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Abstract— In this paper, we introduce a new and natural
paradigm for fair exchange protocols, called verifiable probabilis-
tic signature scheme. A security model with precise and formal
definitions is presented, and an RSA-based efficient and provably
secure verifiable probabilistic signature scheme is proposed. Our
scheme works well with standard RSA signature schemes, and
the proposed optimistic fair exchange protocol is much concise
and efficient, and suitable for practical applications.

Index Terms— Probabilistic signature, RSA, Fair exchange,
Provable security

I. I NTRODUCTION

W ITH the growth of open networks such as Internet,
the problem of fair exchanges has become one of

the fundamental problems in secure electronic transactions
and digital rights management. Payment systems, contract
signing, electronic commerce and certified e-mail are classical
examples in which fairness is a relevant security property.
Informally, an exchange protocol allows two distributed parties
to exchange electronic data in an efficient and fair manner, and
it is said to be fair if it ensures that during the exchange of
items, no party involved in the protocol can gain a significant
advantage over the other party, even if the protocol is halted
for any reason.

Protocols for fair exchange have attracted much attention
in the cryptographic community in the past few years. The
proposed methods mainly include: simultaneous secret ex-
change, gradual secret releasing, fair exchange using an on-
line TTP and fair exchange with an off-line TTP. Among these
results, optimistic fair exchange protocols based on an off-line
trusted third party [1], [4] are preferable as they offer a more
cost-effective use of a trusted third party. An optimistic fair
exchange protocol usually involves three parties: users Alice
and Bob, as well as an off-line TTP. The off-line TTP does not
participate the actual exchange protocol in normal cases, and
is invoked only in abnormal cases to dispute the arguments
between Alice and Bob to ensure fairness.

Asokan et al. [1] were the first to formally study the
problem of optimistic fair exchanges. They present several
provably secure but highly interactive solutions, based on the
concept ofverifiable encryption of signatures. Their approach
was later generalized by [9], but all these schemes involve
expensive and highly interactive zero-knowledge proofs in
the exchange phase. Other less formal works on interactive
verifiably encrypted signatures include [4], [2]. Ateniese [2]
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proposed six schemes for fair exchanges, while two of which
were shown to be vulnerable to colluding attacks [3]. The first
and only non-interactive verifiably encrypted signature scheme
was recently constructed by Boneh et al. [7]. While very
elegant and provably secure in the random oracle model, the
scheme requires special elliptic curve groups with a bilinear
map and relies on a form of the computational Diffie-Hellman
assumption for such groups.

As for cryptographic engineering practices, it is desirable
to propose an efficient fair exchange scheme based on RSA,
the most widely used public key cryptosystem. However, it is
nontrivial to adopt the existing off-line-TTP ideas to RSA with
acceptable efficiency. One of Ateniese’s schemes [2] is based
on RSA signatures, in which TTP must generate public keys
for each participant and then shore secret values per capita, and
proofs of equality of two discrete logarithms are used to ensure
verifiable encryption. ACEMBS based verifiably encrypted
RSA signatures was proposed in [18], which works with non-
standard RSA groups and is also less efficient. A simple fair
exchange protocol based on mediated-RSA was presented in
[17], which relies on the recently proposed identity-based
mediated-RSA [14] and no formal proofs provided. Recently,
Park etc. [15] proposed an optimistic protocol for fair ex-
change based on RSA signatures, using a technique of “two-
signatures”. However, Park’s scheme was soon shown to be
totally breakable in the registration phase by [13]. Moreover,
Dodis and Reyzin [13] proposed a new primitive called
verifiably committed signaturesfor constructing fair exchange
protocols, and presented a committed signature scheme based
on GDH signatures [8]. However, it seems that their method
[13] does not work for RSA signatures.

The full domain hash (FDH) signature scheme is popular
and provably secure “hash-and-sign” signatures based on trap-
door permutations such as RSA. Classically, results of this sort
of provable security are asymptotic, and say little about the
security of a scheme in practice for a particular choice of
key size, as emphasized by Bellare and Rogaway [6]. Thus,
for practical considerations it is critical to focus on concrete
security reductions. The probabilistic signature scheme (PSS)
designed by Bellare and Rogaway [5] is a probabilistic variant
of FDH which introduces a random salt to achieve a tight
security reduction to, e.g., the RSA problem. The general
technique of using a random salt to achieve a tight(er) security
reduction has been studied extensively [6], [12], [16].

Motivated by the approaches of verifiably encrypted signa-
tures and verifiably committed signatures, we introduce a new
paradigm for fair exchanges, calledverifiable probabilistic
signature schemes, in which the exchanged items are some
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variant of probabilistic signatures. As probabilistic signatures
can achieve tight security reduction and provide concrete
security [6], [12], [16], our method seems rather natural. A
semi-trusted off-line TTP is still involved, who generates a key
pair and publishes the public key as a system parameter, and no
registration is needed. We present a formal model of verifiable
probabilistic signatures, and propose an efficient and provably
secure RSA-based verifiable probabilistic signature scheme.
The resulting optimistic fair exchange protocol works with
any standard RSA signature schemes. It is the first concise and
efficient RSA-based fair exchange protocol, and much suitable
for engineering practices.

II. V ERIFIABLE PROBABILISTIC SIGNATURE MODEL

Dodis and Reyzin [13] gave a formal definition of non-
interactive fair exchanges via a new primitive calledverifiable
committed signature. A formal definition of non-interactive
verifiable encrypted signaturewas also given in [7]. In the
following, we would like to precisely present a formal defini-
tion of verifiable probabilistic signaturescheme, by explicitly
considering the attack models and security goals, which results
in a concrete description for the security against all parties
involved in the protocols.

A. Definitions of a Verifiable Probabilistic Signature

A verifiable probabilistic signature scheme involves three
entities: a singer Alice, a verifier Bob and an arbitrator TTP,
and is given by the following procedures.

Setup : A trapdoor one-way permutationf is first published
by TTP as a system parameter, that is, TTP generates a
key pair (PK, SK), and makesPK public, and keeps the
corresponding trapdoorSK secret. The signer Alice generate
her private signing keysk and the public verification keypk,
and suppose the underlying standard signing and verification
algorithms areSig andVer respectively.

Psig and Pver : These are probabilistic signing algorithm
and verification algorithm. Given a messagem, and keyssk
and PK, a signer chooses a random numberr, and outputs
a probabilistic signatureσ = Psig(sk, PK;m) = (m, r, δ),
where δ = Sig(sk;m‖fPK(r)). The verification algorithm
Pver(m,σ, pk, PK) takes as inputm,σ and public keyspk
andPK, and outputs 1 (accept) or 0 (reject).

VPsig and VPver : These are verifiable partial signing and
verification algorithms. The verifiable partial signing algorithm
VPsig behaves just like an ordinary probabilistic signing algo-
rithm Psig, except it outputs the valuefPK(r) instead of the
random numberr. Let the output beσ′ = VPsig(sk, PK;m).
The corresponding verification algorithmVPver is just the
standard verification algorithmVer on m‖fPK(r).

Resolution Algorithm: This is an algorithm run by an arbi-
trator TTP in case a singer Alice refuses to open her probabilis-
tic signatureσ to a verifier, who in turn possesses a valid ver-
ifiable partial signatureσ′. In this case,Res(m,σ′, SK, pk)
should output a legal probabilistic signatureσ on m.

The correctness of a verifiable probabilistic signature
scheme states that

Pver(m, Psig(sk, PK;m), pk, PK) = 1,

VPver(m, VPsig(sk, PK;m), pk) = 1,

Pver
(
m, Res

(
m,σ′, SK, pk

)
, pk, PK

)
= 1.

In a verifiable probabilistic signature scheme, TTP only needs
to publish a trapdoor one-way permutation as the system
parameter. No further registration is needed and no zero-
knowledge proofs are involved, which will greatly reduce the
communication overhead and managing cost. Recall that in a
verifiable committed signature scheme [13] and most of the
verifiable encrypted signature schemes, TTP shall maintain a
secret-public key pair for each user via a registration phase,
and the secret keys will then be used to resolve a dispute.

B. Security of Verifiable Probabilistic Signatures

The security of a verifiable probabilistic signature scheme
consists of ensuring fairness from three aspects: security
against signer Alice, security against verifier Bob, and security
against arbitrator TTP. In the following, we denote byOVPsig

an oracle simulating the verifiable probabilistic signing proce-
dure, andORes an oracle simulating the resolution procedure.
Let k be a security parameter, and PPT stand for “probabilistic
polynomial time”.

Security against a signer.Intuitively, a signer Alice should
not be able to produce a verifiable probabilistic signature
which is valid from a verifier’s point of view, but which will
not be extracted into a probabilistic signature of Alice by an
honest arbitrator TTP. More precisely, we require that any PPT
adversaryA succeeds with at most negligible probability in
the following experiment.

Setup∗(1k) → (sk∗, pk, SK,PK)
(m,σ′) ← AORes(sk∗, pk, PK)

σ ← Res(m,σ′, SK, pk)
Success ofA =

[
VPver(m,σ′, pk) = 1 ∧
Pver(m,σ, pk, PK) = 0

]
.

whereSetup∗ denotes the run ofSetup with dishonest Alice
(run by the adversaryA) andsk∗ is A’s state after this run.

Security Against Verifier. Verifier Bob should not be able
to transfer any of the verifiable probabilistic signaturesσ′ that
he got from Alice into a probabilistic signatureσ, without
explicitly asking TTP to do that. More precisely, we require
that any PPT adversaryA succeeds with at most negligible
probability in the following experiment:

Setup(1k) → (sk, pk, SK,PK)
(m,σ) ← AOVPsig, ORes(pk, PK)

Success ofA =
[
Pver(m,σ, pk, PK) = 1 ∧
m 6∈ Query(A, ORes)

]
,

whereQuery(A, ORes) is the set of valid queriesA asked to
the resolution oracleORes, i.e., the set of(m,σ′) the adversary
A queried toORes satisfyingVPver(m,σ′, pk) = 1.
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Security against arbitrator. This property is crucial. Even
though the arbitrator is semi-trusted, the primary signer Alice
does not want the arbitrator to produce a valid probabilistic
signature which she did not intend on producing. To achieve
this goal, we require that any PPT adversaryA associated with
verifiable probabilistic signing oracleOVEsig, succeeds with at
most negligible probability in the following experiment:

Setup∗(1k) → (sk, pk, SK∗, PK)
(m,σ) ← AOVPsig(SK∗, pk, PK)

Success ofA =
[
Pver(m,σ, pk, PK) = 1 ∧
m 6∈ Query(A, OVPsig)

]
,

where Setup∗(1k) denotes the run ofSetup with the dis-
honest arbitratorA, and SK∗ is her state after this run,
and Query(A, OVPsig) is the set of queriesA asked to the
verifiable probabilistic signing oracleOVPsig.

Definition 1. A verifiable probabilistic signature scheme is
secure if it is secure against signer attack, verifier attack and
arbitrator attack.

III. E FFICIENT VERIFIABLE PROBABILISTIC SIGNATURE

SCHEME BASED ONRSA

We shall present a verifiable probabilistic signature scheme
based on the standard RSA-FDH (Full Domain Hash) sig-
nature scheme. As usual, letn be an RSA-modulus, which
is a product of two distinct large primes, lete ∈ Z∗

n be a
randomly chosen public exponent andd be a secret exponent
satisfyinged ≡ 1 mod ϕ(n). Let H be a collision-free hash
function. The RSA-FDH signing algorithm gets inputs(n, d)
and a messagem, outputs a signature

δ = Sig(sk,m) = H(m)d mod n.

The verifying algorithmVer(pk, m, δ) gets inputs(m, δ) and
the public key(n, e), and accepts it ifδe = H(m) mod n
holds.

The RSA-FDH signature scheme has been proved [11] to
be existentially unforgeable against adaptive chosen message
attacks in the random oracle model [5], assuming that inverting
RSA is hard. Now we present our scheme as following.
• Setup. TTP generates a public keyPK = N and

publishes it as a system parameter, and keepsSK = (P,Q)
secret, whereN = PQ andP,Q are distinct strong primes of
lengthk, i.e., P = 2P ′ + 1 andQ = 2Q′ + 1, while P ′ and
Q′ are also primes. Denote byH ′(·) = H(·)‖1, which maps
any string to an odd integer, hereH may be taken as SHA-
1. Consideringϕ(N) = 4P ′Q′, the probability of the output
from H ′ being co-prime toϕ(N) is overwhelming, because
finding an odd integer not co-prime with4P ′Q′ is equivalent
to find P ′ or Q′ or P ′Q′ and consequently factoringN .

Alice randomly chooses two primesp and q of length k,
and setsn = pq. Then she generates two exponentse and
d satisfying ed ≡ 1 mod ϕ(n). Her private signing key is
sk = (p, q, d) and the public verification key ispk = (n, e).
• Psig and Pver : To probabilistically sign a messagem,

Alice first randomly chooses a numberr ∈ Z∗
N and computes

y = fPK(r) = rH′(ID‖pk) mod N, (1)

whereID is Alice’s identity. Then Alice computes

δ = Sig(sk,m‖y) = H(m‖y)d mod n.

The probabilistic signature for messagem is σ = (m, r, δ).
The corresponding verification algorithmPver takes as

input σ, computesy as (1), and verifyH(m‖y) = δe mod n.
• VPsig and VPver : For a messagem, VPsig first

runs Psig(m, sk, PK). Let σ = (m, r, δ) be the output of
Psig, and y be the value satisfying (1). Then the verifiable
probabilistic signature generated by Alice for a messagem is

σ′ = VPsig(m, sk, PK) = (m, y, δ).

On inputsσ′ = (m, y, δ) and Alice’s public key(n, e), the
algorithmVPver checks

H(m‖y) = δe mod n,

and acceptsσ′ = (m, y, δ) as a valid verifiable probabilistic
signature only if the above equation holds.
• Res: Given a verifiable partial signatureσ′ = (m, y, δ),

the arbitrator TTP first verifies its validity by checking
H(m‖y) = δe mod n. If valid, TTP computes

r = yH′(ID‖pk)−1 mod ϕ(N) mod N (2)

and returnsσ = (m, r, δ) = Res(m,σ′, SK, pk) as a proba-
bilistic signature ofm to the verifier.

Note that, TTP actually specifies a family of one-way
trapdoor permutations by publishingN , for which the com-
mon trapdoor is(P,Q). Although the encryption exponents
H ′(ID‖pk) are different for distinct signers, TTP can always
extract a numberr ∈ Z∗

N satisfying (2), for anym and y.
And for a valid verifiable partial signature(m, y, δ), we have
H(m‖y) = δe mod n, thus the outputσ = (m, r, δ) of Res
is a valid probabilistic signature onm.

Remark 1: (a) For a particular signer with identityID and
public key pk, H ′(ID‖pk) is a fixed encryption exponent.
Thusy = fPK(r) is a permutation onZ∗

N andy is uniformly
distributed asr. Therefore the probabilistic signature scheme
Psig is actually a RSA-PFDH signature scheme proposed by
Coron [12], which is provably secure in the random oracle
with a tight security reduction. (b) The FDH signature scheme
can be replaced by any other secure signature scheme such as
RSA-PSS [16]. (c) Although a common modulusN is used
as a system parameter, the common modulus attack does not
work here, since the encryption exponent is fixed for each
signer, and the “plaintext”r is chosen at random.

A. Security of Our Scheme

Theorem 1. Under the formal model described in section
3, the verifiable probabilistic signature scheme based on RSA
is provably secure in the random oracle model, provided that
inverting RSA function is hard.

Proof. According to Definition 1, we shall show that the
proposed verifiable probabilistic signature schemes is secure
against signer, verifier and arbitrator. Note that the underly-
ing RSA-FDH signature scheme is existentially unforgeable
against adaptive chosen message attack in the random oracle.
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Hence the probability of a valid forgery for the RSA-FDH
signature scheme is negligible.

Secure against signer’s attack:For a malicious signer,
with the help of the oracleORes, her goal is to produce a valid
verifiable probabilistic signatureσ′ = (m, y, δ), which cannot
be extracted into a valid probabilistic signatureσ = (m, r, δ).
However, this is always not the case. For anyy and m, the
numberr ∈ Z∗

N satisfyingy = rH′(ID‖pk) mod N can always
be extracted as (2) using the trapdoorSK = (P,Q). For this
extractedr there holdsy = rH′(ID‖pk) mod N. And for a
valid verifiable partial signature(m, y, δ), we haveH(m‖y) =
δe mod n. Thus the resulting triplet(m, r, δ) is definitely a
valid probabilistic signature onm, and Alice cannot deny it.
In fact, the oracleORes cannot give any help to a malicious
signer: whatORes extracted is exactly the numberr she used
to compute the valuey, which was already known to her.

Secure against verifier’s attack:An adversarial verifier’s
goal, making use of oraclesOVPsig and ORes, is to forge
a valid probabilistic signatureσ = (m, r, δ), for which the
corresponding verifiable partial signatureσ′ = (m, y, δ) has
not been queried toORes. We shall convert such an attack into
a forgerF against the RSA-FDH signature scheme. Note that
F takes as inputpk = (e, n) and has access to the signing
oracleOSig of RSA-FDH signature scheme. While Bob accepts
pk and PK as inputs, and has access to oraclesOVPsig and
ORes, and wins if he forges a probabilistic signatureσ for
some messagem without making a query(m,σ′) to ORes.

To invoke Bob,F shall answer Bob’sOVPsig-queries and
ORes-queries by himself. For anOVPsig query on message
mi, F chooses a numberri ∈ Z∗

N at random, and com-
putes yi = ri

H′(ID‖pk) mod N , and then queries its own
signing oracleOSig on messagemi‖yi to get a signature
δi = Sig(sk,mi‖yi). Now F produces a verifiable partial
signatureσ′

i = (mi, yi, δi), and sendsσ′
i to Bob as the answer.

F keeps a list ofL = {(mi, σ
′
i = (mi, yi, δi), ri)}. To

simulate a validORes-query on(m′, σ′), F just looks up the
list L, answers Bob withri if (m′, σ′, ri) is in the list, and
halts otherwise. Note that, for a validORes-query (m′, σ′)
whereσ′ = (m′, y′, δ′), there must holdδ′ = Sig(sk,m′‖y′).
Hence the probability thatm′ has not been queried toOVPsig

(which means that(m′‖y′, δ′) is a valid RSA-FDH forgery) is
negligible, and so is it withF halts in answeringORes-queries.

Suppose Bob outputs a probabilistic signature forgeryσ̃ =
(m̃, r̃, δ̃) in the ultimate. Let ỹ = r̃H′(ID‖pk) mod N . If
(m̃, ỹ, δ̃) 6= (mi, yi, δi) for all i, F outputs(m̃‖ỹ, δ̃), which
is a valid forgery for the RSA-FDH signature scheme, since
m̃‖ỹ have never been queried toOSig. OtherwiseF halts. In
the latter case,̃σ′ = (m̃, ỹ, δ̃) is an output ofOVPsig-query, but
(m̃, σ̃′) has not been queried toORes. Bob may try to extract
the number̃r ∈ Z∗

N the signer used to computesỹ. Note that

r̃H′(ID‖pk) = ỹ mod N,

extractingr̃ from the above equation is actually the intractable
problem of inverting RSA functions. Hence the probability of
the latter case occurs is negligible. As a result, if Bob can
success with non-negligible probability, thenF can succeed in
producing a valid forgery of the RSA-FDH signature scheme
with non-negligible probability.

Secure against arbitrator’s attack: Now we consider an
adversarial TTP’s attack. Holding the trapdoorSK = (P,Q)
of the one-way permutation, TTP can extract anyy into a pair
of (m, r) satisfying (2). We shall also show a reduction of
converting an arbitrator’s attack into a valid forgery for the
RSA-FDH signature scheme. As before, a forgerF accepts
pk = (e, n) as input and has oracle access to the signing oracle
OSig of RSA-FDH signature scheme. TTP holds(PK, SK)
and has access to theOVPsig-oracle, and wins if he forges a
probabilistic signaturẽσ = (m̃, r̃, δ̃), for which

H(m̃‖r̃H′(ID‖pk) mod N) = δe mod n

holds, whilem̃ has not been queried to the oracleOVPsig.
Here is how F invokes TTP. For anOVPsig-query on

messagem, F randomly choosesr ∈ Z∗
N and computes

y = rH′(ID‖pk) mod N , and then makes aOSig-query onm‖y
to obtain a signatureδ = Sig(sk,m‖y). F answers TTP with
(m, y, δ) as a valid verifiable partial signature. When TTP
outputs a forgery(m̃, σ̃) as described above, theñδ is a valid
forgery onm′ = m̃‖r̃H′(ID‖pk) mod N under pk = (e, n),
sincem̃ has not been queried toOVPsig. F just outputs(m′, δ).
We see that the simulation is perfect, andF succeeds in
generating a valid forgery if TTP succeeds.

The above arguments show that, if an adversary can at-
tack our verifiable probabilistic signature scheme with non-
negligible probability, then one can break the existential un-
forgeability of RSA-FDH signatures under adaptive chosen-
message attacks, with almost the same success probability.
Thus the security of our scheme follows from the security
of RSA-FDH scheme, which in turn relys on the well-known
RSA-assumption that inverting RSA function is hard. �

Remark 2: Security against colluding attacks. Another
powerful attack we must take into consideration is a colluding
attack proposed recently by Bao [3]. If an adversary can man-
age to extractr, then she get a valid probabilistic signature.
However, the adversary cannot extractr from y by herself,
since it is a intractable problem of inverting the RSA function.
Moreover, sincer is explicitly bound with a signer’sID and
pk asy = rH′(ID‖pk) mod N , it is infeasible for an adversary
to generatey′ = rH′(ID′‖pk′) mod N for a differentID′ and
pk′ from y, as shown in Lemma 2. Therefore, the colluding
attack [3] doesn’t work here.

Lemma 2. Let n be an RSA modulus. Giveny and h such
that y = rh mod n for a unknownr, if one can generatey′

andh′ such thaty′ = rh′ mod n, where bothh andh′ are odd
integers, then there exists an efficient algorithm to computex
and z such thaty = zx mod n.

Proof. Let h̃ be the least common multiple ofh andh′, and
h̃ = th, h̃ = t′h′. Then we have

yt = rht = rh̃ = rt′h′ = y′t′ mod n.

Let c = gcd(t, t′). Then2 - c andgcd(c, ϕ(n)) = 1, otherwise
one can efficiently factorn. There existsa and b such that
a t′

c + b t
c = 1. Setz = yay′b andx = t′

c . Then we have

zx = z
t′
c = ya t′

c y′b t′
c = ya t′

c yb t
c = y.

The Strong RSA Assumption [10] states that, on input an RSA
modulusn and an elementy ∈ Z∗

n, it is infeasible to computes



5

valuesx > 1 andz such thatzx = y mod n. Then, according
to Lemma 2, any adversary is infeasible to find ay′ from
y, which encrypt the samer under different public exponents.
Thus the proposed verifiable probabilistic signatures are secure
against colluding attacks.

IV. FAIR EXCHANGES BASED ONPROBABILISTIC

SIGNATURES

Now we present an optimistic fair exchange protocol based
on the probabilistic signatures described as in section 3. The
construction is similar to [7], [13].

Assume the public key of Alice ispkA = (nA, eA) and the
private key isskA = (pA, qA, dA), and Bob’s public key is
pkB = (nB , eB) and private key isskB = (pB , qB , dB). The
public key of a TTP isPK = N while the private key is
SK = (P,Q). HerenA = pA · qA, nB = pB · qB , N = P ·Q,
pA, qA, pB , qB are primes andP,Q are strong primes.

1. Alice choosesrA ∈ Z∗
N at random, computesyA =

r
H′(IDA‖pkA)
A mod N , and generatesδA = H(m‖yA)dA mod

nA. Then Alice sends a verifiable probabilistic signature
σ′

Alice = (m, yA, δA) to Bob.
2. Bob first checksH(m‖yA) = δA

eA mod nA. If it is
valid, Bob choosesrB ∈ Z∗

N at random, and then computes
yB = r

H′(IDB‖pkB)
B mod N , δB = H(m‖yB)dB mod nB .

Bob sends his probabilistic signatureσBob = (m, rB , δB) to
Alice.

3. After receiving Bob’s probabilistic signatureσBob =
(m, rB , δB), Alice computesyB = r

H′(IDB‖pkB)
B mod N ,

and verifiesδB
eB = H(m‖yB) mod nB . If valid, she sends

σAlice = (m, rA, δA) to Bob.
4. If Bob does not receive anything in step 3, or if

σAlice is invalid, then he sends the verifiable partial signature
σ′

Alice = (m, yA, δA) and his probabilistic signatureσBob =
(m, rB , δB) to TTP. This protocol provides a vehicle for TTP
to understand whether the protocol was correctly carried out.
TTP first computesyB = r

H′(IDB‖pkB)
B mod N . If both

δB
eB = H(m‖yB) mod nB

and
δA

eA = H(m‖yA) mod nA,

hold, TTP extracts

r′A = yA
H′(IDA‖pkA)−1 mod ϕ(N) mod N.

Then TTP sendsσAlice = (m, rA, δA) to Bob and sends
σBob = (m, rB , δB) to Alice.

Security of the protocol follows directly from Theorem 1
and Remark 2. The proposed protocol is concise and efficient,
and works with standard RSA signature schemes.

V. CONCLUSION

We introduce a formal definition of verifiable probabilistic
signature for constructing optimistic fair exchange protocols,
and present an efficient and provably secure verifiable prob-
abilistic signature scheme based on RSA signatures. The
proposed fair exchange protocol works with standard RSA
signature schemes. No further registration is needed and no

zero-knowledge proofs are involved. This is the first concise
and efficient RSA-based fair-exchange protocol suitable for
cryptographic engineering practices. It is very interesting to
explore other probabilistic signatures to construct efficient and
practical fair exchanges as well as other electronic commerce
protocols.
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