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Abstract— Secrete permutations are widely used in multimedia

encryption algorithms, and many permutation-only ciphers have

been proposed in recent years for protection of different types of

multimedia data, especially digital images and videos. Based on

a normalized encryption/decryption model, this paper analyzes

the security of permutation-only image ciphers working in

spatial domain from a general perspective, taking a recently-

proposed permutation-only image cipher called HCIE (hierar-

chical chaotic image encryption) as a typical example. It is

pointed out that all permutation-only image ciphers are insecure

against known/chosen-plaintext attacks in the sense that only

O (logL(MN)) known/chosen plain-images are enough to break

the ciphers, where MN is the size of the image andL is the

number of different pixel values. Also, it is found that the attack

complexity is only O(n · (MN)2), where n is the number of

known/chosen plain-images used. Following the results, it is found

that hierarchical permutation-only image ciphers such as HCIE

are less secure than normal (i.e., non-hierarchical) permutation-

only image ciphers. Experiments are shown to verify the feasi-

bility of the known/chosen-plaintext attacks. The cryptanalysis

result is then generalized to permutation-only image ciphers

working in frequency domain and video ciphers. In conclusion,

secret permutations have to be combined with other encryption

techniques to design highly secure multimedia encryption sys-
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tems. This paper provides for the first time theoretically and

experimentally clarification of such a security principle on the

design of multimedia encryption algorithms.

Index Terms— permutation-only multimedia encryption, im-

age, video, cryptanalysis, known-plaintext attack, chosen-

plaintext attack, HCIE, chaos

I. I NTRODUCTION

With the rapid progress of digital network technologies

today, the security of multimedia becomes more and more

important, since multimedia data are transmitted over open

networks more and more frequently. Typically, reliable secu-

rity in storage and transmission of digital images and videos

is needed in many real applications, such as pay-TV, medical

imaging systems, military image databases as well as con-

fidential video conferences. In recent years, some consumer

electronic devices, such as mobile phones, have also started to

provide the function of saving and exchanging digital images

and video clips under the support of multimedia messaging

services over wireless networks, which is another reason for

demanding the security of digital images and videos.

To meet the above needs in practice, some encryption

algorithms are required to offer a sufficient level of security

for different multimedia applications. Apparently, the simplest

way to encrypt an image (or a video) is to consider the 2-

D image (or 3-D video) stream as a 1-D signal, and then

to encrypt the 1-D signal with any available cipher [1]. In

some multimedia applications, such a simple way may be
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enough. However, in many applications, encryption schemes

considering special features of digital images, such as bulky

size and large redundancy in uncompressed images, are still

required to achieve a better overall performance and to make

the integration of the encryption scheme into the image pro-

cessing easier. Since the 1990s, many different algorithms have

been proposed to provide solutions to image encryption [2]–

[24] and video encryption [19]–[36]. Meanwhile, cryptanalysis

work has also been developed and some proposed image/video

encryption schemes have been found to be insecure from

the cryptographical point of view [20]–[22], [37]–[51]. For

a comprehensive survey with detailed discussions on image

and video encryption algorithms, see [52].

In image encryption community, secret permutations are

widely used to shuffle the positions of pixels, which is an ef-

fective and easy way to make the cipher-image look “chaotic”.

Similarly, in video encryption community, secret permutations

are widely used to shuffle the DCT/wavelet coefficients, blocks

or macroblocks. There are many image/video encryption al-

gorithms that are based only on secret permutations [2]–

[6], [9]–[14], [16], [22], [25], [27], [33], [35], which are

called permutation-only(image/video) ciphers in this paper.

The main advantages of using only secrete permutations in a

cipher include easy implementation and the universality for

most image/video formats (which work well in both spatial

and frequency domains).

In most permutation-onlyciphers, the security is analyzed

for ciphertext-only attacks, i.e., brute-force attacks of ex-

haustively searching the secret key. However, from the cryp-

tographical point of view, such a security analysis is not

enough, since there exist other more powerful attacks, such as

known/chosen-plaintext attacks and chosen-ciphertext attacks

(see the next section for a brief introduction to different

kinds of cryptographical attacks). In fact, it has been pointed

out that permutation-only image/video ciphers are not secure

against known/chosen-plaintext attacks [20]–[22], [39]–[45],

but most previous cryptanalysis results are proposed for some

specific permutation-only image/video ciphers and the essen-

tial security defects of these encryption algorithms that are

based only on secret permutations have not been clarified in a

general way. The lack of general cryptanalysis results makes

it ambiguous in understanding whether or not the security

of permutation-only multimedia encryption algorithms can be

effectively enhanced by designing new methods to generate

better secret permutations.

This paper gives a general cryptanalysis of most (if not all)

permutation-only multimedia encryption algorithms, mainly

focusing on the quantitative relation between the breaking

performance and the number of required known/chosen plain-

texts, as well as the estimation of the attack complexity. It

will be pointed out that secret permutations alone cannot pro-

vide sufficient security against known/chosen-plaintext attacks,

from both theoretical and experimental points of view. The

cryptanalysis is performed on a general model of permutation-

only image ciphers working in spatial domain, which then is

generalized to permutation-only image working in frequency

domain and also to permutation-only video ciphers. As a

typical example of permutation-only image ciphers, a recently-

proposed image encryption scheme called HCIE (hierarchical

chaotic image encryption) [10]–[12]1 is investigated in detail,

to show how the known/chosen-plaintext attacks work. It is

shown that all permutation-only image ciphers are not secure

1The chaotic image encryption (CIE) scheme proposed in [9] is an initial

version of HCIE.
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against known/chosen-plaintext attacks, in the sense that only

O (logL(MN)) known/chosen plain-images are enough to

break the ciphers, whereMN is the size of the image (i.e., the

number of pixels) andL is the number of different pixel val-

ues. An upper bound of the attack complexity is also derived

to beO(n · (MN)2), wheren is the number of known/chosen

plain-images. What’s more, it is found that the hierarchical

encryption structure suggested in HCIE cannot provide any

higher security against known/chosen-plaintext attacks, but

actually make the security weaker. As a conclusion, secure

permutations must be used together with other encryption

mechanisms to design a secure multimedia encryption scheme,

as in some compound image/video ciphers [7], [8], [17], [18],

[23], [24].

The rest of this paper is organized as follows. Section

II gives some background knowledge of cryptography and

cryptanalysis. In Sec. III, a normalized encryption/decryption

model of permutation-only image ciphers working in spatial

domain is described, and then HCIE is briefly introduced as a

typical example to show how the secret pixel permutations are

realized. Cryptanalysis on common permutation-only image

ciphers and one special version, HCIE, are studied in detail in

Sec. IV. Some experiments are shown in Sec. V to support

the cryptanalysis. Sec. VI discusses the generalization of

the cryptanalysis results to permutation-only image ciphers

working in frequency domain and to permutation-only video

ciphers. The last section concludes the paper.

II. PRELIMINARIES OF CRYPTOGRAPHY AND

CRYPTANALYSIS

To facilitate the following discussion, this section gives a

brief introduction to the basic theory of modern cryptography

and cryptanalysis, which compose the technology of encryp-

tion — cryptology [1]. Simply speaking, cryptography studies

how to design good (secure and fast) encryption algorithms,

and cryptanalysis tries to find security weaknesses of existing

algorithms and studies whether or not they are vulnerable to

some attacks.

An encryption scheme is called acipher, or a cryptosys-

tem. The message for encryption is calledplaintext, and the

encrypted message is calledciphertext, which are denoted

here by P and C, respectively. The encryption procedure

of a cipher can be described asC = EKe
(P ), where Ke

is the encryption key andE(·) is the encryption function.

Similarly, the decryption procedure isP = DKd
(C), where

Kd is the decryption key andD(·) is the decryption function.

When Ke = Kd, the cipher is called aprivate-keycipher or

a symmetriccipher. For private-key ciphers, the encryption-

decryption key must be transmitted from the sender to the

receiver via a separate secret channel. WhenKe 6= Kd, the

cipher is called apublic-keycipher or anasymmetriccipher.

For public-key ciphers, the encryption keyKe is published,

and the decryption keyKd is kept secret, for which no

additional secret channel is needed for key transfer.
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Fig. 1. The encryption and decryption procedures of a cipher.

Following the widely-acknowledged Kerckhoffs’ principle

in the cryptology community [1], it is assumed that all

details of the encryption/decryption algorithms are known to

attackers. This means that the security of a cipher relies on the

decryption keyKd only. Thus, the main task of cryptanalysis

is to reconstruct the key, or its equivalent form that can

successfully decrypt all or partial contents of any plaintext
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encrypted by the cipher.

From the cryptographical point of view, a cryptographically

strong cipher should be secure enough against all kinds of

attacks. For most ciphers, the following four attacks corre-

sponding to different scenarios should be checked:

• the ciphertext-only attack- attackers can only observe

part of the ciphertexts;

• the known-plaintext attack- attackers can get some plain-

texts and the corresponding ciphertexts;

• the chosen-plaintext attack- attackers can choose some

plaintexts and get the corresponding ciphertexts;

• the chosen-ciphertext attack- attackers can choose some

ciphertexts and get the corresponding plaintexts.

The last two attacks, which seem to seldom occur in practice,

are feasible in some real applications [1, Sec. 1.1.7] and

become more and more common in the digital world today.

This paper mainly focuses on known-plaintext and chosen-

plaintext attacks.

III. PERMUTATION-ONLY IMAGE CIPHERSWORKING IN

SPATIAL DOMAIN

A. A normalized model for encryption and decryption

When working in spatial domain, just as its name implies,

permutation-onlyimage ciphers encrypt images by permut-

ing the positions of all pixels in a secret way. The secret

permutations have to be invertible to make the decryption

possible. This means that all permutation-only ciphers belong

to symmetry ciphers, i.e.,Ke = Kd = K, which is used

to generate the secret permutations. Although many different

methods have been proposed to realize secret key-dependent

pixel permutations, for a given plain-image of sizeM × N

(“height×width”), a permutation-only image cipher can be

normalized with aninvertible key-dependent permutation ma-

trix of sizeM ×N , denoted by

W = [w(i, j) = (i′, j′) ∈ M× N]M×N , (1)

where M = {0, · · · ,M − 1} and N = {0, · · · , N − 1}.

With the permutation matrixW and its inverseW−1 =

[w−1(i, j)]M×N , for a plain-imagef = [f(i, j)]M×N and its

corresponding cipher-imagef ′ = [f ′(i, j)]M×N , the encryp-

tion and decryption procedures of a permutation-only image

cipher can always be described as follows:

• the encryption procedure: for i = 0 ∼ (M − 1) and

j = 0 ∼ (N − 1), f ′(w(i, j)) = f(i, j);

• the decryption procedure: for i = 0 ∼ (M − 1) and

j = 0 ∼ (N − 1), f(w−1(i, j)) = f ′(i, j).

In a short form, one can express the encryption procedure

as f ′(W (I)) = f(I) and the decryption procedure as

f(W−1(I)) = f ′(I), where

I =


(0, 0) · · · (0, N − 1)

...
...

...

(M − 1, 0) · · · (M − 1, N − 1)


M×N

.

To ensure the invertibility of the permutation matrix, i.e., to

make the decryption possible, the following should be satis-

fied: ∀(i1, j1) 6= (i2, j2), w(i1, j1) 6= w(i2, j2). This means

that W determines a bijective (i.e., one-to-one) permutation

mapping,FW : M× N → M× N.

From the above description, one can see that the design

of a permutation-only image cipher focuses on two points:

1) what the secret keyK is; 2) how the permutation matrix

W and W−1 are derived from the secret keyK. Generally

speaking, each key defines a permutation matrix, and each

permutation-only image cipher defines a finite set containing

a number of permutation matrices selected from(MN)!

possible permutation matrices. In literature, many different
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methods have been proposed to derive a permutation matrix

from a key, some of which are listed as follows:

• SCAN languagebased methods [2]–[4], [6], [23], [24]:

define some different scan patterns of the 2-D image and

combine these patterns to define a permutation matrix by

scanning the whole image pixel by pixel;

• quadtreebased methods [4], [6]: divide the image into

multi-level quadtree and shuffle the order of four nodes

in each level to realize a permutation matrix;

• 2-D chaotic mapsbased methods [7], [8], [17], [18]:

iterate a discretized 2-D chaotic map over theM × N

image lattice for many times to realize a permutation

matrix;

• Fractal curvesbased methods [5], [16]: use a fractal(-

like) curve to replace the normal scan order to realize a

permutation matrix;

• pseudo-random rotationsbased methods [9]–[12]:

pseudo-randomly rotate pixels along some straight lines

for many times to realize a permutation matrix;

• matrix transformation based methods[13]: use (integer)

transformations of matrix, such asn-dimensional Arnold

transformation and Fabonacci-Q transformation, to define

permutation matrices;

• composite methods[14]: combine different methods to

realize more complicated permutation matrices.

Although different types of secret keys are used in different

permutation-only image ciphers to generate the permutation

matrix, it is reasonable to consider the permutation matrix

W itself as the equivalent encryption key andW−1 as the

equivalent decryption key. From such a point of view, all

permutation-only image ciphers can be considered the same.

This is the base for the security analysis to be carried out

below in this paper.

B. A typical permutation-only image cipher – HCIE [9]–[12]

HCIE is a two-level hierarchical permutation-only image

cipher, and all involved permutation matrices are defined by

pseudo-random combinations of four rotation mappings with

pseudo-random parameters. For an image,f = [f(i, j)]M×N ,

the four mapping operations are described as follows, where

p < min(M,N) holds for each mapping.

Definition 1: The mappingf ′ = ROLRi,p
b (f) (0 ≤ i ≤

M−1) is defined to rotate thei-th row of f , in the left (when

b = 0) or right (whenb = 1) direction byp pixels.

Definition 2: The mappingf ′ = ROUDj,p
b (f) (0 ≤ j ≤

N − 1) is defined to rotate thej-th column off , in the up

(whenb = 0) or down (whenb = 1) direction byp pixels.

Definition 3: The mappingf ′ = ROURk,p
b (f) (0 ≤ k ≤

M +N−2) is defined to rotate all pixels satisfyingi+j = k,

in the lower-left (whenb = 0) or upper-right (whenb = 1)

direction byp pixels.

Definition 4: The mappingf ′ = ROULl,p
b (f) (1 − N ≤

l ≤ M − 1) is defined to rotate all pixels satisfyingi− j = l,

in the upper-left (whenb = 0) or lower-right (whenb = 1)

direction byp pixels.

Given a pseudo-random bit sequence{b(i)} starting from

i0, the following Sub HCIE function is used to permute an

SM × SN image fsub to be anotherSM × SN image f ′
sub,

where(α, β, γ, no) are control parameters. Note that all codes

in this paper is described in C-language style.

for (ite = 0; ite < no; ite + +) {

q = i0 + (3SM + 3SN − 2)× ite;

p = α + β × b(q + 0) + γ × b(q + 1);

for (i = 0; i ≤ (SM − 1); i + +)

f ′
sub = ROLRi,p

b(i+q)(fsub);
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for (j = 0; j ≤ (SN − 1); j + +)

f ′
sub = ROUDj,p

b(j+q+SM )(f
′
sub);

for (k = 0; k ≤ (SM + SN − 2); k + +)

f ′
sub = ROURk,p

b(k+q+SM+SN )(f
′
sub);

for (l = (1− SN ); l ≤ (SM − 1); l + +)

f ′
sub = ROULl,p

b(l+q+2×SM+3×SN−2)(f
′
sub);

}

i0 = i0 + (3SM + 3SN − 2)× no;

One can see that the aboveSub HCIE function actually

defines anSM × SN permutation matrix pseudo-randomly

controlled by(3SM + 3SN − 2)× no bits in the bit sequence

{b(i)} from i0. Based on this function, for anM ×N image

f = [f(i, j)]M×N , the encryption procedure of HCIE can be

briefly described in two levels.

• The secret keyis the initial conditionx(0) and the control

parameterµ of the chaotic Logistic map,f(x) = µx(1−

x) [53], which is realized inL-bit finite precision.

• Some public parameters: SM , SN , α, β, γ andno, where
√

M ≤ SM ≤ M , M mod SM = 0,
√

N ≤ SN ≤ N ,

andN mod SN = 0.

Note:Although (SM , SN , α, β, γ, no) can be all included

in the secret key, they are not suitable for such a use

due to the following reasons: 1)SM , SN are related to

M,N ; 2) α, β, γ are related toSM , SN (and then related

to M,N , too); 3)SM , SN can be easily guessed from the

mosaic effect of the cipher-image; 4)no cannot be too

large to achieve an acceptable encryption speed.

• The initialization procedureof generating the bit se-

quence used in theSub HCIE function: run the Lo-

gistic map from x(0) to generate a chaotic sequence

{x(i)}dLb/8e−1
i=0 , and then extract the 8 bits following

the decimal point of each chaotic statex(i) to yield a

bit sequence{b(i)}Lb−1
i=0 , whereLb =

(
1 + M

SM
· N

SN

)
·

(3SM + 3SN − 2) · no; finally, set i0 = 0 to let the

Sub HCIE function run fromb(0).

• The two-level hierarchical encryption procedure:

– The high-level encryption – permuting image blocks:

divide the plain-imagef into blocks of sizeSM ×

SN , which compose anMSM
× N

SN
block-imagePf =

[Pf (i, j)] M
SM

× N
SN

, wherePf (i, j) is the block of size

SM × SN at the position(i, j). Then, permute the

positions of all blocks with theSub HCIE function

in the following way:

∗ create a pseudo-imagefp = [fp(i, j)]SM×SN

containing
(

M
SM

· N
SN

)
non-zero indices of all im-

age blocks inPf and
(
M ·N − M

SM
· N

SN

)
zero-

elements, and permutefp with the Sub HCIE

function to get a shuffled pseudo-imagef∗
p ;

∗ generate a permuted block-imagePf∗ from Pf

(i.e., permutef blockwise) using the shuffled

indices contained inf∗
p .

The above high-level encryption procedure can be

considered as the permutation of the block-image:

Pf

f∗
p =Sub HCIE(fp)
−−−−−−−−−−→ Pf∗ , where f∗

p actually corre-

sponds to anM
SM

× N
SN

permutation matrix.

– The low-level encryption – permuting pixels in each

image block: for i = 0 ∼
(

M
SM

− 1
)

and j =

0 ∼
(

N
SN

− 1
)

, call the Sub HCIE function to

permute each blockPf∗(i, j) to get the corre-

sponding block of the cipher-imagef ′: Pf ′(i, j) =

Sub HCIE (Pf∗(i, j)).

In HCIE, a total of
(
1 + M

SM
· N

SN

)
permutation matrices

are involved: 1) one high-level permutation matrix of size

M
SM

× N
SN

; 2)
(

M
SM

· N
SN

)
low-level permutation matrices
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of size SM × SN . With the above-mentioned representation

of permutation-only image ciphers, the secret key(µ, x(0))

of HCIE is equivalent to the
(
1 + M

SM
· N

SN

)
permutation

matrices. To facilitate the following discussions, we use

W0 = [w0(i, j)] M
SM

× N
SN

to denote the high-level permu-

tation matrix, and use
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 to denote the(
M
SM

× N
SN

)
low-level permutation matrices, whereW(i,j) =[

w(i,j)(i′, j′)
]
SM×SN

. Apparently, the
(
1 + M

SM
· N

SN

)
per-

mutation matrices can be easily transformed to an equivalent

permutation matrix of sizeM ×N : W = [w(i, j)]M×N .

When SM = M and SN = N (or SM = SN = 1), the

two hierarchical encryption levels merge a single layer; the(
1 + M

SM
· N

SN

)
permutation matrices become one permuta-

tion matrix of sizeM ×N ; and HCIE is simplified to be CIE

[9] – a typical permutation-only image cipher in which each

pixel can be freely permuted to be any other positions in the

whole image by a singleM ×N permutation matrixW .

IV. CRYPTANALYSIS OF PERMUTATION-ONLY IMAGE

CIPHERSWORKING IN SPATIAL DOMAIN

In this section, we discuss the known/chosen-plaintext at-

tacks to the above-normalized permutation-only image ciphers

working in spatial domain and the typical example – HCIE.

Also, we will point out in passing that the security of HCIE

against brute-force attacks was much over-estimated in [10]–

[12]. Note that HCIE has not been cryptanalyzed yet till now.

A. Cryptanalysis of general permutation-only image ciphers

working in spatial domain

1) The known-plaintext attack:As shown above, when a

permutation-onlyimage cipher is used to encrypt images in

spatial domain, a pixel at the position(i, j) will be secretly

permuted to another fixed position(i′, j′) while the pixel

value is unchanged. Therefore, by comparing a number of

known plain-images and the corresponding cipher-images,

it is possible for an attacker to (partially or even totally)

reconstruct the secret permutations of all pixels, i.e., to derive

the encryption/decryption keys – the permutation matrixW

and its inverseW−1.

Given n known plain-imagesf1 ∼ fn and their cipher-

imagesf ′
1 ∼ f ′

n, the deduction procedure ofW and W−1

can be shown in the followingGet Permutation Matrix

function. With the input parameters (f1 ∼ fn, f ′
1 ∼ f ′

n,M,N ),

this function returns an estimation of the permutation matrix

W and its inverseW−1. Assuming the value of each pixel

ranges in{0, · · · , L− 1}, the Get Permutation Matrix

function is described as follows.

• Step 1: compare pixel values within then cipher-images

f ′
1 ∼ f ′

n to get (n · L) sets of pixel positions:

Λ′
1(0) ∼ Λ′

1(L− 1), · · · ,Λ′
n(0) ∼ Λ′

n(L− 1),

whereΛ′
m(l) ⊆ M×N denotes a set containing positions

of all pixels in f ′
m (m = 1 ∼ n) whose values are equal

to l ∈ {0, · · · , L−1}, i.e.,∀(i′, j′) ∈ Λ′
m(l), f ′

m(i′, j′) =

l. Note thatΛ′
m(0) ∼ Λ′

m(L − 1) actually compose a

partition of the set of all pixel positions:
⋃L−1

l=0 Λ′
m(l) =

M × N = {(0, 0), · · · , (M − 1, N − 1)}, and∀l1 6= l2,

Λ′
m(l1) ∩ Λ′

m(l2) = ∅;

• Step 2: get a multi-valued permutation matrix,̂W =

[ŵ(i, j)]M×N , where ŵ(i, j) =
⋂n

m=1 Λ′
m(fm(i, j)).

Here, note thatŵ(0, 0) ∼ ŵ(M − 1, N − 1) actually

composes a new partition of the position setM× N;

• Step 3: determine a single-valued permutation matrix,

W̃ = [w̃(i, j)]M×N from Ŵ , where w̃(i, j) ∈ ŵ(i, j)

and∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2);

• Step 4: output W̃ and its inverse W̃−1 =
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[w̃−1(i, j)]M×N as the estimations ofW and W−1.

Apparently, if and only if # (ŵ(0, 0)) = · · · =

# (ŵ(SM − 1, SN − 1)) = 1, i.e., each element of̂W con-

tains only one pixel position, it is true that̃W = W and

the cipher is totally broken. However, because some elements

of Ŵ contain more than one pixel position, generallỹW

is not an exact estimation ofW . Assume that there are

(N̂ ≤ MN) different elements in̂W , and that theN̂ different

elements areŵ1 ∼ ŵN̂ . Then, it can be easily verified

that there are
∏N̂

k=1 #(ŵk)! possibilities of W̃ . To make

the estimation ofW̃ as accurate as possible, some specific

optimization algorithms can be used to choose a better position

from ŵ(i, j) as the value ofw̃(i, j), such as genetic and

simulated annealing algorithms. Our experiments show that

even a simple algorithm can achieve a rather good estimation

when n ≥ 3 for 256 × 256 gray-scale images. The simple

algorithm is called “taking-the-first” algorithm, which sets

w̃(i, j) to be the first available element in̂w(i, j), where

the term “available” refers to the constraint that∀(i1, j1) 6=

(i2, j2), w̃(i1, j1) 6= w̃(i2, j2).

Now, let us consider the decryption performance of the

estimated permutation matrix̃W when W̃ 6= W . Generally

speaking, due to the large information redundancy existing in

a digital image, only partially-recovered pixels are enough to

reveal most visual information. Therefore, if there are enough

correct elements iñW , the decryption performance may be

acceptable from a practical point of view. From the above

discussions, one can see that correctly-recovered elements in

W̃ belong to two different classes:

• the absolutely correct elements: derived from the single-

valued elements of̂W ;

• the probabilistically correct elements: derived from the

multi-valued elements of̂W , and are correctly guessed

by an optimization algorithm of selecting a proper posi-

tion from eachŵ(i, j).

Assuming that the number of single-valued elements ofŴ is

nc and the successful probability of the optimization algorithm

is ps, the average number of correct elements iñW will

be nc + ps · (MN − nc). Becauseps is generally not fixed

(tightly dependent on the employed optimization algorithm),

only the absolutely correct elements are considered here

(i.e., ps = 0 is assumed) to perform a qualitative analysis.

Now the problem of correct elements iñW is simplified

to be the problem of singe-value elements in̂W . Observ-

ing the Get Permutation Matrix function, one can see

that the cardinality ofŵ(i, j) is uniquely determined by

Λ′
1(f1(i, j)) ∼ Λ′

n(fn(i, j)). To further simplify the analysis,

assume that the value of each pixel distributes uniformly

in {0, · · · , L − 1}, and that the values of any two pixels

(within the same image or in two different cipher-images2)

are independent of each other. Then, one can consider the

following two types of positions inŵ(i, j):

• the only one real positionw(i, j), which absolutely

occurs inŵ(i, j);

• other fake positions, each of which occurs in each

Λ′
m(fm(i, j)) with a probability of 1

L , i.e., each of which

occurs in all then sets,Λ′
1(f1(i, j)) ∼ Λ′

n(fn(i, j)), with

a probability of 1
Ln .

Based on the above results, one can qualitatively deduce

that the average cardinality of̂w(i, j) is # (ŵ(i, j)) =(
1 + MN−1

Ln

)
, which approaches 1 exponentially asn in-

creases. Generally speaking, when1 + MN−1
Ln < 1.5, i.e.,

2Note that a plain-image and its cipher-image are totally related via the

secret permutation matrix.
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about half elements iñW are correct, the decryption per-

formance will be acceptable. Solving this inequality, one has

n ≥ dlogL(2(MN − 1))e. As an example, for256 × 256

gray-scale images,M = N = L = 256, one hasn ≥

dlogL(2(MN−1))e = d2.125e = 3. The average cardinality is

about 1.0039 whenn = 3, so it is expected that the decryption

performance forn ≥ 3 will be rather good, which is verified

by the experiments given in the next section. Here, note that

the actual decryption performance is generally better than the

above theoretical expectation for the following two reasons:

• human eyes have a powerful capability of suppressing

image noises and extracting significant features: 10%

noisy pixels cannot make much influence on the visual

quality of a digital image, and it only needs 50% of pixels

to reveal most visual information of the original image;

• due to the short-distance and long-distance relationships

in natural images, two pixel values are close to each other

with a non-negligible probability larger than the average

probability; as a result, the wrongly-decrypted pixel are

close to the right value with a probability larger than the

average probability.

The second point implies that the decryption performance of

natural images will be better than the performance of noise-

like images, from the point of view of decryption error ratio.

For experimental verification and more explanations, see Sec.

V-A, Figs. 4 and 5.

Next, let us consider the time complexity of the above-

discussed known-plaintext attack, i.e., the time complexity

of the Get Permutation Matrix function. Note that the

time complexity depends on the implementation details of this

function. This paper only gives a conservative estimation, i.e.,

an upper bound, of the time complexity. The time complexity

of each step is as follows:

• Step 1: The L sets of each cipher-imagef ′
l are obtained

by scanningf ′
l once: fori = 0 ∼ (M − 1) and j = 0 ∼

(N − 1), add (i, j) into the setΛ′
m(f ′

l (i, j)). Thus, the

time complexity of this step isO(n ·MN).

• Step 2: Without loss of generality, assume all cipher-

pixels satisfy uniform distributions. Then, the average car-

dinality of Λm(l) is MN
L and an upper bound of the time

complexity of this step isMN ·
(

MN
L ·

(
1
2 ·

MN
L

)n−1
)

=

2MN ·
(

MN
2L

)n
, which exponentially increase asn in-

creases ifMN > 2L. However, in practice, the real

complexity is much smaller due to the optimization of

the calculation process. Here, we consider the so-called

halving algorithm, which calculates the intersection ofn

setsA1 ∼ An by dividing them into multi-level groups

of (2, 4, · · · , 2i, · · · ) sets. For example, whenn = 11,

the calculation process is described by

((A1

1
∩A2)

3
∩ (A3

2
∩A4))

7
∩ ((A5

4
∩A6)

6
∩ (A7

5
∩A8))

10
∩((A9

8
∩A10)

9
∩A11), (2)

where
i
∩ denotes thei-th intersection operation. The goal

of this halving algorithm is to minimize the cardinalities

of the two sets involved in each intersection operation

so as to reduce the global complexity. To make the

estimation of the complexity easier, let us consider the

case ofn = 2d, where d is an integer. In this case,

the overall complexity is shown in Eq. (3). As two

typical examples, whenM = N = 256 and L = 2

(monotonic images), the complexity is about
(
229.2 · n

)
;

whenM = N = 256 andL = 256 (gray-scale images),

the complexity is only
(
215 · n

)
. One can see that now the

complexity is always much smaller than2MN ·
(

MN
L

)n
.

When n is not a power of 2, the complexity will be
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0∑
k=d−1

2k ·
(

MN

Ld−k

)2

=
d∑

k′=1

2d−k′ ·
(

MN

Lk′

)2

= 2d · (MN)2 ·

(
d∑

k′=0

1
(2 · L2)k′

− 1

)

= n · (MN)2 ·
(

1− ((2L2)−1)d+1

1− (2L2)−1
− 1
)

< n · (MN)2 ·
(

1
1− (2L2)−1

− 1
)

=
n

2L2 − 1
· (MN)2. (3)

smaller than2dlog2 ne

2L2−1 · (MN)2 ≤ 2n
2L2−1 · (MN)2.

• Step 3: The time complexity of this step is determined

by the details of the involved optimization algorithm. For

the “taking-the-first” algorithm, the complexity isMN ·(
1 + MN−1

Ln

)
≈ MN + (MN)2

Ln .

• Step 4: The time complexity of this step isMN .

Combing the above discussions, the final time complexity of

theGet Permutation Matrix function is always of order

n · (MN)2, which is practically small even for a PC.

From the above analysis, one can see that the time complex-

ity is mainly determined by Step 2. When the “taking-the-first”

algorithm is adopted in theGet Permutation Matrix

function, Step 2 can be skipped so that the total complexity

will still be of order O
(
n · (MN)2

)
, even without using the

halving algorithm to calculate the intersections. In this case,

Step 3 can be described as follows:

• Step 3’: For i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), do

the following operations:

– Step 3’a: find the first element satisfyingf1(i, j) =

f ′
1(i

′, j′), · · · , fn(i, j) = f ′
n(i′, j′) by searching each

element in Λ′
1(f1(i, j)) and checking whether it

occurs inΛ′
2(f2(i, j)) ∼ Λ′

n(fn(i, j));

– Step 3’b: setw̃(i, j) = (i′, j′) and then delete(i′, j′)

from Λ′
1(f1(i, j)) ∼ Λ′

n(fm(i, j)).

It is obvious that the time complexity of Step 3’a is always

less thann · (MN) and averagely isO
(
n · MN

L

)
, so the time

complexity of Step 3’ is always less thann · (MN)2 and

averagely isO
(
n · (MN)2

L

)
.

2) The chosen-plaintext attack:The chosen-plaintext attack

works in the same way as the known-plaintext attack, but the

plain-images can be deliberately chosen to optimize the esti-

mation ofW̃ (i.e., to maximize the decryption performance).

The following two rules are useful in the creation of then

chosen plain-imagesf1 ∼ fn:

• the histogram of each chosen plain-image should be as

uniform as possible;

• the i-dimensional (2 ≤ i ≤ n) histogram of anyi chosen

plain-images should be as uniform as possible, which is

a generalization of the above rule.

The goal of the above two rules is to minimize the average

cardinality of the elements in̂W , and then to maximize

the number of correct elements in the estimated permutation

matrix W̃ .

As an example of the two rules, consider the condition when

M = N = L = 256 (256-valued gray-scale images of size

256×256). In this case, the following two chosen plain-images

are enough to ensure a perfect estimation of the permutation

matrix W : f1 = [f1(i, j) = i]256×256 and f2 = [f2(i, j) =
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j]256×256, i.e.,

f1 = fT
2 =



0 · · · 0
...

...
...

i · · · i

...
...

...

255 · · · 255


256×256

(5)

and

f2 = fT
1 =


0 · · · j · · · 255
...

...
...

...
...

0 · · · j · · · 255


256×256

. (6)

For the above two chosen plain-images, it is true

that ∀(i1, j1) 6= (i2, j2), (f1(i1, j1), f1(i2, j2)) 6=

(f2(i1, j1), f2(i2, j2)). This can ensure that∀l1, l2 ∈

{0, · · · , L − 1}, # (Λ′
1(l1) ∩ Λ′

2(l2)) = 1. For n images

satisfying this constraint, we say that they composean

orthogonal image set. This concept is introduced to facilitate

the following discussion on the chosen-plaintext attack to

HCIE.

In general cases, it can be easily deduced thatn =

dlogL(MN)e orthogonal images3 have to be created to carry

out a successful chosen-plaintext attack. Apparently, it will

never be larger thandlogL(2(MN − 1))e – the number of

required plain-images in the known-plaintext attack with a

good breaking performance (recall the above sub-subsection).

This means the chosen-plaintext attack is a little (but not so

much) stronger than the chosen-plaintext attack in the present

case of discussion.

B. Cryptanalysis of HCIE

1) The known-plaintext attack: Since HCIE is a

permutation-only image cipher, givenn known plain-

3When MN ≤ L, only one chosen plain-image is enough, if each pixel

value is different from the others.

images f1 ∼ fn of size M × N and the corresponding

cipher-imagesf ′
1 ∼ f ′

n, one can simply call the above

Get Permutation Matrix function with the input

parameter (f1 ∼ fn, f ′
1 ∼ f ′

n,M,N) to estimate an

M × N permutation matrixW , which is equivalent to the(
1 + M

SM
· N

SN

)
smaller permutation matrices. However, if

the hierarchical structure of HCIE is considered, the known-

plaintext attack may be quicker and the estimation will be

more effective, as demonstrated later in the next section.

Thus, the following hierarchical procedure of known-plaintext

attacks to HCIE is suggested4:

• Reconstruct the high-level permutation matrixW0:

– for i = 0 ∼
(

M
SM

− 1
)

andj = 0 ∼
(

N
SN

− 1
)

, cal-

culate the mean values of the2n blocksPf1(i, j) ∼

Pfn(i, j), Pf ′
1
(i, j) ∼ Pf ′

n
(i, j) and denote them by

Pf1(i, j) ∼ Pfn
(i, j) andPf ′

1
(i, j) ∼ Pf ′

n
(i, j);

– generate2n imagesP f1 ∼ P fn
andP f ′

1
∼ P f ′

n
of

size M
SM

× N
SN

as follows:∀m = 1 ∼ n,

P fm
=
[
Pfm

(i, j)
]

M
SM

× N
SN

(7)

and

P f ′
m

=
[
Pf ′

m
(i, j)

]
M

SM
× N

SN

, (8)

and call theGet Permutation Matrix function

with the input parameters(
P f1 ∼ P fn

, P f ′
1
∼ P f ′

n
,

M

SM
,

N

SN

)
to get an estimated permutation matrix

W̃0 = [w̃0(i, j)] M
SM

× N
SN

and its inverse

W̃−1
0 =

[
w̃−1

0 (i, j)
]

M
SM

× N
SN

.

4For HCIE, the permutation matrices also depend on the values of the public

parameters. To simplify the following description, without loss of generality,

it is assumed that all public parameters are fixed for all known plain-images.
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• Reconstruct the
(

M
SM

· N
SN

)
low-level permutation matri-

ces
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 :

– for i = 0 ∼
(

M
SM

− 1
)

andj = 0 ∼
(

N
SN

− 1
)

, call

theGet Permutation Matrix function with the

input parameters(Pf1(i, j) ∼ Pfn(i, j), Pf ′
1
(i′, j′) ∼

Pf ′
n
(i′, j′), SM , SN ), where (i′, j′) = W0(i, j), to

determine an estimated permutation matrix̃W(i,j)

and its inversẽW−1
(i,j).

With the
(
1 + M

SM
· N

SN

)
inverse matricesW−1

0 and{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 , one can decrypt a new cipher-image

f ′
n+1 as follows to get an estimated plain-imagef∗

n+1:

for (i = 0; i ≤ (M/SM )− 1; i + +)

for (j = 0; j ≤ (N/SN )− 1; j + +) {

ftemp = Pf ′
n+1

(w−1
0 (i, j));

for (ii = 0; ii ≤ SM − 1; ii + +)

for (jj = 0; jj ≤ SN − 1; jj + +)

f∗
temp(ii, jj) = ftemp

(
w−1

(i,j)(ii, jj)
)

;

Pf∗
n+1

(i, j) = f∗
temp;

}

In fact, in the above procedure, any measure keeping

invariant in the block permutations can be used instead of

the mean value. A typical measure is the histogram of each

SM ×SN block. Although the mean value is less precise than

the histogram, it works well in most cases and is useful to

reduce the time complexity. WhenL andSM × SN are both

too small, the efficiency of the mean value will become low,

and the histogram or the array of all pixel values can be used

as a replacement. Apparently, in most cases it is easier to

get the high-level permutation matrixW0 than the low-level

permutation matrices.

Finally, let us see whether the hierarchical structure used in

HCIE is helpful to enhance the security against the known-

plaintext attack to the common permutation image ciphers.

As discussed above,n ≥ dlogL(2(MN − 1))e known plain-

images are needed to achieve an acceptable breaking perfor-

mance. Since the hierarchical structure makes it possible for

an attacker to work on permutation matrices of sizeSM ×SN

or M
SM

× N
SN

(both smaller thanM × N ), it is obvious that

for HCIE the number of required known plain-image will be

smaller thandlogL(2(MN−1))e. Also, the attack complexity

will become less, since it is proportional to the square of

the matrix sizes. In such a sense, hierarchical permutation-

only image ciphers are less secure than non-hierarchical ones,

which discourages the use of HCIE. This result has been

confirmed by our experiments (see the next section).

2) The chosen-plaintext attack:Following the same

way introduced in the chosen-plaintext attack to common

permutation-only image ciphers, one can choosen =

dlogL(MN)e plain-images to carry out a chosen-plaintext

attack to HCIE. Similar to the known-plaintext attack, the

use of a hierarchical structure in HCIE can also make the

construction of chosen plain-images easier. Accordingly, an

attacker can also work hierarchically to constructn chosen

plain-images,f1, · · · , fn, as follows:

• high-level: P f1 ∼ P fn
, which are defined in Eq. (7),

compose an orthogonal image set;

• low-level: ∀(i, j), Pf1(i, j) ∼ Pfn(i, j) compose an

orthogonal image set.

In this case, the minimal number of required chosen plain-

image becomes

n = max
(
dlogL(SM · SN )e ,

⌈
logL

(
M

SM
· N

SN

)⌉)
≤ dlogL(MN)e , (9)

where the equality holds if and only if the hierarchical encryp-

tion structure is disabled, i.e., when(SM = M,SN = N) or



13

(SM = SN = 1).

3) The brute-force attack:In [10]–[12], it was claimed that

the complexity of brute-force attacks to HCIE isO
(
2Lb
)
,

since there areLb =
(
1 + M

SM
· N

SN

)
· (3SM + 3SN − 2) · no

secret chaotic bits in{b(i)}Lb−1
i=0 that are unknown to attackers.

However, this statement is not true due to the following fact:

the Lb bits are uniquely determined by the secret key, i.e.,

the initial conditionx(0) and the control parameterµ, which

have only2L secret bits. This means that there are only22L

different chaotic bit sequences. Now, let us study the real

complexity of brute-force attacks. For each pair of guessed

values ofx(0) andµ, the following operations are needed:

• generating the chaotic bit sequence:Lb/8 chaotic itera-

tions;

• creating the pseudo-imagefp: the complexity isSM ·SN ;

• shuffling the pseudo-imagefp: running theSub HCIE

function once;

• generatingPf∗ : the complexity isM ·N ;

• shuffling the partition imagePf∗ : running theSub HCIE

function for
(

M
SM

· N
SN

)
times.

Assume that the computing complexity of theSub HCIE

function is (4SM + 4SN ) · no. Then, the total complex-

ity of brute-force attacks to HCIE can be calculated about

O
(
22L · (Lb + MN)

)
, which is much smaller thanO

(
2Lb/8

)
when Lb is not too small. Additionally, considering the fact

that the Logistic map can exhibit a sufficiently strong chaotic

behavior only whenµ is close to 4 [53], the complexity should

be even smaller. The above analysis shows that the security of

HCIE was much over-estimated by the authors in [10]–[12],

even under brute-force attacks.

V. EXPERIMENTS

To verify the decryption performance of the above-discussed

known-plaintext attack to general permutation-only image

ciphers working in spatial domain and particularly to HCIE,

some experiments are performed using the six256× 256 test

images with 256 gray scales shown in Fig. 2. Assume that

the firstn = 1 ∼ 5 test images are known to an attacker, the

cipher-image of the last test image is decrypted with the esti-

mated permutation matrices to see the breaking performance.

In the experiments, the “taking-the-first” algorithm is used to

generateW̃ from Ŵ in the Get Permutation Matrix

function. It turns out that such a simple algorithm is enough

to achieve a considerable performance in real attacks.

Image #1 Image #2 Image #3

Image #4 Image #5 Image #6
Fig. 2. The six256× 256 test images used in the experiments.

In the experiments, three different configurations of HCIE

are used:SM = SN = 256, SM = SN = 32, SM =

SN = 16. As mentioned above, the configuration ofSM =

SN = 256 corresponds to general permutation-only image

ciphers working in spatial domain (without using hierarchical

structures). It is shown that three known plain-images are

always enough to achieve a good breaking performance, and

that an almost perfect breaking performance can be achieved
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with four plain-images. Thus, the theoretical analysis given in

the last section is verified. Also, it has been confirmed that the

security of the two-level hierarchical encryption structure is

weaker than the security of the non-hierarchical structure. As

a result, the security of HCIE against known-plaintext attack is

even weaker than the security of other common permutation-

only image ciphers.

The chosen-plaintext attack is omitted in this section, since

one can absolutely break the permutation matrix by choosing

two plain-imagesf1 and f2 as shown in Eqs. (5) and (6).

Of course, some experiments have been completed to verify

this theoretical result and the correctness of the uniquely-

determined permutation matrix.

A. The experimental results withSM = SN = 256

The public parameters areα = 6, β = 3, γ = 3 andno = 9.

The cipher-images of the six test images are shown in Fig.

3. When the firstn = 1 ∼ 5 test images and their cipher-

images are known to the attacker, the five decrypted images

of the sixth cipher-image are shown in Fig. 4. As can seen,

one known plain-image cannot reveal any visual information,

but two is capable to recover a rough view of the sixth test

image, and three are enough to obtain a good recovery.

To verify the fact that the breaking performance is better

than the theoretical prediction based on the correctly-recovered

elements inW̃ , let us see the decryption performance with

n = 2 as an example. For this case, the number of the

absolutely correct elements iñW are only 10,600, and the

number of all correct elements iñW is 26,631. In comparison,

the number of correctly-recovered pixels are 27,210. Although

only about 27210
65536 ≈ 41.52% of the pixels are recovered, most

visual information in the plain-image #6 has been revealed

successfully. Now, let us consider the correct pixels that

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6
Fig. 3. The cipher-images of the six test images, whenSM = SN = 256.

n = 1 n = 2 n = 3

n = 4 n = 5
Fig. 4. The decrypted images of Cipher-Image #6 when the firstn test

images are known to the attacker, whenSM = SN = 256.

are not recovered from the correct elements iñW , i.e, the

(27210− 26631 = 579) more correct pixels. These pixels are

correctly decrypted with a frequency 579
65536−26631 ≈ 0.0149,

which is larger than the average probabilityL−1 ≈ 0.0039.

If we also count those pixels whose values close to the right

ones, this frequency will be even larger. In fact, excluding the

pixels correctly determined by the 26,631 correct elements in

W̃ , the histogram of the other(65536 − 26631 = 38905)

pixels of the difference image between the recovered image

and the original plain-image #6 is a Gaussian-like function as
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−250 −200 −150 −100 −50 0 50 100 150 200 250
0

100
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500

600

Image #6

A noise image

Fig. 5. The histogram of the difference image between the recovered image

and the original plain-image, when the plain-image is Image #6 (the blue line)

or a randomly-generated noise image (the red line).

shown in Fig. 5. In comparison, the histogram of the difference

image corresponding to a randomly-generated noise image of

the same size256 × 256 is also shown. It is clear that the

Gaussian-like histogram corresponding to Image #6 is caused

by the correlation information existing in natural images. Note

that the triangular histogram of the noise image can be easily

deduced under the assumption that the two involved images

(i.e., the noise image and the corresponding cipher-image)

are independent of each other and have a uniform histogram:

∀i = −255 ∼ 255, the occurrence probability of the difference

value i in the histogram is:256−|i|
65536 = 1

256 −
|i|

65536 .

B. The experimental results withSM = SN = 32

The public parameters areα = 4, β = 2, γ = 1 andno = 2.

The cipher-images of the six test images are all shown in

Fig. 6. When the firstn = 1 ∼ 5 test images are known

to the attacker, the five decrypted images of the sixth cipher-

image are shown in Fig. 7. As can be seen, one known plain-

image cannot reveal much useful visual information, but two

is enough to obtain a good performance.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6
Fig. 6. The cipher-images of the six256 × 256 test images, whenSM =

SN = 32.

n = 1 n = 2 n = 3

n = 4 n = 5
Fig. 7. The decrypted image of Cipher-Image #6 when the firstn test images

are known to the attacker, whenSM = SN = 32.

C. The experimental results withSM = SN = 16

The public parameters areα = 4, β = 2, γ = 1 andno = 2.

The cipher-images of the six test images are all shown in Fig.

8. When the firstn = 1 ∼ 5 test images are known to the

attacker, the five decrypt images of the sixth cipher-image are

shown in Fig. 9. As can be seen, even one known plain-image

can reveal a rough view of the plain-image, and two is enough

to obtain a nearly-perfect recovery.
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Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6
Fig. 8. The cipher-images of the six256 × 256 test images, whenSM =

SN = 16.

n = 1 n = 2 n = 3

n = 4 n = 5
Fig. 9. The decrypted images of Cipher-Image #6 when the firstn test

images are known to an attacker, whenSM = SN = 16.

D. A comparison of the performances

This subsection gives a performance comparison of the

known-plaintext attack to HCIE with the above three different

configurations. Figure 10a shows the quantitative relation

between the number of known plain-images and the decryption

quality (represented by the decryption error ratio). It can be

seen that three known plain-images are enough for all three

configurations to achieve an acceptable breaking performance,

and two can reveal quite a lot of pixels (which means that

most significant visual information is revealed). Also, it is

shown that the breaking performance is dependent on the

configuration: whenSM = SN = 16, the best performance

is achieved, which coincides with the expectation from Eq.

(9): n is minimized whenSM = SN =
√

256 = 16.

Figure 10b shows the average cardinality of the elements in

Ŵ , which is an indicator of the probability of getting correct

permutation elements iñW and an indicator of the time

complexity as analyzed above. Comparing Figures 10a and

10b, one can see that the occurrence probability of decryption

errors has a good correspondence with the average cardinality.

From the above comparison, it is true that the security of

HCIE with a hierarchical structure is even weaker than the

security of general permutation-only image ciphers without

hierarchical structures: whenSM = SN = 32 and SM =

SN = 16, two known plain-images are enough to achieve

an acceptable breaking performance; while whenSM =

SN = 256, the breaking performance with two known plain-

images is not satisfactory, and three plain-images are needed

to achieve an acceptable performance. Therefore, from the

viewpoint of security against known/chosen-plaintext attacks,

the hierarchical idea proposed in HCIE has no technical merits.

This verifies the theoretical analysis given in the last section.

VI. GENERALIZATION OF THE CRYPTANALYSIS

In the previous sections, it has been shown that permutation-

only image cipher working in spatial domain are not secure

against known/chosen-plaintext attacks. In this section, the

above cryptanalysis results is generalized to permutation-only

image ciphers working in frequency domain and also to

permutation-only video ciphers. Since the cryptanalysis pro-

cedure is almost identical except for the format of plaintexts

and ciphertexts, the following discussions only focus on a
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Fig. 10. A performance comparison of the known-plaintext attack to HCIE

rough comparison of the breaking performances in different

situations.

A. Cryptanalysis of Permutation-Only Image Ciphers Working

in Frequency Domain

Many digital images are stored by lossy compression tech-

niques, which generally work in frequency domain, especially

in DCT or wavelet domain. Accordingly, when permutation-

only image ciphers are used to encrypt such images, the secret

permutations are exerted on the transformation coefficients in

frequency domain, not on the pixels in the spatial domain.

In most transformation-based compression formats, the image

is divided into many blocks of smaller size to reduce the

time complexity of compression. For example, in DCT-based

formats, the image is generally divided into8× 8 blocks; and

in wavelet-based formats, the image is generally divided into

a quadtree. In this case, the secret permutations can also be

exerted on the blocks or the nodes of the tree, i.e., there may

exist a hierarchical encryption structure.

Generally speaking, it is easy to directly generalize the

above known/chosen-plaintext cryptanalysis, by considering

the transformed imageT(f) as the plain-imagef , i.e., consid-

ering the transform coefficients as the pixels in spatial domain.

The only difference between the two cases are that the there

exists energy concentration inT(f) – generally most signif-

icant transform coefficients distribute within low-frequency

band. What does this mean for cryptanalysis? Apparently, to

achieve an acceptable breaking performance, one can only

reconstruct the elements inW and W−1 that correspond to

low-frequency coefficients. This implies that the reduction of

the image size, which immediately leads to a smaller number

of required known/chosen plain-images and to the decline of

the security against known/chosen-plaintext attacks. In fact, in

[42, Sec. 3.4.2], it has been pointed out that the non-uniform

distribution of DCT coefficients in MPEG videos (also for

JPEG images) can even be used to partially break the secret

permutations inciphertext-only attacks. For example, one can

correctly locate the DC coefficient of each8 × 8 block with

a large probability since the DC coefficient generally has the

largest amplitude among all 64 DCT coefficients.

As shown in previous sections, the existence of hierar-

chical structures in compression techniques further reduces

the security. What’s more, some elements inW and W−1

that correspond to high-frequency coefficients can also be

determined in the attacks, which can further help refine the

visual quality of the recovered plain-image.

As a result, generally permutation-only image ciphers work-

ing in frequency domain are less secure against known/chosen-

plaintext attack than those working in spatial domain. If it is

possible to avoid the energy-concentration property and the

hierarchical structure, the security at best will be equivalent to
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that in the spatial-domain case.

B. Cryptanalysis of Permutation-Only Video Ciphers

A video stream is composed of a series of 2-D consecutive

images, which are calledframes of the video. Essentially,

permutation-only video ciphers work in the same way on each

frame as permutation-only image ciphers. Due to the bulky

size of most videos, transform-based lossy compression tech-

niques are widely used for storage and transmission of videos.

Also, the block-based or quadtree-based hierarchical structure

is widely used in various video formats. So, despite the details

of different video formats, the security of most permutation-

only video ciphers against known/chosen-plaintext attacks is

in the same order as that of permutation-only image ciphers

working in frequency domain.

As a result, the security of a video cipher can be evaluated

by considering it as an image cipher encrypting the following

two types of plain-images: 1) independent frames, such as I-

frames in MPEG videos; 2) frames dependent on others, such

as B/P-frames in MPEG videos. In such a way, the security

analysis of the video cipher becomes simpler and clearer. The

major extra consideration in the design of a video cipher is

how to make the cipher faster and easier for implementation

in the whole video processing system.

Here, note the following fact: if the permutation matrix

is fixed for all frames, then only one partially-known/chosen

plain-video is enough to reveal the secret permutation matrix.

From such a point of view, the security of a permutation-only

video cipher may be even weaker than its image counterpart.

However, if the permutation matrix has to be changed from

frame to frame, it will be more difficult to maintain the fast

speed of the video cipher. This is another consideration in the

design of a good video cipher.

VII. C ONCLUSIONS

By normalizing the encryption and decryption procedures

of permutation-only image ciphers working in spatial do-

main, the present paper analyzes the security of such im-

age ciphers against known/chosen-plaintext attacks from a

general perspective, and then generalizes the basic results

to permutation-only image ciphers working in frequency do-

main and also to permutation-only video ciphers. A recently-

proposed permutation-only image cipher, named HCIE, has

been studied as a typical example for illustrating the crypt-

analysis. When the plain-images have sizeM × N with L

possible pixel values, it is found that onlyO (logL(MN))

known/chosen plain-images are enough for an attacker to

achieve a rather good breaking performance, leading to the

conclusion that all permutation-only ciphers are not secure

enough against known/chosen-plaintext attacks. Also, it has

been found that the attack complexity is practically small

– only O(n · (MN)2), when n plain-images are known or

chosen to use. Some experiments have been shown to support

the cryptanalysis of general permutation-only image ciphers

as well as the specific HCIE. As a natural result, it is also

found that hierarchical permutation-only image ciphers such

as HCIE are less secure than normal permutation-only image

ciphers without using hierarchical encryption structures.

In summary, secret permutations are incapable of providing

a sufficiently high level of security against known/chosen-

plaintext attacks, so they must be used together with other

encryption techniques in the design of highly secure multime-

dia encryption algorithms. To the best of our knowledge, it is

the first time to clarify this security principle on multimedia

encryption algorithms, from both theoretical and experimental

points of view.



19

REFERENCES

[1] B. Schneier,Applied Cryptography – Protocols, Algorithms, and Souce

Code in C, 2nd ed. New York: John Wiley & Sons, Inc., 1996.

[2] N. G. Bourbakis and C. Alexopoulos, “Picture data encryption using

SCAN patterns,”Pattern Recognition, vol. 25, no. 6, pp. 567–581, 1992.

[3] C. Alexopoulos, N. G. Bourbakis, and N. Ioannou, “Image encryption

method using a class of fratcals,”J. Electronic Imaging, vol. 4, no. 3,

pp. 251–259, 1995.

[4] H. K.-C. Chang and J.-L. Liu, “A linear quadtree compression scheme

for image encryption,” Signal Processing: Image Communication,

vol. 10, no. 4, pp. 279–290, 1997.

[5] R. Zunino, “Fractal circuit layout for spatial decorrelation of images,”

Electronics Letters, vol. 34, no. 20, pp. 1929–1930, 1998.

[6] K.-L. Chung and L.-C. Chang, “Large encryption binary images with

higher security,”Pattern Recognition Letters, vol. 19, no. 5–6, pp. 461–

468, 1998.

[7] J. Scharinger, “Fast encryption of image data using chaotic Kolmogorov

flows,” J. Electronic Imaging, vol. 7, no. 2, pp. 318–325, 1998.

[8] J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic

maps,” Int. J. Bifurcation and Chaos, vol. 8, no. 6, pp. 1259–1284,

1998.

[9] J.-C. Yen and J.-I. Guo, “A new chaotic image encryption algorithm,”

in Proc. (Taiwan) National Symposium on Telecommunications, 1998,

pp. 358–362.

[10] ——, “A new hierarchical chaotic image encryption algorithm and

its hardware architecture,” inProc. 1998 Ninth VLSI DESIGN/CAD

Symposium, 1998.

[11] J.-I. Guo, J.-C. Yen, and J.-C. Yeh, “The design and realization of a

new chaotic image encryption algorithm,” inProc. 1999 International

Symposium on Communications, 1999, pp. 210–214.

[12] J.-C. Yen and J.-I. Guo, “Efficient hierarchical chaotic image encryption

algorithm and its VLSI realisation,”IEE Proc. – Vis. Image Signal

Process., vol. 147, no. 2, pp. 167–175, 2000.

[13] D. Qi, J. Zou, and X. Han, “A new class of scrambling transformation

and its application in the image information covering,”Science in China

- Series E (English Edition), vol. 43, no. 3, pp. 304–312, 2000.

[14] X.-Y. Zhao and G. Chen, “Ergodic matrix in image encryption,” inProc.

Second International Conference on Image and Graphics, ser. Proc.

SPIE, vol. 4875, 2002, pp. 394–401.

[15] A. Pommer and A. Uhl, “Selective encryption of wavelet-packet encoded

image data: Efficiency and security,”Multimedia Systems, vol. 9, no. 3,

pp. 279–287, 2003.

[16] Y. Matias and A. Shamir, “A video scrambing technique based on

space filling curve (extended abstract),” inAdvances in Cryptology –

Crypto’87, ser. Lecture Notes in Computer Science, volume 293, 1987,

pp. 398–417.

[17] Y. Mao, G. Chen, and C. K. Chui, “A symmetric image encryption

scheme based on 3D chaotic cat maps,”Chaos, Solitons & Fractals,

vol. 21, no. 3, pp. 749–761, 2004.

[18] Y. Mao, G. Chen, and S. Lian, “A novel fast image encryption scheme

based on 3D chaotic Baker maps,” Accepted byInt. J. Bifurcation and

Chaosin June 2003.

[19] X. Wu and P. W. Moo, “Joint image/video compression and encryption

via high-order conditional entropy coding of wavelet coefficients,”

in Porc. IEEE Conference on Multimedia Computing and Systems

(CMS’99), 1999, pp. 908–912.

[20] H. C. H. Cheng, “Partial encryption for image and video communica-

tion.” Master Thesis, Department of Computing Science, University of

Alberta, Edmonton, Alberta, Canada, Fall 1998.

[21] H. Cheng and X. Li, “Partial encryption of compressed images and

videos,” IEEE Trans. Signal Processing, vol. 48, no. 8, pp. 2439–2451,

2000.

[22] T. Uehara, R. Safavi-Naini, and P. Ogunbona, “Securing wavelet com-

pression with random permutations,” inProc. IEEE Pacific-Rim Confer-

ence on Multimedia (IEEE-PCM’2000), 2000, pp. 332–335.

[23] N. G. Bourbakis and A. Dollas, “SCAN-based compression-encryption-

hiding for video on demand,”IEEE Multimedia, vol. 10, no. 3, pp.

79–87, 2003.

[24] S. S. Maniccam and N. G. Bourbakis, “Image and video encryption using

SCAN patterns,”Pattern Recognition, vol. 37, no. 4, pp. 725–737, 2004.

[25] L. Tang, “Methods for encrypting and decrypting MPEG video data

efficiently,” in Proc. 4th ACM Int. Conference on Multimedia, 1996, pp.

219–230.

[26] L. Qiao and K. Nahrsted, “Comparison of MPEG encryption algo-

rithms,” Computers & Graphics, vol. 22, no. 4, pp. 437–448, 1998.

[27] S. U. Shin, K. S. Sim, and K. H. Rhee, “A secrecy scheme for MPEG

video data using the joint of compression and encryption,” inInformation

Security: Second Int. Workshop (ISW’99) Proc., ser. Lecture Notes in

Computer Science, volume 1729, 1999, pp. 191–201.

[28] C.-P. Wu and C.-C. J. Kuo, “Fast encryption methods for audiovisual

data confidentiality,” inMultimedia Systems and Applications III, ser.

Proc. SPIE, volume 4209, 2001, pp. 284–295.

[29] ——, “Efficient multimedia encryption via entropy codec design,” in

Security and Watermarking of Multimedia Contents III, ser. Proc. SPIE,

volume 4314, 2001, pp. 128–138.



20
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