designing new construction in terms of
security.

KE-CCA secure IKE from Bilinear Mapping

From bilinear mapping, a 2-level IKE IKE = (PGenIKE,GenIKE,∆-Geni
IKE,Updi

IKE (i = 1, 2),EncIKE, DecIKE)
can be constructed as follows.
PGenIKE: On input 1k, set up two cyclic groups G1 and G2 of prime order q and an efficiently com-
putable mapping ê : G1 ×G1 → G2 such that ê(aQ, bR) = ê(Q,R)ab for all Q,R ∈ G1 and any positive
integers a, b. (This does not send all pairs in G1 × G1 to the identity in G2.) Choose an arbitrary
generator P ∈ G1, and pick sh−1

h ∈R Zq for 1 ≤ h ≤ 3. Then, calculate Q :=
∑

1≤h≤3 s
h−1
h P . Also,

set cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n, H3 : {0, 1}n × {0, 1}n → Zq
and H4 : {0, 1}n → {0, 1}n, where n denotes the size of the message space. The security analysis will
view H1, · · · ,H4 as random oracles. Then, output master key s := (s01, s

1
2, s

2
3) and public parameter

p := (G1, G2, ê, P,Q,H1,H2,H3,H4).
GenIKE: On input s, p and U , compute H1(U) = PU ∈ G1, and Sh−1

h := sh−1
h PU for 1 ≤ h ≤ 3. Then,

output U ’s initial keys (d0
0, d

1
0, d

2
0), where d0

0 := (S0
1 , (0, 0), (0, 0, 0)), d1

0 := (S1
2 , (0, 0)) and d2

0 := S2
3 .

∆-Gen
(i)
IKE: For i = 2, on input dit, p and time′, parse d2

0 = S2
3 . Next, pick s13 ∈R Zq, and compute Ŝ1

3 :=

S2
3 + s13Pt1 , Q̂

1
h := s13P , where Pt1 := H1(U.T1(time′)). Then, output δ1T1(time′) := (Ŝ1

3 , Q̂
1
3). For i = 1, on

input dit, p and time′, output ⊥ if t 
= T1(time′). Else, parse d1
t = (S1

2 , (S
1
3 , Q

1
3)). Next, for h = 2, 3, pick

s0h ∈R Zq, and compute Ŝ0
h := S1

h + s0hPt0 , Q̂
0
h := s0hP , where Pt0 := H1(U.T1(time′).T0(time′)). Also, set

Q̂1
3 = Q1

3. Then, output δ0T0(time′) := ((Ŝ0
2 , Q̂

0
2), (Ŝ

0
3 , Q̂

0
3, Q̂

1
3)).

Upd
(i)
IKE: For i = 2, on input d1

t , p and δ1T1(time′), parse d1
t = (S1

2 , (S
1
3 , Q

1
3)) and δ1T1(time′) = (Ŝ1

3 , Q̂
1
3), and

output d1
T1(time′) = (S1

2 , (Ŝ
1
3 , Q̂

1
3)). For i = 1, on input d0

t , p and δ0T0(time′), parse d0
t = (S0

1 , (S
0
2 , Q

0
2), (S

0
3 , Q

0
3, Q

1
3))

and δ0T0(time′) = ((Ŝ0
2 , Q̂

0
2), (Ŝ

0
3 , Q̂

0
3, Q̂

1
3)), and output d0

t = (S0
1 , (Ŝ

0
2 , Q̂

0
2), (Ŝ

0
3 , Q̂

0
3, Q̂

1
3)).

2

EncIKE: On input m, U , p and time, pick µ ∈R {0, 1}n and set r := H3(µ,m). Then, compute

c := 〈rP, rPt1 , rPt0 , µ⊕H2(gr),m⊕H4(µ))〉,

where g := ê(Q,PU ) ∈ G2, PU := H1(U), Pt1 := H1(U.T1(time)) and Pt0 := H1(U.T1(time).T0(time)).
DecIKE: On input 〈c′, time〉 and d0

U,t, output ⊥ if t 
= T0(time). Else, parse c′ = 〈V, Vt1 , Vt0 ,W,Γ〉 and
d0
U,t = (S0

1 , (S
0
2 , Q

0
2), (S

0
3 , Q

0
3, Q

1
3)) and output ⊥ if (V, Vt1 , Vt0 ,W,Γ) 
∈ G1

5. Else, calculate

W ⊕H2(
ê(S0

1 + S0
2 + S0

3 , V )
ê(Q0

2 +Q0
3, Vt0)ê(Q

1
3, Vt1)

) = µ′,

and Γ⊕H4(µ′) = m′. Next, re-encrypt m′ (for U and time) by using µ′ as the internal coin-flipping. If
the result of re-encryption is identical to 〈c′, time〉, output m′, otherwise output ⊥.

Theorem 2 The above scheme is a KE-CCA secure 2-level IKE in the random oracle model, assuming
that BDH problem [6, 7] is hard to solve. More precisely, suppose there is an adversary A who breaks the
above scheme with probability 1/2 + εA, and A runs in time at most tA. Also, suppose A makes at most
qKG, qKI, qD, qH1 , · · · , qH4 queries to KG, KI, D, H1, · · · ,H4, respectively. Then, there is another adversary

2Note that (S1
3 , Q1

3) = (0, 0), (S0
2 , Q0

2) = (0, 0) and (S0
3 , Q0

3, Q
1
3) = (0, 0, 0) for t = 0.

10



B who can break Gentry-Silverberg HIBE [23], which is proven to be secure under BDH assumption in
the random oracle model in the sense of IND-HID-CPA (see Theorem 4 in Appendix C) with probability
1/2 + εB and running time tB where

εB ≥ 1
3
εA − 1

6
(
qH2 + qD

q
+
qH3 + qH4

2n
),

tB ≤ tA + (2qH1 + 2qKG + 5qKI)τEXP + qH1τpoly +O((log2 q)qH2 + n(2qH3 + qH4)),

assuming that time for computing xP for an integer x is at most τEXP , and τpoly = O(poly(k)).

Proof. See Appendix D. ��

Efficiency. In a pairing based scheme, the number of pairing computation done is the dominant factor
that decides its total computation cost. For the above construction of a KE-CCA secure IKE from
bilinear mapping, only one and three pairing computations are required for encryption and decryption,
respectively. On the other hand, for a generic construction (shown in the previous section) that uses [23]
as the underlying HIBE, the numbers of pairing computation for encryption and decryption are three
and six, respectively. Therefore, in terms of computational cost, the above specific construction surpasses
the generic construction based on [23]. This result can be generalized for �-level IKE for any � > 1 as
shown in Table 1.

Extending Message Space. In the above scheme, instead of using one-time pad Γ = m⊕H4(µ), we
can also utilize semantically secure symmetric encryption by using H4(µ) as the encryption key [21].

6 Generic HIBE from Any IBE

From our discussion so far, we can see that HIBE serves an important role as a building block of various
cryptographic schemes, including the ones that we have proposed. In this section, we propose a generic
construction of HIBE from arbitrary IBE that also provides a (partial) solution to an open problem of
HIBE. With such a construction, for example, we can bring the Cocks IBE [9] to construct a HIBE
as well. This also implies that, hereafter, a new construction of IBE is proposed, automatically, it is
convertible to a HIBE. For the security definition of the construction of HIBE, we introduce partial
collusion resistance (i.e. IND-wHID-CCA) [24] instead of full collusion resistance (i.e. IND-HID-CCA) [23].
The security definition is more relaxed, but still, there has still never been a generic construction of HIBE
constructed from arbitrary IBE. In this section, for simplicity, we show a construction of a 2-level HIBE,
but it can also be extended to construct t-level HIBE for t > 2.

Security Definition. Our construction of HIBE which will be proposed here is based on the security
definition of [24]. Particularly, for our 2-level construction of HIBE, it is collusion free for the users
(in the lower domain), but has polynomial-sized collusion threshold w for the sub-PKGs (in the higher
domain), where w = O(poly(k)) and k is the security parameter.

Table 1: Numbers of pairing computations in the pairing based scheme and the generic scheme based on
[23].

encryption decryption
pairing based scheme 1 �+ 1

generic scheme �+ 1 (�+1)(�+2)
2
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Cover Free Family. The scheme shown here utilizes cover free family (CFF) [17] similarly seen in the
generic construction of key-insulated encryption [13], although, reminding that, the method used in [13]
only addresses chosen plaintext security, and it cannot be applied straightforwardly to construct a chosen
ciphertext secure HIBE.

Definition 5 (CFF) Let L := {�1, �2, · · · , �u} and F = {F1, · · · , Fv} be a family of subsets of L. We call
(L,F ) an (u, v,w)-cover free family (CFF) if for all Fi ∈ F , Fi 
⊂ Fj1 ∪ · · · ∪ Fjw for any Fjk(
= Fi) ∈ F ,
k ∈ {1, ..., w}.
It should be noted that there exist nontrivial constructions of CFF with u = O(w2 log v) and |Fi| =
O(w log v) (1 ≤ i ≤ v), where |Fi| denotes the number of elements in Fi. In the following, we assume
|F1| = |F2| = · · · = |Fv | = û for some û and #{Fi|�j ∈ Fi ∈ F} ≥ [vû/u] for all �j ∈ L. Concrete methods
for generating CFF are given in [18].

Construction. Now we show a generic construction of a chosen ciphertext secure 2-level HIBE with
partial collusion resistance built from an arbitrary chosen plaintext secure IBE (i.e. IND-ID-CPA) using
CFF.

Generic Construction of Partially Collusion Resistant HIBE

Let IBE = (PGenIBE,GenIBE,EncIBE,DecIBE) be a standard IBE (i.e. 1-level HIBE). Then, a 2-level HIBE
HIBE = (PGenHIBE,Geni

HIBE (i = 1, 2),EncHIBE,DecHIBE) can be constructed as follows.
PGenHIBE: On input 1k, set up u copies of IBE. For 1 ≤ i ≤ u, compute (si, pi) = PGenIBE(1k), and gener-
ate (u, v,w)-CFF (L,F ), such that L = {1, · · · , u}, u = O(poly(k)), v = O(exp(k)) and w = O(poly(k)).
Then, choose cryptographic hash functions Hi : {0, 1}2n+ûk1 → COIN for 1 ≤ i ≤ u, where n denotes
the size of a message of HIBE, and COIN represents the internal coin-flipping space of EncIBE, assuming
that n+ k1 is the size of a message in IBE. Also, choose a cryptographic hash function H : {0, 1}∗ → F .
Finally, output s := (s1, · · · , su) and p := (p1, · · · , pu,H1, · · · ,Hu,H). The security analysis will view
Hi (1 ≤ i ≤ u) and H as random oracles.
Gen1

HIBE: On input D1, s and p, where D1 is a 1-level sub-PKG, parse s = (s1, · · · , su) and p =
(p1, · · · , pu,H1, · · · ,Hu,H) and compute H(D1) = FD1 ∈ F . Then, output D1’s key sD1 := {si|i ∈ FD1}.
Gen0

HIBE: On input D1.D0, sD1 and p, where D1.D0 is a user under sub-PKG D1, for all i ∈ FD1 , run
GenIBE(D1.D0, si, pi) = si,D1.D0 and output D1’s key sD1.D0 := {si,D1.D0|i ∈ FD1}.
EncHIBE: On input m, D0.D1 and p, pick mi ∈R {0, 1}n for all i ∈ FD1 such that ⊕i∈FD1mi = m. Also,
pick ri ∈R {0, 1}k1 for all i ∈ FD1 . Let R be concatenation of all ri arranged in increasing order of i for
i ∈ FD1 . Then, compute

ci = EncIBE(mi||ri,D0.D1, pi;Hi(m,mi, R))

for all i ∈ FD1 . Then, output c := {ci|i ∈ FD1}.
DecHIBE: On input c′(= {c′i|i ∈ FD1}), sD1.D0(= {si,D1.D0 |i ∈ FD1}) and p, for all i ∈ FD1 , compute

DecIBE(c′i, si,D1.D0, pi) = (m′
i||r′i).

Let R′ be concatenation of all r′i arranged in increasing order of i for i ∈ FD1 , and m′ be ⊕i∈FD1m
′
i.

Next, run EncIBE(m′
i||r′i,D0.D1, pi;Hi(m′,m′

i, R)) = νi for all i ∈ FD1 . Unless νi = c′i for all i ∈ FD1 ,
output ⊥, otherwise, output m′.

Theorem 3 The above scheme is IND-wHID-CCA in the random oracle model, with a restriction that an
adversary is allowed to query sub-PKGs’ keys at most w times, assuming that IBE is IND-ID-CPA. More
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precisely, suppose there is an adversary A who breaks the above scheme with probability 1/2 + εA, and A
runs in time at most tA. Also, suppose A makes at most qKG, qD, qHi queries to KG, D, Hi (1 ≤ i ≤ u),
respectively. Then, by letting qmax := maxD1

∑
i∈H(D1) qHi, there is another adversary B who can break

IBE in the sense of IND-ID-CPA with probability 1/2 + εB and running time tB where

εB ≥ û

u2
εA − û

2u2
(
qmax
2k1

+ qDγ),

tB ≤ tA + qKGûτGEN + ûτENC +O((2n+ ûk1)(
∑

1≤i≤u
qHi)),

assuming that IBE is γ-uniform, and running time of GenIBE and EncIBE is at most τGEN and τENC ,
respectively.

Proof. See Appendix E. ��

Extending to KE-CCA Secure IKE. When using the above HIBE for our generic construction of
IKE, the resultant IKE guarantees security for an adversary who has limited access to helper keys but
still has unlimited access for the number of times he can query the decryption keys.

We can also construct a KE-CCA secure IKE (with a similar restriction) directly from an arbitrary
IBE. Here, we give an example. For reader’s conveniences, we show a method to construct a KE-
CCA secure 1-level IKE from a chosen plaintext secure IBE. Notation that will follow, are the same
as the notation that we used in our proposed HIBE. First, for a given security parameter k, compute
(si, pi) = PGenIBE(1k) and si,U = GenIBE(U, si, pi) for 0 ≤ i ≤ u. Then, {si,U |1 ≤ i ≤ u} is stored in U ’s
private device while s0 is given to U as his initial decryption key. To encrypt m for U and time, mi

are picked from {0, 1}n for all i ∈ F ′
T0(time) := H(U.T0(time)) ∪ {0}, such that ⊕i∈F ′

T0(time)
mi = m. Also,

ri are picked from {0, 1}k1 for all i ∈ F ′
T0(time). Then, run EncIBE(mi||ri, U, pi;Hi(m,mi, R)) = ci for all

i ∈ F ′
T0(time), where R denotes concatenation of all ri for i ∈ F ′

T0(time) in increasing order of i. Finally,
output c := {ci|i ∈ F ′

T0(time)}. It is obvious that the decryption key {si,U |i ∈ F ′
T0(time)} for time can be

derived from the initially distributed keys. Also, KE-CCA security is guaranteed in this scheme. Formal
security proof will appear in the full version of this paper.

Chosen Plaintext Secure Construction. Our proposed HIBE uses the method devised to “securely
combine” multiple IBEs to achieve chosen ciphertext security. If chosen plaintext security is only what
you are looking for, you may not want to use this method, instead, a straightforward multiple encryption
of IBEs may be suited. Take notice that even if the underlying IBEs are IND-ID-CCA, still, straightforward
multiple encryption is not good enough to construct a chosen ciphertext secure HIBE since there exist a
very effective attack that makes it completely insecure.

HIBE from a Weaker IBE. Similarly to our generic construction of KE-CCA secure IKE, a slight
modification of the above scheme can enable construction of a IND-wHID-CCA HIBE from IBE with
one-wayness under chosen plaintext attacks.
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Appendix A: Formal Security Definitions for HIBE

Here, we give a formal security definition of hierarchical identity-based encryption (HIBE). The definition
runs parallel with [23] and [24] which is the hierarchical extension of Boneh and Flanklin’s IBE [6, 7].

Regarding chosen ciphertext attacks, we address the following three types of oracles: First, is a key
generation oracle KG which on input Dt−1.Dt−2. · · · .Di returns Dt−1.Dt−2. · · · .Di’s secret sDt−1.Dt−2.···.Di

for 0 ≤ i ≤ t−1. Next, is a left-or-right encryption oracle LR which for a given userD∗,t−1.D∗,t−2. · · · .D∗,0

and equal length messagesm0,m1, returns a challenge ciphertext c := EncHIBE(D∗,t−1.D∗,t−2. · · · .D∗,0,mb, p)
where b ∈ {0, 1}. This models an encryption request of an adversary who can pick a victim’s identity and
a message pair of his choice. Finally, the adversary is allowed access to a decryption oracle D, which on
input Dt−1.Dt−2. · · · .D0 and a ciphertext c, returns a decryption result of c using sDt−1.Dt−2.···.D0 . This
one models the chosen ciphertext attack. Also, if you are considering only chosen plaintext attacks, any
access to D is prohibited while accesses to KG and LR remain permitted.

The adversary may query the three oracles adaptively in any order he wants, subject to the restriction
that he makes only one query to the left-or-right oracle. Let D∗,t−1.D∗,t−2. · · · .D∗,0 be the user’s identifier
of this query and let c∗ denote the challenge ciphertext returned by the left-or-right oracle in response
to this query. The adversary succeeds by guessing the value b. A HIBE is considered secure, if any
probabilistic polynomial time adversary has success probability negligibly close to 1/2.

Definition 6 Let HIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤ t),EncHIBE,DecHIBE) be a hierarchical identity-

based encryption scheme. Define adversary A’s succeeding probability in the above chosen ciphertext
attack game as:

SuccA,HIBE := Pr[(s, p)← PGenHIBE(1k); b ∈R {0, 1}; b′ ← AKG(·,s,p),LR(·,·,·,s,p),D(·,·,s,p) : b′ = b],

where any element in {(D∗,t−1.D∗,t−2. · · · .D∗,i : 0 ≤ i ≤ t−1)} is never asked to KG and A is not allowed
to query D(D∗,t−1.D∗,t−2. · · · .D∗,0, c∗, s, p) if c is returned by LR. Then, HIBE is

• IND-HID-CCA if for any probabilistic polynomial time adversary A, |SuccA,HIBE − 1/2| is negligible
(particularly, we call IND-ID-CCA if t = 1),

• IND-HID-CPA if for any probabilistic polynomial time adversary A who is not allowed to submit
any query to D at all, |SuccA,HIBE − 1/2| is negligible (particularly, we call IND-ID-CPA if t = 1),

• IND-wHID-CCA if for any probabilistic polynomial time adversary A who is allowed to submit
queries to KG at most w times for given layers in the hierarchy, |SuccA,HIBE − 1/2| is negligible (A
is also allowed to submit unlimited number of queries to KG for at least one layer),

• IND-wHID-CPA if for any probabilistic polynomial time adversary A who is allowed to submit
queries to KG at most w times for given layers in the hierarchy, but no query to D is permitted,
|SuccA,HIBE − 1/2| is negligible (A is also allowed to submit unlimited number of queries to KG for
at least one layer).
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We next give concrete examples for the above IND-wHID-CCA and IND-wHID-CPA. Suppose we have a
2-level HIBE which includes a root-PKG layer, a sub-PKG layer and a user layer. The sub-PKG layer
is set as the special layer in which the number of queries from the adversary is bounded. In the IND-
wHID-CCA (or IND-wHID-CPA) setting, an adversary is allowed to ask the sub-PKGs’ keys for at most w
times while allowing unlimited number of user’s decryption keys to be exposed. In addition to KG, the
adversary is allowed access to D also when considering the IND-wHID-CCA setting.

Appendix B: Proof of Theorem 1

Here, we prove KE-CCA security for our generic construction. We construct an adversary B who can
break at least one of underlying HIBEs in the sense of IND-HID-CPA by using another adversary A who
is able to break KE-CCA security of the proposed IKE.

For given public parameters ph (1 ≤ h ≤ 3) which corresponds to HIBEh, respectively, B chooses
i′ ∈ {0, 1, 2} and computes PGenHIBEh

(1k) = (s′h, p
′
h) for 1 ≤ h ≤ 3, h 
= i′ + 1. Also, B sets (p1, p

′
2, p

′
3),

(p′1, p2, p
′
3) and (p′1, p′2, p3) for i′ = 0, 1 and 2, respectively, as (part of) public parameter of IKE and sends

it to A. On A’s requests for the oracles, B answers to them following the next simulation:

Simulation of LR. For an LR oracle query U∗, time∗,m0,m1 from A, B simulates IKE’s LR oracle
as follows. First, B sets a = i′ + 1. For all h (1 ≤ h ≤ 3, h 
= a), B picks mh ∈R {0, 1}n such that
⊕1≤h≤3, h �=amh = 0. Also, B sets ma,0 = m0 and ma,1 = m1. Then, B picks rh,j ∈R {0, 1}k1 for
1 ≤ h ≤ 3, j = 0, 1, and sets V1 = U∗, V2 = U∗.T0(time∗) and V3 = U∗.T1(time∗).T0(time∗). Also,
B sends Va, (ma,0||ra,0), (ma,1||ra,1) to B’s own LR oracle which corresponds to HIBEa, and the oracle
returns challenge ciphertext c∗a. Next, B flips a coin b ∈R {0, 1} and encrypts (mh,b||rh,b) by the encryption
algorithm of HIBEh with p′h and Vh, and produces challenge ciphertexts c∗h for 1 ≤ h ≤ 3, h 
= a. Finally,
B returns 〈(c∗1, c∗2, c∗3), time∗〉 to A. Note that B’s goal is to distinguish the underlying plaintext of c∗a.

Simulation of Hi. For Hi (1 ≤ i ≤ 3) oracle queries, B returns random values if the query has not
been asked before, otherwise B returns the same value as before.

Simulation of KG. It is clear that for any of the KG queries, B can answer it perfectly by asking B’s
own KG oracles. More precisely, on A’s request for a KG oracle query U(
= U∗), B can ask U to B’s KG
oracle corresponding to HIBEa, as well as run user-secret generation algorithms of HIBEh with master key
s′h for 1 ≤ h ≤ 3, h 
= a. Then, B produces di0 for 0 ≤ i ≤ 2 by using these results and return (d0

0, d
1
0, d

2
0).

Simulation of KI. Interestingly, answers to A’s KI oracle query can be perfectly simulated by B when
i′ is the “special level” (see Def. 2) chosen by A. Namely, B can perfectly answer any KI oracle query
by using B’s own KG oracles which corresponds to HIBEa and master keys s′h (1 ≤ h ≤ 3, h 
= a) which
correspond to HIBEh. More precisely, on A’s request for a KI oracle query i, U and time, B calculates

• keys for U , U.T0(time) and U.T1(time).T0(time) which correspond to HIBEh for 1 ≤ h ≤ 3, respec-
tively, by either asking B’s KG oracle for HIBEa or by running the key generation algorithms of
HIBEh with master keys s′1, · · · , s′3 for 1 ≤ h ≤ 3, h 
= a if i = 0,

• keys for U and U.T1(time) which correspond to HIBEh for 2 ≤ h ≤ 3, respectively, by either asking
B’s KG oracle for HIBEa (only when a = 2 or 3) or by running the key generation algorithms of
HIBEh with master keys s′h for h = 2, 3, h 
= a if i = 1,

• U ’s key which correspond to HIBE3, by either asking B’s KG oracle which corresponds to HIBEa
(only when a = 3) or by running the key generation algorithms of HIBE3 with master key s′3 if
i = 2.
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By using these keys, B produces diTi(time)
and returns it to A. It should be noticed that the above

simulation is perfect even if U = U∗.

Simulation of D. On A’s D query for U and 〈c, time〉, B searches for the combinations of A’s previous
queries made toH1,H2,H3 such that each of the combinations consists of the next three queries ψ1, ψ2, ψ3,
where for 1 ≤ i ≤ 3, query ψi is asked to Hi and ψi forms (m,mi, r1, r2, r3) for some n-bit strings m,
mi and k1-bit strings r1, r2, r3 such that ⊕1≤i≤3mi = m (note that m, r1, r2 and r3 are common for all
ψ1, ψ2 and ψ3). If there exists such a combination whose corresponding ciphertext (for U and time) is
identical to 〈c, time〉, then B returns m. Otherwise, B returns ⊥.

When A outputs b′, B also outputs 〈b′, a〉 as an answer for the IND-HID-CPA game for HIBEa.

Now, we estimate B’s succeeding probability. Simulations of Hi (1 ≤ i ≤ 3) and KG are both perfect.
Simulation of LR fails only when B asks an Hi query which corresponds to the challenge ciphertext.
Therefore, the succeeding probability of the simulation becomes at least (1 − 1/2k1)qH1

+qH2
+qH3 , where

qHi (1 ≤ i ≤ 3) are the numbers of queries made toHi. Simulation of KI fails only when i′ is not the special
level chosen by A. Simulation of D fails only when A submits a ciphertext which should not be rejected,
but its correspondingHi oracle query is not asked. Therefore, the succeeding probability of the simulation
becomes at least (1− γmax)qD , where qD is the number of queries for D, γmax = max(γ1, γ2, γ3), assuming
that HIBEi is γi-uniform. If we let 1/2 + εA be the succeeding probability of A, then B’s secceeding
probability can be estimated to be 1/2 + εB where

εB ≥ 1
3
(
1
2

+ εA)(1− 1
2k1

)qH1
+qH2

+qH3 (1− γmax)qD +
2
3
· 1
2
− 1

2

� 1
3
εA2 −

1
6
(
qH1 + qH2 + qH3

2k1
+ qDγmax).

Also, letting tA be A’s running time, B’s running time can be estimated to be tB where

tB ≤ tA + (2qKG + 5qKI)τGEN +O((2n+ 3k1)(qH1 + qH2 + qH3)),

assuming that the number of queries made to KG and KI is qKI and qKI, respectively, and running time of
Geni

HIBEh
is at most τGEN for any h and i such that 1 ≤ h ≤ 3 and 1 ≤ i ≤ h. Therefore, εA is negligible

if εB, 1/2k1 and γmax are all negligible, and hence, our proposed generic construction of IKE is KE-CCA
secure. ��

Appendix C: Gentry-Silverberg HIBE [23]

Here, we give a brief review of Gentry-Silverberg HIBE [23]. For simplicity, we consider for the depth of
hierarchy being two, i.e. t = 2. On input 1k, a root-PKG set up two cyclic groups G1 and G2 of prime
order q, and also an efficiently computable mapping ê : G1×G1 → G2 such that ê(aQ, bR) = ê(Q,R)ab for
all Q,R ∈ G1 and any positive integers a, b. (This does not send all pairs in G1×G1 to the identity in G2.)
The root-PKG chooses an arbitrary generator P ∈ G1, picks s ∈R Zq, calculates QHIBE := sP and sets
cryptographic hash functions HHIBE

1 : {0, 1}∗ → G1, HHIBE
2 : G2 → {0, 1}n, HHIBE

3 : {0, 1}n×{0, 1}n → Zq
and HHIBE

4 : {0, 1}n → {0, 1}n, where n denotes the size of the message space. Next, the root-PKG keeps
master key s and sets the public parameter pHIBE := (G1, G2, ê, P,Q

HIBE,HHIBE
1 ,HHIBE

2 ,HHIBE
3 ,HHIBE

4 ).
For a sub-PKG D1, the PKG computes HHIBE

1 (D1) = PD1 ∈ G1 and SD1 := sPD1 , and gives SD1 to D1.
For a user D1.D0, D1 picks s′ ∈R Zq and computes SD1.D0 := SD1 +s′PD1.D0, Q′ := s′P where PD1.D0 :=
H1(D1.D0). When encrypting m ∈ {0, 1}n for D1.D0, a sender picks µ ∈R {0, 1}n, sets r := HHIBE

3 (µ,m)
and computes c := 〈rP, rPD1.D0, µ⊕HHIBE

2 (gr),m⊕HHIBE
4 (µ))〉, where g := ê(Q,PD1) ∈ G2. On receiving

c′ = 〈V, V ′,W,Γ〉, D1.D0 calculates W ⊕HHIBE
2 (ê(SD1.D0 , V )ê(Q′, V ′)−1) = µ′, and Γ⊕HHIBE

4 (µ′) = m′.
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Next, D1.D0 re-encrypts m′ (for D1.D0) by using µ′ as the internal coin-flipping. If the result of re-
encryption is identical to 〈c′, time〉, D1.D0 outputs m′, otherwise outputs ⊥.

Theorem 4 ([7],[23]) Gentry-Silverberg HIBE is IND-HID-CPA in the random oracle model assuming
that BDH problem [6, 7] is hard to solve. Concretely, suppose there is an IND-HID-CCA adversary A who
can break the above scheme in the sense of IND-HID-CPA with probability 1/2 + εA and runs in time at
most tA. Also, suppose A makes at most qKG queries to KG and qHi

queries to Hi for 2 ≤ i ≤ 4, then
there exists an algorithm B that solves the BDH problem underlying the HIBE with probability of at least
1/2 + εB and running time tB, where

εB ≥ 2εA(
t

e(t+ qKG)qH2

)t − qH3 + qH4

2n
,

tB = O(tA),

where e is the base of the natural logarithm and t is the depth of hierarchy.

For more details in IND-HID-CCA security of the Gentry-Silverberg HIBE, see [23]. Note that IND-HID-
CPA security is sufficient to prove the security of our pairing-based IKE.

Appendix D: Proof of Theorem 2

Here, we prove KE-CCA security of our pairing-based construction. We construct an adversary B who
can break Gentry-Silverberg HIBE [23] in the sense of IND-HID-CPA by using another adversary A which
is able to break KE-CCA security of the proposed scheme. Note that the security of [23] is proven under
BDH assumption [6], and hence, existence of B implies that our scheme is also secure under the same
assumption (in the random oracle model).

For given pHIBE := (G1, G2, ê, P,Q
HIBE,HHIBE

1 ,HHIBE
2 ,HHIBE

3 ,HHIBE
4 ) as public parameter of Gentry-

Silverberg HIBE (see Appendix C), B chooses a ∈ {1, 2, 3} and s′h ∈R Zq (1 ≤ h ≤ 3, h 
= a). Then,
B sets Q := QHIBE +

∑
1≤h≤3, h �=a s′hP and gives p := (G1, G2, ê, P,Q,H1,H2,H3,H4) to A as an IKE

public parameter, where Hi (1 ≤ i ≤ 4) are random oracles. On A’s requests for the oracles, B answers
to them by the following simulation:

Simulation of LR. For an LR oracle query U∗, time∗,m0,m1 from A, B simulates IKE’s LR oracle
as follows. First, B sets V1 = U∗, V2 = U∗.T0(time∗) and V3 = U∗.T1(time∗).T0(time∗), and sends
Va, m0, m1 to B’s own LR oracle. (Here, the target HIBE works as an a-level HIBE.3) B’s LR oracle
flips a coin b ∈R {0, 1}, picks µ ∈R {0, 1}n and returns c∗HIBE := 〈P,W,Γ〉 where r = HHIBE

3 (µ,m),
W = µ⊕HHIBE

2 (gr), Γ = m⊕HHIBE
4 (µ), and P = rP if a = 1, P = (rP, rHHIBE

1 (U∗.T1(time∗))) if a = 2
and P = (rP, rHHIBE

1 (U∗.T1(time∗)), rHHIBE
1 (U∗.T1(time∗).T0(time∗))) if a = 3. Then,

• if a = 1, B picks r1, r2 ∈R Zq and storesH1(U∗.T1(time∗)) = r1P andH1(U∗.T1(time∗).T0(time∗)) =
r2P in his own H1 oracle list,

• if a = 2, B stores H1(U∗.T0(time∗)) = HHIBE
1 (U∗.T1(time∗)). Also, B picks r2 ∈R Zq and stores

H1(U∗.T1(time∗).T0(time∗)) = r2P in his own H1 oracle list,

• if a = 3, B storesH1(U∗.T0(time∗)) = HHIBE
1 (U∗.T1(time∗)) and alsoH1(U∗.T1(time∗).T0(time∗)) =

HHIBE
1 (U∗.T1(time∗).T0(time∗)) in his own H1 oracle list.

Finally, B sends a challenge ciphertext c∗ := 〈P ′,W,Γ〉 to A, where

3The depth of hierarchy in Gentry-Silverberg HIBE can be flexibly determined after setting up the system.
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• if a = 1, P ′ = (rP, r1 · rP, r2 · rP ),

• if a = 2, P ′ = (rP, rHHIBE
1 (U∗.T1(time∗)), r2 · rP ),

• if a = 3, P ′ = (rP, rHHIBE
1 (U∗.T1(time∗)), rHHIBE

1 (U∗.T1(time∗).T0(time∗))).

Simulation of Hi. For H ′
1 oracle queries, B submits the same queries to his HHIBE

1 oracle except for
the next

• if a = 1, and the query forms x.T0(y) or x.T1(y).T0(z) for any x, y, z, then B picks r1, r2 ∈R Zq and
stores H1(x.T1(y)) = r1P or H1(x.T1(y).T0(z)) = r2P in his own H1 oracle list, respectively,

• if a = 2, and the query forms x.Tb(y) for any x, y and b ∈ {0, 1}, then B submits x.Tb⊕1(y) to HHIBE
1

oracle, and if a = 2, and the query forms x.T1(y).T0(z) for any x, y, z, then B picks r2 ∈R Zqs and
stores H1(x.T1(y).T0(z)) = r2P in his own H ′

1 oracle list,

• if a = 3, and the query forms x.Tb(y) for any x, y and b ∈ {0, 1}, then B submits x.Tb⊕1(y) to
HHIBE

1 oracle.

For Hi (2 ≤ i ≤ 4) oracle queries, B returns random values if the query has not been asked before,
otherwise, B returns the same value as before.

Simulation of KG and KI. It is clear that for any KG query, B can perfectly answer to it by asking
B’s own KG oracle. More precisely, on A’s request for a KG oracle query U(
= U∗), B asks U ’s key for
the target HIBE to B’s own KG oracle, and sets this key as da−1

0 . Also, B computes dh−1
0 = s′hH1(U) for

1 ≤ h ≤ 3, h 
= a. Then, B returns (d0
0, d

1
0, d

2
0). Similarly, KI can also be prefectly simulated when a− 1

is the “special level” chosen by A (see Def. 2).

Simulation of D. On A’s D query for U and 〈c, time〉, B searches for the combinations of A’s pre-
vious queries for H1,H2,H3,H4 such that each of the combinations consists of the next six queries
ψ1,1, ψ1,2, ψ1,3, ψ2, ψ3, ψ4, where queries ψ1,1, ψ1,2, ψ1,3 have been asked to H1 before, and ψ1,1, ψ1,2, ψ1,3

form H1(x), H1(x.T0(y)) and H1(x.T1(y).T0(z)), respectively, for some x, y, z. Also, queries ψ2, ψ3, ψ4

have been asked to H2,H3,H4, respectively, before and ψ2, ψ3, ψ4 form ê(Q,ψ1,1)ψ3 , (µ,m), µ, respec-
tively, for some µ and m. If there exists such a combination whose corresponding ciphertext (for U and
time) is identical to 〈c, time〉, B returns m. Otherwise, B returns ⊥.

When A outputs b′, B searches for an H2 query κ such that

c∗HIBE = 〈P ′, µ′ ⊕H2(κê(
∑

1≤h≤3, h �=a
s′hH1(U), r′P )

−1
),m′ ⊕H4(µ′)〉,

where

µ′ = W ⊕H2(κê(
∑

1≤h≤3, h �=a
s′hH1(U), rP )

−1
), m′ = Γ⊕H4(µ′), r′ = H3(µ′,m′),

and P ′ = r′P if a = 1, P ′ = (r′P, r′h1) if a = 2 and P ′ = (r′P, r′h1, r
′h2) if a = 3 where h1 :=

HHIBE
1 (U∗.T1(time∗)) and h2 := HHIBE

1 (U∗.T1(time∗).T0(time∗)). If there exists such κ and also if m′ is
identical to mb′ for b′ ∈ {0, 1}, B then outputs b′.

Now, we estimate B’s succeeding probability. Simulations of Hi (1 ≤ i ≤ 3) and KG are perfect.
Simulation of LR fails only when B asks Hi, a query that corresponds to the challenge ciphertext, then,
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the succeeding probability of the simulation becomes at least (1 − 1/q)qH2 (1 − 1/2n)qH3 (1 − 1/2n)qH4 ,
where qHi (2 ≤ i ≤ 4) are the numbers of queries made to Hi. Simulation of KI fails only if a−1 is not the
special level chosen by A. Simulation of D fails only when A submits a ciphertext which should not be
rejected, but its corresponding Hi oracle query is not asked, therefore, the succeeding probability of the
simulation becomes at least (1− 1/q)qD where qD is the number of queries made to D. If we let 1/2 + εA
be the succeeding probability of A, then B’s secceeding probability is now estimated to be 1/2+εB where

εB ≥ 1
3
(
1
2

+ εA)(1− 1/q)qH2 (1− 1/2n)qH3 (1− 1/2n)qH4 (1− 1/q)qD +
2
3
· 1
2
− 1

2

� 1
3
εA − 1

6
(
qH2 + qD

q
+
qH3 + qH4

2n
).

Also, if letting tA be A’s running time, then B’s running time is estimated to be tB where

tB ≤ tA + (2qH1 + 2qKG + 5qKI)τEXP + qH1τpoly +O((log2 q)qH2 + n(2qH3 + qH4)),

assuming the number of queries made to KG and KI are qKG and qKI, respectively, and time for computing
xP for an integer x is at most τEXP , and τpoly = O(poly(k)). Therefore, εA is negligible if εB , 1/q and
1/2n are all negligible, and hence, our pairing-based construction of IKE is KE-CCA secure. ��

Appendix E: Proof of Theorem 3

Here, we construct an adversary B who can break the underlying IBE in the sense of IND-ID-CPA by
using another adversary A who can break our proposed 2-level HIBE.

For a given public parameter p of IBE, B sets pu := p and generates (u, v,w)-cover free family (L,F ).
Also, B computes PGenIBE(1k) = (si, pi) for 1 ≤ i ≤ u− 1, sets (p1, · · · , pu) as (part of) public parameter
of HIBE and sends it to A. On A’s requests for the oracles, B answers to them by the following simulation:

Simulation of LR. For an LR oracle query D1.D0,m0,m1 from A, B simulates HIBE’s LR oracle as
follows. B asks D1 to H oracle and computes EncIBE(mi||ri,D1.D0, pi) = ci for i ∈ H(D1)\{u}, where
ri ∈R {0, 1}k1 and mi ∈R {0, 1}n such that ⊕i∈H(D1)mi = 0. Then, B picks ru ∈R {0, 1}k1 and submits
D1.D0, (m0||ru) and (m1||ru) to B’s own LR oracle to obtain cu. Finally, B sends ci for all i ∈ H(D1) to
A.

Simulation of H and Hi. For H and Hi (1 ≤ i ≤ u) oracle queries, B returns a random value if the
query has not been asked before, otherwise, B returns the same value as before.

Simulation of KG. KG can be simulated as follows. On A’s request for KG oracle query D1.D0, B
answers sD1.D0 by computing GenIBE(D1.D0, si, pi) = si,D1.D0 for all i ∈ FD1\{u} and querying D1.D0

to B’s own KG oracle to obtain su,D1.D0. While, for A’s request for KG oracle query D1, B answers
sD1.D0 = {si|i ∈ FD1} if u 
∈ FD1 , otherwise, B outputs random b′ and halts. Such a simulation fails
when A asks D1 such that u ∈ FD1 . It should be noted that from the nature of (u, v,w)-CFF, A cannot
obtain at least one of master keys of underlying IBEs (including B’s target IBE), assuming that A is
allowed to submit at most w queries to KG.

Simulation of D. On A’s D query c and D1.D0, B searches for the combinations of A’s previous
queries for H1, · · · ,Hu such that each of the combinations consists of û queries ψi for all i ∈ H(D1),
query ψi has been asked to Hi and that ψi forms (m,mi, R) for some n-bit strings m, mi and k1-bit
strings rh for all h ∈ H(D1), and also, ⊕h∈H(D1)mh = m, where R is a concatenation of all rh arranged
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in increasing order of h for h ∈ H(D1) (note that m and rh for all h ∈ H(D1) are common to all of
these queries). If there exists such a combination of queries whose corresponding ciphertext (for D1.D0)
is identical to c, then B returns m. Otherwise, B returns ⊥.

If A outputs b′, then B also outputs b′ as an answer for the IND-ID-CPA game for IBE.

Now, we estimate B’s succeeding probability. Simulations of Hi (1 ≤ i ≤ u) and H are perfect.
Simulation of LR fails when B asks (mb,mi, R) to Hi for some i ∈ H(D1), where R is the concatenation
of all ri arranged in increasing order of i for i ∈ H(D1). Consequently, the succeeding probability of the
simulation becomes at least (1− 1/2k1)qmax , where qmax := maxD1

∑
i∈H(D1) qHi , and qHi (i ∈ H(D1) are

the numbers of queries made to Hi. Simulation of KG fails only if A asks D1 such that u ∈ FD1 . From the
nature of (u, v,w)-CFF, there exists at least one underlying IBE whose master key has not been exposed
to A. This also means that the succeeding probability of simulation of KG is at least 1/u. Simulation of
D fails only when A submits a ciphertext which should not be rejected, but its corresponding Hi oracle
query is not asked. Therefore, the succeeding probability of the simulation becomes at least (1 − γ)qD
where qD is the number of queries for D, assuming that IBE is γ-uniform. If we let 1/2 + εA be the
succeeding probability of A, then B’s succeeding probability is estimated to be 1/2 + εB where

εB ≥ #{Fi|u ∈ Fi ∈ F}
#F

(εA +
1
2
)
1
u

(1− 1/2k1)qmax(1− γ)qD

+(1− #{Fi|u ∈ Fi ∈ F}
#F

1
u

)
1
2
− 1

2

� û

u
(εA +

1
2
)
1
u

(1− qmax
2k1

)(1− qDγ) + (1− û

u2
)
1
2
− 1

2

� û

u2
εA − û

2u2
(
qmax
2k1

+ qDγ)

Also, letting tA be A’s running time, B’s running time is estimated to be tB where

tB ≤ tA + qKGûτGEN + ûτENC +O((2n+ ûk1)(
∑

1≤i≤u
qHi)),

assuming that the number of queries made to KG is qKG, and running time of GenIBE and EncIBE is at
most τGEN and τENC , respectively.

Hence, εA is negligible if εB, 1/2k1 and γ are all negligible, and therefore, our proposed generic
construction of HIBE is IND-wHID-CCA with a restriction that an adversary is not allowed to ask KG for
more than w times. ��
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