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Abstract. In a group signature [10], any one out of n group members
can sign on behalf of the group without revealing the identity of the
signer. However, the Open Authority (OA), in possession of a certain
trapdoor, can revoke the anonymity and reveal the signer identity. The
individual group member is futile to resist. In this paper, we initiate the
study of tracing-by-linking (TbL) group signatures. An honest signer’s
identify cannot be revoked by any authority. However, if a group member
signs twice, these two signatures can be linked and the identity of the
double signer can be efficiently computed without trapdoor. We introduce
security models for TbL group signatures, and construct the first exam-
ples whose security are reduced to well-known assumptions. Major se-
curity notions include anonymity, full linkability, and non-slanderability.
The core of our technique is the successful transplant of TbL technique
from single-term offline e-cash and blind signature settings [6, 13, 12] to
group signatures. Our signatures have size O(1).

1 Introduction

The balance between law enforcement needs and individual privacy has been
one of the most vexing research topics in cryptography – public security versus
individual privacy. In Chaum and van Heyst[10]’s group signature, the authority,
more specifically the open authority (OA), holds the ultimate power to revoke
the anonymity of a group signature. Even if the signer does not wish to have his
anonymity revokes, it is powerless to resists. On the other end of the spectrum,
the signer of a ring signature [11, 19] also enjoys anonymity. That anonymity
cannot be taken away by any authority or group manager without the signer’s
voluntary cooperation.

The overriding power of the open manager to revoke anonymity has raised
concerns of some prominent cryptographers. They raised the concern that fu-
ture change of political leadership may cause the revocation power to fall into
the wrong hands. On the other hand, the strong anonymity present in ring sig-
natures, guaranties by statistical zero-knowledge is too strong for authorities
and regulations, even in civilian and commercial systems. Different shades of
balances between the public need to regulate/revoke and the individual need
to protect privacy/anonymity are important issues in applications of group sig-
natures including e-voting, e-cash, and direct anonymous attestation (DAA) in
trusted computing.
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In this paper, we seek a balance between public needs to regulate and in-
dividual needs to protect privacy/anonymity. In tracing-by-linking (TbL) group
signature, the anonymity of the signer remains protected as long as the signer
does not ”double sign”: such as double voting in e-voting schemes, double spend
in e-cash schemes, or double-attest and become a rogue in DAA. However, if an
entity double signs, there is a publically computable algorithm to link these two
offeding signatures and the double signer’s identity can be publically computed
from these two linked signatures.

A rather desirable balance between regulation and privacy is achieved. The
privacy of honest group members is protected. No authority can revoke it. On
the other hand, the identity of an offender can be computed, by authorities or
by any member of the public, and penalties sought.

Our Contributions.
– We initiate the study of tracing-by-linking (TbL) group signatures. We intro-

duce its security model, and construct the first several TbL group signatures.
In particular, we modify [3]’s generic group signature, [21, 4, 5]’s SDH-based
group signature, and [1]’s strong-RSA-based group signature to constant-size
TbL group signatures.

– Our TbL mechanism can be incorporated to many other applications. Using
it, we construct efficient TbL ring signatures, enhance direct anonymous
attestation by making the identity of the rogue signer publically computable.
Other applications to one-show credentials with rogue identifying, e-voting,
and e-cash are discussed.

The paper is organized as follows: In Section 2 contains preliminaries. Sec-
tion 3 contains security models. Section 4 contains constructions and security
theorems. Section 6 contains discussions and conclusions.

Related results. Results on linkability sporadically appear in the literature.
Nakanishi, et al. studied linkable group signatures [17, 18]. Camenisch, et al.
[8]’s one-show credentials used linkability. Brickell, et al. [7]’s Direct Anonymous
Attestation (DAA) contained linkability. Liu, et al. [16] studied linkable ring
signature. Brands [6]’s and Ferguson’s [13, ?] offline anonymous e-cash scheme
had a core technique for linking two double signers. Fischlin viewed the linkability
in his anonymous group identification as unfortunate [14], P.126, L.3. Bellare,
et al. remarked that linkability and anonymity cannot coexist in their model
[2], P.623. Most of these linkability techniques do not result in the tracing of
the double signer after two signatures are linked. Only e-cash schemes [6, 13, 12]
efficiently computes the double signer’s identity without trapdoor.

In this paper, we successfully transplanted TbL techniques from e-cash which
is based on blind signatures, to a TbL mechanism in the group signature setting.
The essence of the TbL technique is to fix (or commit) some randomness during
ecash withdrawal and then require the user to use these randomness during the
first commitment move of a 3-move proof. Double spending implies answering
challenges twice with this fixed commitment. That results in the extraction of
the rogue identity. We call this the commit the commitment (CtC) technique.
We transplanted CtC to group signatures, and achieved TbL.
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2 Preliminaries

Due to space limitations, we keep reviews to be bare essentials. We plan to add
back more details in a full version.

We say N is a safe product if N = pq, p = 2p′+ 1, q = 2q′+ 1, p, q, p′, and q′

are sufficiently large primes. The set of quadratic residues in ZN , denoted QRN ,
consists of all squares in Zn which are also squares in Zp and in Zq.
The Strong RSA Assumption. There exists no PPT algorithm which, on
input a random λ-bit safe product N and a random z ∈ QR(N), returns u ∈ Z∗N
and e ∈ N such that e > 1 and ue = z(modN), with non-negligible probability
and in time polynomial in λ.

Let e : G1 × G2 → GT be a bilinear mapping, i.e. e(ua, vb) = e(u, v)ab, for
u ∈ G1, v ∈ G2, a, b ∈ Z. The q-Strong Diffie-Hellman Problem (q-SDH)
is the problem of computing a pair (g1/(γ+x)

1 , x) given a (q+2)-tuple (g1, g2, gγ2 ,
gγ

2

2 , · · · , gγ
q

2 . For details, see [5].
Camenisch-Stadler proof system with Commit the Commitment

(CtC). Camenisch and Stadler presented a notation for proof systems[9]. Let I,
J , K be index sets, and let µ : I × J → K ∪ {⊥}, where the parameter x⊥ = 0
by convention. In a nutshell: for the signature proof system denoted SPK{{xk :
k ∈ K} : ∧i∈I yi =

∏
j∈J g

xµ(i,j)
j }(M), a proof consists of ({yi : i ∈ I}||{gj : j ∈

J}||{zk : k ∈ K}||c||M ||µ) satisfying c = H({(yi, ti) : i ∈ I}||{gj : j ∈ J}||M ||µ}
where ti = yci

∏
j∈J g

zµ(i,j)
j for each i ∈ I. For details, see [9].

We introduce a new notation to incorporate CtC (commit the commit-
ment). Let I, J , K, {xk : k ∈ K}, {gj : j ∈ J}, yi : i ∈ I}, µ : i × J → K be
defined as above. Let k1, k2, k3, k4 be four distinct elements of K, and h1 and
h2 be two fairly generated bases distinct from {gj : j ∈ J}. For the signature
proof system denoted

SPK{{xk : k ∈ K} :

(
∧
i∈I
yi =

∏
j∈J

g
xµ(i,j)
j ) ∧ CtC(xk1 , xk2 , xk3 , xk4 , h1, h2)}(M) (1)

a proof consists of

{yi : i ∈ I}||{gj : j ∈ J}
||{zk : k ∈ K}||c||M ||label||µ||ỹ||(k1, k2, k3, k4, h1, h2) (2)

(where label is randomly generated by signer) satisfying

c = H({(yi, ti) : i ∈ I}
||{gj : j ∈ J}||M ||label||µ||ỹ||t̃||ũ||(k1, k2, k3, k4, h1, h2)} (3)

where ti = yci
∏
j g

zµ(i,j)
j for each i ∈ I, and

t̃ = ỹchz̃11 h
z̃2
2 , (4)

ũ = t̃
c
hz̃31 h

z̃4
2 , (5)
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where z̃`=zk` is the response corresponding to the secret xk` , for `=1,2,3,4.
Abbreviate proof-of-knowledge as PoK. The value t̃ is the commitment in

the 3-move (sub-)PoK {(xk1 , xk2) : ỹ = h
xk1
1 h

xk2
2 }. It is also ”committed” itself

as the masked image in the (sub-)PoK {(xk3 , xk4) : t̃ = h
xk3
1 h

xk4
2 }. Therefore the

name CtC (Commit the Commitment). Signing twice, i.e. completing SPK twice
with different (M , label) pairs, results in the efficient extraction of the secrets
xk1 and xk2 , without using any trapdoor.

Example: SPK{(x1, x2, x3, x4): y1 = gx1
1 gx2

2 ∧ y2 = gx3
2 gx4

3 ∧ y3 =
gx2

1 gx3
3 gx4

5 ∧ CtC(x1, x2, x3, x4, h1, h2)}(M). Note I={1,2,3}, J={1,2,3,4,5},
K={1, 2, 3, 4}, µ maps (1,1), (1,2), (2,2), (2,3), (3,1), (3,3), (3,5) to 1,2,3,4,2,3,4,
respectively, and µ(i, j) =⊥ elsewhere. A proof consists of

(y1, y2, y3)||(g1, g2, g3, g4, g5)||(z1, z2, z3, z4)||c||M ||label||ỹ||(1, 2, 3, 4, h1, h2) (6)

(where label is randomly generated by the signer) satisfying

c = H((y1, t1, y2, t2, y3, t3)||(g1, g2, g3, g4, g5)||M ||label||µ||ỹ||t̃||ũ||(1, 2, 3, 4, h1, h2))

where t1 = gz11 g
z2
2 y

c
1, t2 = gz32 g

z4
3 y

c
2, t3 = gz21 g

z3
3 g

z4
5 y

c
3, and t̃ = hz11 h

z2
2 ỹ

c, ũ =
hz31 h

z4
2 t̃

c.
Let us demonstrate how to simulate a proof, Eq. (1): Assume µ, gj ’s, and k1,

k2, k3, k4, h1, h2 are given. The inputs to the SHVZK (special honest verifier
zero-knowledge) simulator are c and {yi : i ∈ I}.

1. Randomly generate ỹ, zk1 , and zk2 . Compute t̃ = h
zk1
1 h

zk2
2 ỹc.

2. Randomly generate zk3 and zk4 . Compute ũ = h
zk3
1 h

zk4
2 t̃

c.
3. Randomly generate zk, k ∈ K \ {k1, k2, k3, k4}. Compute ti =

∏
j g

zµ(i,j)
j yci ,

each i ∈ I.
4. Output the proof according to Equation (2).

The simulated proof is has a non-negligible statistically distance from the real-
world proof generated with known secrets xk, k ∈ K. However, it can be shown
that the simulated proof is computationally indistinguishable from the real-world
proof provided the DDH (Decisional Diffie-Hellman) Problem is hard.

3 Security Model

We present a security model for the tracing-by-linking (TbL) group signature.
In a nutshell, we start with [3]’s security model for group signatures, and replace
their pair of security notions, full traceability and non-frameability, by a new
pair, full linkability and non-slanderability.

Motivated by DAA (Direct Anonymous Attestation) [7], our system consists
of three types of entities in multitudes:

– Managers of Groups, or, equivalently, Certificate Authorities (CA’s), with
serial number cnt which stands for counter value.

– Users, or, equivalently, TPM (Trusted Platform Module), whose serial num-
ber is id.
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– Verifiers with serial number bsn which stands for basename.

Remark: We have in mind the following: An individual user has one personal
key pair, (uskid, upkid). It can get one certificate from each CA. Verifiers bsn
will verify the proof-of-knowledge of possession of a certificate from cnt, in each
execution run.

Syntax. A TbL group signature is a tuple (Init, GKg, UKg, Join, Iss, GSig,
GVf, Link, Indict) where:

– Init: 1λ → param. On input the security parameter 1λ, Protocol init generates
public system parameters param. Included: an efficiently samplable one-way
NP-relation whose specification is 〈Ruser〉, an efficiently samplable family of
trapdoor one-way NP-relations whose specifications constitute F={〈RCA,i〉 :
i} and whose trapdoors are denoted gski’s.

– GKg:cnt
$→ 〈RCA,cnt〉. On input cnt, Protocol GKg samples F to get a relation

whose specification is 〈RCA,cnt〉 and whose trapdoor is gskcnt, and adds an
entry (cnt, 〈RCA,cnt〉) to the public system parameters param. By convention,
〈RCA,cnt〉 includes gpkcnt.

– UKg: id
$→ (uskid, upkid) ∈ Ruser. Protocol UKg accepts input id to sample a

key pair fromRuser, adds an entry (id, upkid) to the public system parameters
param.

– Join,Iss is a pair of interactive protocols with common inputs cnt and id, and
Iss’s addition input gskcnt, and Join’s additional inputs uskid. At the conclu-
sion, join obtains extended secret key xskid,cnt, extended public key xpkid,cnt

which includes a certificate certid,cnt satisfying (xpkid,cnt, certid,cnt) ∈ RCA,cnt

and (xskid,cnt, xpkid,cnt) ∈ Ruser, such that Iss does not know xskid,cnt, and
an entry (id, cnt, xpkid,cnt) is added to the public system parameters param.
Below, we may sometimes use the notations xpk (resp. xsk) and upk (resp.
usk) interchangeably without ambiguity from context.

– GSig: (id, cnt, xskid,cnt, bsn, M)→ σ. It takes inputs id, cnt, xskid,cnt, bsn, and
a message M , returns a signature σ. By convention, the (extended) signature
σ includes cnt, bsn, and M .

– GVf: σ → 0 or 1. It takes input a signature σ, returns either 1 or 0 for valid
or invalid.

– Link: (σ, σ′)→ 0 or 1. It takes inputs two valid signatures, σ and σ′, returns
either 1 or 0 for linked or unlinked.

– Indict: (σ, σ′)→ id. It takes two valid and linked signatures σ and σ′, returns
id.

Notions of Security
The security notion Correctness is defined as follows:

Definition 1. For i=1,2, let σi=GSig (idi, cnti, xskidi,cnti , bsni, Mi). A TbL
group signature has verification correctness if GVf (σ1)=1 with probability one.
It has linking correctness if Link (σ1, σ2) = 0 with overwhelming probability
when id1 6= id2 or cnt1 6= cnt2 or bsn1 6= bsn2. It has indictment correctness if
Link (σ1, σ2) = 1 and Indict (σ1, σ2) = id1 with overwhelming probability when
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id1 = id2 and cnt1 = cnt2 and bsn1 = bsn2. It is correct if it has verification
correctness, linking correctness, and indictment correctness.

The following oracles define the attacker’s capabilities.

– The Random Oracle: We use the Random Oracle normally.
– The Corruption Oracle: CO : (id, cnt) → xskid,cnt. Upon input the id of a

group member, it outputs xskid.
– The Signing Oracle SO : (id, cnt, bsn,M)→ σ. Upon inputs user id, CA cnt,

Verifier bsn, and a message M , it outputs a valid signature, provided the
public system parameters param contains an entry for (id, cnt).

Linkable Anonymity. Anonymity for TbL group signature is defined in the
following experiment.

Experiment LA.
1. (Initialization Phase) Simulator S invokes Init, GKg, gets gsk, invokes UKg

(resp. Join,Iss) gu ≥ 2 times to generate a set of joined users, denoted JUS ,
with their extended user public keys xpkid’s.

2. (Probe-1 Phase) A gets gsk and uses it to create and join new uers, and A
queries the oracles.

3. (Gauntlet Phase) A selects two gauntlet users id0, id1 ∈ JUS , a message
M , and give them to S. Then S flips a fair coin b ∈ {0, 1} and returns the
gauntlet signature σg = SO(idb,M).

4. (Probe-2 Phase) A queries the oracles.
5. (End Game) A delivers an estimate b̂ ∈ {0, 1} of b.

Oracle queries can be arbitrarily interleaved across Probe-1, Gauntlet, and Probe-
2 Phases. A wins the Experiment LA if b̂ = b, id0 (resp. id1) has never been
queried to CO or SO. A’s advantage is its winning probability minus half.

Definition 2 (Linkable Anonymity). An TbL group signature is linkably
anonymous if no PPT adversary has a non-negligible advantage in Experiment
LA.

Linkability, full linkability. Roughly speaking, full linkability means that
any coalition without the group manager, in possession of q` user secret keys,
can produce q` + 1 valid signatures that are pairwise unlinked.

Formally, full linkability for TbL group signature is defined in terms of the
following experiment.

Experiment FL.
1. S invokes Init, GKg, invokes UKg (resp. Join,Iss) qu times, to generate a set
JU of qu users.

2. A makes qk (resp. qh, qs) queries the Corruption (resp. Random, Signing)
Oracle with arbitrary interleaf.

3. A delivers signatures σi, 1 ≤ i ≤ n′, none of which is the output of a SO
query.
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Let qs,trace denote the number of users id ∈ JU for whom A queried SO, i.e.
SO(id, cnt, bsn,M), more than once with the same triple (id, cnt, bsn). A wins
Experiment FL if it delivers n′ > qk+qs,trace valid signatures which are pairwise
unlinked, i.e GVf(σi)=1, for all i, 1 ≤ i ≤ qk+qs,trace+1; and Link(σi, σj)=0, for
all i, j, 1 ≤ i < j ≤ qk+qs,trace+1. The Adversary’s advantage is its probability
of winning.

Definition 3 (Full Linkability). A TbL group signature is fully linkable if no
PPT adversary has a non-negligible advantage in winning Experiment FL.

Non-slanderability In a nutshell, non-slanderability means a coalition of
users together with the group manager cannot produce signatures that are linked
and indicted to a group member outside the coalition. Formally,

Experiment NS/SbV
1. S invokes Init, GKg, invokes UKg (resp. Join,Iss) qu times, to generate a set
JUstatic of qu users and give JUstatic to Adversary A. S also gives the group
secret key gsk to A.

2. A queries the oracles in arbitrary interleaf.
3. A delivers two signatures, σ and σ′, that are valid, linked, and indicted to

user idg ∈ JUstatic.

A wins Experiment NS if it has never queried idg to CO, and it has never
queried SO more than once with any triple (idg, cnt, bsn), for any cnt, bsn. A’s
advantage is his probability of winning. A wins the harder Experiment SbV if
it wins Experiment NS and, additionally, one of the two delivered signatures is
the output of a query to SO.

Definition 4. A TbL group signature is non-slanderable if no PPT adversary
has a non-negligible advantage in Experiment NS. It is slanderable-but-vindicatable
(SbV), or simply vindicatable, if no PPT adversary has a non-negligible advan-
tage in Experiment SbV.

Remark: For an SbV group signature, the following scenario cannot be ruled
out: A produces two signatures which are valid, linked, and indict to id who is
never corrupted or traced. But id can vindicate itself by some efficient algorithm.
However, slander-then-vindicate remains a hassle if not a vulnerability. It is best
to achieve non-slanderability. [20] contained a TbL group signature which is SbV
but not non-slanderable. The size of their signature is O(n) where n = |JUstatic|.

Linkable Security. Summarizing we have:

Definition 5 (Security). A TbL group signature is linkably secure if it is
correct, linkably anonymous, fully linkable, and non-slanderable. It is linkably
SbV-secure if it is correct, linkably anonymous, fully linkable, and slanderable-
but-vindicatable.

Related security notions. Non-slanderability implies that indictment is accu-
rate with overwhelming probability: If two valid and linked signatures indict to
idg, then non-slanderability implies no one except idg could have generated them,
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with overwhelming probability. Full linkability specializes to unforgeability when
qk + qs,trace = 0, and it specializes to ordinary linkability when qk + qs,trace = 1.
Exculpability of openable group signature means that a coalition of users, together
with the group manager (and the open authority) cannot produce a signature
traced to an uncorrupted member. The TbL group signature does not have the
”open signature” functionality, and the notion of exculpability is, in a sense,
absorbed into into non-slanderability. [15]’s misidentification attack is related to
a slander.

4 Constructions

We construct several TbL group signatures with provable security, including
some withO(1) size. For simplicity, fix cnt and bsn and omit them from notations.

4.1 A generic construction: the TbL-generic group signature

Given an efficiently samplable family of trapdoor one-way NP-relations whose
specifications constitute F = {〈RCA,i〉}, and an efficiently samplable one-way
NP-relation whose specification is 〈Ruser〉, construct a TbL group signature (Init,
GKg, UKg, Join, Iss, GSig, GVf, Link, Indict) as follows:

Init, GKg, UKg are as specified in the Syntax. In particular, the public system
parameters param include a full-domain secure hashing function Hb.

Join,Iss are as follows:

1. Common inputs are cnt, id, param, gi = Hb(g, cnt, i). Additional input to
Join (resp. Iss) is uskid (resp. gskcnt).

2. Join randomly generates s3, s4, s5, set s1 = uskid, computes s2 = id · s3,
yi = gsii , 1 ≤ i ≤ 5. Sends xpk = (y1, · · · , y5) and a proof-of-knowledge
PK{(s2, s3) : y2 = gs22 ∧ y3 = gs33 ∧ s2 = id · s3} to Iss.

3. Iss verifies (id, cnt) has not been entered in param, verifies the proof-of-
knowledge, then generates and sends cert satisfying (xpk, cert) ∈ RCA,cnt.
It adds the entry (id, xpkid,cnt) to the public system parameters param. By
convention, xpkid,cnt includes certid,cnt.

GSig: Upon inputs id, cnt, xskid, and a message M , it obtains xpkid,cnt, which
includes certid,cnt, from param and then returns a signature σ computed as the
following signature proof-of-knowledge (SPK):

SPK{(xsk, xpk, cert) : xsk = (usk, s2, s3, s4, s5)
∧xpk = (upk, gs22 , g

s3
3 , g

s4
4 , g

s5
5 ) ∧ (usk, upk) ∈ Ruser ∧ (xpk, cert) ∈ RCA

∧CtC(s2, s3, s4, s5, h1, h2) ∧ gi = Hb(g, cnt, i) ∧ hi = Hb(h, cnt, bsn, i)}(M)(7)

By convention, σ includes cnt, bsn, and M .
GVf: Given a signature σ, check whether it is a signature proof-of-knowledge

of Relation (7).
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Link: Accepting two valid signatures σ(b) containing (ỹ(b), t̃
(b)), b=1,2, it out-

puts linked if ỹ(1) = ỹ(2) and t̃
(1) = t̃

(2). It outputs unlinked otherwise. Note ỹ(b)

and t̃
(b) are part of the CtC contained in the signatures according to Eq. (7).

Indict: Accepting two valid and linked signatures σ(b) containing (ỹ(b), t̃
(b)),

b=1,2, it uses the soundness of the CtC relation to extract the secrets s2 and s3.
Then it indicts user id = s2/s3.

4.2 Instantiation in SDH setting: The TbL-SDH group signature

We instantiate the generic constructing in Sec. 4.1 in the SDH group [21, 4, 5].
Let ê : G1 ×G2 → GT be a bilinear mapping. The relations are instantiated as
follows:

Ruser = {(xsk, xpk) : xsk = (x1, · · · , x5), xpk = (y1, · · · , y5), each yi = gxii,5}
RCA,cnt = {(xpk, cert) : xpk = (y1, · · · , y5), cert = ((A1, e1), · · · , (A5, e5))),

each Aei+γii yi = gi,6}

gpk includes uγ1
1 , · · · , uγ5

5 ∈ G2, gsk = (γ1, · · · , γ5). Note gi,j = Hb(g, cnt, i, j) ∈
G1, ui = Hb(u, cnt, i) ∈ G2.

Init, GKg are the same as Sec. 4.1.
UKg: On input id, sample the relation R′user = {(x, y) : y = gxi,5} to produce

(uskid, upkid) ∈ R′user.
Join,Iss accepts common inputs cnt and id, Join’s additional input uskid,

Iss’s additional input gskcnt. Randomly generate x2, x3, x4, compute x5 =
id · x4, yi = gxii,5 for all i. Let x1=uskid, y1=upkid, xpkid,cnt = (x1, · · · , x5),
ypkid,cnt = (y1, · · · , y5). Note (xskid,cnt, xpkid,cnt) ∈ Ruser, Join sends xpkid,cnt

and proof-of-knowledge x2 = x3 · id. Iss verifies, and returns certid,cnt satisfy-
ing (xpkid,cnt, certid,cnt) ∈ RCA,cnt. Note certid,cnt = ((A1, e2), · · · , (A5, e5)) and
Aei+γii yi = ui, ui = Hb(u, cnt, i). Iss enters the entry (id, cnt, xpkid,cnt, certid,cnt)
into the public param.

GSig accepts input id, cnt, xskid,cnt, bsn, message M . It outputs signature σ
which is a signature proof of knowledge of the following system. (It essentially
quintuplicates the proof system in [21, 5] and add CtC.)

SPK{{(xi, Ai, ei) : 1 ≤ i ≤ 5}) :
(∧i:1≤i≤5 A

γi+ei
i gxii,5 = gi,6 ∈ G1) ∧ CtC(x5, x4, x3, x2, h1, h2)}(M)

where gpkcnt = (uγ1
1 , · · · , uγ5

5 ), ui = Hb(u, cnt, i), hi = Hb(h, cnt, bsn, i).
Further details of GSig: Below, let xi,5 = xi, xi,3 = Ai, xi,4 = ei, xi,1 =

si,1, xi,2 = si,2, each i. Denote (k1,k2,k3,k4)=((5,5), (4,5), (3,5), (2,5)). Note
(xk1 , xk2 , xk3 , xk4)= (x5, x4, x3, x2). Compute the masked images yi,j ’s as
follows:

yi,1 = g
si,1
i,1 , yi,2 = Aig

si,1
i,2 , yi,3 = yeii,2

yi,4 = [ê(gi,2, u
γi
i )ê(gi,4, ui)]si,1 ê(gi,2, ui)si,2 , yi,5 = geii,1g

si,1
i,3 ,

yi,6 = gxii,5g
si,1
i,4 , all i; ỹ = hx5

1 hx4
2 , t̃ = hx3

1 hx2
2

(8)
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where si,2 = eisi,1, gi,1 = gi, for i=1,2,3,4,5. Compute the commitments:

ti,1 = g
ri,1
i,1 , ti,2 = Rig

ri,1
i,2 , ti,3 = y

rei
i,2 ,

ti,4 = [ê(gi,2, u
γi
i )ê(gi,4, ui)]ri,1 ê(gi,2, ui)ri,2 , ti,5 = g

rei
i,1 g

ri,1
i,3 , ti,6 = g

rxi
i,5 g

ri,1
i,4 ,

all i; ũ = h
rx3
1 h

rx2
2 , rx5 = x3, rx4 = x2

Compute the challenge:

c = H({(yi,j , ti,j) : 1 ≤ i ≤ 5, 1 ≤ j ≤ 6}
||{gi,j : 1 ≤ i ≤ 5, 1 ≤ j ≤ 4}||M ||label||µ||ỹ||t̃||ũ||(k1, k2, k3, k4, h1, h2)} (9)

where label is randomly generated by the signer. Compute the responses:

zi,1 = ri,1 − csi,1, zi,2 = ri,2 − csi,2, zi,3 = RiA
−c
i , zi,4 = re,i − cei,

zi,5 = rx,i − cxi, all i;

Output the signature σ:

cnt||bsn||{yi,j : 1 ≤ i ≤ 5, 1 ≤ j ≤ 6}||{gi,j : 1 ≤ i ≤ 5, 1 ≤ j ≤ 4}
||{zi,j : 1 ≤ i ≤ 5, 1 ≤ j ≤ 5}||c||M ||label||ỹ||(k1, k2, k3, k4, h1, h2) (10)

Protocol GVf accepts input σ, parses it, verifies yi,4=ê(yi,3yi,6g−1
i,6 , ui) ê(yi,2, u

γi
i ),

and computes

ti,1 = g
zi,1
i,1 y

c
i,1, ti,2 = zi,3g

zi,1
i,2 y

c
i,2, ti,3 = y

zi,4
i,2 y

c
i,3,

ti,4 = [ê(gi,2, u
γi
i )ê(gi,4, ui)]zi,1 ê(gi,2, ui)zi,2yci,4, ti,5 = g

zi,4
i,1 g

zi,1
i,3 y

c
i,5,

ti,6 = g
zi,5
i,5 g

zi,1
i,4 y

c
i,5, t̃ = h

z5,5
1 h

z4,5
2 ỹc, ũ = h

z3,5
1 h

z2,5
2 t̃

c
(11)

Then it computs c according to Eq. (9), verifies the computed c equals to the
value c contained in the signature σ. According to the outcome of this verifica-
tion, outputs valid or invalid.

Link accepts inputs σ(b), b=1,2, parses them according to Eq. (10) into σ(b)=
cnt(b) || bsn(b) || · · · . Confirms GVf(σ(b))=1, b=1,2, and confirms cnt(1) = cnt(2),
bsn(1) = bsn(2), g(1)

i,j = g
(2)
i,j , k(1)

i = k
(2)
i , h(1)

i = h
(2)
i , all i, j. Then computes

t̃
(b) = h

z
(b)
5,5

1 h
z

(b)
4,5

2 (ỹ(b))c, b=1,2, Outputs linked if all confirmations above pass and
(ỹ(1), t̃

(1)) = (ỹ(2), t̃
(2)); outputs unlinked otherwise. (By convention, identical

signatures are linked.)
Indict accepts inputs σ(b), b=1,2, parses them like Link, confirms Link(σ(1),

σ(2)) = 1 and confirms c(1) 6= c(2). It outputs id=(z(2)
5,5−z

(1)
5,5) (z(2)

4,5−z
(1)
4,5)−1 ∈ Zq1 ,

where q1 = order(G1).

4.3 Instantiating in strong-RSA: The TbL-ACJT group signature

We also instantiate the generic TbL group signature of Section 4.1 to the setting
similar to ACJT’s group signature[1]. Let N be a safe product. The relations are
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instantiated as follows:

Ruser = {(xsk, xpk) : xsk = (x1, · · · , x9), xpk = (y1, · · · , y9), each yi = gxii,5}
RCA,cnt = {(xpk, cert) : xpk = (y1, · · · , y9), cert = ((A1, e1), · · · , (A9, e9))),

each Aeii = yigi,6 mod Ncnt}

The group public key gpkcnt = Ncnt. The group secret key, gsk, is the factoring
of Ncnt. Note gi,j = Hb(g, cnt, i, j) ∈ QRNcnt .

Init, GKg are the same as Sec. 4.1.
UKg: On input id, sample the relation R′user = {(x, y) : y = gxi,5} to produce

(uskid, upkid) ∈ R′user.
Join,Iss accepts common inputs cnt and id, Join’s additional input uskid, Iss’s

additional input gskcnt. Randomly generate x2, x3, x4, x6, x7, x8, compute x5 =
id ·x4, x9 = id ·x8, yi = gxii,5 for all i. Let x1=uskid, y1=upkid, xpkid,cnt = (x1, · · · ,
x9), ypkid,cnt = (y1, · · · , y9). Note (xskid,cnt, xpkid,cnt) ∈ Ruser, Join sends xpkid,cnt

and proof-of-knowledge x5 = x4 ·id ∧ x9 = id·x8. Iss verifies, and returns certid,cnt

satisfying (xpkid,cnt, certid,cnt) ∈ RCA,cnt. Note certid,cnt = ((A1, e2), · · · , (A9, e9))
and Aeii = yigi,6. Iss enters the entry (id, cnt, xpkid,cnt, certid,cnt) into the public
param.

GSig accepts input id, cnt, xskid,cnt, bsn, message M . It outputs signature σ
which is a signature proof of knowledge of the following system. (It essentially
duplicates nine-fold the proof system in [1] and add CtC.)

SPK{{(xi, Ai, ei) : 1 ≤ i ≤ 9}) : (∧i:1≤i≤9 A
ei
i = gxii,5gi,6 mod N)

∧ CtC(x5, x4, x3, x2, h1, h2) ∧ CtC(x9, x8, x7, x6, h3, h4)}(M)

where hi = Hb(h, cnt, bsn, i) ∈ QRNcnt . Masked images, commitments, challenge,
responses, and the signature are

yi,1 = g
si,1
i,1 , yi,2 = Aig

si,1
i,2 , yi,3 = yeii,2, yi,4 = gxii,5g

si,2
i,2 ,

yi,5 = geii,1g
si,1
i,3 , yi,6 = gxii,5g

si,1
i,4 , si,2 = si,1ei, all i;

ỹ = hx5
1 hx4

2 , t̃ = hx3
1 hx2

2 , ȳ = hx9
3 hx8

4 , t̄ = hx7
3 hx6

4 ,

ti,1 = g
ri,1
i,1 , ti,2 = Rig

ri,1
i,2 , ti,3 = y

rei
i,2 , ti,4 = g

rxi
i,1 g

ri,2
i,2 , ti,5 = g

rei
i,1 g

ri,1
i,3 ,

ti,6 = g
rxi
i,5 g

ri,1
i,4 , all i; ũ = h

rx3
1 h

rx2
2 , ū = h

rx7
1 h

rx6
2 ,

rx5 = x3, rx4 = x2, rx9 = x7, rx8 = x6

c = H({(yi,j , ti,j) : 1 ≤ i ≤ 9, 1 ≤ j ≤ 6}||{gi,j : 1 ≤ i ≤ 9, 1 ≤ j ≤ 4}
||M ||label||µ||ỹ||t̃||ũ||(k1, k2, k3, k4, h1, h2)||ȳ||t̄||ū||(k5, k6, k7, k8, h3, h4)}

zi,1 = ri,1 − csi,1, zi,2 = ri,2 − csi,2, zi,3 = RiA
−c
i , zi,4 = re,i − cei,

zi,5 = rx,i − cxi, all i;

σ = ({yi,j : 1 ≤ i ≤ 9, 1 ≤ j ≤ 6}||{gi,j : 1 ≤ i ≤ 9, 1 ≤ j ≤ 4}
||{zi,j : 1 ≤ i ≤ 9, 1 ≤ j ≤ 5}||c||M ||label||ỹ||(k1, k2, k3, k4, h1, h2)

||ȳ||(k5, k6, k7, k8, h3, h4))
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GVf accepts input σ, parses it, verifies yi,4 = yi,3b
−1, all i, and computes

ti,1 = g
zi,1
i,1 y

c
i,1, ti,2 = zi,3g

zi,2
i,2 y

c
i,2, ti,3 = y

zi,4
i,2 y

c
i,3, ti,4 = g

zi,5
i,1 g

zi,2
i,2 y

c
i,4,

ti,5 = g
zi,4
i,1 g

zi,1
i,3 y

c
i,5, ti,6 = g

zi,5
i,5 g

zi,1
i,4 y

c
i,5, all i; t̃ = h

z5,5
1 h

z4,5
2 ỹc,

ũ = h
z3,5
1 h

z2,5
2 t̃

c
, t̄ = h

z9,5
3 h

z8,5
4 ȳc, ū = h

z7,5
3 h

z6,5
4 t̄

c

Then it computs c by mimicking GSig, verifies the computed c equals to the
value c contained in the signature σ. It outputs 1 or valid if all verifications are
OK. Otherwise, it outputs 0 or invalid.

Link accepts inputs σ(b), b=1,2, parses them according to Eq. (10) into σ(b)=
cnt(b) || bsn(b) || · · · . Confirms GVf(σ(b))=1, b=1,2, and confirms cnt(1) = cnt(2),
bsn(1) = bsn(2), g(1)

i,j = g
(2)
i,j , k(1)

i = k
(2)
i , h(1)

i = h
(2)
i , all i, j. Then computes

t̃
(b) = h

z
(b)
5,5

1 h
z

(b)
4,5

2 (ỹ(b))c, b=1,2, Outputs linked if all confirmations above pass and
(ỹ(1), t̃

(1)) = (ỹ(2), t̃
(2)); outputs unlinked otherwise. (By convention, identical

signatures are linked.)
Indict accepts inputs σ(b), b=1,2, parses them like Link, confirms Link(σ(1),

σ(2)) = 1 and confirms c(1) 6= c(2). It obtains id · ∆4 = ∆5 and id · ∆8 = ∆9,
where ∆i = z

(2)
i,5 − z

(1)
i,5 , 1 ≤ i ≤ 9. Using Euclidean algorithm it computes α and

β satisfying α∆4 + β∆8 = gcd(∆4,∆8) ∈ Z. Hypothesizing ∆i’s are random,
there is a ε0 = Θ(1) probability that gcd(∆4,∆8) = 1. When this happens, Indict

outputs idg = α∆5 + β∆9 ∈ Z. Then id = idg if and only if hid
1 = h

idg
1 mod N ,

and id can be identified.
The above achieves indictment accuracy ε0 using two units of CtC’s. If an

indictment accuracy 1 − εI is desired, one can modify TbL-ACJT by using
O(log(1/εI)) units of CtC’s.

4.4 Security Theorems

Theorem 1. Let e be a bilinear map, e : G1 × G2 → GT . Assume the Ran-
dom Oracle model. The TbL-SDH group signature has correctness. It is linkably
anonymous if and only if the DDH Assumption holds in G1. It is fully linkable
provided the q-SDH Assumption holds in G1×G2. It is non-slanderable provided
CDH is hard in G1. In summary, the TbL-SDH group signature is linkably secure
provided the DDH Assumption in G1 and the q-SDH Assumption in G1 × G2

both hold.

Theorem 2. Let N be a safe product. Assume the Random Oracle model. The
TbL-ACJT group signature has correctness. It is linkably anonymous if and only
if the DDH Assumption holds in QRN . It is fully linkable under the strong RSA
Assumption. It is non-slanderable, provided CDH is hard in QRN . In summary,
the TbL-ACJT group signature is linkably secure provided the DDH Assumption
and the strong-RSA Assumption both hold in QRN .

Proofs are contained in the Appendix.
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5 Concluding Discussions

We successfully transplanted ”commit the commitment” (CtC) technique from
a blind signature and e-cash setting [6, 13, 12] to the group signature setting.
The result is a tracing-by-linking (TbL) group signature. So far, we have only
presented signature schemes that output the double signer’s identity when linked.
But the CtC technique can be easily adapted to output the double signer’s secret
key for even harsher punishment, or to output just the double signer’s public
key. To do so, simply change the CtC commitments from (xk1 ,xk2) = (id · s, s)
to (usk · s, s), or (upk · s, s).

The TbL technique has many applications. The TbL group signature con-
stitutes a natural e-voting system: simply collect and tally the signatures. The
voting is anonymous, and double voting results in the identification of the cul-
prit. TbL group signature is also a natural offline anonymous e-cash system.
Withdrawal is essentially equivalent to Join,Iss. Spending is essentially equivalent
to signing. Double spending results in revealed identities and penalties can be
sought. The TbL group signature is also a DAA (Dirct Anonymous Attestation)
system. Have multiple CA’s in DAA is equivalent to having multiple groups in
simultaneous existence. Attesting to a Basename bsn is equivalent to signing for
Verifier bsn. Current DAA schemes [7] only tags the rogue who double-attests
without revealing its identity. Our Tracing-by-Linking DAA systems can be
constructed to efficiently compute the identity, or even the secret key, of the
rogue without trapdoor. Such stronger deterrent makes superior DAA’s. The
commit-the-commitment technique can also be used to enhance one-show cre-
dential systems [8] by adding the feature to efficiently compute offender’s identity
without trapdoor.
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A Proofs

A.1 Proof Sketch of Theorem 1

The intuition is that TbL-SDH’s GSig does more things than [5]’s GSig. So
[5]’s full traceability (resp. non-frameability) essentially implies TbL-SDH’s full
linkability (resp. non-slanderability). By the same token, TbL-SDH’s anonymity
is harder to accomplish than that of [5].

First, a technical lemma. Let (g, gα, gβ , gγ , gδ) be such that α, β, δ are random
and γ ∈ {αβ, δβ} with equal probability. The DDDH (Double Decisional
Diffie-Hellman) Assumption is that no PPT algorithm can determine which
of the two equalities hold for γ with probability non-negligibly over half. Note α,
β, γ, δ are not given, only their exponentiations are. Note the DDH (Decisional
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Diffie-Hellman) Assumption is that no PPT algorithm can distinguish the fol-
lowing two cases with non-negligible probability over half: Let (g, gα, gβ , gγ) be
such that α, β, are random and γ=αβ or γ is random with half-half probability.
Determine which is the case for γ.

Lemma 3 The DDDH Assumption holds if and only if the DDH Assumption
holds.

Proof of Lemma 3: That the DDH Assumption implied the DDDH Assump-
tion is straightforward. We proceed to the opposite direction. Let B be a PPT
solver of the DDDH Problem. Consider its performance when given the following
double DDH Problem: [DDH1: (g, gα, gβ , gγ1)] and [DDH2: (g, gδ, gβ , gγ2)],
where α, β, δ are random, and γ1=αβ or is random with half-half probability,
and γ2=αδ or is random with half-half probability. Let γ ∈ {γ1, γ2} with half-
half probability. Give the ”generalized” DDDH Problem [GDDDH: (g, gα, gβ ,
gγ , δ)] to B to solve. With probability half, GDDDH is a DDDH Problem, and
in that case B solves it with probability 1/2 + ε1. Otherwise, GDDDH is not
a DDDH Problem, and let us consider B’s performance in this scenario. Let ε2
denote the probability B outputs ⊥ meaning the problem is not DDDH. ε2 = 0
if he is not allowed to do so. Then B outputs either DDDH decision with equal
probability (1− ε2)/2 because there is a symmetry w.r.t. the two cases.

Let us build an algorithm B′ to solve DDH1 and DDH2: B′ outputs yes to
DDH1 (resp. DDH2) if B outputs gγ1 (resp. gγ2) on input GDDDH, and B′
outputs no otherwise. Then

1
2

Pr{B′ solves DDH1}+
1
2

Pr{B′ solves DDH2}

=
1
2

Pr{B solves DDDH}+ ε2 +
1
2

(
1
2
− ε2)

Therefore, B′ has a probability non-negligibly over half of solving either DDH
Problem. ut

Now we proceed to prove Theorem 1. First, correctness is straightforward.

Anonymity. Let the DDDH Problem be to determine whether γ = αβ or δβ,
given (ĝ, ĝα, ĝβ , ĝγ , ĝδ) and γ ∈ {αβ, δβ} with 50-50 probability. All elements
are in G1. Note α, β, γ, δ are not given.

Simulator S: Denote the DDDH Problem as (ĝ, ĝα, ĝβ , ĝγ , ĝδ) where γ ∈ {αβ,
δβ} with equal probability. S randomly generates ρg, ρh, ρ3, and backpatches
the Random Oracle to g4,5 = Hc(4, 5) = ĝ, g5,5 = Hc(5, 5) = g

ρg
4,5, h2 = Hv(2) =

ĝβ , h1 = Hv(1) = h
ρ−1
h

2 . During the Initialization Phase of Experiment LA, S
selects two users id0 and id1 and sets the public key of user idb, b=0,1, to satisfy

g
x

(0)
4

4,5 = ĝα, gx
(1)
4

4,5 = ĝδ, gx
(b)
5

5,5 = g
x

(b)
4 ·idbρg

4,5 =(ĝα)idbρg . S randomly generates other
secrets xi’s, Ai’s, ei’s, and computes their corresponding certificates using gsk
in its possession.



16 Victor K. Wei

There is a non-negligible probability that the gauntlet users selected by A in
the Gauntlet Phase are id0 and id1. Without loss of generality, we consider only
this scenario, for the sake of simplicity. The Corruption Oracle is simulated by
simply giving Adversary the secret user keys it wants.

Simulating a sequence of SO queries w.r.t. the same user: We con-
sider the computations of all SO queries w.r.t. the same id together. In this
consideration, SO accepts inputs id, messages M (τ), to output signatures σ(τ),
where 1 ≤ τ ≤ qs,id, and qs,id is the number of times id is queried to SO, as
follows:

1. For each new id queried to SO, randomly generate x̃id and compute ỹid = hx̃id
1 .

Below, we abbreviate the notations to ỹ = ỹid and x̃ = x̃id without contextual
ambiguity.

2. Obtain user id’s public keys (gxii , Ai, ei)’s from the public database of all
joined users, JU . Randomly generate masking values si,1’s and si,2’s. Com-
pute all masked images yi,j ’s by EQ. (8).

3. Randomly generate challenge c(τ), 1 ≤ τ ≤ qs,id.
4. Generate the first signature σ(1) as follows:

(a) Randomly generate z(1)
i,j ’s.

(b) Compute all commitments t(1)
i,j ’s according to Eq. (11), including

t̃
(1) = h

z
(1)
5,5

1 h
z

(1)
4,5

2 ỹc
(1)
, (12)

(c) Backpatch the hash output in Eq. (9) to the generated value c(1) above
in Step (3). Output signature σ(1) according to Eq. (10).

5. Generate the second signature σ(2) as follows:

(a) Randomly generate z(2)
5,5 and z

(2)
4,5 satisfying

0 = ∆z5,5 + ρh∆z4,5 +∆cx̃ (13)

where ∆zi,5 = z
(2)
i,5 − z

(1)
i,5 , all i, and ∆c = c(2) − c(1).

(b) Randomly generate other z(2)
i,j ’s. Compute all commitments t(2)

i,j ’s accord-
ing to Eq. (11),

(c) Backpatch the hash output in Eq. (9) to the generated value c(2) above
in Step (3). Output signature σ(2) according to Eq. (10).

6. The signature σ(τ), τ ≥ 3, is generated similarly: Randomly generate z(τ)
5,5

and z
(τ)
4,5 satisfying

0 = ∆(τ)
z5,5 + ρh∆

(τ)
z4,5 +∆(τ)

c x̃ (14)

where ∆(τ)
zi,5 = z

(τ)
i,5 − z

(1)
i,5 , all i, and ∆(τ)

c = c(τ)− c(1). Generate other z(τ)
i,j ’s,

compute t(τ)
i,j ’s, backpatch to c(τ), output σ(τ).
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Note Eqs. (14) implies t̃(τ) = t̃
(1). The CtC structure in the signature implies the

following: When A queries SO with the same id twice or more, it is equivalent
to rewinding SO with the same commitment t̃ to extract ỹ’s secrets (x5, x4),
where ỹ = hx5

1 hx4
2 . According to well-known theory, such rewinding extracts

either secrets (x5, x4) or the discrete log ρ = logh1
h2. In this case, the latter,

not the former, is extracted. Therefore, SO can be simulated without knowing
(x5, x4). That other secrets are not needed in simulating SO follows from [5].

Setting up the Gauntlet to solve DDH: The gauntlet users id0 and id1 are
never queried to CO or SO. During the Gauntlet Phase of Experiment LA, S
computes the gauntlet signature σg by the following special procedure:

1. Set ỹ = ĝγ .
2. Obtain user id0’s (resp, id1’s) extended public keys , (gxii , Ai, ei)’s, from the

public database of all joined users, JU . Randomly generate masking values
si,1’s and si,2’s. Compute all masked images yi,j ’s by EQ. (8).

3. Randomly generate challenge c.
4. Generate the gauntlet signature σg as follows:

(a) Randomly generate zi,j ’s.
(b) Compute all commitments ti,j ’s according to Eq. (11), and compute

t̃ = h
z5,5
1 h

z4,5
2 ỹc,

(c) Backpatch the hash output in Eq. (9) to the generated value c above.
Output signature σg according to Eq. (10).

Note S does not flip a fair coin b. In a sense, it outsources the flipping to the
poser of the DDDH Problem.

Solving the DDDH Problem: S computes as above. When A returns b̂, S
answers γ = αβ (resp. γ = δβ) if b̂ = 0 (resp. b̂ = 1).

The Simulator S’s advantage in solving DDDH is his probability of answering
correctly, minus half. That S’s advantage in solving DDDH equals A’s advantage
in Experiment LA is implied by the following Lemma. (The proof of the Lemma
is mechanical and tedious. We omit it for this version of the paper.)

Lemma 4 If the DDDH Problem instance is γ = αβ (resp. γ = δβ), then the
gauntlet signature is computationally indistinguishable from SO(id0,M) (resp.
SO(id1,M) ) in the Random Oracle model.

The above Lemma implies that the TbL-SDH group signature is linkably
anonymous provided the DDDH Problem is hard in the Random Oracle model.
Now we prove the opposite direction. Assume A can solve DDH with non-
negligible advantage. Then, given the gauntlet signature σg in Experiment LA,
A proceeds as follows: Parse σg to obtain ỹ. Solve the DDH Problem (gid0

5,5g4,5,
gx5

5,5g
x4
4,5 = (gid0

5,5g
x4
4,5, hid0

1 h2, ỹ). If the DDH answer is yes (resp. no), answer b̂ = 0
(resp. 1) in Experiment LA. By Lemma 4, A’s advantage in Experiment LA
equals its advantage in solving DDH. Therefore, the TbL-SDH group signature
is linkably anonymous if and only if the DDH Assumption holds in G1.
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Non-slanderability. Let the CDH Problem be to compute ĝαβ given ĝ, ĝα, ĝβ .
Note α and β are not given. Let A be a PPT adversary who has non-negligible
advantage in Experiment NS. Backpatch the Random Oracle to h2 = Hv(2) = ĝβ

and g4,5 = Hc(4, 5) = ĝ. Set the user public key so that gx4
4,5 = ĝα. To assist A,

publish s4,1 and x5. When A returns a valid signature σ, parse it to obtain
ỹ = hx5

1 hx4
2 . Then ĝαβ = ỹh−x5

1 =hx4
2 solves the CDH Problem.

Full linkability. Assume PPT Adversary A has a non-negligible advantage
in Experiment FL, with qFL = qk + qs,trace. I.e. A makes qk queries to the
Corruption Oracle and makes double, and therefore tracing, queries SO(b, id),
b = 1, for a total number of qs,trace different users’ id’s, to produce qFL+ 1 valid
and pairwise unlinked signatures. We show how to build a simulator S to solve
(qFL − 1)-SDH.

Let ê : G1 × G2 → GT , and ψ : G2 → G1 be a homomorphism, with
ψ(wi) = vi. Let i ∈ {1, · · · , 5}. Randomly generate πi, ρi, and backpatch the
Random Oracle to gi,5 = Hc(i, 5)↔ gπii,6 and gi,6 = Hc(i, 6)↔ vρii . Let the SDH

Problem inputs be vi, w
γji
i , 0 ≤ j ≤ q, q = qFL−1. Randomly generate ei,u, xi,u,

1 ≤ u ≤ q + 1. Compute fi(σ)=
∏q+1
u=1(σ + ei,u) =

∑q+1
j=0 ai,jσ

j ∈ Zq1 [σ], where
q1 = order(G1). Let

ŵi = w
fi(σ)
i |σ=γi (15)

Ai,u = ψ(ŵi)(1−xi,uπi)/(γi+ei,u)

= ψ(wi)fi(σ)(1−xi,uπi)/(σ+ei,u)|σ=γi . (16)

Then we have q + 1 user secret keys (xi,u, Ai,u, ei,u), for each i, satisfying
A
γi+ei,u
i,u g

xi,u
i,5 = gi,6, 1 ≤ u ≤ q + 1. Note Ai,u’s are computable by Eq. (16)

and ĝ1 is computable by Eq. (15).
A has a non-negligible advantage in Experiment FL. Therefore, it can be

rewound to extract a new set of user secrets (x̄, Ā, ē, s̄1, s̄2) satisfying Āγi+ē gx̄i,5
gs̄2−s̄1ēi,2 = gi,6 for some i. Let ∆ = s̄2 − s̄1ē. If ∆ = 0, then Ā

γi+ēgx̄i,5 = gi,6 and

the pair (Â, ē) solves the SDH Problem where Â =Ā(ρi−ρiπix̄)−1

.
If ∆ 6= 0, then the tuple (x̃, Ã, ē) satisfies Ã

ē+γi
gx̃i,5 = gi,6, where x̃ =

x̂/(1 − ρ∆), Ã = Ā
1/(1−ρ∆). The pair (Â, ē) solves the SDH Problem where

Â =Ã
(ρi−ρiπix̃)−1

. ut
Boneh, et al. [5] presented a short group signature, and proved its full trace-

ability among other things. In their Section 7, they extended their scheme to
achieve full exculpability, but without proof of that extension. Our proof of full
linkability above is also a complete proof of the full traceability of the exculpa-
ble extension, or Section-7 extension, of [5]’s short group signature. Therefore
we have

Corollary 5 The strongly exculpable extension of Boneh, et al.’s short group
signature [5], Section 7, has full traceability, provided the q-SDH Assumption
holds, in the random oracle model.
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See [5] for formal definitions of the terms.

A.2 Proof sketch of Theorem 2

Proofs of correctness, anonymity, non-slanderability are similar to those
of Theorem 1, and are omitted.

Full linkability. Assume Adversary A has a non-negligible advantage in Ex-
periment FL. Randomly generate πi, ρi, and backpatch the Random Oracle to
gi,5 = gπii,6 and gi,2 = gρii,6. Rewind A to extract a new set of committed user
secrets {(Āi, ēi, x̄i, s̄i,1, s̄i,2): all i}, one it did not corrupt or trace. We have
yi,3=(Āgs̄i,1i,2 )ēi =gi,6yi,4=gi,6gx̄ii,5g

s̄i,2
i,2 . Then Āēii = g∆i,6 where ∆ = 1+ x̄πi+∆′ρi,

∆′ = s̄i,2 − ēs̄i,1.
Rewind A to obtain Ā(2), ē(2), ∆(2) satisfying (Ā(2))ē

(2)
= g∆

(2)

i,6 . Hypothesiz-
ing ∆ and ∆(2) are random, there is a Θ(1) probability that they are co-prime. In
this case, use the Euclidean algorithm to compute α, β such that α∆+β∆(2)=1
and ut


