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Abstract. In a group signature [19], any group member can sign on behalf of the group while remaining
anonymous, but its identity can be traced in an future dispute investigation. Essentially all state-of-the-
art group signatures implement the tracing mechnism by requiring the signer to escrow its identity to an
Open Authority (OA) [2, 14, 4, 25, 5, 7, 24]. We call them Tracing-by-Escrowing (TbE) group signatures.
One drawback is that the OA also has the unnecessary power to trace without proper cause. In this
paper we introduce Tracing-by-Linking (TbL) group signatures. The signer’s anonymity is irrevocable
by any authority if the group member signs only once (per event). But if a member signs twice, its
identity can be traced by a public algorithm without needing any trapdoor. We initiate the formal study
of TbL group signatures by introducing its security model, constructing the first examples, and give
several applications. Our core construction technique is the successful transplant of the TbL technique
from single-term offline e-cash from the blind signature framework [10, 22, 21] to the group signature
framework. Our signatures have size O(1).

1 Introduction

In a group signature [19], any group member can sign on behalf of the group while remaining anonymous.
However, to investigate a dispute, the signer’s identity can be traced. Essentially all contemporary state-of-
the-art group signatures implement the tracing mechanism by requiring the signer to escrow its identity to
an Open Authority (OA) [2, 14, 4, 25, 5, 7]. We call them Tracing-by-Escrowing (TbE) group signatures. One
drawback is that the OA’s trapdoor has the unnecessary power to trace any signature without proper cause.
For example, a change in government or administration can mandate the OA to trace some past signatures
controversially.

In this paper, we initiate the formal study of Tracing-by-Linking (TbL) group signatures. In a TbL group
signature, the signer’s anonymity cannot be revoked by any combination of authorities. However, if a group
member signs twice (per event), then its identity can be traced by any member of the public without needing
any trapdoor.

Our main contributions are
– We initiate the formal study of tracing-by-linking (TbL) group signatures. We introduce its security

model, and construct the first several TbL group signatures, and reduce their securities to standard
intractability assumptions.

– We extending our constructions from sign twice and anonymity revoked to sign k times and anonymity
revoked.

– We apply TbL group signatures to several applications, including Direct Anonymous Attestation (DAA),
anonymous credentials, offline anonymous e-cash, and e-voting.

The paper is organized as follows: Section 2 contains the security model. Section 3 contains preliminaries.
Section 4 contains constructions and security theorems. Section 5 contains discussions and applications.

Related Results: Essentially all state-of-the-art group signatures are TbE group signatures. The signer
anonymity can be revoked by the OA’s trapdoor even without cause. Partial key escrows and time-delayed
key escrows [36, 30, 3] have been introduced to counteract abuses by the over-powered. The TbL group
signature’s anonymity is irrevocable by any combination of managers and authorities. There is no OA. In a
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ring signature [20, 35, 1] the signer anonymity is also irrevocable. But signing any number of times does not
result in anonymity revocation. In a linkable group (resp ring) signature scheme [32, 33, 15, 23, 12], signatures
from the same signer can be linked, but its anonymity remains. These link-but-not-trace group (resp. ring)
signatures typically tag the double signer in a way such that future signatures from the same signer can be
linked more conveniently.

Our intuitions: The core of our construction technique is the successful transplant of the TbL technique
from single-term offline e-cash scheme from the blind signature framework [9–11, 21, 22] to the group signature
framework. Our TbL group signature has size O(1). The essence of our TbL technique is to commit some
randomness during group membership certification and then require the signer to use these randomness
during a 3-move non-interactive zero-knowledge proof. Double spending implies answering challenges twice
with the same certified commitments and it results in the extraction of the double signer’s secret identity.

2 Security Model

We present a security model for the tracing-by-linking (TbL) group signature. In a nutshell, we replace the
triplet of security notions, anonymity, full traceability and non-frameability, of TbE group signatures [4, 5] by a
new triplet for TbL group signatures: irrevocable anonymity, full linkability and non-slanderability. Motivated
by the DAA (Direct Anonymous Attestation) [12] application, our system consists of three types of entities
in multitudes:

– Managers of Groups, or, equivalently, Certificate Authorities (CA’s), with serial number cnt which stands
for counter value.

– Users, or, equivalently, TPM (Trusted Platform Module), whose serial number is id.
– Verifiers with serial number bsn which stands for basename.

Having multiple CA’s is equivalent to having multiple groups, and thus our model extends the single-group
models of [4, 25, 5]. Having multiple verifiers allows multiple signatures, one set per verifier serial number bsn,
and thus increases its usefulness of TbL group signatures.

Syntax. A TbL group signature is a tuple (Init, GKg, UKg, Join, Iss, GSig, GVf, Link, Indict) where:
– Init: 1λ → param. On input the security parameter 1λ, Protocol init generates public system parameters

param. Included: an efficiently samplable one-way NP-relation whose specification is 〈Ruser〉, an efficiently
samplable family of trapdoor one-way NP-relations whose specifications constitute F={〈RCA,i〉 : i} and
whose trapdoors are denoted gski’s, and an initially-empty list of generated users denoted UL, and an
initially-empty list of generated groups denoted GL.

– GKg:cnt
$→ 〈RCA,cnt〉. On input cnt, Protocol GKg samples F to get a relation whose specification is

〈RCA,cnt〉 and whose trapdoor is gskcnt, and adds an entry (cnt, 〈RCA,cnt〉) to the group list GL. By
convention, 〈RCA,cnt〉 includes gpkcnt.

– UKg: id
$→ (uskid, upkid) ∈ Ruser. Protocol UKg accepts input id to sample a key pair from Ruser, adds

an entry (id, upkid) to the user list UL.
– Join,Iss is a pair of interactive protocols with common inputs cnt ∈ GL and id ∈ UL, and Iss’s addition in-

put gskcnt, and Join’s additional inputs uskid. At the conclusion, join obtains extended secret key xskid,cnt,
extended public key xpkid,cnt which includes a certificate certid,cnt satisfying (xpkid,cnt, certid,cnt) ∈ RCA,cnt

and (xskid,cnt, xpkid,cnt) ∈ Ruser, such that Iss does not know xskid,cnt, and an entry (id, cnt, xpkid,cnt) is
added to the public system parameters param. Below, we may sometimes use the notations xpk (resp.
xsk) and upk (resp. usk) interchangeably without ambiguity from context.

– GSig: (id, cnt, xskid,cnt, bsn, M) → σ. It takes inputs id ∈ UL, cnt ∈ GL, xskid,cnt, bsn, and a message
M , returns a signature σ. By convention, the extended signature σ includes cnt, bsn, and M . Optionally,
an additional input µid,cnt,bsn can be included to bookkeep the number of times signatures have been
generated for each triple (id, cnt, bsn).

– GVf: (σ, cnt, bsn) → 0 or 1. It takes input a signature σ, returns either 1 or 0 for valid or invalid. If σ is
an extended signature, then it includes cnt and bsn.
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– Link: (σ1, · · · , σk+1) → 0 or 1. It takes inputs k + 1 valid signatures, σi, 1 ≤ i ≤ k + 1, returns either 1
or 0 for linked or unlinked.

– Indict: (σ1, · · · , σk+1) → id. It takes k + 1 valid and linked signatures σi, 1 ≤ i ≤ k + 1, returns id.

Definition 1 (Correctness). For integer i, 1 ≤ i ≤ k + 1, let σi=GSig (idi, cnti, xskidi,cnti , bsni, Mi).
A TbL group signature has verification correctness if GVf (σ1)=1 with probability one (or, equivalently, GVf
(σi)=1 with probability one for each i, 1 ≤ i ≤ k + 1). It has linking correctness if Link (σ1, · · · , σk+1) = 0
with overwhelming probability when the k + 1 triples (idi, cnti, bsni), 1 ≤ i ≤ k + 1, are not all identical.
It has indictment correctness if Link (σ1, · · · , σk+1) = 1 and Indict (σ1, · · · , σk+1) = id1 with overwhelming
probability when the k + 1 triples (idi, cnti, bsni), 1 ≤ i ≤ k + 1, are all identical. It is correct if it has
verification correctness, linking correctness, and indictment correctness.

The following oracles are the attacker’s tools.

– The Random Oracle H: We use the Random Oracle normally.
– The Corruption Oracle: CO : (id, cnt) → xskid,cnt. Upon input the id ∈ UL, it outputs xskid.
– The k-Signing Oracle SOk : (id, cnt, bsn,M) → σ. Upon inputs a user id ∈ UL, a CA cnt ∈ GL, a verifier

bsn, and a message M , it outputs a signature. For each tuple (id, cnt, bsn), at most k query with the
same triple (id, cnt, bsn) are allowed regardless of the message M . This restriction reflects the reality that
honest group members do not over-sign in TbL group signatures. We adopt the convention that SOk will
output NULL upon query inputs that repeat a triple (id, cnt, bsn) more than k times.

– The Group Corruption Oracle: GCO(cnt) accepts input cnt ∈ GL, and outputs the group trapdoor gskcnt.
The group manager cnt continues to function honestly, but the attacker can observe its communications.

– The Add User Oracle:AUO(id) adds a user with identity id and sampled sk-pk pair UKg(id) $→ (uskid, upkid)
to UL.

– The Join Oracle: JO(id, uskid, upkid) allows the attacker to interact, in the role of the Join Protocol, with
the Iss Protocol.

– The Issue Oracle: IO(cnt, gskcnt, gpkcnt) allows the attacker to interact with the Join Protocol, in the role
of the Iss Protocol after the attacker corrupts with GCO(cnt).

We adopt the static attacker model where the attacker corrupts users at the beginning of the security exper-
iments only, and the Simulator knows which users are corrupted. Issues with adaptive attackers [17], reset
attackers [18], or UC (Universal Composability) attackers [16] are left to future research.

Irrevocable k-Anonymity. Irrevocable anonymity for TbL group signature is defined in the following
experiment.

Experiment IA(k).
1. (Initialization Phase) Simulator S invokes Init, GKg, invokes UKg (resp. Join,Iss) gu ≥ 2 times to generate

a set of joined users, with their extended user public keys xpkid’s.
2. (Probe-1 Phase) A queries GCO, AUO, CO, JO, H, SOk in arbitrary interleaf.
3. (Gauntlet Phase) A selects a gauntlet group cntga, two members who have joined this group, denoted

gauntlet users id0, id1, a gauntlet verifier bsnga, and a message M for S. Then S flips a fair coin b ∈ {0, 1}
and returns the gauntlet signature σga = GSig(idb, cntga, xskidb,cntga , bsnga,M).

4. (Probe-2 Phase) A queries GCO, AUO, CO, JO, H, SOk in arbitrary interleaf.
5. (End Game) A delivers an estimate b̂ ∈ {0, 1} of b.

A wins Experiment IA(k) if b̂ = b,it has queried SOk(id, cntga, bsnga,M
′) no more than k − 1 times

with id = id0 (resp. id = id1), and it has never queried CO(id0, cntga) or CO(id1, cntga). The restriction on
SOk queries is trivially necessary because the TbL mechanism together with enough such SOk queries wins
Experiment IA(k) outright. A’s advantage in Experiment IA(k) is its probability of winning, minus half.
Oracle queries can be arbitrarily interleaved across Probe-1, Gauntlet, and Probe-2 Phases.

Definition 2 (Irrevocable k-Anonymity). An TbL group signature is irrevocably k-anonymous if no PPT
algorithm has a non-negligible advantage in Experiment IA(k). When k = 1, it is irrevocably anonymous.
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Remark: The irrevocable anonymity is a kind of computational zero-knowledge about the signer identity.
In comparison, some stronger anonymity models in ring signatures allow A to corrupt the gauntlet users,
and/or achieve statistical zero-knowledge. On the other hand, irrevocable anonymity allows A to corrupt all
authorities while many TbE group signature models do not.

The k-linkability, the full k-linkability. Roughly speaking, full k-linkability means that any coalition
of qell corrupted users, without the group manager, cannot produce kq` + 1 valid signatures for the same
(cnt, bsn) that are not linked to any colluder. The case q` = 0 corresponds to unforgeability of the signature,
and the case q` = 1 corresponds to k-linkability. Formally, Full k-Linkability is defined in terms of the following
experiment.

Experiment FL(k).
1. (Initialization Phase) S invokes Init, GKg, invokes UKg (resp. Join,Iss) a polynomially many times.
2. (Probe-1 Phase) A makes qG (resp. qA, qC , qJ , qH , qS) queries to GCO (resp. AUO, CO, JO, H, SOk)

in arbitrary interleaf.
3. A delivers cnt, bsn, and signatures σi for 1 ≤ i ≤ k(qJ + q̂C) + 1, where cnt has never been queried to
GCO, each the signatures satisfies GVf(σi, cnt, bsn) = 1 and is not the output of an SOk query, and q̂C is
the total number of Join’s by all users created in the Initialization Phase and corrupted by querying CO.

A wins Experiment FL(k) if Link(σi1 , · · · , σik+1) does not output any of the corrupted users for arbitrary
1 ≤ i1 < · · · < ik+1 ≤ k(qJ + q̂C) + 1. A’s advantage is its probability of winning.

Definition 3 (Full k-Linkability). A TbL group signature is fully k-linkable if no PPT algorithm has a
non-negligible advantage in Experiment FL(k). It is fully linkable in the case k = 1.

Non-slanderability In a nutshell, non-slanderability means a coalition of users together with the group
manager cannot produce signatures that are linked and indicted to a group member outside the coalition.
Formally,

Experiment NS(k)
1. S invokes Init, GKg, invokes UKg (resp. Join,Iss) a polynomially many times.
2. A queries GCO, AUO, CO, JO, H, SOk in arbitrary interleaf.
3. A delivers k+1 valid signatures, σi, 1 ≤ i ≤ k+1, such that Link(σ1, · · · , σk+1) = 1, and Indict(σ1, · · · , σk+1) =

id where id has never been queried to CO.

A wins Experiment NS(k) if it completes. Its advantage is his probability of winning.

Definition 4 (k-Non-Slanderability). A TbL group signature is k-non-slanderable if no PPT adversary
has a non-negligible advantage in Experiment NS(k). It is non-slanderable in the case k=1.

Summarizing, we have:

Definition 5 (Security). A TbL group signature is k-secure if it is correct, irrevocably k-anonymous, fully
k-linkable, and k-non-slanderable. It is secure in the case k = 1.

Remark: There is a slightly weaker security model, the SbV-secure TbL group signature where SBV stands
for Slanderable-but-Vindicatable. It is otherwise secure like secure TbL group signatures, except it allows the
indictment of some non-guilty users who can subsequently vindicate themselves via an additional Protocol
Vindicate. Only those who are indicted but cannot vindicate themselves are truly guilty. We exhibit a SbV-
secure TbL group signature in Appendix A of the full paper [40].

Related security notions. Exculpability (cf. misidentification attack [25]) of TbE group signature means
that a coalition of users, together with the group manager (and the open authority) cannot produce a signature
traced to an uncorrupted member. The TbL group signature does not have the ”open signature” functionality
of TbE group signatures, and the notion of exculpability is, in a sense, absorbed into into non-slanderability.
Non-slanderability implies that the indictment is accurate: If user idg is indicted, then non-slanderability
implies no one except idg could have generated the double signing.
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3 Preliminaries

We say N is a safe product if N = pq, p = 2p′ + 1, q = 2q′ + 1, p, q, p′, and q′ are sufficiently large primes.
The set of quadratic residues in ZN , denoted QRN , consists of all squares in Zn.

Strong RSA Assumption There exists no PPT algorithm which, on input a random λs-bit safe product
N and a random z ∈ QRN , returns u ∈ Z∗

N and e ∈ N such that e > 1 and ue = z(modN), with non-
negligible probability and in time polynomial in λs.

We will need the DDH (Decisional Diffie-Hellman) Assumption across two groups, with possibly different
orders: Let Ga and Gb be two groups. The DDH(Ga, Gb) Problem is, given random g, gα ∈ G1 and h ∈ Gb,
distinguish hα from random, where 0 < α < min{order(Ga), order(Gb)}. The DDH(ga, gb) Assumption is
that no PPT algorithm can solve the DDH(Gz, Gb) Problem with non-negligible probability.

The q-Strong Diffie-Hellman (q-SDH) Assumptions Let e : G1 × G2 → G3 be a pairing, with
qi = order(Gi), 1 ≤ i ≤ 3. The q-Strong Diffie-Hellman Problem (q-SDH) is the problem of computing a
pair (g1/(γ+x)

1 , x) given (g1 ∈ G1, g2, g
γ
2 , gγ2

2 , · · · , gγq

2 ∈ G2, and a homomorphism ψ(g2) = g1. The q-SDH
Assumption is that no PPT algorithm has a non-negligible probability of solving a random sample of the
q-SDH Problem. For further details, see [7].

Related is the q-CAA (Coalition Attack Algorithm) Assumption [31, 42], that no PPT algorithm
can solve the q-CAA Problem: Given random g2, g

γ
2 ∈ G2, and pairs (Ai, ei) with distinct and nonzero ei’s

satisfying Aγ+ei

i = v, 1 ≤ i ≤ q, compute a pair (Aq+1, eq+1) with eq+1 6= ei for any i, 1 ≤ i ≤ q, and
satisfying aγ+eq+1

q+1 = v. Appendix B contains several equivalence reductions among the q-SDH Assumption,
the q-CAA Assumption, and some other related assumptions.

4 Constructing TbL Group Signatures

We construct two TbL group signatures in pairings and in the strong RSA framework, respectively. The
former signature is typically short, but involves expensive pairings computation by the Verifier. The latter
signature is typically fast, but not as short as the former signature. The constructions in this Section has
k=1. Constructions with k > 1 are discussed in the next Section. Also, for simplicity, we assume there is only
one group cnt and thus omit the group index from the notations.

4.1 Generic construction: intuitions

We describe the intuition of our constructions in a loosely specific generic construction.
The user sk-pk pair is ((x1, x2, x3, x4),PedCom(x1, x2, x3;x4), where PedCom is Pedersen’s commitment

[34], and x1 = U is the user identity. The group membership certificate is cert = Signgsk(PedCom(x1, x2, x3;x4)),
where Sign is a signature by the Group Manager, i.e. the group certificate issuer. The group signature is the
following signature proof-of-knowledge (SPK):

σ = SPK{(x1, x2, x3, x4, cert) : cert = Signgsk(PedCom(x1, x2, x3;x4))
∧ z = x2 − cx1 where c is the challenge of this SPK ∧ serial = gx3}(param, nonce,M) (1)

The group signature verifier, Protocol GVf, verifies the proof σ. Protocol Link outputs 1=linked if and
only if two valid input signatures have the same serial. Protocol Indict outputs the signer identity u = x1

computed from the following linear equations: z = x2 − cx1 and z′ = x2 − c′x1, respectively, from two linked
signatures.

The intuition in the security analysis is as follows: The anonymity comes the perfect statistical hiding
property of Pedersen commitments. The full linkability and the non-slanderability are straightforward.

4.2 Instantiating in pairings: Protocol TbL-SDH

We construct a TbL group signature in pairings [31, 42, 6, 7], and reduce its security to intractability assump-
tions.
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Init, GKg: Generate a pairing ê : G1 × G2 → GT . Generate all discrete logarithm bases fairly, e.g.
gi = H(′g′, i) ∈ G1, g = H(′g′, i) ∈ GT , hi = H(′h′, i) ∈ G1, ui = H(′u′, i) ∈ G2. The group sk-pk pair
is (γ, uγ). Generates a user list UL which is initially empty. We adopt the flexible notation H that it is a
full-domain cryptographically secure hash function mapping from a union of mixed domains to a union of
mixed ranges. Ambiguity should not arise from the context.

UKg: On input id, sample the relation Ruser to output (uskid, upkid).
Protocols Join,Iss: accepts common inputs id, Join’s additional input uskid, Iss’s additional input γ and

proceed as follows:

1. Protocol Join identitifes itself as User id with knowledge of uskid, and then sets x1 = id and randomly
generates x′2, x

′
3, x

′
4. Presents upkid = hx1

1 h
x′2
2 h

x′3
3 h

x′4
4 ; proves knowledge of x′2, x

′
3, and x′4.

2. Protocol Iss verifies the proofs; randomly generates x′′2 , x′′3 , x′′4 ; gives them and a certificate (A, e) satisfying
Ae+γhx1

1 hx2
2 hx3

3 hx4
4 = h0 ∈ G1 to Protocol Join, where xi = x′i + x′′i , 2 ≤ i ≤ 4 and. Then Protocol Iss

inserts the entry (id, xpk = hx1
1 hx2

2 hx3
3 hx4

4 , cert = (A, e)) into UL which is considered part of the public
param.

Protocol GSig(id, xskid = (A, e, x1, x2, x3, x4), M): It outputs signature σ which is a signature proof of
knowledge (non-interactive zero-knowledge proof-of-knowledge) of the following proof system

SPK{{(A, e, x1, x2, x3, x4) : Aγ+ehx1
1 hx2

2 hx3
3 hx4

4 = h0 ∈ G1 (2)
∧ x2 = cx1 + z where c is the challenge of this proof ∧ S = gx3

bsn}(param, nonce,M)

Further instantiation details of GSig are below: The commitments are

TA = AgsA

A , [Note ê(h0, u)ê(TA, u
γ)−1 (3)

= ê(TA, u)eê(h1, u)x1 ê(h2, u)x2 ê(h3, u)x3 ê(h4, u)x4 ê(gA, u
γ)−sA ê(gA, u)−s0 where s0 = esA]

D0 = ê(TA, u)re ê(h1, u)rx,1 ê(h2, u)rx,2 ê(h3, u)rx,3 ê(h4, u)rx,4 ê(gA, u
γ)−rA ê(gA, u)−r0

T1 = gx1
1 gs1

2 , T2 = gx2
1 gs2

2 , S = gx3
bsn, D1 = g

rx,1
1 gr1

2 , D2 = g
rx,2
1 gr2

2 , D3 = grx,3
bsn

where rx,1 = x2, r1 = s2, T2 = D1. Observe the secrets and randomnesses are mixed, using the technique
from Section 3. The challenge is:

c = H(param, nonce,M, TA, T1, T2, S,D0, D1, D2, D3) (4)

The responses are:

zA = rA − csA, ze = re − ce, zi = ri − csi for 0 ≤ i ≤ 2, zx,i = rx,i − cxi for 1 ≤ i ≤ 4.

The signature is:

σ = (param, nonce,M, TA, T1, T2, S, c, zA, ze, z0, z1, z2, zx,1, zx,2, zx,3, zx,4)

Protocol GVf(σ) parses the input, computes

D0 = ê(TA, u)ze ê(h1, u)zx,1 ê(h2, u)zx,2 ê(h3, u)zx,3 ê(h4, u)zx,4

·ê(gA, u
γ)−zA ê(gA, u)−z0 [ê(h0, u)ê(TA, u

γ)−1]c, (5)
D1 = g

zx,1
1 gz1

2 T
c
1 , D2 = g

zx,2
1 gz2

2 , D3 = gzx,3
bsn S

c

Verifies D1 equals the parsed T2 and the challenge c computed from Equation (4) equals to that parsed from
the input.

Protocol Link(σ, σ′): Verifies the validity of both input signatures. Parses the inputs into σ = (· · · , S, · · · )
and σ′ = (· · · , S′, · · · ). Outputs 1 if S = S′, and outputs 0 otherwise.

Protocol Indict(σ, σ′): Verifies the validity of both input signatures. Parses both signatures. Solves x1

from x2 = cx1 + zx,1 and x2 = c′x1 + z′x,1. Outputs id = x1.
The following Theorem analyzes the security of Protocol TbL-SDH.
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Theorem 1. Protocol TbL-SDH is a TbL group signature with k = 1 which, assuming the Random Oracle
(RO) model,

1. is correct;
2. is irrevocably anonymous provided the DDH Assumption holds in GT ;
3. is fully linkable provided the q-SDH Assumption holds;
4. is non-slanderable provided Discrete Logarithm is hard.

In summary, Protocol TbL-SDH is a secure TBL group signature if the q-SDH Assumption holds and the
DDH Assumption in GT holds in the RO model.

Proof Sketch: Correctness is straightforward. Noting the user public key xpk = PedCom(x1, x2, x3;x4) is
a Pedersen commitment [34], our irrevocable anonymity follows from the perfect statistical hiding property of
Pedersen commitments, except that the anonymity of the serial, S, reduced to the DDH Assumption in the
group GT .. Noting our group signature proof system in Equation (2) proves more relations than the group
signature proof system of Boneh and Boyen [6], our full linkability follows from a proof similar to [6]’s proof
of full traceability. Bu the same token, our proof of non-slanderability follows a similar path to [6]’s proof of
non-frameability.

One extra point worth additional attention is our simulation of the Signing Oracle SO(id, cnt,M). It is
simulated as follows:

1. Retrieve user public key xpkid from the user database UL.
2. Randomly generate the challenge c.
3. Randomly generate zx,1, z1, T1, and compute D1 according to Equation (5).
4. Set T2 = D1.
5. Randomly generate the remaining responses zx,i for 2 ≤ i ≤ 4, zi for 0 ≤ i ≤ 2, S, and TA. Compute D0,
D2, D3 from Equation (5). Backpatch the random oracle in Equation (4).

It can be shown that this simulation is indistinguishable from the real world Protocol GSig. ut

4.3 Instantiating in strong RSA: Protocol TbL-SRSA

We also construct a TbL group signature in the strong RSA framework [2, 14].
Protocols Init, GKg: Given security parameter 1λs , initializes additional security parameters ε > 1, `p,

λ1, λ2, γ1, γ2 satisfying λ1 > ε(λ2 + λs) + 3, λ2 > 4`p, γ1 > ε(γ2 + λs) + 3, and γ2 > λ1 + 3. Note `p sets
the size of the modulus of the RSA framework, ε controls the tightness of the zero-knowledge [2]. Generate a
product N of two `p-bit safe primes p and q, i.e. p = 2p′ +1, q = 2q′ +1, p′ and q′ are both primes. Generate
a known-order group GS = 〈g〉, where order(GS) = ps which is a (γ1 + 1)-bit prime. The signature-signing
group sk-pk pair is ((p, q), N). Generates a user list UL which is initially empty. Let all discrete logarithm
bases be fairly generated, e.g. gi = H(′g′, i) ∈ QRN , hi = H(′h′, i) ∈ QRN , gi = H(′g′, i) ∈ GS . We adopt
the flexible notation H which is a full-domain collision-resistant hash functin mapping from a union of mixed
domains to a union of mixed ranges. Ambiguity should not arise from the context. Denote the intervals
Γ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [ and Γ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [.

Protocols Join,Iss: accepts common inputs id, Join’s additional input uskid, Iss’s additional input γ and
proceed as follows:

1. Protocol Join authenticates itself as User id. It is required that id ∈ Λ. Then it sets x2 = id and randomly
generates x′1, x

′
3, x

′
4 ∈]−2λ2−1, 2λ2−1[. Presents upkid = h

x′1
1 hx2

2 h
x′3
3 h

x′4
4 . Prove knowledge of x′1, x

′
3, x

′
4 ∈]

−2λ2−1, 2λ2−1[, and x2 = id.
2. Protocol Iss verifies the proofs; randomly generates x′′1 , x′′3 , x′′4 ∈] −2λ2−1, 2λ2−1[; creates a certificate

(A, e) satisfying Aehx1
1 hx2

2 hx3
3 hx4

4 = h0 for Protocol Join, where xi = 2λ1 + x′i + x′′i ∈ Λ, i = 1, 3, 4, and
e ∈ Γ is a prime. Then Protocol Iss inserts the entry (id, xpk = hx1

1 hx2
2 hx3

3 hx4
4 , cert = (A, e)) into UL

which is considered part of the public param.
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For simplicity, assume each x′i (resp. x′′i ) is even so all user public keys are in QRN .
Protocol GSig(id, xskid = (A, e, x1, x2, x3, x4), M): It outputs signature σ which is a signature proof of

knowledge (non-interactive zero-knowledge proof-of-knowledge) of the following proof system: (Range checks
are omitted for simplicity. For details see Boudot [8].)

SPK{{(A, e, x1, x2, x3, x4) : Aehx1
1 hx2

2 hx3
3 hx4

4 = h0 ∈ QRN

∧ x3 = cx2 + z where c is the challenge of this proof ∧ S = hx4
bsn}(param, nonce,M)

Further instantiation details of GSig are below: The commitments are

T0 = gs0
0 , TA = Ags0

A , [Note h0 = T e
Ah

x1
1 hx2

2 hx3
3 hx4

4 g−s1
A where s1 = es0, and 1 = T e

0 g
−s1
0 ]

Te = ge
e,1g

s0
e,2, T2 = gx2

2,1g
s0
2,2, T3 = gx3

3,1g
s0
3,2, T4 = gx4

4,1g
s0
4,2, S = hx3

bsn,

D0 = gr0
0 , DA = T re

A h
rx,1
1 h

rx,2
2 h

rx,3
3 h

rx,4
4 g−r1

A , D1 = T re
0 g−r1

0 , De = gre
e,1g

r0
e,2, (6)

D2 = g
rx,2
2,1 g

r0
2,2, D3 = g

rx,3
3,1 g

r0
3,2, D4 = g

rx,4
4,1 g

r0
4,2, Ds = h

rx,3
bsn ,

T5 = gx2
5 gs3

6 , T6 = gx3
5 gs4

6 , D5 = grx,2
5 gr3

6 , D6 = grx,3
5 gr4

6

where rx,2 = x3, r3 = s4 and therefore D5 = T6. The challenge is:

c = H(param, nonce,M, T0, TA, Te,

T2, T3, T4, T5, T6, S,D0, DA, De, D1, D2, D3, D4, Ds, D5, D6) (7)

The responses are:

ze = re − ce, zi = ri − csi for 0 ≤ i ≤ 4, zx,i = rx,i − cxi for 1 ≤ i ≤ 4.

The signature is:

σ = (param, nonce,M, T0, TA, Te, S,

T2, T3, T4, T5, c, ze, z0, z1, z2, z3, z4, zx,1, zx,2, zx,3, zx,4)

Protocol GVf(σ) parses the input and computes

D0 = gz0
0 T

c
0 , DA = T ze

A h
zx,1
1 h

zx,2
2 h

zx,3
3 h

zx,4
4 g−z1

A T c
A, D1 = T ze

0 g−z1
0 ,

De = gze
e,1g

z0
e,2T

c
e , D2 = g

zx,2
2,1 g

z0
2,2T

c
2 , D3 = g

zx,3
3,1 g

z0
3,2T

c
3 , D4 = g

zx,4
4,1 g

z0
4,2T

c
4 ,

Ds = gzx,3
bsn S

c, D5 = gzx,2
5 gz3

6 T
c
5 , T6 = D5, D6 = gzx,3

5 gz4
6 T

c
6

Verifies that the challenge c computed from Equation (7) equals to that parsed from the input.
Protocol Link(σ, σ′): Verifies the validity of both input signatures. Parses the inputs into σ = (· · · , S, · · · )

and σ′ = (· · · , S′, · · · ). Outputs 1=linked if S = S′, and outputs 0 otherwise.
Protocol Indict(σ, σ′): Verifies the validity of both input signatures. Parses both signatures. Solves x2

and x3 from x3 = cx2 + zx,3 and x3 = c′x2 + z′x,3 in (mod ps) where ps is the (known) order of the group
GS . Confirm range x2, x3 ∈ Λ. Outputs id = x2.

The following Theorem analyzes the security of Protocol TbL-SRSA.

Theorem 2. Protocol TbL-SRSA is a TBL group signature with k = 1 which, assuming the Random Oracle
(RO) model,

1. is correct;
2. is irrevocably anonymous provided the DDH Assumption holds in QRN ;
3. is fully linkable under the strong RSA Assumption;
4. is non-slanderable provided Discrete Logarithm is hard in QRN .

In summary, Protocol TbL-SRSA is a secure TbL group signature provided the strong-RSA Assumption and
the DDH Assumption both hold in QRN in the RO model.
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Proof Sketch: Correctness is straightforward. Noting the user public key xpk = PedCom(x1, x2, x3;x4) is
a Pedersen commitment [34], our irrevocable anonymity follows from the perfect statistical hiding property of
Pedersen commitments, except that the anonymity of the serial, S, reduces to the DDH Assumption in QRN .
Noting our group signature proof system in Equation (2) proves more relations than the group signature proof
system of Ateniese, et al. [2], our full linkability follows from a proof similar to [2]’s proof of full traceability.
By the same token, our non-slanderability follows the no-frameability of [2].

The simulation of the Signing Oracle SO(id, cnt,M) is simular to the simulation of SO in Theorem 1,
and omitted. ut

4.3.1 Protocol TbL-SRSA2: with higher indictment complexity. Another TbL group signature,
which we call Protocol TbL-SRSA2, can be modified from Protocol TbL-SRSA by setting GS = QRN . Then
all elements used in the signature are in the group QRN whose order is known only to the Group Manager.
All (sub-)protocols of TbL-SRSA remains the same in TbL-SRSA2, except Protocol Indict.

The Protocol Indict(σ, σ̃) is modified as follows: Proceed as before in TbL-SRSA. The solution of x2 and
x3 from x3 = cx2 + zx,3 and x3 = c′x2 + z′x,3 in (mod order(QRN )) results in x2 = x̄2/∆ and x3 = x̄3/∆

where ∆ is the determinant of the solution. For each user in the user database, test if id ·∆ ?= x̄2. If match,
Protocol Indict outputs id.

Now the computation complexity of this Indict protocol is proportional to the number of listed users,
whereas the complexity of TbL-SRSA’s Indict is O(1). But indictment should be a rare event.

The reductionist security of Protocol TbL-SRSA2 is essentially the same as that of Protocol TbL-SRSA.

5 Discussions, Applications, Conclusions

Link-and-trace other than identity. Our TbL group signatures above link-and-trace the signer identity.
However, it can be easily modify to link-and-trace the user secret key. In fact, Protocol TbL-SDH (resp.
TbL-SRSA) already links-and-traces all four user secret keys x1, x2, x3, x4.

Hybridizing TbL and TbE. If we also require the TbL group signature to incorporate a verifiable
escrow of the signer identity to an OA (Open Authority), then the doubly-signed signatures can be traced
by the TbL mechanism and the singly-signed signatures can be traced by the OA. For example, Protocol
TbL-SDH becomes

SPK{{(A, e, x1, x2, x3, x4, ρ) : Aγ+ehx1
1 hx2

2 hx3
3 hx4

4 = h0 ∧ x−1
3 = cx−1

1 + z

∧ x−1
4 = cx−1

2 + z′ ∧ c is the challenge ∧ ctxt = Enc(pkOA, h
x1
1 , ρ)}(M)

Sign k + 1 times and be traced. Our TbL group signature traces after a user signs twice, within the
same group and for the same verifier. It can be extended to trace after signing k times with k > 2 as follows.
Option One: Issue each certificate with k committed randomnesses. Then the certificate can be used k times
within the same group and for the same verifier without revealing the identity. However, signing k + 1 times
necessarily uses a certain committed randomness twice and thus results in anonymity revocation. Option
Two: Each verifier provides k sets of discrete-log bases for each group. Then a user with a TbL certificate
can sign k times using the different bases without anonymity revocation. Signing k+1 times necessarily uses
a certain Verifier-specific discrete logarithm bases set twice and thus results in identity extraction.

Applications Linkable group (resp. ring) signatures or their equivalents, in the link-but-not-trace paradigm,
have been proposed for several applications, including e-cash [27, 15, 37, 29, 28, 39, 38], e-voting [32, 33, 26, 39,
38], DAA (Direct Anonymous Attestation) [13], and anonymous credentials [15]. In each application, an en-
titled user access its privileges by anonymously authenticate itself with a group (resp. ring) signature or an
equivalent mechanism such as anonymous group authentication, anonymous credentials, or DAA. In order
to regulate resource use, double or multiple signatures (or sign-on’s) by the same user entitlement are linked
(but not raced) and countermeasures taken. Typically, a blacklist of offenders’ tags [15, 13] is published to
facilitate future detection of linked signatures.

When presented with a signature, the verifier checks its validity, and then confirms it is not on the blacklist
before accepting. The blacklist can be available online, or locally cached, or both. Unavoidably, there are
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synchronization and latency issues with the updating and the availability of the blacklist. An attacker can
exploit such vulnerabilities by launching concurrent sign-on sessions with multiple verifiers during network
congestion when the blacklist updating and inter-verifier communications are stressed. Then the offline verifier
faces a Hobson’s choice of either (1) probationally accepts valid signatures (sign-on’s) without checking an
updated blacklist and suffer the potential damage, or (2) summarily rejects all signatures to err on the safe
side.

The TbL paradigm of link-and-trace is an effective deterrant against the above vulnerability exploitation.
An offline verifier can probationally accept valid signatures without an updated blacklist. Double signers
can be traced and penalized afterwards when the blacklist eventually returns online and is updated. The
TbL paradigm does not prevent the exploitation, but it is an effective deterrant. Its deterrent effect can also
alleviate the urgency of the availability and the updating of the blacklist. We observe that the TbL deterrant
is relatively more desirable in a scalable offline anonymous e-cash application when the offline scenario is
highly realistic; while it is relatively less significant in an anonymous e-voting scheme where the vote tallying
is after the detection of double votes.

Conclusion We initiate the formal study of the TbL (Tracing-by-Linking) group signatures. We intro-
duce its security model, and we present the first several instantiations with provable security. Our main
construction technique is the mix-the-secrets-and-randomnesses (MSR) technique. It remains interesting to
discover alternative mechanisms to achieve TbL other than MSR, to reduce complexity and bandwidth costs,
and to construct more flexible instantiations to achieve more versatile features.

Acknowledgements to Hong Kong RGC Earmarked Grants 4232-03E for financial support, and to
Shaoquan Jiang for proofreading my errors.
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For simplicity we consider a static group model where there is no (Join, Iss) within the duration of
consideration and there are exactly n members of the group. The group sk-pk pair it (∅, (y1 = gx1 , · · · , yn =
gxn) ). (Yes, there is no group trapdoor.) The sk-pk pair of User i is (xi, yi). The TbL group signature is

σ = SPK{x : (
∨

1≤i≤n yi = gx) ∧ (
∨

1≤i≤n ỹi = hx)}(M) (8)

where h = H(nonce), i.e. the hash of a non-repeating value. Note that the signature σ necessarily contains
ỹ1, · · · , ỹn, and therefore it grows in length proportional to the group size n.

Protocol GVf(σ) verifies the proof. Assume signatures σ and σ′ are both valid and they parse to produce
ỹi and ỹ′i, respectively. Protocol Link(σ, σ′) outputs 1 if and only if ỹj = ỹ′j for some j, 1 ≤ j ≤ n. And in
that case, Protocol Indict(σ, σ′) outputs j.

An attacker other than User j can produce two valid signatures with the same randomly generated ỹj ,
and thus indict User j. But User j can then vindicate itself by proving the inequality of discrete logarithms:
logg(yj) 6= logh(ỹj). ut

B Tight Reductions among Strong Diffie-Hellman Assumptions

We derive some tight equivalence reductions between several Strong Diffie-Hellman (SDH) assumptions. This
Appendix also appeared as [41].

B.1 Results

Let e : G1 ×G2 → GT be a bilinear mapping. The k-Strong Diffie-Hellman Problem (k-SDH) is the problem
of computing a pair (g1/(γ+x)

1 , x) given g1 ∈ G1, and g2, g
γ
2 , gγ2

2 , · · · , gγk

2 ∈ G2. The k-Strong Diffie-Hellman
Assumption is that no PPT algorithm has a non-negligible probability of solving a random instance of the
k-Strong Diffie Hellman Problem. For details, see [6, 7].

The k-SDH Assumption is closely related to the coalition-resistance of pairing-based signature schemes and
group signature schemes [31, 42, 6, 7, 40]. Typically, k colluders cannot jointly forge an additional signature
when the k-SDH Assumption holds. The following variants are also related to the coalition-resistance of
pairing based signatures and group signatures:

– The k-SDH’ Problem is the problem of computing a pair (g1/(γ+x)
1 , x) given g1, g

γ
1 , gγ2

1 , · · · , gγk

1 ∈ G1

and g2, g
γ
2 ∈ G2.

– The k-CAA Problem is, given g2, g
γ
2 ∈ G2, v ∈ G1, and and pairs (Ai, ei) with distinct and nonzero ei’s

satisfying Aγ+ei

i = v, 1 ≤ i ≤ k, compute a pair (Ak+1, ek+1) with ek+1 6= ei for any i, 1 ≤ i ≤ k, and
satisfying Aγ+ek+1

k+1 = v.
– The k-CAA2 Problem is, given g2, g

γ
2 ∈ G2, u, v ∈ G1, (Ai, ei, xi) satisfying Aγ+ei

i uxi = v for 1 ≤ i ≤ k

and all ei’s are distinct and nonzero, compute another triple (Ak+1, ek+1, xk+1) satisfying Aγ+ek+1
k+1 uxk+1 =

v and ek+1 6= ni for any i, 1 ≤ i ≤ k.

The k-SDH’ (resp. k-CAA, k-CAA2) Assumption is that no PPT algorithm has a non-negligible proba-
bility of solving a random instance of the k-SDH’ (resp. k-CAA, k-CAA2) Problem. The k-CAA Assumption
is from Zhang, et al.[42], where CAA stands for Collusion Attack Algorithm. They showed the k-CAA As-
sumption holds if and only if their group signature scheme is k-coalition resistant. [6, 7] showed the k-CAA
Assumption is at least as strong as the k-SDH Assumption. However, no reduction in the opposite direction
was given. The full traceability of the exculpable version of [7]’s group signature in their Section 7 can be easily
shown equivalent to the k-CAA2 Assumption. [40] showed the k-CCA2 Assumption is at least as strong as
the k-SDH Assumption.

The k-CAA2 Assumption is easily at least as strong as the k-CAA Assumption. Typically, there exists
an efficiently computable homomorphism ψ such that ψ(g2) = g1. Then the k-SDH Assumption is at least as
strong as the k-SDH’ Assumption. In Section B.2, we prove the following two Theorems:

Theorem 3. The k-SDH’ Assumption and the k-CAA Assumption are equivalent.
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Theorem 4. Assume the discrete log value logv(u) is known. Then the k-SDH’ Assumption and the k-CAA2
Assumption are equivalent.

In proving results concerning SDH-related protocols, u is often the output of a fair hashing function.
Then the value of logv(u) is known under the random oracle model. In such cases, Theorem 4 can be used
to establish equivalence between certain SDH-based signature and group signature schemes and the k-SDH’
Assumption. It remains intereating to explore other equivalence reductions between these and other SDH-
related assumptions, and their applications to pairing-based signatures and group signatures.

We also note that the above equivalence reductions are tight, meaning that one solution algorithm’s time
complexity (resp. success probability) is within a reasonable additive term of the solution algorithm of the
other problem. Such tightness will be established by our proofs below.

B.2 Proofs

B.2.1 Proof Sketch of Theorem 3 (1) Solving k-CAA Problem implies solving k-SDH’ Problem. Assume
PPT algorithm A solves k-CAA. Given a k-SDH’ problem instance, randomly generate distinct nonzero
ei, 1 ≤ i ≤ k. Let f(γ) =

∏k
i=1(γ + ei). Denote f(γ) =

∑k
i=0 fiγ

i. Let v = g
f(γ)
1 . For 1 ≤ i ≤ k let

f [j] = f(γ)/(γ + ej) =
∑k−1

i=0 f
[j]
i γi. Then

Aj = v1/(γ+ej) = g
f [j](γ)
1 = g

Pk−1
i=0 f

[j]
i γj

1 =
k−1∏
i=0

(gγj

1 )f
[j]
i

Note that for each j, 1 ≤ j ≤ k, we have Aγ+ej

j = v. Invoking A to solve this k-CAA Problem, we obtain

(Ak+1, ek+1) satisfying Aγ+ek+1
k+1 = v. Denote B = vf̂ (γ)−1

where f̂(γ) = f(γ)(γ + ek+1). Next, we describe
how to compute B. Denote f̂(γ) =

∑k+1
i=0 f̂ iγ

i and

f̂
[j]

(γ) = f̂(γ)(γ + ej)−1 =
∏

1≤i≤k+1,i 6=j

(γ + ei) =
k∑

i=1

f̂
[j]

i γi

for 1 ≤ j ≤ k + 1. Denote ẽ = ek+1, we have

Bγj+1+γj ẽ = B(γj+γj−1ẽ)γ = gj
1, for 0 ≤ j ≤ k

Bf̂ (γ) = v

The above system of k + 2 equations can be solved for the k + 2 unknowns Bγ`

, 0 ≤ ` ≤ k + 1, including B
where (B, ẽ) solves the k-SDH’ Problem.

(2) Solving k-SDH’ Problem implies solving k-CAA Problem. Assume A is a PPT solver of the k-SDH’
Problem. Given Aγ+ei

i , 1 ≤ i ≤ k, let f(γ) =
∏k

I=1(γ + ei). Let g1 = v1/f(γ). Next, we describe how to
compute g1.

Denote f(γ) =
∑k

i=0 fiγ
i and f [j](γ) = f(γ)/(γ + ej) =

∑k−1
i=0 f

[j]
i γi, for 1 ≤ j ≤ k. We have v = g

f(γ)
1 =∏k

i=0(g
γi

1 )fi and

Aj = g
f [j](γ)
1 =

k∏
i=0

(gγi

1 )f
[j]
i (9)

Rearranging, we have

k∏
i=0

(gγi

1 )Mi,j = Aj , for 0 ≤ j ≤ k, (10)
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where the (k + 1)× (k + 1) matrix M̄ is

M̄ = [Mi,j ]0≤i,j≤k =


f0 f1 · · · fk

0 f
[1]
1 · · · f [1]

k
...
0 f

[k]
1 · · · f [k]

k


Note f

[j]
i = Sk−1−i(E \ {ej}) for all i and j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k, where E = {e1, · · · , ek} and

Sa({x1, · · · , xn}) is the a-th order symmetric function

Sa({x1, · · · , xn}) =
∑

1≤i1<···<ia≤n

xi1 · · ·xia

Denote the k × k matrix M = [Mi,j ]1≤i,j≤k. We prove the following Lemma later:

Lemma 5 det(M) =
∏

1≤i<j≤k(ei − ej).

Therefore det(M̄) = (
∏k

`=1 e`)(
∏

1≤i,j≤k(ei − ej)) 6= 0, and Equation (10) can be solved to obtain gγi

1 , for all

i, 0 ≤ i ≤ k. Invoking the k-SDH’ solver A to obtain g1/(γ+x)
1 and x.

Let f̄(γ) =
∑k−1

i=0 f̄ iγ
i and c̄ be such that f(γ)/(γ + x) = f̄(γ) + c̄/(γ + x). Then compute

Ak+1 = g
f(γ)/(γ+x)
1 = g

f̄(γ)
1 (g1/(γ+x)

1 )c̄ = [
k−1∏
i=0

(gγi

1 )f̄i ](g1/(γ+x)
1 )c̄

and we solve k-CAA Problem with (Ak+1, x). ut

B.2.2 Proof of Lemma 5 Note M equals the following matrix:

M(k, e1, · · · , ek) =


Sk−1(E \ {e1}) Sk−2(E \ {e1}) · · · S0(E \ {e1})
Sk−1(E \ {e2}) Sk−2(E \ {e2}) · · · S0(E \ {e2})

...
Sk−1(E \ {ek}) Sk−2(E \ {ek}) · · · S0(E \ {ek})


By convention S0 = 1. We prove the the following statement:

det(M(k, e1, · · · , ek)) = (
k∏

i=2

(e1 − ei)) det(M(k − 1, e2, · · · , ek)) (11)

Then induction on k yields the Lemma.
Let matrix

U =



1 −1 −1 · · · −1
1

. . . 0

0
. . .

1


Multiplying two matrices we obtain M(k, e1, · · · , ek)U =

Sk−1(E \ {e1}) Sk−2(E \ {e1}) · · · S1(E \ {e1}) S0(E \ {e1})
(e1 − e2)Sk−2(E \ {e1, e2}) (e1 − e2)Sk−3(E \ {e1, e2}) · · · (e1 − e2)S0(E \ {e1, e2}) 0
(e1 − e3)Sk−2(E \ {e1, e3}) (e1 − e3)Sk−3(E \ {e1, e3}) · · · (e1 − e3)S0(E \ {e1, e3}) 0

...
(e1 − ek)Sk−2(E \ {e1, ek}) (e1 − ek)Sk−3(E \ {e1, ek}) · · · (e1 − ek)S0(E \ {e1, ek}) 0


Consider the lower left (k − 1) × (k − 1) matrix. Its i-th row is exactly the i-th row of M(k − 1, E \ {e1})
multiplied by e1 − ei, . This proves Equation (11) and thus the Lemma. ut
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B.2.3 Proof Sketch of Theorem 4 Assume logv(u) = α. The proof is similar to that of Theorem 3. We
describe mainly the difference below. Given a PPT algorithm A which solves k-CAA2, and a k-SDH’ Problem
instance, randomly generate distinct nonzero ei and xi, 1 ≤ i ≤ k. Let f(γ), f [i](γ) be as defined in the proof
of Theorem 3. Then

Aj = v(1−xiα)/(γ+ei) = g
(1−xiα)f [i](γ)
1

Invoking A to obtain (Ak+1, ek+1, xk+1) satisfying A
γ+ek+1
k+1 uxk+1 = v. The rest is similar to the proof of

Theorem 3.
Given a PPT algorithm A which solves the k-SDH’ Problem and a k-CCA2 Problem instance, we have

Aγ+ei

i = v1−xiα. Let g1 = v1/f(γ), then Equation (9) becomes

Aj = g
(1−xiα)f [j](γ)
1 , 1 ≤ j ≤ k.

The non-singularity of the matrix M̄ ensures that a k-SDH’ Problem instance can be computed from the
Aj ’s. Invoke A to solve this problem instance, and then convert its answer to an answer for the k-CAA2
Problem is straightforward. ut


