
An Asynchronous Multi-Party Computation Protocol

Martin Hirt

ETH Zurich
hirt@inf.ethz.ch

Jesper Buus Nielsen

University of Aarhus
buus@daimi.au.dk

Bartosz Przydatek

ETH Zurich
przydatek@inf.ethz.ch

Manuscript, Nov. 15, 2004

Abstract

We consider secure multi-party computation in the asynchronous model and present
an efficient protocol with optimal resilience. For n parties, up to t < n/3 of them being
corrupted, and security parameter κ, a circuit with c gates can be securely computed
with communication complexity O(cn3κ) bits. In contrast to all previous asynchronous
protocols with optimal resilience, our protocol requires access to an expensive broad-
cast primitive only O(n) times — independently of the size c of the circuit. This
results in a practical protocol with a very low communication overhead.

One major drawback of a purely asynchronous network is that the inputs of up to
t honest parties cannot be considered for the evaluation of the circuit. Waiting for all
inputs could take infinitely long when the missing inputs belong to corrupted parties.
Our protocol can easily be extended to a hybrid model, in which we have one round
of synchronicity at the end of the input stage, but are fully asynchronous afterwards.
In this model, our protocol allows to evaluate the circuit on the inputs of every honest
party.

The construction of the protocol is along the lines of the approach of the protocol of
Cramer, Damg̊ard and Nielsen (Eurocrypt’01): Every intermediate value is encrypted
with a threshold encryption scheme, and gates are evaluated by using the encryptions
of the inputs. As we cannot guarantee that any particular party will terminate some
specific task, we have the circuit evaluated by every party in parallel (with help of the
other parties), and as soon as the first party completes, all other parties can terminate
as well.

1 Introduction

1.1 Multi-party computation

The goal of secure multi-party computation (MPC) is to allow a set of n players to evaluate
an agreed function of their inputs in a secure way, where security means that an adversary
corrupting some of the players cannot achieve more than controlling the inputs and outputs
of these players. In particular, the adversary does not learn the inputs of the uncorrupted
players, and furthermore, she cannot influence the outputs of the uncorrupted players
except by selecting the inputs of the corrupted players.

We consider a static active t-adversary who can corrupt up to t of the players and take
full control over them. Furthermore, we focus on asynchronous communication, i.e., the
messages in the network can be delayed for an arbitrary amount of time (but eventually,
all messages are delivered). As a worst-case assumption, we give the ability of controlling
the delay of messages to the adversary.

Asynchronous communication models real-world networks (like the Internet) much
better than synchronous communication. However, it turns out that MPC protocols for
asynchronous networks are significantly more involved than their synchronous counter-
parts. One reason for this is that in an asynchronous network, when a player does not

1

receive an expected message, he cannot distinguish whether the sender is corrupted and
did not send the message, or the message was sent but delayed in the network. This
property also implies that in a fully asynchronous setting, it is impossible to consider the
inputs of all uncorrupted players when evaluating the function. The inputs of up to t
(potentially honest) players have to be ignored, because waiting for them could turn out
to be endless.

1.2 History and related work

The MPC problem was first proposed by Yao [Yao82] and solved by Goldreich, Mi-
cali, and Wigderson [GMW87] for computationally bounded adversaries and by Ben-
Or, Goldwasser, and Wigderson [BGW88] and independently by Chaum, Crépeau, and
Damg̊ard [CCD88] for computationally unbounded adversaries. All these protocols con-
sidered a synchronous network with a global clock. The first MPC protocol for the asyn-
chronous model (with unconditional security) was proposed by Ben-Or, Canetti, and Gol-
dreich [BCG93]. Extensions and improvements, still in the unconditional model, were
proposed in [BKR94, SR00, PSR02]. A great overview of asynchronous MPC protocols
with unconditional security is given in [Can95].

The most efficient asynchronous protocols up to date are the ones of Srinathan and
Rangan [SR00] and of Prabhu, Srinathan and Rangan [PSR02]. The former protocol
requires Ω(n2) invocations to the broadcast primitive for every multiplication, which makes
the protocol very inefficient when broadcast is realized with some asynchronous broadcast
protocol. The latter protocol is rather efficient; it requires Ω(n4κ) bits of communication
per multiplication. However, it tolerates only t < n/4 corruptions, which is non-optimal.

1.3 Contributions

We present the first asynchronous MPC protocol for the cryptographic model. The pro-
tocol is secure with respect to an active adversary corrupting up to t < n/3 players; this
is optimal in an asynchronous network.

The main achievement of the new protocol is its efficiency: Once the inputs are dis-
tributed, the protocol requires O(cMn3κ) bits of communication to evaluate a circuit with
cM multiplication gates and with security parameter κ. This is the same communica-
tion complexity that is required by the most efficient known protocol for the synchronous
model [CDN01], and improves on the communication complexity of the most efficient
optimally-secure asynchronous MPC protocol [SR00] by a factor of Ω(n). In contrast to
both the protocols of [CDN01] and [SR00], our protocol uses broadcast only in a very
limited manner: the number of broadcast invocations is independent of the size of the
circuit. This nice property is also achieved in [PSR02], but this protocol is non-optimal
(it tolerates only t < n/4, and it requires Ω(n) times more communication than ours.

In an asynchronous MPC, the agreed function can be evaluated only on a subset
of the inputs, i.e., some (potentially honest) player cannot provide their input into the
computation. However, the presented protocol can easily be extended to consider the
input of each (honest) party, at the cost of one round of synchronization required at the
end of the input stage.

2 Preliminaries, notation and tools

2.1 Formal model

We use the model of security of asynchronous protocols from [Can01]. Formally our
model for running a protocol will be the hybrid model with a functionality for distributing
some initial cryptographic keys between the parties using some function init. The ideal
functionality that we wish to realize is given by a circuit Circ, or more precisely a family

2

of circuits. Namely, the functionality allows the adversary to specify a set of at least n− t
parties, W ⊆ [n] (where [n] denotes the set {1, . . . , n}), which are to supply the inputs to
the computation. The circuit to be computed, Circ = Circ(W), is then uniquely defined by
the subset of parties providing the inputs. The informal proofs in this extended abstract
do not require familiarity with specific details of the model in [Can01], and below we only
recall the needed specificities.

Asynchronous protocols. An n-player protocol is a tuple π = (P1, . . . , Pn, init), where
each Pi is a probabilistic interactive Turing machine, and init is an initialization function,
used for the usual set-up tasks (initialize the players, set up cryptographic keys, etc.). The
parties (players) communicate over an asynchronous network, in which the delay between
sending and delivery of a message is unbounded. More precisely, when a party sends a
message, this message is added to the set of messages already sent but not yet delivered,
Msg = {(i, j,m)}, where (i, j,m) denotes a message m from Pi to Pj . The delivery of the
messages is scheduled by the adversary (see below).

We assume that the function to be computed is given as a circuit consisting of input
gates augmented by the party to supply the input, linear gates and multiplication gates,
and output gates augmented by the party to see the output, all over some ring M.

Adversary. We consider a polynomially bounded adversary, and our constructions are
parametrized by a security parameter κ. The adversary controls the delivery of messages
and can corrupt up to t parties. A corrupted party is under full control of the adversary,
which can see its all incoming, and determines all outgoing messages. The adversary
schedules the delivery of the messages arbitrarily, by picking a message m ∈ Msg and
delivering it to the recipient. The adversary doesn’t see the contents of messages exchanged
between honest (i.e., not corrupted) parties, and any message from an honest party to an
honest party is eventually delivered. In most cases we require that t < n/3, but will
sometimes consider other thresholds. The set of parties to be corrupted is specified by the
adversary before the execution of the protocol, i.e., we consider static security.

Execution of a protocol. Before the protocol starts, an initialization function init

is evaluated on the security parameter 1κ and on random input r ∈ {0, 1}∗, to generate a
tuple (sv1, . . . , svn,pv) = init(κ, r) of secret values svi and a public value pv. Each party
Pi is initialized with (κ, svi,pv). At the beginning of the protocol execution, every party
Pi receives its input value xi from the environment, and produces some initial messages
(i, ·, ·) which is added to the set Msg. The adversary is given the public value pv, the values
(xj , svj) for each corrupted party Pj , and the control over the set Msg. Subsequently the
protocol is executed in a sequence of activations. In each activation the adversary picks
a message (i, j,m) ∈ Msg and delivers it to Pj . Upon delivery of a message, party Pj

performs some computation based on its current state, updates its state and produces
some messages of the form (j, ·, ·), which are added to the set Msg. In some activation
the parties can produce the output to the environment and terminate. The adversary
determines the inputs xi and all messages of corrupted parties. The adversary and the
environment can communicate with each other.

Security. The security of a protocol is defined relative to an ideal evaluation of the
circuit by requiring that for any adversary attacking the execution of the protocol there
exists a simulator which can simulate the attack of the adversary to any environment given
only an ideal process for evaluating the circuit. In the ideal process the simulator has very
restricted capabilities: It sees the inputs of the corrupted parties. Then it specifies a subset
W ⊆ [n] of the parties to be the input providers, under the restriction that |W | ≥ n − t.
The set W is used to pick the circuit Circ = Circ(W) to be evaluated. The input gates of

3

Circ are assigned the inputs of the corresponding parties (the adversary specifies the inputs
of the corrupted parties), then Circ is evaluated and the outputs of the corrupted parties
are shown to the simulator. Given these capabilities the simulator must then simulate to
the environment the entire view of an execution of the protocol, including the messages
sent and the possible communication between the environment and the adversary.

In the following subsections we briefly describe cryptographic tools needed in our con-
structions, and introduce a notation for their use in the rest of the paper.

2.2 Homomorphic public-key encryption with threshold decryption

We assume the existence of a semantically secure probabilistic public-key encryption
scheme, which also is homomorphic and enables threshold decryption:

Encryption and decryption. For an (encryption key, decryption key) pair (e, d), let�
e : M × R → C denote the encryption function with e as an encryption key, mapping

(plaintext, randomness) pair (c, r) ∈ M×R to a ciphertext C ∈ C, and let � d : C → M
denote the corresponding decryption function. We require that M is a ring ZM for some
M > 1, and we use · to denote multiplication in M. We often use capital letters to
denote an encryption of the corresponding lower-case letter. When keys are understood,
we write

�
and � instead of

�
e resp. � d, and we frequently omit the explicit mention of

the randomness in encryption function
�

.

Homomorphic property. We require that there exist (efficiently computable) binary
operations +, ∗, and ⊕, such that (M,+), (R, ∗), and (C,⊕) are algebraic groups, and
that

�
e is a group homomorphism, i.e. that

�
(a, ra) ⊕

�
(b, rb) =

�
(a + b, ra ∗ rb) .

We use A 	 B to denote A ⊕ (−B), where −B denotes the inverse of B in the group C.
For an integer a and B ∈ C we use a · B to denote the sum of B with itself a times in C.

Ciphertext re-randomization. For C ∈ C and r ∈ R we let � e(C, r) = C ⊕
�

e(0, r).
We use C ′ = � e(C) to denote C ′ = � e(C, r) for uniformly random r ∈ R. We call
C ′ = � e(C) a re-randomization of C, and require that C ′ is a uniformly random encryption
of � d(C).

Threshold decryption. We require that there exists a threshold function sharing of
� d among n parties, i.e., for some construction threshold 1 < tD ≤ n there exists a sharing
(d1, . . . , dn) of the decryption key d (where di is intended for party Pi), such that given
decryption shares ci = � i,di

(C) for tD distinct decryption-key shares di, it is possible to
efficiently compute c such that c = � d(C). Furthermore, the encryption scheme should
be still semantically secure against chosen plaintext attack when the adversary is given
tD − 1 decryption-key shares. Finally, we require that given a ciphertext C, plaintext
c = � d(C), and a set of tD − 1 decryption-key shares {di}, it is possible to compute all n
decryption shares cj = � j,dj

(C), j = 1..n. We will always have tD = t + 1. When keys are
understood, we write � i(C) to denote the function computing decryption share of party
Pi for ciphertext C, and c = � (C, {ci}) to denote the process of combining the decryption
shares {ci} to a plaintext c.

Robustness. To efficiently protect against cheating servers we require that there exists
an efficient two-party zero-knowledge protocol for proving the correctness of a decryption
share ci = � i,di

(C) given (e, C, ci) as instance, and given (i, di) as witness. We require also
that there exists an efficient two-party zero-knowledge protocol for proving the knowledge
of a plaintext, given (e, C) as instance and the corresponding plaintext c as witness. We
require that these two-party protocols communicate O(κ) bits per proof.

4

2.3 Digital signatures

We assume the existence of a digital signature scheme unforgeable against an adaptive
chosen message attack. For a (signing key, verifying key) pair (s, v), let Signs : {0, 1}∗ →
{0, 1}κ denote the signing function with s as a signing key, and let Verv : {0, 1}×{0, 1}∗ →
{0, 1} denote the verifying function, where Verv(m,σ) = 1 indicates that σ is a valid sig-
nature on m. We write Signi/Veri to denote the signing/verification operation of party Pi.

2.4 Threshold signatures

We assume the existence of a threshold signature scheme unforgeable against an adaptive
chosen message attack. For a (signing key, verifying key) pair (s, v), let � s : {0, 1}∗ →
{0, 1}κ denote the signing function with s as a signing key, and let � v : {0, 1} × {0, 1}∗ →
{0, 1} denote the verifying function, where � v(m,σ) = 1 indicates that σ is a valid signature
on m.

Threshold signing. We require that there exists a threshold function sharing of � s

among n parties, i.e., for some signing threshold 1 < tS ≤ n there exists a sharing
(s1, . . . , sn) of the signing key s (where si is intended for party Pi), such that given signa-
ture shares σi = � i,si

(m) for tS distinct signing-key shares si, it is possible to efficiently
compute σ such that � v(m,σ) = 1. Furthermore, the threshold signature scheme should be
still unforgeable against adaptive chosen message attack when the adversary is given tS−1
signing-key shares. Finally, we require that given a signature σ on m, and tS − 1 signing-
key shares {si}, it is possible to compute all n signature shares σj = � j,sj

(m), j = 1..n.
We will always have tS = n − t. When keys are understood, we write � i(m) to denote
the function computing signature share of party Pi for message m, and σ = � (m, {σi})
to denote the process of combining the signature shares {σi} to a signature σ.

Robust threshold signing. To efficiently protect against cheating servers we require
that there exists an efficient two-party zero-knowledge protocol for proving the correctness
of a signature share σi = � i,si

(m), given (v,m, σi) as instance and given (i, si) as witness.
We require that this protocol communicates O(κ) bits per proof.

2.5 Byzantine agreement

We assume the existence of a Byzantine agreement (BA) protocol, i.e., a protocol with the
following properties: The input of party Pi is a bit vi ∈ {0, 1} and the output of the BA
is a bit w ∈ {0, 1}. If all honest parties enter the BA, then the BA eventually terminates.
Furthermore, if the BA terminates with output w, then some honest party entered the BA
with input vi = w. If in particular all honest parties have the same input vi = v, then the
output of the BA is w = v.

2.6 Cryptographic assumptions and instantiations of tools

The security of our constructions is based on decisional composite residuosity assumption
(DCRA) [Pai99]. Alternatively, it could be based also on QRA and strong RSA. We stress,
that our constructions are in the plain model. In particular, our constructions do not make
use of random oracles.

Homomorphic encryption with threshold decryption. An example of a scheme
satisfying all required properties is Paillier cryptosystem [Pai99] enhanced by threshold
decryption as in [FPS00, DJ01]. In this scheme M = ZN for an RSA modulus N . Another
example can be based on the QR assumption and the strong RSA assumption. [CDN01].

Digital signatures. As our digital signature scheme we use standard RSA signatures.

5

Threshold signatures. As an example we can use the threshold signature scheme by
Shoup [Sho00]. The security of the threshold signature scheme in [Sho00] is based on the
assumption that standard RSA signatures are secure. As presented in [Sho00] the zero-
knowledge proofs are non-interactive but for the random-oracle model. The protocol can
be modified to be secure in the plain (random oracle devoid) model by using interactive
proofs (cf. [Nie02]).

Byzantine agreement. In our protocols we employ the efficient Byzantine agreement
protocol of Cachin et al. [CKS00], which has expected constant round complexity, and
expected bit complexity of O(n2κ). As presented in [CKS00] the security proof of the pro-
tocol needs the random-oracle methodology (for the above mentioned threshold signature
scheme). This protocol also can be modified to be secure in plain model [Nie02].

3 The new protocol

Our protocol follows the paradigm of secure multi-party computation based on a threshold
homomorphic encryption scheme, as introduced by Franklin and Haber [FH96], and made
robust by Cramer, Damg̊ard and Nielsen [CDN01]. However, both protocols use synchrony
in an essential manner.

3.1 A high-level overview

The protocol proceeds in three stages, an input stage, an evaluation stage, and a termina-
tion stage. In the following, we briefly summarize the goal of each stage:

• Input stage: Every player provides an encryption of his input to every other player,
and the players jointly agree on a subset of players who have correctly provided their
inputs.

• Evaluation stage: Every player independently evaluates the circuit on a gate-by-gate
basis, with help of the other players. The circuit consists of linear gates, multipli-
cation gates, and output gates. The circuit may depend on the selected subset of
players that have provided input.

• Termination stage: As soon as a player has completed the circuit evaluation, he
moves into the termination stage, where the players jointly agree that the circuit
evaluation is completed, every player has received (or will eventually receive) the
output(s), and hence every player who is still in the evaluation stage can safely
abort it.

By having every player evaluate the circuit on his own, we bypass the inherent syn-
chronicity problems of the asynchronous model. We denote the player that evaluates the
circuit as the king, and all other players (who support the king) the slaves. Note that
every player acts (in parallel) once as king, and n times as slave, once for every king. The
kings are not synchronized among each other; it can happen that one king has almost
completed the evaluation of the circuit, while another king is still at the very beginning.
However, each slave is synchronized with his king. As soon as the first king completes the
evaluation and provably reveals all outputs, all other kings (and their slaves) can safely
truncate their own evaluation.

In order to achieve robustness, we must require every party to prove (in zero-knowledge)
the correctness of essentially every value she provides during the protocol execution. These
proofs could easily be constructed in the random-oracle model (by using Fiat-Shamir
heuristics), but this would be at the costs of a non-standard model. We therefore follow
another approach: A party who is to prove some claim, proves this claim interactively to
every other party. The verifying party then certifies that she has correctly verified the
claim. Once the prover has collected enough such certificates, she can convince any third

6

party non-interactively of the validity of the claim. Technically, we use threshold signatures
for the certificates, which allows the prover to compute one short certificate that proves
that tS parties (where tS denotes the threshold of the threshold signature scheme) have
verified his proof. Formally, we will say that “a party Pi constructs and sends a proof πi

of �some claim �”, denoted as πi := proof(�some claim �), when we mean that Pi bilaterally
proves the claim in zero-knowledge to every party Pj , who then, upon successful completion
of the proof, sends to Pi a signature share � j(�some claim �). After obtaining tS correct
signature shares1 {πi,j}j∈I , party Pi computes πi as � (�some claim �, {πi,j}j∈I). Since
this construction is standard, we omit the details from the description of the protocols.
Naturally, we do include the corresponding subprotocols and their bit complexities in the
analysis of the proposed solution (cf. Section 3.9).

We note that we make use of threshold signatures also explicitly, as specified in the
descriptions of the protocols. Their use there has similar purpose, namely as certificates
for the validity of certain claims.

3.2 Main protocol

The main protocol first invokes the input stage, then the evaluation stage, and finally the
termination stage. At the end of the input stage, the circuit Circ is determined by the set
of parties that provide input. In the evaluation stage, every party starts one instance of
the king protocol, and n instances of the slave protocol — one for every king.

In order to precisely describe the new protocol, we first formally model the circuit to
be computed, and then give the invariant that is satisfied during the whole computation.
For the clarity of presentation we assume in the following that every party provides at
most one input value and that there is only one final output value to be disclosed to all
parties (i.e., the final output is to be public). This is without loss of generality for the case
with public outputs, and protocols for the general case with multiple input/output values
can be derived by straightforward modifications. However, the issue of providing private
outputs is more involved, and we discuss it in Section 4.1.

The circuit. We assume that the function to be computed is given as a circuit Circ over
the plaintext space M of the homomorphic encryption scheme in use. The circuit is a set
of labeled gates, where each label is a unique bit-string G ∈ {0, 1}∗. We use G(Circ) to
denote the set of all labels of the circuit Circ. In the following we let v : G(Circ) → M∪{⊥}
be a map from the labels into the the plaintext space, where v(G) denotes the value of
the gate G. Each gate is represented by a tuple (G, . . .), and can have one of the following
types:

input gate: (G), consisting only of its label G = (Pi, input), where v(G) is equal to xi, the
input value provided by player Pi.

linear gate: (G, linear, a0, a1, G1, . . . , al, Gl), where l ≥ 0, a0, . . . , al ∈ M are constants,
and v(G) = a0 +

∑l
j=1

aj · v(Gj).

multiplication gate: (G,mul, G1, G2), where v(G) = v(G1) · v(G2).

output gate: (G, output, G′), where v(G) = v(G′) is the output value of the circuit.

Correctness invariant. Throughout the computation each party Pi maintains a data
structure containing the views of each party Pj on the intermediate values in the cir-
cuit. More precisely, Pi holds a dictionary Γi, which for each party Pj maps labels G to
encryptions computed by the King Pj ,

Γi : [n] × G(Circ) → C ∪ {⊥} ,

1The correctness of a signature share is proved to Pi by Pj , using another efficient zero-knowledge
protocol (cf. Sect. 2.4).

7

where initially Γi(j,G) =⊥ for all labels and all j ∈ [n]. If Γi(j,G) = C 6=⊥, then from
Pi’s point of view gate G was completed by Pj , and C is a ciphertext of the homomorphic
encryption scheme of the value v(G). We say that C is the encryption of v(G) reported
by Pj to Pi, and that Pi has accepted this encryption from Pj.

The protocol guarantees, that if an honest party Pi accepts a ciphertext C reported
by Pj , then C is an encryption of a correct value for gate G. Moreover, any two honest
parties who accept an encryption of any party Pl for a gate G agree on the encryption.
Formally, we have the following definition.

Definition 1 (Correctness Invariant) The following properties hold at any point in
the protocol:

1. (Agreement on circuit) There exists a set W ⊆ [n] such that |W | ≥ n−t and such that
for all honest parties having defined the circuit Circi it holds that Circi = Circ(W).

2. (Agreement on input encryptions) For all pairs of honest parties Pi and Pj and all
k, l,m ∈ W it holds that if Γi(k, (Pl, input)) 6=⊥ and Γj(m, (Pl, input)) 6=⊥, then

Γi(k, (Pl, input)) = Γj(m, (Pl, input)) := Xl ,

and if Pl is honest, then � (Xl) is the initial input xl of Pl.

3. (Correct gate encryption) For every honest party Pi, if for any G ∈ Circ we have
that Γi(i, G) = C 6=⊥, then � (C) is identical to the value of gate G obtained by
decrypting the input encryptions of Pi and evaluating the circuit on the plaintexts.

4. (Agreement on encryptions of gates by same king) For every two honest parties Pi

and Pj, for any l ∈ [n] and any G ∈ Circ, if Γi(l, G) = C 6=⊥ and Γj(l, G) = C ′ 6=⊥,
then C = C ′.

This invariant is propagated from the initial input stage until the output stage is reached.
Hence, a threshold decryption of the encrypted output values is guaranteed to yield correct
computation results.

The basis of the correctness invariant. The correctness invariant is established
in the input stage, which determines the values of all input gates. Due to the security
properties of the input-stage protocol, these values are guaranteed to be correct in the sense
that the each party providing input knows the actual value hidden in the encryption, and
that this value is a valid input to the function to be computed.

3.3 Input stage

The goal of the input stage is to define an encryption of the input of each party. To ensure
independence of the inputs, the parties are required to prove plaintext knowledge for their
encryptions. In a synchronous network we could simply let the parties broadcast their
encryptions. However, in an asynchronous setting with an active adversary we cannot
guarantee that each party contributes an input value, since it is impossible to distinguish
between an honest slow party and a corrupted party. Therefore a protocol is used with
select (n − t) so-called input providers.

First, each party Pi encrypts its input value xi to obtain a ciphertext Xi =
�

(xi),
and constructs a proof πi = proof(�Pi knows the plaintext in Xi�) (using bilateral zero-
knowledge proofs and threshold signatures), which serves as a certificate that Pi knows
the encrypted value, and that Xi is Pi’s unique possible input encryption to the circuit.
Afterwards Pi distributes (Xi, π) to all parties, and then constructs and distributes another
certificate, a certificate of distribution certi, stating that Pi has distributed (Xi, πi) to at
least n − t parties (recall that n − t is the threshold of the signature scheme).

When a party collects n − t certificates of distributions it knows that at least n − t
parties have their certified inputs distributed to at least n − t parties. So, at least n − t

8

parties had its certified input distributed to at least (n − t) − t ≥ t + 1 honest parties.
So, if all honest parties echo the certified inputs they saw and collect n − t echoes, then
all honest parties will end up holding the certified input of the n − t parties which had
their certified inputs distributed to at least t + 1 honest parties. These n − t parties will
eventually be the input providers. To determine who they are, n Byzantine agreements
are run. The protocol for selecting input providers is given in more detail in Figure 1.

3.4 Computing linear gates

Due to the homomorphic property of encryption linear gates can be computed locally,
without interaction. That is, if a party Pi has accepted Pj ’s encryptions of inputs to a

To define an initial set of inputs, Pi with initial input xi ∈ M proceeds as follows:

Initialize empty sets Ai,Ai, Bi,Bi, Ci and execute the following rules concurrently:

Double Distribution:

1. compute Xi :=
�

(xi) and πi := proof(�Pi knows the plaintext in Xi�).

2. send (Xi, πi) to all parties.

3. collect n − t signature shares {σj} on �Xi is Pi’s input �

(i.e., σj = � j(�Xi is Pi’s input �))

4. compute certi = � (�Xi is Pi’s input �, {σj}); send (Xi, certi) to all parties.

5. collect n − t signature shares {σ′

j} on �I hold Pi’s input �

6. compute cert′i = � (�I hold Pi’s input �, {σ′

j}); send cert′i to all parties.

Grant Certificate of Uniqueness:

on the first message (Xj , πj) from Pj , return σi = � i(�Xj is Pj’s input �) to Pj .

Grant Certificate of Distribution:

on the first message (Xj , certj) from Pj , where � (�Xj is Pj’s input �, certj) = 1,
add j to Ai, add (Xj , certj) to Ai, and return σ′

i := � i(�I hold Pj’s input �) to Pj .

Echo Certificate of Distribution:

on a message cert′j, where � (�I hold Pj’s input �, cert′j) = 1 and j 6∈ Ci,
add j to Ci, and send cert′j to all parties.

Select Input Providers:

When |Ci| ≥ n − t, stop executing the above rules and proceed as follows:

1. send (Ai,Ai) to all parties.

2. collect a set {(Aj ,Aj)}j∈J of (n − t) incoming, well-formed (Aj ,Aj).

3. let Bi :=
⋃

j∈J Aj and Bi :=
⋃

j∈J Aj

4. enter n Byzantine Agreements (BAs) with inputs v1, . . . , vn ∈ {0, 1},
where vj = 1 iff j ∈ Bi.

5. let w1, . . . , wn denote the outputs of the BAs,
and let W = {j ∈ {1, . . . , n}|wj = 1}.

6. use W to generate a circuit Circ = Circ(W).

7. for each j ∈ Bi ∩ W , send (Xj , certj) ∈ Bi to all parties.

8. for each j ∈W wait for (Xj , certj) with � (�Xj is Pj’s input �, certj)=1 to arrive.

9. for all j ∈ W and l ∈ {1, . . . , n}, let Γi(l, (Pj , input)) = Xj.

Figure 1: The input stage code for Pi.

9

Wait until input stage is completed, resulting in a circuit Circ and an initialized dictio-
nary Γk. Then concurrently execute for each linear, multiplication, or output gate:

linear gate (G, linear, a0, a1, G1, . . . , al, Gl):

1. wait until Γk(k,Gu) 6=⊥, for all u = 1 . . . l.

2. compute Γk(k,G) := A0 ⊕
(

⊕l
u=1

(au · Γk(k,Gu))
)

.

multiplication gate (G,mul, G1, G2):

1. wait until Γk(k,G1) = C1 6=⊥ and Γk(k,G2) = C2 6=⊥

2. generate a randomizer (R,U, cert) for G, and send it to all parties:

(a) collect a set SG := {(Ri, Ui, σi, πi)}i∈IG
, with |IG| ≥ t + 1, where

σi = Signi(�(Ri, Ui) : part of Pk’s randomizer for G�), and
πi = proof i(�Pi knows ri in Ri, and Ui is a randomization of riC1

�)

(b) send SG to all parties

(c) compute R :=
⊕

i∈IG
Ri, and U :=

⊕

i∈IG
Ui

(d) collect a set cert := {certi}i∈I′

G
, with |I ′G| ≥ tS, where

certi = � i(�(R,U) : Pk’s randomizer for G�)

3. collect a set VG = {zi}i∈I′′

G
, with |I ′′G| ≥ tD, where each zi is a valid decryption

share of Pi for Z = C2 ⊕ R; send VG to all parties

4. decrypt z := � (Z, VG) and compute Γk(k,G) := (z · C1) 	 U

output gate (G,G′), where G = (output)

1. wait until Γk(k,G′) = C 6=⊥

2. collect a set {(ci, $i)} of tD decryption shares for C,
with corresponding validity proofs $i

3. compute and output c := � (C, {ci}); mark G as decrypted

Figure 2: The code for king Pk for evaluating the circut.

linear gate (G, linear, a0, G1, a1, . . . , Gl, al), i.e. when Γi(j,Gu) 6=⊥, for u = 1 . . . l, then

Pi computes locally Γi(j,G) := A0 ⊕
(

⊕l
u=1

(aj · Γi(j,Gu))
)

, where A0 is a “dummy”

encryption of a0, computed using a publicly-known, fixed random string.

3.5 Computing multiplication gates

Computation of multiplication gates is more involved. Here each King Pk is leading the
computation of the encrypted product in his copy of the circuit. More precisely, given a
gate (G,mul, G1, G2) such that Γk(k,G) =⊥, Γk(k,G1) = C1, and Γk(k,G2) = C2, with
C1, C2 6=⊥, Pk proceeds as follows. Let c1, c2 denote the values hidden in the ciphertexts
C1, C2, respectively. First a randomizer (R,U, cert) is generated, where R is a threshold
encryption of a random element r ∈ M (unknown to the parties and the adversary),
U = � (rC1), i.e., U is a random threshold encryption of rc1, and cert is a certificate of
encryptions’ correctness. Then Pk sends the randomizer to all parties, and waits until the
parties answer with decryption shares of the ciphertext Z = C2⊕R, which is an encryption
of z = c2 + r. Once sufficiently many (i.e., at least tD) decryption shares arrive, Pk sends
them to all parties, which allows each Pi to decrypt z, and compute an encryption of
the product c1c2, using the homomorphic property of the encryption, and the fact that
c1c2 = (c2 + r)c1 − rc1. That is, Pi computes Γi(k,G) := (z · C1) 	 U .

10

Wait until input stage is completed, resulting in a circuit Circ and an initialized dictio-
nary Γi. Then concurrently execute the following for each linear, multiplication, or output
gate:

linear gate (G, linear, a0, a1, G1, . . . , al, Gl) (only for i 6= k):

1. wait until Γi(k,Gu) 6=⊥, for all u = 1 . . . l.

2. compute Γi(k,G) := A0 ⊕
(

⊕l
u=1

(au · Γi(k,Gu))
)

.

multiplication gate (G,mul, G1, G2):

1. wait until Γi(k,G1) = C1 6=⊥ and Γi(k,G2) = C2 6=⊥

2. help to generate a randomizer (R,U, cert) for G:

(a) compute Ri =
�

(ri) and Ui = � (riC1) for a randomly picked ri ∈ M
compute σi := Signi(�(Ri, Ui) : part of Pk’s randomizer for G�)
construct a proof
πi := proof i(�Pi knows ri in Ri, and Ui is a randomization of riC1

�)

(b) send (Ri, Ui, σi, πi) to king Pk

(c) wait until received from Pk set SG := {(Rl, Ul, σl, πl)}l∈IG
, with |IG| ≥ t+1

(d) compute R :=
⊕

i∈IG
Ri, and U :=

⊕

i∈IG
Ui

compute certi = � i(�(R,U) : Pk’s randomizer for G�)

(e) send certi to king Pk

3. wait until received (R,U, cert) from Pk,
with � (�(R,U) : Pk’s randomizer for G�, cert) = 1

4. compute zi, Pi’s decryption share for Z = C2 ⊕ R; send zi to Pk

5. wait until received VG from Pk, with |VG| ≥ t + 1

6. decrypt z := � (Z, VG) and compute Γi(k,G) := (z · C1) 	 U

output gate (G,G′), where G = (output)

1. wait until Γi(k,G′) = C 6=⊥

2. compute a decryption share ci := � i(C) and a proof $i = proof(�ci is valid �).

3. send (ci, $i) to Pk

Figure 3: The code for slave Pj for help king Pk evaluating the circut.

3.6 Output stage

When Pi notices that the computation of an output gate (G, output, G′), is completed by
some king Pk (i.e. Γi(k,G) = C 6=⊥), but the gate has not been decrypted so far, then
Pi sends a decryption share ci of C to Pk along with a proof that the decryption share is
correct. Then Pk collects enough decryption shares, and computes the value of the output
gate.

3.7 Termination

As described above each king Pk will eventually learn the value of the output gate. This
however requires that each slave Pi keeps running after king Pk learned the output values.
To allow to also terminate the slaves, the parties execute a termination protocol. When
king Pk learns the output of the circuit it outputs it and echos the result to all parties
as its vote for the output (and does not yet terminate slave Pk). Since all honest parties
compute identical outputs and there are at most t corrupted parties, if a party receives

11

During the protocol each party executes concurrently the following rules:

rule 1:

1. wait until the output gate G ∈ G(C) is marked decrypted

2. vote by sending the value of the gate to all parties

rule 2:

1. wait until receiving t + 1 identical votes for the value of the output gate
2. adopt the value receiving t + 1 votes
3. mark the output gate G ∈ G(C) as decrypted

rule 3:

1. wait until receiving n − t identical votes for the value of the output gate
2. terminate

Figure 4: The code for terminating Pi.

t+1 identical votes for some output value it can safely adopt this value as its own output,
terminate its own king, and then echo the adopted output value. When a party receives
(n − t) identical votes for the output value it terminates the protocol. This is essentially
a Bracha broadcast of the output value and allows all parties to eventually terminate.

3.8 Security analysis

Our protocol can be proved secure in the model described in Section 2. A formal proof
that the protocol can be simulated can given along the lines of the proof in [CDN01], using
the following helping lemmas.

Lemma 1 (The correctness invariant) The properties 1, 2, 3 and 4 in Definition 1
hold at any point in the protocol if there are at most t corrupted parties.

Lemma 2 (Termination) If all honest parties start running the protocol and there are
at most t corrupted parties, then all honest parties will eventually terminate the protocol.

We first sketch proofs of the lemmas, and then we discuss how the lemmas allow to give
a proof along the lines of [CDN01].

Proof of Lemma 1. (sketch) We first prove that property 1 is an invariant. Until the
first honest party reaches Step 5 in Select Input Providers in Fig. 1 we can take W
to be any subset of size n − t. After that we take W to be the set define in Step 5 by
the first honest party. That the parties agree on W and thereby Circ(W) follows from the
fact that W is defined by Byzantine agreements. It remains to argue that |W | ≥ n − t.
Since |Ci| ≥ n − t for all honest parties Pi reaching Step 5 in Select Input Providers

in Fig. 1 it is sufficient to show the stronger claim that (∪i∈HCi) ⊆ W , where H denotes
the set of honest parties reaching Step 5. To see this, notice that if j ∈ Ci, then Pi saw
cert′j where � (cert′j , �I hold Pj’s input �) = 1. This means that at least (n − t) − t ≥ t + 1
honest parties Pl issued a signature share on �I hold Pj’s input � in Grant Certificate

of Distribution and added (Xj , certj) to Al. This was done before Pl reached Step 1 in
Select Input Providers (at which point Pl stops executing other rules than Select

Input Providers). So, (Xj , certj) is in the set Al of at least t + 1 honest parties at
Step 1 in Select Input Providers. Since (t + 1) + (n − t) > n, this means that every
honest party Pm reaching Step 3 will have (Xj , certj) in Bl and will enter the Byzantine
agreement with vj = 1. So, all parties will have wj = 1 and so j ∈ W , as desired.

Now we argue that property 2 is an invariant. First observe that if Γi(k, (Pl, input)) 6=⊥,
then Pi saw a value (Xl, certl) for which � (�Xl is Pl’s input �, certl) = 1. It is therefore

12

enough to argue that there exists a unique such value (Xl, certl). This follows from the fact
that in Fig. 1 each of the honest parties issues at most one signature share on a message
of the form �· is Pl’s input �.2

We then argue that property 3 is an invariant. Clearly property 3 holds for all in-
put encryptions of Pk. Furthermore, if property 3 holds for the encryptions Γk(k,Gu)
for u = 1, . . . , l in Step 1 in linear gate in Fig. 2, then it clearly holds for the result
Γk(k,G), by the homomorphic properties of the encryption scheme. We then consider the
multiplication protocol. Assume first that it holds for (R,U) in Step 2(c) in multiplica-

tion gate in Fig. 2 that � (U) = � (R) � (C1). Assume that Step 4 in multiplication

gate terminates. In that case, by the homomorphic properties, z = � (C2) + � (R),
and thus � (Γk(k,G)) = (� (C2) + � (R)) � (C1) − � (U) = (� (C2) + � (R)) � (C1) −

� (R) � (C1) = � (C2) � (C1) = � (C1) � (C2), as desired. So, it is sufficient to argue that
� (U) = � (R) � (C1). This follows directly from the distributive law in the plaintext
space and the fact that the proofs πi in Step 2(a) guarantee that (except with negligible
probability) � (Ui) = � (Ri) � (C1) for i ∈ IG.

Finally we argue that property 4 is an invariant. For input encryptions, property 4
follows from property 2. Furthermore, property 4 is clearly preserved by linear gate

in Fig. 3. So, it remains to consider the protocol in multiplication gate in Fig. 3.
For this purpose, assume that Pi and Pj agree on the inputs of Pk to a multiplication.
I.e. Γi(k,G1) = Γj(k,G1) and Γi(k,G2) = Γj(k,G2) in Step 1 in multiplication gate

in Fig. 3. We have to argue that if Γi(k,G) and Γj(k,G) become defined in Step 6
in multiplication gate, then Γi(k,G) = Γj(k,G). Since · and 	 are functions and
Γ(k,G) = (z ·C1)	U , it is sufficient to demonstrate that Pi and Pj agree on z, C1 and U ,
which would follow from agreement on Z, C1 and U , except with negligible probability, as
the decryption in Step 6 is correct, except with negligible probability, because of the proofs
of correct decryption share sent along in VG. Since ⊕ is a function and Z = C2 ⊕ R it is
therefore enough to argue agreement on C2, R, C1 and U . We have agreement on C1 and
C2 by assumption. To see that Pi and Pj must agree an (R,U) observe that both saw cert

such that � (�(R,U) : Pk’s randomizer for G�, cert) = 1 in Step 3. Since each honest party
issues a signature share on at most one message of the form �· : Pk’s randomizer for G� (in
Step 2(d)) it follows (as argued for property 2 above) that at most one value of the form
�· : Pk’s randomizer for G� was signed. �

Proof of Lemma 2. (sketch) As the first step in the proof we argue that if all honest
parties start running the protocol in Fig. 1, then some honest party will eventually trigger
the rule Select Input Providers. Consider namely a dead-locked execution where this
did not happen. In such an execution all honest parties are still executing all rules. So, by
the rules Grant Certificate of Uniqueness and Grant Certificate of Distribu-

tion all honest parties obviously reached Step 6 in the rule Double Distribution. So,
by the rule Echo Certificate of Distribution, the set Bi eventually grew to size n− t
at all honest parties, and so the rule Select Input Providers was eventually triggered
by all honest parties, a contradiction.

Now consider any execution where at least one honest party, Pi, triggered Select

Input Providers. This party has |Ci| ≥ n− t and therefore sent at least n− t certificates
cert′j to all other parties in the rule Echo Certificate of Distribution. Therefore all
honest parties Pl will eventually have |Cl| ≥ n− t and trigger Select Input Providers.

2To sign two different messages of the form �· is Pl’s input � a total of 2(n − t) signature shares are
needed. So, to sign two different messages at least 2(n− t)−n = n−2t ≥ t+1 parties must sign more than
one message of the form �· is Pl’s input �. So, if there are at most t corrupted parties and honest parties
sign only one value of said form, clearly at most one value is signed.

13

It is then clear that all honest parties will eventually reach Step 8 in Select Input

Providers and start waiting for (Xj , certj) for each j ∈ W . So, it is sufficient to argue
that all (Xj , certj) eventually arrive in Step 8. To see this, observe that if j ∈ W , then at
least one honest party Pi had j ∈ Bi in Step 4. This Pi will eventually reach Step 7 and
send (Xj , certj) to all parties, and (Xj , certj) will thus eventually arrive.

We have proven that if all honest parties start running the protocol in Fig. 1, then all
honest parties eventually terminate the protocol in Fig. 1. Assume then for now that at
least one honest party, Pi, reaches Step 2 in rule 3 in Fig. 4 (with some output v).

This means that Pi saw at least n − t parties vote for the value v. So, at least one
honest party, Pj , must have voted for v (triggered rule 1 with the value of the decryption
being v). Let Pj denote the first honest party to vote for v. Since Pj is first, Pj can only
have seen votes from corrupted parties before voting. Therefore Pj can have seen at most
t votes. This implies that Pj did not trigger rule 2. Since rule 1 was triggered, Pj must
have marked the output gate G as decrypted in Step 3 in output gate in Fig. 2. As
argued above, it follows from Lemma 1 that all honest parties, Pj , computing an output
vj in Step 3 in Fig. 2 will agree on vj . So, all other honest parties than Pi reaching Step 3
in output gate in Fig. 2 will also have vj = v. So, no honest party will vote for a value
different from v, unless it executed Step 2 in rule 2 for some value v ′ 6= v. Since there
are at most t corrupted parties, there will however be no first honest party to receive t+1
votes for another value v′.

We have established that if at least one honest honest party, Pi, reaches Step 2 in rule

3 in Fig. 4, with output v, then all honest parties which vote will vote for the value v. In
particular, all honest party which terminated voted for v.

Recall that we assumed that at least one honest party, Pi, terminated with output v.
For Pi to terminate with output v, Pi must have seen n − t votes for v. This implies that
at least (n− t)− t ≥ t + 1 honest parties voted for v. These honest parties sent their vote
to all parties. Therefore all honest parties Pj which did not terminate eventually received
t + 1 votes for v, which first triggered rule 2 and then triggered rule 1 to make Pj vote
for the value v. In particular, all honest party which did not terminate voted for v.

Since each honest party which terminated voted for v and each honest party which did
not terminate voted for v we have that all honest parties voted for v. This means that
all honest parties which did not terminate eventually received n − t votes for v and, well,
terminated.

We showed above that if all honest parties terminate the input phase and at least
one honest party reaches Step 2 in rule 3 in Fig. 4, then all honest parties eventually
terminate. Since the protocol, by Sect. 3.9, has finite communication, what remains to
prove the lemma is thus to establish that at any point in the execution where all honest
parties terminated the input phase, either there is an undelivered message from an honest
party to an honest party, or at least one honest party reached Step 2 in rule 3 in Fig. 4.

Assume for the sake of contradiction that all parties terminated the input phase and
that the protocol is dead-locked and that no party reached Step 2 in rule 3 in Fig. 4. This
in particular means that from the point where the input phase terminated and throughout
the execution each party was running a copy of the code in Fig. 2 and a copy of the code
in Fig. 3. Since no party ever waits for more than n − t parties in Fig. 2 and Fig. 3 and
there are n− t honest parties and by assumption no honest party terminated, this can be
seen to guarantee that no honest party dead-locked in Fig. 2 or Fig. 3. In particular, all
honest parties reached Step 3 in output gate in Fig. 2. As argued above, this implies
that all n− t honest parties voted for the same output value, which implies that all honest
parties eventually reached Step 2 in rule 3. A contradiction. �

14

Notice in particular that by property 1 a set of at least n− t parties have their inputs
considered, as required by the model in Section 2. Furthermore, by property 3, the output
vi obtained by Pi when decrypting the output ciphertext in Step 3 in output gate in
Fig. 2 will be correctly defined from the plaintexts of the input ciphertexts held by Pi.
Since by property 2 the parties agree on the input ciphertexts, all honest parties Pi will
agree on the output vi in Step 3 in output gate. This clearly implies that all honest
parties terminate Fig. 4 with the output being the common value v, as no other value
can get t + 1 votes when there is at most t corrupted parties. Since v is the result of
evaluating the circuit on the plaintexts of the input ciphertexts and, by property 2, the
input ciphertext Xl of honest party Pl contains the correct input xl, the result v can indeed
be obtained by restricting the set of input providers to a set of size at least n− t and then
changing only the inputs of the corrupted parties.

The privacy of the protocol (formally defined by the simulator only being given the
inputs of the corrupted parties in the simulation) mainly follows from the fact that all
inputs are encrypted using a semantic secure encryption scheme and that all proofs are
zero-knowledge. So, the only knowledge leaked about the inputs of the honest parties is
through decryptions of ciphertexts. The only decryptions take place in Step 4 in multi-

plication in Fig. 3 and in Step 2 in output gate in Fig. 3. By the correctness of the
protocol the knowledge leaked in Step 2 in output gate is the result of the computation,
which is allowed to leak by the model. So, what remains is to argue that no knowledge is
leaked in Step 4 in multiplication. To see this, observe that the value revealed by the
decryption in Step 4 is z = c2 +

∑

i∈IG
ri, which holds the potential of leaking knowledge

about c2 (which is potentially to be kept secret). Since each term ri from an honest party
is chosen uniformly at random and all ri are chosen independently (this is the purpose
of having all parties, in particular the corrupted parties, prove plaintext knowledge of
their ri in Step 2(a)) it is sufficient to show that each revealed value z = c2 +

∑

i∈IG
ri

contains at least one honest value ri which did not enter another revealed value. Observe
first of all that since |IG| ≥ t + 1, at least one ri came from an honest party. Observe
then that each of the randomizers ri are associated uniquely to one (Pk, G) by the sig-
nature σi (issued in Step 2(a) and checked in Step 2(c)). Therefore ri only enters values
z = c2 +

∑

i∈IG
ri leaked in decryptions in Step 4 in multiplication for the specific

(Pk, G) in consideration. It is therefore sufficient to show that for each (Pk, G) there is
only one value z = c2 +

∑

i∈IG
ri for which knowledge is leaked. To see this, assume that

for each king Pk and each gate G at most one value of the form �· : Pk’s randomizer for G�

is signed. I.e. there exists at most one value (R,U) for which there exists cert such that
� (�(R,U) : Pk’s randomizer for G�, cert) = 1 (this can be seen to be necessary for property
4 to hold and thus follows from Lemma 1). Since the honest parties agree on the gate
encryptions of Pk (by property 4), this implies that there is at most one value Z = C2 ⊕R
for which honest parties issue decryption shares in Step 4 for a given choice of (Pk, G).
Therefore each value z = c2 +

∑

i∈IG
ri on which knowledge is leaked through decryption

shares from honest parties, at least one ri came from an honest party and did not enter
another value on which knowledge was leaked, as desired.

3.9 Efficiency analysis

In this section we consider the communication complexity of the protocol. For complete-
ness, we consider the case where each party can have more than one input, and we denote
by cI the total number of input gates. For clarity we use K =n to denote the number of
kings and S=n to denote the number of slaves.

In the protocol in Fig. 1, when each party has more than one input, Xi will simply be
the vector of input encryptions. Assuming that all encryptions, all signature shares, all

15

signatures and all pairwise proofs use communication O(κ) and that the communication
complexity of a Byzantine agreement is O(n2κ), it can be seen using simple counting that
the communication complexity of the protocol in Fig. 1 is O(cIn

2κ + n3κ).
Considering then the protocol in Fig. 2, the only values sent are the sets SG and VG.

These sets have size O(nκ) and are sent to all S slaves. This gives a communication
complexity of O(Snκ) each time a set is sent, or a total communication complexity of
O((cM + cO)Snκ) for running the protocol in Fig. 2, where cM is the number of multipli-
cation gates and cO is the number of output gates. This is done by all K kings, yielding
a total communication complexity of O((cM + cO)KSnκ).

Considering then the protocol in Fig. 3, the sending of the values in Steps 2(b), 2(e), 4 in
multiplication gate and Step 3 in output gate all use O(κ) bits of communication.
Besides this the construction of the proofs in Step 2(a) in multiplication gate and
Step 2 in output gate takes O(nκ) bits of communication, and are thus the dominating
instructions. Each construction of a proof is done at most once for each gate for each king
being helped. This yields a total of O((cM + cO)Knκ) for running the protocol in Fig. 3.
Since the protocol is run by all S slaves, this yields a total communication complexity of
O((cM + cO)KSnκ).

It is easy to verify that the total communication complexity of the protocol in Fig. 4
is O(cOn2κ).

Summing the above terms we get a communication complexity of O((cI + cO)n2κ +
(cM + cO)KSnκ + n3κ). Using K = S = n and assuming that cO ≥ 1, this is O(cIn

2κ +
(cM + cO)n3κ), as claimed.

4 Extensions and applications

4.1 Computing functions with private outputs

The description of the new protocol in Section 3 only considers public outputs, i.e., every
party learns the output(s) of the circuit. In the following, we present an extension that
allows for outputs that are delivered only to an authorized party, say Pj .

The intuition of the protocol is that the decryption shares are not sent to the king,
but rather directly to Pj . Every decryption share must go along with a proof of validity.
This proof must not be interactive with Pj (the parties cannot wait for messages of Pj),
and the proof must not be given to other parties (this would violate the privacy of the
output protocol). Therefore, we have every slave Pi blind his decryption share ci with a
random value ri, i.e., c′i = ci + ri, encrypt ri with randomness ρi, i.e., Ri =

�
(ri, ρi), and

prove interactively towards every auxiliary player Pj knowledge of ri such that ri encrypts
to Ri and c′i − ri is a valid decryption share. Upon accepting the proof, every auxiliary
player hands a signature share for �(c′i, Ri) is a good decryption share for slave Pi� to Pi,
who then sends c′i, ri, ρi to Pj . Given this information from at least n− t players, Pj picks
the valid decryption shares and decrypts his private output.

4.2 A hybrid model: asynchronous network with few synchronization rounds

An fully asynchronous MPC protocol inherently cannot consider the input of every honest
party; once n − t inputs are ready, the protocol must start. This is a serious drawback
which makes the fully asynchronous model unusable for many real-world applications. We
show that with a single round of synchronization, we can consider the input of every
honest party. This model seems very reasonable in real-world; the parties would wait for
other parties to have their input ready, and if not, use other means of communication
(email, phone, fax, etc) to synchronize. However, the MPC protocol itself should run
asynchronously to comply with the properties of existing networks, namely that the delay
of messages is hard to predict. Note that asynchronous protocols can be looked as “best

16

effort” protocols where the progress in the protocol is as fast as possible with the available
network, in contrast to synchronous protocols whose progress is limited by the assumed
worst-case delay of the network.

The necessary changes in the input protocol (cf. Fig. 1) are minimal: Every player
Pi moves to the last stage (“Select Input Providers”) only when either |Ci| = n, or the
synchronization round elapsed.

4.3 Non-robust computations

In the proposed protocol, robustness is guaranteed by having each party act as king, who
evaluates the whole circuit on his own (with help of his slaves). This means that the
computation and communication overhead for achieving robustness is a factor of n.

Goldwasser and Lindell have proposed a model for secure MPC in which output delivery
is not guaranteed [GL02], unless some a priori specified party is honest. In this model,
we can improve the communication complexity of our protocol by a factor of n, simply
be letting this designated party act as king, and all other parties act as his slaves. We
stress that the protocol still guarantees privacy and correctness of the computation, but
termination (with output delivery) can only be guaranteed when the king is honest. This
simplified protocol achieves an overall communication complexity of O(cn2κ) for a circuit
of size c and a security parameter κ.

5 Conclusions and open problems

We have proposed a secure multiparty computation protocol which substantially puts for-
ward both theory and practice in this field. From a theoretical point of view, the protocol
is optimally resilient, fully asynchronous, and has an asymptotically lower communication
complexity than any previous asynchronous MPC protocol. Indeed, the protocol is as effi-
cient as the most efficient known protocol for synchronous communication. Furthermore,
the protocol requires very few invocations of the broadcast primitive (independent of the
size of the computed circuit).

From a practical point of view, the new protocol is designed for real-world networks
with unknown message delay, allows every party to provide his input under a very rea-
sonable assumption (one round of synchronization), and achieves best-possible resilience
against cheating (up to a third of the parties may misbehave). Furthermore, the pro-
tocol is very efficient, the constant communication overhead is minimal. The effective
computation of the circuit takes less than 10n3κ bits of communication per multiplica-
tion, which makes the protocol applicable for reasonably sized circuits among small sets
of parties. The key set-up (for the threshold decryption and threshold signatures) is more
communication-intensive; however, this can be performed long in advance.

The major open problem of our protocol is its limitation to static adversaries. Although
there is no (obvious) adaptive attack and the limitation is more due to the lack of formal
simulatability in presence of an adaptive adversary, it would be nice (at least for theoretical
reasons) to have a provably adaptively secure protocol.

References

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure com-
putation. In Proc. 25th ACM Symposium on the Theory of Computing (STOC),
pages 52–61, 1993.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing (STOC), pages 1–10, 1988.

17

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computa-
tions with optimal resilience (extended abstract). In Proc. 13th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 183–192, 1994.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and Applications. PhD
thesis, Weizmann Institute of Science, Rehovot 76100, Israel, June 1995.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer
Science. IEEE, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pages 11–19, 1988.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Advances in Cryptology —
EUROCRYPT ’01, Lecture Notes in Computer Science, pages 280–300, 2001.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Con-
stantinopole: Practical asynchronous Byzantine agreement using cryptogra-
phy. In Proc. 19th ACM Symposium on Principles of Distributed Computing
(PODC), pages 123–132, 2000.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Proc. 4thInterna-
tional Workshop on Practice and Theory in Public Key Cryptography (PKC),
pages 110–136, 2001.

[FH96] M. Franklin and Stuart Haber. Joint encryption and message-efficient secure
computation. Journal of Cryptology, 9(4):217–232, 1996.

[FPS00] Pierre-Alain Fouque, Gouillaume Poupard, and Jacques Stern. Sharing decryp-
tion in the context of voting or lotteries. In Financial Cryptography ’00, Lecture
Notes in Computer Science, 2000.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
Distributed Computing — DISC ’02, volume 2508 of Lecture Notes in Computer
Science, pages 17–32, 2002.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game — a completeness theorem for protocols with honest majority. In
Proc. 19th ACM Symposium on the Theory of Computing (STOC), pages 218–
229, 1987.

[Nie02] Jesper B. Nielsen. A threshold pseudorandom function construction and its
applications. In M. Yung, editor, Advances in Cryptology - Crypto 2002, pages
401–416, Berlin, 2002. Springer-Verlag. Lecture Notes in Computer Science
Volume 2442.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Advances in Cryptology — EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, pages 223–238, 1999.

[PSR02] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally
secure computation: An efficiency improvement. In Indocrypt 2002, volume
2551 of Lecture Notes in Computer Science, pages 93–107, 2002.

[Sho00] Victor Shoup. Practical threshold signatures. In Advances in Cryptology —
EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer Science, 2000.

[SR00] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty
distributed computation. In Indocrypt 2000, volume 1977 of Lecture Notes in
Computer Science, pages 117–129, 2000.

18

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Sympo-
sium on the Foundations of Computer Science (FOCS), pages 160–164. IEEE,
1982.

19

