
A new security proof for Damg̊ard’s ElGamal

Kristian Gjøsteen

December 20, 2004

Abstract

We provide a new security proof for a variant of ElGamal proposed by Damg̊ard,
showing that it is secure against non-adaptive chosen ciphertext. Unlike previous
security proofs for this cryptosystem, which rely on somewhat problematic assump-
tions, our computational problem is similar to accepted problems such the Gap and
Decision Diffie-Hellman problems.

1 Introduction

Damg̊ard [7] defined a variant of the ElGamal public key cryptosystem, and proposed a
proof of security against non-adaptive chosen ciphertext attacks based on an assumption
now commonly known as the knowledge-of-exponent assumption [10, 2, 3]. Unfortu-
nately, the knowledge-of-exponent assumption is a somewhat strange and impractical
assumption, and it would be better if we could do without it.

In [3], one proof is given for Damg̊ard’s cryptosystem and one for the so-called CS-lite
scheme [6]. Since the security of CS-lite clearly follows from the security of Damg̊ard’s
scheme, the universal-2 hash proof system in CS-lite indicates exactly what is needed to
prove Damg̊ard’s scheme secure without the knowledge-of-exponent assumption.

We therefore propose a new problem similar to conventional problems such as the Gap
Diffie-Hellman problem. If the new problem is hard, we are able to show that Damg̊ard’s
cryptosystem is semantically secure against a non-adaptive chosen ciphertext attack.

Our new assumption is defined in Section 2 and the new security proof is in Section 3.
But first we need to recall the definition of a smooth hash proof systems in Section 1.1.

We actually define a family of cryptosystems. Asymptotically, the fastest instantia-
tion is probably Damg̊ard’s cryptosystem instantiated with elliptic curves. For concrete
security parameters, the scheme based on the problem described in Section 2.3 may be
faster.

While all of the instantiations described are homomorphic, the scheme based on
the Decision Composite Residuosity problem is additively homomorphic (multiplying
ciphertexts corresponds to adding messages), which is a very useful property.

1

1.1 Smooth projective hash proof systems

We refer the reader to [5] for more information about projective hash families and hash
proof systems.

Let G be a set and let H be a subset of G. We say that a set W is a witness set for
H if there is an easily computable bijection ρ : W → H. This bijection allows one to
prove that an element x ∈ G really is in H by presenting an element w ∈ W such that
ρ(w) = x. This obviously assumes that it is easy to recognise elements of W .

For two sets S, S′, denote by Map(S, S′) the set of maps from S to S′. Let L be
a finite, abelian group. We are interested in looking at maps from G to L. There is a
natural map Map(G, L) → Map(H,L) given by restriction. From ρ we get a bijection ρ∗ :
Map(H,L) → Map(W,L). We also denote the natural map Map(G, L) → Map(W,L)
by ρ∗.

A projective hash family is a tuple (G, H,L,L′,W, ρ,M), where G is a set, H is
a subset of G, L is a group, L′ is a subgroup of L, W is a witness set for H with
isomorphism ρ, M is a subset of Map(G, L).

Let x be sampled randomly from G \H, let f be sampled uniformly at random from
M , and let y be sampled uniformly at random from L′. We say that the projective hash
family is (t, ε)-smooth if for any algorithm A with run-time less than t that accepts as
input triples from (G \H)×Map(W,L)× L and outputs a bit b, we have that

AdvSHF (G,H,L,L′,W,ρ,M)
A = |Pr[A(x, ρ∗(f), f(x)) = 1]− Pr[A(x, ρ∗(f), f(x)y)]| < ε.

The algorithm A is given access to an oracle that evaluates f at any point in H.
We note that the definitions given in [5] are statistical, but our definition is compu-

tational. For statistical results, we omit the time bound t.
A hash proof system P for (G, H) is a projective hash family (G, H,L,L′,W, ρ,M)

along with efficient algorithms for sampling M and W , and evaluating the functions
f ∈ M and ρ∗(f) ∈ Map(W,L) (given descriptions of the functions).

The sampling algorithms sample from some distribution that is δ-close to the uniform
distribution. We say that δ is the hash proof system’s approximation error.

We shall provide constructions for smooth hash proof systems in the next section.

2 Gap subgroup membership problems

Let G be a finite, abelian group. Let H be a non-trivial, proper subgroup of G, and
suppose that there is a subgroup J of G such that H ∩ J is trivial and HJ = G. Then
H × J ' G.

There is an isomorphism H × J → G given by (x, y) 7→ xy. Let σ : G → H × J be
the inverse of this isomorphism. The splitting problem for (G, H, J) is to compute this
map for a given random z ∈ G.

The subgroup membership problem for (G, H, J) is to decide if (x, y) ∈ G×G is the
splitting of z ∈ G, given that z is sampled uniformly from G and (x, y) is either equal
to σ(z) or sampled uniformly from (G \ H) × J , subject to xy = z. Obviously, we can

2

ignore z and y, and the problem is to decide if a challenge element x ∈ G is sampled
uniformly from H or from G \ H. (A stronger assumption [9] samples (x, y) uniformly
either from H × J or from (G×G) \ (H × J).)

The gap splitting problem for (G, H, J) is the same as the splitting problem for, but
any solver is given access to an oracle that for any element x ∈ G returns 1 if x ∈ H,
and 0 otherwise. This oracle is called the gap oracle.

We propose a new problem, gap subgroup membership problem. First, the adversary
receives (G, H, J), and he has free access to a gap oracle for (G, H, J). After some
computation, he will request the challenge element x ∈ G. He must then decide if x ∈ H
or if x ∈ G \ H. But after he receives the challenge, he no longer has access to gap
oracle. (If he did, the problem would be trivial.)

We let AdvGSM(G,H,J)
A denote the advantage of the adversary A against the gap

subgroup membership problem.
Note that the gap splitting problem and the gap subgroup membership problem are

interactive problems. Given the splitting and subgroup membership problems, the gap
problems follow immediately by adding the appropriate oracles.

2.1 Diffie-Hellman

Let L be a cyclic group of order p generated by g. We write the group multiplicatively.
The discrete logarithm to base g is the group isomorphism logg : L → Zp given by

logg g = 1.
The Computational Diffie-Hellman (CDH) problem [8] in L is, for random x, y ∈ L,

find z such that logg z = logg x logg y.
The Decision Diffie-Hellman (DDH) problem [4] in L is, for random x, y ∈ L and z,

decide if z is random or if logg z = logg x logg y.
The Strong Diffie-Hellman (SDH) problem [1] for G and x is the same as the GDH

problem, except that the problem solver is given access to a DDH oracle (on input of
(y′, z′) ∈ L× L, it decides if logg z′ = logg x logg y′).

Let G = L × L, let H be the subgroup generated by (g, x) (where x is a random,
non-trivial element), and let J be the subgroup generated by (1, g). Then CDH is the
splitting problem (G, H, J), DDH is the subgroup membership problem (G, H, J), and
SDH is the gap splitting problem (G, H, J).

Remark. To get a proper equivalence of problems, we need to consider the group H as
sampled from some distribution.

Remark. There is a stronger version of SDH known as the Gap Diffie-Hellman problem
[11], where the gap oracle answers queries for arbitrary x.

Hash proof system We shall describe a projective hash family (G, H,L,L′,W, ρ,M).
Let L′ = L. Let (g1, g2) be a generator for H. Let W = Zp, and ρ(w) = (g1, g2)w.

Finally, let M be the set homomorphisms G → L of the form (x, y) 7→ xk1yk2 , where
(k1, k2) ∈ Zp × Zp.

3

We note that for any f(x, y) = xk1yk2 in M , the element f(g1, g2) ∈ L is sufficient
to allow efficient computation of ρ∗(f), since ρ∗(f)(w) = (gw

1)k1(gw
2)k2 = (gk1

1 gk2
2)w =

f(g1, g2)w.
This family is statistically 0-smooth [5]. Any sampling can be done uniformly at

random by sampling uniformly from {0, . . . , p− 1}, so the approximation error is 0.

2.2 Composite Residuosity problem

Let n = pq be an RSA modulus such that p and q are safe primes and gcd(n, φ(n)) = 1.
Let G be the subgroup of quadratic residues in Z∗

n2 , let H be the subgroup isomorphic
to the subgroup of quadratic residues in Z∗

n, and let J be the subgroup generated by
residue class containing 1 + n.

We get a splitting problem (G, H, J) called the Computational Composite Residu-
osity (CCR) problem, a subgroup membership problem (G, H, J) called the Decision
Composite Residuosity (DCR) problem. These were first proposed by Paillier [12].

Hash proof system We shall describe a projective hash family (G, H,L,L′,W, ρ,M).
Let g be a generator for H. Let L = G, L′ = J , M = Hom(G, G), and W = Zφ(n).

Let [w] ∈ Zn be the residue class represented by w ∈ Z. Then ρ([w]) = gw.
Any f ∈ Hom(G, G) is of the form x 7→ xk. Therefore, the elements in the set

{0, . . . , nφ(n)/4 − 1} are useful descriptions of the homomorphisms. Again, f(g) is a
useful description of ρ ∗ (f), since ρ ∗ (f)([w]) = f(gw) = (gk)w = f(g)w.

Assume p < q. As was shown in [5], this hash-family is 1/p-smooth.
Unless we know p and q, we cannot sample elements uniformly from Hom(G, G) '

Zφ(n), but we can sample 4/(p − 1)-close to uniformly by sampling uniformly from the
set {0, . . . , bn/4c − 1}.

Given only n, we cannot sample uniformly from W , but by sampling uniformly from
{0, . . . , bn/4c − 1}, we get a sample distribution on W that is 4/p-close to uniform.
Therefore, the approximation error is 4/p.

2.3 Symmetric subgroup membership problems

Let n = pq be an RSA modulus such that p′ = 2n+1 is a prime. Let G be the subgroup
of quadratic residues in F∗

p′ , let H be the subgroup of order p and J be the subgroup of
order q.

Alternatively, let a, b, c, d be primes such that p = 2ab+1 and q = 2cd+1 are prime.
Set n = pq. Let G be the subgroup of Z∗

n with Jacobi symbol 1, let H be the subgroup
of order 2ac and J be the subgroup of order bd.

These symmetric subgroup membership problems are further discussed in [9].

Projective hash family We shall describe a projective hash family (G, H,L,L′,W, ρ,M).
Let g be a generator for H. Let L = G = L′, W = Z|H|, ρ([w]) = gw, where [w] is

the residue class represented by w ∈ Z, and M = Hom(G, G).

4

Any f ∈ Hom(G, G) is of the form x 7→ xk. Therefore, the elements in the set
{0, . . . , |G| − 1} are useful descriptions of the homomorphisms. Again, f(g) is a useful
description of ρ∗(f), since ρ∗(f)(w) = f(gw) = (gk)w = f(g)w.

Let ` be the smallest prime dividing |J |. As was shown in [9], this hash-family is
(t, 1/` + ε′)-smooth, where ε′ is the advantage of any algorithm with run-time at most t
against the gap subgroup membership problem (G, J, H).

Unless we know |G|, we cannot sample elements uniformly from Hom(G, G) ' Z|G|.
In the finite field case we know |G|, and in ring case n/4 is a good approximation to |G|.

Given only n, we cannot sample uniformly from W . But if we know that |H| < 2t,
we can sample 2−t0-close to uniform by sampling from {0, . . . , 2t+t0 − 1}. This trick
also works for Hom(G, G), so we can take the approximation error to be 2−t0 for any
reasonable t0 > 0.

3 The cryptosystem

First we describe the cryptosystem based on a subgroup membership problem (G, H, J)
and a hash proof system P with projective hash family (G, H,L,L′,W, ρ,M). The key
generation algorithm samples a function f from M using the sampling algorithms of P .
The public key is pk = (G, L, L′,W, ρ, ρ∗(f)), the private key is sk = (G, H,L,L′, f).
The description of H given to the key generation algorithm and stored in the private
key should allow the decryption algorithm to decide if an element is in H or not.

To encrypt m ∈ L′, w is sampled uniformly at random from W . The ciphertext is
then (ρ(w), ρ∗(f)(w)m).

To decrypt a ciphertext (x, y) ∈ G × L, the algorithm first verifies that x ∈ H. If
x 6∈ H, then failure is reported and the ciphertext is discarded. Otherwise, the message
yf(x)−1 ∈ L′ is returned.

Theorem 1. Let (G, H, J) be a gap subgroup membership problem and let P be a hash
proof system with projective hash family (G, H,L,L′,W, ρ,M) and approximation error
δ. Let A be a non-adaptive chosen ciphertext adversary against the semantic security of
the cryptosystem based on P . Then

AdvA ≤ AdvGSM(G,H,J)
A′ + AdvSHF (G,H,L,L′,W,ρ,M)

A′′ + 2δ,

where the algorithms A′ and A′′ have essentially the same run-time as A.

Proof. We use the standard techniques of game-hopping.

Game 0 The initial game is the usual non-adaptive chosen ciphertext attack against
semantic security.

Game 1 The first modification we make is to sample the element of W used for creating
the challenge ciphertext from the uniform distribution, not via P ’s sampling algorithm.
The difference in game behaviour is bounded by the approximation error δ.

5

Game 2 Next, instead of using ρ∗(f) and w in the encryption, we sample x from the
uniform distribution on H and apply f . This is a purely conceptual change, and the
game behaviour does not change.

Game 3 Now we sample not from H, but from G \ H when creating the challenge
ciphertext. We claim that there is a adversary A′ against the gap subgroup membership
problem (G, H, J) whose advantage is equal to the change in behaviour.

The algorithm A′ takes (G, H, J) as input. To simulate the key generation, the
hash proof system’s sampling algorithms are used to construct the public and private
keys. Obviously, the description of H given to the algorithm does not contain enough
information about H to decide membership. Therefore, the private key will be deficient
and the decryption algorithm must be changed.

When the adversary requests decryptions, the gap oracle is used to check that the
group element really is in H. If it is, f is used to decrypt the message.

When the adversary submits its messages, the algorithm requests its challenge ele-
ment x and computes the challenge ciphertext is (x, f(x)m). If the adversary guesses
correctly, we output 1, otherwise 0.

If x ∈ H, everything proceeds as in Game 2. If x ∈ G \H, everything proceeds as in
Game 3.

Game 4 To prepare for the adversary against the hash proof system, we sample the
function f from the uniform distribution on M . The difference in behaviour is bounded
by the approximation error δ.

Game 5 In this game we compute the ciphertext as f(x)ym, where y is sampled
uniformly from L′. We claim that there is an adversary A′′ against the hash proof
system whose advantage is equal to the change in behaviour.

The algorithm takes (G, H,L,L′,W, ρ,M), x ∈ G \ H, ρ∗(f) and z ∈ G as input.
It constructs the public key from its input. To answer decryption queries (x′, y′), it
passes x′ onto its evaluation oracle. If the oracle refuses to answer, then x′ 6∈ H and
the ciphertext does not decrypt. If the oracle replies with z, the decryption y′z−1 is
returned.

When the adversary submits its messages, the challenge ciphertext is (x, zm). If the
adversary guesses correctly, we output 1, otherwise 0.

If z = f(x), then everything proceeds as in Game 4. If z = f(x)y, where y is a
random element of L′, then everything proceeds as in Game 5.

To conclude the proof, we simply note that in Game 5, the distribution of the ci-
phertext is independent of the message, the adversary gets no information about the
message, and therefore he has no advantage.

It is worthwhile to note that all of the instantiations of this scheme are homomorphic,
so they are not secure against adaptive chosen ciphertext attacks. When instantiated

6

with the Decision Composite Residuosity problem, the scheme is actually additively
homomorphic, a property that is very useful.

Damg̊ard’s scheme Finally, we show that Damg̊ard’s cryptosystem is really the same
as our cryptosystem when it is instantiated with the Diffie-Hellman group structure.

In this case, the key generation algorithm does as follows. It selects a group L of order
p with a generator g1, samples a uniformly from {0, . . . , p − 1} and sets g2 = ga

1 . The
subgroup H is generated by (g1, g2). The number a now contains enough information
to decide subgroup membership. Then the key generation algorithm samples k1 and
k2 uniformly from {0, . . . , p − 1} and computes s = gk1

1 gk2
2 . The public key is then

(L, g1, g2, s), the private key is (L, a, k1, k2).
The encryption algorithm samples w uniformly from {0, . . . , p − 1}, computes the

ciphertext as (x1, x2, y) = (gw
1 , gw

2 , swm).
The decryption algorithm checks that (x1, x2) ∈ H by checking that xa

1 = x2. If it
is, it returns the message yx−k1

1 x−k2
2 .

In Damg̊ard’s original scheme, the public key also consists of (L, g1, g2, s), but s is
computed as gb

1 for a random b. It is quite clear that our key generation algorithm yields
the exact same key distribution as Damg̊ard’s scheme. Indeed, if b ≡ k1 + ak2 (mod p)
the public keys would be equal.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. DHIES: An encryption scheme based
on the Diffie-Hellman problem, 2001. http://www.cs.ucsd.edu/users/mihir/
papers/dhies.html.

[2] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. Cryptology ePrint Archive, Report 2004/008,
2004. http://eprint.iacr.org/.

[3] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption
without random oracles. Cryptology ePrint Archive, Report 2004/221, 2004. http:
//eprint.iacr.org/.

[4] D. Boneh. The Decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, volume 1423 of LNCS, pages 48–63. Springer-
Verlag, 1998.

[5] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
Proceedings of EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer-
Verlag, 2002.

7

[6] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

[7] Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, Proceedings of CRYPTO ’91, volume 576
of LNCS, pages 445–456. Springer-Verlag, 1992.

[8] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

[9] Kristian Gjøsteen. Symmetric subgroup membership problems. In Proceedings of
Public Key Cryptography 2005, LNCS. Springer-Verlag. To appear.

[10] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-Round zero-knowledge
protocols. In Hugo Krawczyk, editor, Proceedings of CRYPTO ’98, volume 1462 of
LNCS, pages 408–423. Springer-Verlag, 1998.

[11] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of prob-
lems for the security of cryptographic schemes. In Kwangjo Kim, editor, Proceedings
of Public Key Cryptography 2001, volume 1992 of LNCS, pages 104–118. Springer-
Verlag, 2001.

[12] P. Paillier. Public-key cryptosystems based on composite degree residue classes.
In Jacques Stern, editor, Proceedings of EUROCRYPT ’99, volume 1592 of LNCS,
pages 223–238. Springer-Verlag, 1999.

8

