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Abstract

In this article, we investigate the question of equivalent keys for two Multivariate Quadratic

public key schemes HFE and C∗−− and improve over a previously known result, to appear at PKC

2005. Moreover, we show a new non-trivial extension of these results to the classes HFE-, HFEv,

HFEv-, and C∗−−, which are cryptographically stronger variants of the original HFE and C∗

schemes. In particular, we are able to reduce the size of the private — and hence the public — key

space by at least one order of magnitude. While the results are of independent interest themselves,

we also see applications both in cryptanalysis and in memory efficient implementations.
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1 Introduction

In the last 15 years, several schemes based on the problem of Multivariate Quadratic equations have
been proposed. The most important one certainly are C∗ [MI88] and Hidden Field Equations (HFE,
[Pat96b]) plus their variations C∗−−, HFE-, HFEv, and HFEv- [Pat96a, KPG99, Pat96b]. In all cases,
the public key equations have the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n
∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms). We
write the set of all such equations as MQm(Fn). Moreover, the private key consists of the triple
(S,P ′, T ) where S ∈ AGLn(F), T ∈ AGLm(F) are affine transformations and P ′ ∈ MQm(Fn) is
a polynomial-vector P ′ := (p′1, . . . , p

′
m) with m components; each component is a polynomial in n

variables x′
1, . . . , x

′
n. Throughout this paper, we will denote components of this private vector P ′

by a prime ′. In contrast to the public polynomial vector P ∈ MQm(Fn), the private polynomial
vector P ′ does allow an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. Hence, the goal of

MQ-schemes is that this should be hard if the public key P alone is given. The main difference
between MQ-schemes lies in their special construction of the central equations P ′ and consequently
the trapdoor they embed into a specific class of MQ-problems.

In this paper, we investigate the question of equivalent keys for selected MQ-schemes. Due to
space limitations, we concentrate on HFE, HFE-, HFEv, HFEv-, C∗, and C∗−−. However, we want to
point out that the techniques outlined here are quite general and can also be applied to other schemes,
cf [WP05] for a more detailed overview and also results on UOV.

1



2 Mathematical Background

After giving some basic definitions in the following section, we will move on to observations about
affine transformations. See [WP05] for a more detailed introduction to the mathematical background.

2.1 Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 2.1 We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ AGLm(F) ×MQm(Fn) × AGLn(F)

equivalent if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

for the two triples (T,P ′, S), (T̃ , P̃ ′, S̃) where S, S̃ are affine transformations over F
n, T, T̃ are affine

transformations over F
m, and P, P̃ are systems of m multivariate quadratic equations with n input

variables each.

In order to find equivalent keys, we consider the following transformations:

Definition 2.2 Let (S,P ′, T ) ∈ AGLm(F) × MQm(Fn) × AGLn(F) and σ, σ−1 ∈ AGLn(F) and
τ, τ−1 ∈ AGLm(F). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ AGLn(F) × AGLm(F) sustaining transformations for an MQ-system if the
shape of P ′ is invariant under the transformations σ and τ .

Remark. In the above definition, the meaning of shape is still open. In fact, its meaning has to be
defined for each MQ-system individually, cf Sect. 4 for examples.

Lemma 2.3 Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H := (τ, ◦) form a subgroup
of the affine transformations, they produce equivalence relations within the private key space.

After these initial observations on equivalent keys, we concentrate on bijections between ground
fields and their extension fields. Let F be a finite field with q := |F| elements and E its n-th degree
extension E := F[t]/i(t) for some irreducible, n-th degree polynomial i(t) over F. Moreover, we have
the elements a ∈ E and b ∈ F

n as

a := αntn−1 + . . . + α2t + α1 and b := (β1, . . . , βn) ,

for αi, βi ∈ F with 1 ≤ i ≤ n. As elements in E also form a vector space, we define a bijection between
E and F

n by identifying the coefficients αi ↔ βi. We use this bijection throughout this paper.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2.4 Let F be a finite field with q := |F| elements. Then there are
∏n−1

i=0

(

qn − qi
)

invertible
(n × n)-matrices over F.
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Next, we introduce some definitions about the representation of affine transformations over the
finite fields F and E.

Definition 2.5 Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a vector and let
S(x) := MSx + vs. We call this the matrix representation of the affine transformation S.

Definition 2.6 Let s1, . . . , sn be n polynomials of degree 1 at most over F, i.e., we have the poly-
nomials si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and αi, βi,j ∈ F. Let
S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over F

n. We call this the multivari-
ate representation of the affine transformation S.

Definition 2.7 Let 0 ≤ i < n and A,Bi ∈ E and let the polynomial S(X) :=
∑n−1

i=0
BiX

qi

+ A be an
affine transformation. We call this the univariate representation of the affine transformation S(X).

Remark. We can write any affine transformation either in univariate, multivariate or matrix repre-
sentation. To transfer between these three, we need at most O(n2) steps, assuming uniform costs for
operations in the ground field F.

3 Sustaining Transformations

In this section, we give several examples for sustaining transformations. In addition, we will consider
their effect on the central transformation P ′. See [WP05] for a more detailed overview.

3.1 Additive Sustainer

Definition 3.1 For n = m and A,A′ ∈ E, we call σ(X) := (X + A) and τ(X) := (X + A′) additive
transformations.

Moreover, as long as they keep the shape of the central equations P ′ invariant, they form sustaining
transformations and are then called additive sustainer.

In particular, we are able to change the constant parts vs, vt ∈ F
n or VS , VT ∈ E of the two affine

transformations S, T ∈ AGLn(F) to zero, i.e., to obtain a new key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ GLn(F).
Remark. This is a very useful result for cryptanalysis as it allows us to “collect” the constant terms
in the central equations P ′. For cryptanalytic purposes, we therefore need only to consider the case
of linear transformations S, T ∈ GLn(F).

The additive sustainer also works if we interpret it over the vector space F
n rather than the

extension field E. In particular, we can also handle the case n 6= m now. However, in this case we
have τ : F

m → F
m with τ(x) := x + a′ and consequently a′ ∈ F

m. Nevertheless, we can still collect all
constant terms in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive sustainer will affect
the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n. A similar observation is true for central
equations over the extension field E: in this case, the additive sustainer affects both the additive
constant A ∈ E and the linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

Definition 3.2 For B,B′ ∈ E
∗, we call σ(X) := (BX) and τ(X) := (B′X) big transformations.

The name is motivated as we work in the (big) extension field field E. Again, we obtain a sustaining
transformation big sustainer if this operation does not modify the shape of the central equations as
(BX), (B′X) ∈ AGLn(F).

The big sustainer is useful if we consider schemes defined over extension fields as it does not affect
the overall degree of the central equations P ′ over this extension field.
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3.3 Small Sustainer

Definition 3.3 Let Diag(b) be the diagonal matrix on a vector b ∈ F
n. Moreover, let the coefficients

b1, . . . , bn, b′1, . . . , b
′
m ∈ F

∗. Then σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b
′
m)x are called

small transformations.

The name is motivated as we work in the multiplicative group of the (small) ground field F. If this
leads to sustaining transformations, we call it the small sustainer.

In contrast to the big sustainer, the small sustainer is useful if we consider schemes which define
the central equations over the ground field F as it only introduces a scalar factor in the polynomials
(p′1, . . . , p

′
m).

3.4 Permutation Sustainer

Definition 3.4 Let σ(x), τ(x) be a permutation of the input vectors, i.e., permuting transformations.

Hence the transformation σ permutes input-variables of the central equations while for the transfor-
mation τ , it permutes the polynomials of the central equations themselves. As each permutation has
a corresponding, invertible permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transforma-
tions. The effect of the central equations is limited to a permutation of these equations and their
input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gaussian operations on matrices, i.e., row and column permutations, multiplication
of rows and columns by scalars from the ground field F, and the addition of two rows/columns. As
all these operations can be performed by invertible matrices; they form a subgroup of the affine
transformations and are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and the small sustainer.
In addition, it allows the addition of multivariate quadratic polynomials. This will not affect the
shape of some MQ-schemes.

3.6 Frobenius Sustainer

Definition 3.5 Let F be a finite field with q := |F| elements and E its n-dimensional extension.

Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H we call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations.

Obviously, Frobenius transformations are linear transformations with respect to F. The following
lemma establishes that they also form a group:

Lemma 3.6 Frobenius transformations are a subgroup in GLn(F).

Proof. First, Frobenius transformations are linear transformations, so associativity is inherited
from them. Second, the set H from Def. 3.5 is not empty for any given F and n ∈ N. Hence, the
corresponding set of Frobenius transformations is not empty either. So all left to show is that for any
given Frobenius transformations σ, τ , the composition σ ◦ τ−1 is also a Frobenius transformation.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H. Working in the multiplicative group E
∗ we

observe that we need qb · B′ ≡ 1 (mod qn − 1) for B′ to obtain the inverse function of τ . We notice

that B′ := qb′

for b′ := n − b (mod n) yields the required and moreover τ−1 := Xqb′

is a Frobenius
transformation as b′ ∈ H.
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So we can write σ(X) ◦ τ−1(X) = Xqa+b′

. If a + b′ < n we are done. Otherwise n ≤ a + b′ < 2n,
so we can write qa+b′

= qn+s for some s ∈ H. Again, working in the multiplicative group E∗ yields
qn+s ≡ qs (mod qn − 1) and hence, we established that σ ◦ τ−1 is also a Frobenius transformation.
This completes the proof that all Frobenius transformations form a group. ¤

Frobenius transformations usually change the degree of the central equation P ′. But taking τ :=
σ−1 cancels this effect and hence preserves the degree of P ′. Therefore, we can speak of a Frobenius
sustainer (σ, τ). So there are n Frobenius sustainers for a given extension field E.

It is tempting to extend this result to the case of powers of the characteristic of F. However, this
is not possible as xcharF is not a linear transformation in F for q 6= p.

Remark. We want to point out that all six sustainers presented so far form groups and hence partition
the private key space into equivalence classes (cf Lemma 2.3).

3.7 Reduction Sustainer

Reduction sustainers are quite different from the transformations studied so far, because they are
applied with a different construction of the trapdoor of P. In this new construction, we define the
public key equations as P := R ◦ T ◦ P ′ ◦ S where R : F

n → F
n−r denotes a reduction or projection.

In addition, we have S, T ∈ AGLn(F) and P ′ ∈ MQn(Fn). Less loosely speaking, we consider
the function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the last r components of the vector
(x1, . . . , xn). Although this modification looks rather easy, it proves powerful to defeat a wide class
of cryptographic attacks against several MQ-schemes, including HFE and C∗.

For the corresponding sustainer, we consider the affine transformation T in matrix representation,
i.e., we have T (x) := Mx+v for some invertible matrix M ∈ F

m×m and a vector v ∈ F
m. We observe

that any change in the last r columns of M or v does not affect the result of R (and hence P). Hence,
we can choose these last r columns without affecting the public key. Inspecting Lemma 2.4, we see
that we have a total of

qr

n−1
∏

i=n−r−1

(

qn − qi
)

choices for v and M , respectively, that do not affect the public key equations P.
When applying the reduction sustainer together with other sustainers, we have to make sure that

we do not count the same transformation twice. We will deal with this problem in the corresponding
sections.

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section to several MQ-schemes.
Due to space limitations in this paper, we will only outline some central properties of each scheme and
sketch the corresponding proofs. We want to stress that the reductions in size we achieve represent
only lower, no upper bounds: additional sustaining transformations can reduce the key space of these
schemes further.
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4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [Pat96b].

Definition 4.1 Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi

+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where







Ci,jX
qi

+qj

for Ci,j ∈ E are the quadratic terms,

BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Due to the special form of P (X), we can express it as a Multivariate Quadratic equation P ′ over
F, cf [Pat96b]. Moreover, as the degree of the polynomial P is bounded by d, this allows efficient
inversion of the equation P (X) = Y for given Y ∈ E. So the shape of HFE is in particular this degree
d of the private polynomial P . Moreover, we observe that there are no restrictions on its coefficients
Ci,j , Bk, A ∈ E for i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the additive and the big
sustainer (cf sect. 3.1 and 3.2) without changing the shape of this central equation.

Theorem 4.2 For K := (S, P, T ) ∈ AGLn(F) × E[X] × AGLn(F) a private key in HFE, we have

nq2n(qn − 1)2

equivalent keys. Hence, the key-space of HFE can be reduced by this number.

Proof (sketch). We use the additive sustainer and the big sustainer on both sides, i.e., for S and T .
In addition, we apply the Frobenius sustainer from one side and cancel it from the other side to keep
the degree d untouched. ¤

A weaker version of this theorem can be found in [WP05, Thm. 1].
Remark. To the knowledge of the authors, the additive sustainer for HFE has first been reported in
[Tol03] and used there for reducing the affine transformations to linear ones.

For q = 2 and n = 80, the number of equivalent keys per private key is ≈ 2326. In comparison, the
number of choices for S and T is ≈ 212,056. This special choice of parameters has been used in HFE
Challenge 1 [Pat96b].

4.1.1 HFE-

The class HFE- is the original HFE-class with the reduction modification (cf Sect. 3.7).

Theorem 4.3 For K := (S, P, T ) ∈ AGLn(F)×E[X]×AGLn(F) a private key in HFE and a reduction
parameter r ∈ N we have

nqn(qn − 1)qn−r(qn−r − 1)

n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of HFE- can be reduced by this number.
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Proof (sketch). We apply the additive sustainer and the big sustainer to S. In addition, we apply
the Frobenius sustainer to either S or T . To avoid double counting, we only consider the upper n− r
rows of T and apply both the additive sustainer and the multiplicative sustainer. In addition, we
apply the reduction sustainer to T . ¤

For q = 2, r = 7 and n = 107, the number of equivalent keys for each private key is ≈ 22129. In
comparison, the number of choices for S and T is ≈ 223,108. This special choice of parameters has
been used in the repaired version Quartz-7m of Quartz [CGP01, WP04a].

4.1.2 HFEv

The following modification, due to [KPG99], uses a different form for the central equations P ′.

Definition 4.4 Let E be a finite field with degree n′ over F, the number of vinegar variables v ∈ N,
and P(X) a polynomial over E. Moreover, let (z1, . . . , zv) := sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn)
for si the polynomials of S(x) in multivariate representation. Then define the central equation as

Pz1,...,zv
(X) :=

∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi

+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)Xqk

+ A(z1, . . . , zv)

where























Ci,jX
qi

+qj

for Ci,j ∈ E are the quadratic terms,

Bk(z1, . . . , zv)Xqk

for Bk(z1, . . . , zv) depending
linearly on z1, . . . , zv and

A(z1, . . . , zv) for A(z1, . . . , zv) depending
quadratically on z1, . . . , zv

and a degree d ∈ N, we say the central equations P ′ are in HFEv-shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in the zi at most) and
A(z1, . . . , zv) is a quadratic function over F ensures that the public key is still quadratic over F.

Theorem 4.5 For K := (S, P, T ) ∈ AGLn(F) × E[X] × AGLm(F) a private key in HFEv, v vinegar
variables, E an n′-dimensional extension of F where n′ := n − v = m we have

n′qnqn′

(qn′

− 1)2
v−1
∏

i=0

(qv − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof (sketch). First, we apply the additive sustainer on S, T and have hence linear transforma-
tions in both cases. This reduces by qn · qm. To make sure that we do not count the same linear
transformation twice, we consider a normal form for the (linear) transformation S

(

Em Fm
v

Gv
m Iv

)

with Em ∈ F
m×m, Fm

v ∈ F
m×v, Gv

m ∈ F
v×m

In the above definition, we also have Iv the identity matrix in F
v×v. For each invertible matrix MS ,

we have a unique matrix

(

Im 0
0 Hv

)

with an invertible matrix Hv ∈ F
v×v.
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which transfers MS to the normal form from above. Again, Im is an identity matrix in F
m×m. This

way, we obtain
∏v−1

i=0
(qv − qi) equivalent keys in the “v” modification alone.

For the HFE component, we apply the big sustainer both to S, T and obtain a factor of (qn′

− 1)2.
In addition, we apply the Frobenius sustainer to the HFE component, which yields an additional
factor of n′. ¤

For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each private is ≈ 2460.
In comparison, the number of choices for S and T is ≈ 221,652.

4.1.3 HFEv-

Here, we use the HFEv modification from the previous section and apply the reduction modification
from Sect. 3.7 to it.

Theorem 4.6 For K := (S, P, T ) ∈ AGLn(F) × E[X] × AGLm(F) a private key in HFEv, v vinegar
variables, a reduction parameter r ∈ N and E an n′-dimensional extension of F where n′ := n − v =
m + r we have

n′qrq2n′

(qn′

− 1)2
v−1
∏

i=0

(qv − qi)

n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof (sketch). This proof is a combination of the two cases HFEv and HFE-. ¤

For the case q = 2, r = 3, v = 4 and n = 107, n′ := 100, the number of redundant keys is ≈ 2690.
In comparison, the number of choices for S and T is ≈ 222,261. This special choice of parameters has
been used in the original version of Quartz [CGP01], as submitted to NESSIE [NES].

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [MI88], uses a finite field F and an extension
field E. However, the choice of the central equation is far more restricted than in HFE as we only
have one monomial here.

Definition 4.7 Let E be an extension field of dimension n over the finite field F and λ ∈ N an integer
with gcd(qn − 1, qλ + 1) = 1. We then say that the following central equation is of C∗-shape:

P (X) := Xqλ
+1 .

The restriction gcd(qn − 1, qλ + 1) = 1 is necessary first to obtain a permutation polynomial and
second to allow efficient inversion of P (X). In this setting, we cannot apply the additive sustainer, as
this monomial does not allow any linear or constant terms. Moreover, the monomial requires a factor
of one. Hence, we have to preserve this property. At present, the only sustainer suitable seems to be
the big sustainer (cf Sect. 3.2). We use it in the following theorem.

Theorem 4.8 For K := (S, P, T ) ∈ AGLn(F) × E[X] × AGLn(F) a private key in C∗ we have

n(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.
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Proof (sketch). We use the big sustainer and the Frobenius sustainer on one side, i.e., either for S
or T , and cancel it out from the other side to preserve the C∗-monomial P (X). ¤

A weaker version of this theorem can be found in [WP05, Thm. 2].
Although we cannot apply the additive sustainer, the constant part of the affine transformations

in C∗ do not seem to add to the overall security of the system, cf [GSB01].
For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class. The number of choices

for S, T is ≈ 263,784 in this case.

4.2.1 C∗−−

As in the case of HFE and HFE-, we use the original C∗ scheme and apply the reduction modification
from Sect. 3.7.

Theorem 4.9 For K := (S, P, T ) ∈ AGLn(F)×E[X]×AGLn(F) a private key in C∗ and a reduction
number r ∈ N we have

n(qn−r − 1)qr

n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of C∗−− can be reduced by this number.

Proof (sketch). We use the big sustainer and the Frobenius sustainer on one side, i.e., either for
S or T , and cancel it out from the other side to preserve the C∗-monomial P (X). To avoid double
counting, we can only consider the upper n − r rows of the affine part of (S,P ′, T ). In addition, we
apply the reduction sustainer on the lower r rows of T . ¤

For q = 128, r = 11 and n = 67, we obtain ≈ 26173 equivalent private keys per class. The number
of choices for S, T is ≈ 263,784 in this case. This particular choice of parameters has been used in
Sflashv3 [CGP03].
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5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE) and C∗ that
Multivariate Quadratic systems allow many equivalent private keys and hence have a lot of redun-
dancy in this key space, cf Table 1 and Table 2 for numerical examples; the symbols used in Table 1
are explained in the corresponding sections. The MQ-scheme Unbalanced Oil and Vinegar (UOV)
has been discussed in [WP05, Sect. 4.3].

Table 1: Summary of the Reduction Results of this Paper

Scheme (Section) Reduction

Hidden Field Equations (4.1) nq2n(qn − 1)2

HFE Minus (4.1.1) nqn(qn − 1)qn−r(qn−r − 1)
∏n−1

i=n−r−1
(qn − qi)

HFE Vinegar (4.1.2) n′qnqn′

(qn′

− 1)2
∏v−1

i=0
(qv − qi)

HFE Vinegar Minus (4.1.3) n′qrq2n′

(qn′

− 1)2
∏v−1

i=0
(qv − qi)

∏n−1

i=n−r−1
(qn − qi)

C∗ (4.2) n(qn − 1)

C∗ Minus Minus (4.2.1) n(qn−r − 1)qr
∏n−1

i=n−r−1
(qn − qi)

We see applications of our results in different contexts. First, they can be used for memory efficient
implementations of the above schemes: using the normal forms outlined in this paper, the memory
requirements for the private key can be reduced without jeopardising the security of these schemes.
Second, they apply to cryptanalysis as they allow to concentrate on special forms of the private key: an
immediate consequence from Sect. 3.1 (additive sustainers) is that HFE does not gain any additional
strength from the use of affine rather than linear transformations. Hence, this system should be
simplified accordingly. Third, the constructors of new schemes may want to keep these sustaining
transformations in mind: there is no point in having a large private key space — if it can be reduced
immediately by applying sustainers.

We want to stress that the sustainers from Sect. 3 are certainly not the only ones possible. We
therefore invite other researchers to look for even more powerful transformations. In addition, there
are other multivariate schemes which have not been discussed in this paper or [WP05], due to space
and time limitations. These schemes include (non-exhaustive list) enTTS [YC04], STS [WBP04]),
and PMI [Din04]. We also invite to apply the techniques used in this paper to these schemes.

Table 2: Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 80 12,056 326
HFE- q = 2, r = 7, n = 107 23,108 2129
HFEv q = 2, v = 7, n = 107 21,652 460
HFEv- q = 2, n = 107 22,261 690

C∗ q = 128, n = 67 63,784 469
C∗−− q = 128, n = 67 63,784 6173
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