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Abstract. The algorithm proposed by Ha and Moon [2] is a counter-
measure against power analysis. The Ha-Moon algorithm has two draw-
backs in that it requires an inversion and has a right-to-left approach.
Recently, Yen, Chen, Moon and Ha improved the algorithm by removing
these drawbacks [7]. Their new algorithm is inversion-free, has a left-to-
right approach and employs a window method. They insisted that their
algorithm leads to a more secure countermeasure in computing modular
exponentiation against side-channel attacks. This algorithm, however,
still has a similar weakness observed in [1, 6]. This paper shows that the
improved Ha-Moon algorithm is vulnerable to differential power analysis
even if we employ their method in selecting si.
Keywords: Ha-Moon algorithm, randomized exponentiation algorithm,
side-channel attack.

1 Introduction

In 2002, Ha and Moon proposed an algorithm in order to prevent power analysis
[2]. The Ha-Moon algorithm randomized a secret exponent into a signed binary
representation. Many researchers are interested in this algorithm because of its
simplicity and efficiency. Two drawbacks of the Ha-Moon algorithm are that
it requires an inversion of a group element and recodes an exponent into a
randomized representation from LSB to MSB (i.e. right-to-left).

Recently, Yen, Chen, Moon and Ha improved these drawbacks of the Ha-
Moon algorithm [7]; their new algorithm (improved Ha-Moon algorithm) has a
left-to-right approach and does not require an inversion of a group element. Thus,
their algorithm can be applied in computing modular exponentiations, such as
RSA and DSA. They insisted that their algorithm leads to a more secure coun-
termeasure implementing exponentiation against side-channel attacks. However,
this paper shows, the improved Ha-Moon algorithm is still vulnerable to differen-
tial power analysis (DPA) [3, 4]. Thus, the improved Ha-Moon algorithm should
not be implemented in restricted environments, such as smart cards, which it
was designed for.
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The remainder of this paper organized as follows: In Section 2, we briefly
review the improved Ha-Moon algorithm. In Section 3, we propose an attack
method that shows the improved Ha-Moon algorithm is still vulnerable to DPA.

2 Improved Ha-Moon Algorithm

This section summarizes the improved Ha-Moon Algorithm. See [7] for details.

2.1 Brief Description

Algorithm 1. Improved Ha-Moon algorithm with 2-bit window (Fig. 3 in [7])

Input: g, K = (kn−1, · · · , k0)2 where n is even and (kn−1kn−2)2 = (01)2, (10)2, or (11)2
Output: gK

1. R[0] = 1; R[1] = g

2. Precomputation: R[2] = g2, · · · , R[14] = g14

3. s = −(kn−1kn−2)2

4. for i from n− 4 downto 0 step −2 do

4.1 d = −4s

4.2 s =RandomInteger(−1,−3)

4.3 R[0] = R[0]4

4.4 R[0] = R[0]×R[d + s + (ki+1ki)2]

5. R[0] = R[0]×R[−s]

6. output R[0]

The improved Ha-Moon algorithm is a left-to-right, inversion-free, and window1

method. In this algorithm, a randomized exponent d′i is recoded from the fol-
lowing equation:

d′i − si = (ki+1ki)2 − 4si+2

where (ki+1ki)2 is a secret exponent to be recoded and si ∈R {−1,−2,−3}
which introduces randomness in the representation. Since d′i becomes a positive
integer for all i, there is no inversion operation in Algorithm 1. In Algorithm
1, there are always two squarings and multiplication sequences, which are not
dummy operations. Thus, the improved algorithm can resist SPA-like attacks,
such as [5], and the safe-error attack [8]. Also, the improved Ha-Moon algorithm
may resist Fouque et al.’ attack [1], because each probability of state transitions
seems to be equal.

1 We assume without loss of generality that the window size is 2.
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2.2 Weakness of the Improved Ha-Moon Algorithm

However, the improved Ha-Moon algorithm has a weakness similar to the original
Ha-Moon algorithm in that there are few possible intermediate values [1, 6]. After
processing (ki+1ki)2 in Step 4.4, Algorithm 1, R[0] becomes one of g(kn−1···ki)2−1,
g(kn−1···ki)2−2, and g(kn−1···ki)2−3. In other words, there are only three possible
intermediate values in any iteration. Table 1 shows different pattern of interme-
diate values according to (ki+1ki)2. Each occurrence of g4(kn−1···ki+2)2+xi given
(kn−1 · · · ki+2)2 can be checked by DPA, such as ZEMD attack [4]. For example,
(ki+1ki)2 = 0 results peaks in xi = −3, −2, and −1 and (ki+1ki)2 = 1 in xi =
−2, −1, and 0. Thus, we can find a correct (ki+1ki)2 given (kn−1 · · · ki+2)2.

Note that, in this attack, a third of the samples are meaningful and the others
are treated as noise, because the possible distribution of intermediate values is
three.

Table 1. Intermediate values, g4(kn−1···ki+2)2+xi , after processing (ki+1ki)2

xi

(ki+1ki)2 −3 −2 −1 0 1 2

0 © © ©
1 © © ©
2 © © ©
3 © © ©

2.3 Yen et al.’s Method

Yen et al. suggested a method to prevent this attack. Their method is selecting
si = −1 or −2 when (ki+1ki)2 = 0 or 2 as well as selecting si = −2 or −3
when (ki+1ki)2 = 1 or 3. The allowed parameters are summarized in Table 2.
Their method can make (ki+1ki)2 = 0 and 1(2 and 3) indistinguishable. For this
reason, they insisted that the attack in the previous section can be avoided by
this method.

3 Proposed Attack

Unfortunately, Yen et al.’s method does not provide additional randomness in
the intermediate values. The indistinguishability after processing (ki+1ki)2 can
be removed in the successive iteration. After processing (ki−1ki−2)2 in Step 4.4,
Algorithm 1, R[0] becomes

g16(kn−1···ki+2)2+4(ki+1ki)2+(ki−1ki−2)2+si−2
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Table 2. Parameters with the Yen et al.’s method

si+2 (ki+1ki)2 (si, d
′
i)

−1 0 (−2, 2) or (−1, 3)

−1 1 (−3, 2) or (−2, 3)

−1 2 (−2, 4) or (−1, 5)

−1 3 (−3, 4) or (−2, 5)

−2 0 (−2, 6) or (−1, 7)

−2 1 (−3, 6) or (−2, 7)

−2 2 (−2, 8) or (−1, 9)

−2 3 (−3, 8) or (−2, 9)

−3 0 (−2, 10) or (−1, 11)

−3 1 (−3, 10) or (−2, 11)

−3 2 (−2, 12) or (−1, 13)

−3 3 (−3, 12) or (−2, 13)

where si−2 ∈ {−1,−2,−3}. Table 3 shows possible values of R[0] after processing
(ki−1ki−2)2. If (kn−1 · · · ki+2)2 is known, we can determine (ki+1ki)2 and classify
(ki−1ki−2)2 into a group A (0 or 1) or a group B (2 or 3).

Algorithm 2. ZEMD-like attack on the improved Ha-Moon algorithm

Output: K

1. gather sufficiently many power trace samples of gK
w for different gw’s.

2. for i from n− 2 downto 2 step −2 do
2.1 for x from −2 to 13 step 1 do

2.1.1 divide the samples into two sets S1 and S2 according to a decision function,

such as the Hamming weight of g
16(kn−1···ki+2)2+x
w

2.1.2 get the bias signal as D = average(S1) − average(S2)
2.1.3 record an appearance of a spike in D

2.2 determine (ki+1ki)2 and classify (ki−1ki−2)2 into a group A or B according to
records in Step 2.1.3

3. guess (k1k0)2
4. output K

For example, if a spike is recorded in Step 2.1.3, Algorithm 2 when x = 6 and (or)
7, then we can find that (ki+1ki)2 is 2 and (ki−1ki−2)2 is classified into a group
A. Thus, we can determine a secret exponent K except (k1k0)2, of which we can
classify the group, A or B; the size of search space from the remaining ambiguity
in (k1k0)2 is only two. In addition, our attack does not assume anything beyond
ZEMD attack.

That is, the improved Ha-Moon algorithm is vulnerable to DPA. Yen et al.’s
method does not prevent DPA. Rather it helps DPA to break the improved Ha-
Moon algorithm by increasing the rate of meaningful power traces from a third
to a half, because their method makes the possible distribution of intermediate
values be two. Even enlarging the range of the intermediate values will not
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Table 3. Intermediate values, g16(kn−1···ki+2)2+xi−2 , after processing (ki−1ki−2)2

xi−2

(ki+1ki)2 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 A A B B

1 A A B B

2 A A B B

3 A A B B

A means (ki−1ki−2)2 = 0 or 1, and
B means (ki−1ki−2)2 = 2 or 3.

increase the complexity of DPA significantly, but only decrease the rate in inverse
proportion to the range.

4 Conclusion

The improved Ha-Moon algorithm introduced interesting properties, such as
a left-to-right approach, inversion-free and window method. This paper, how-
ever, shows that the improved Ha-Moon algorithm does not resolve one critical
property of the Ha-Moon algorithm; the vulnerability to DPA. The improved
Ha-Moon algorithm should be used with another randomizing countermeasure.
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