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Abstract

In recent years secret permutations have been widely used for protecting different types of multimedia data,
including speech files, digital images and videos. Based on a normalized encryption/decryption model, this paper
performs a quantitative cryptanalysis on the security of permutation-only image ciphers working in the spatial
domain, taking a recently-proposed permutation-only image cipher called HCIE (hierarchical chaotic image
encryption) as a typical example. When the plain-image is of size M × N and with L different levels of pixel
values, the following quantitative cryptanalytic findings have been concluded: 1) all permutation-only image
ciphers are insecure against known/chosen-plaintext attacks in the sense that only O (logL(MN)) known/chosen
plain-images are enough to break the secret permutation mapping; 2) the computational complexity of the
known/chosen-plaintext attack is only O(n · (MN)2), where n is the number of known/chosen plain-images
involved. Based on these results, it is found that hierarchical permutation-only image ciphers such as HCIE
are less secure than normal (i.e., non-hierarchical) permutation-only image ciphers. Experiments are shown
to verify the feasibility of the known/chosen-plaintext attacks. The cryptanalysis result is then generalized to
permutation-only image ciphers working in the frequency domain, as well as video ciphers and speech ciphers.
Finally, it is suggested that secret permutations have to be combined with other encryption techniques to design
highly secure multimedia encryption systems. To the best of our knowledge, for the first time this paper provides
a quantitative analysis of such a security principle on the design of multimedia encryption algorithms, from both
theoretical and experimental points of view.

1 Introduction

With the rapid progress of computer and communication network technologies, a great deal of concerns have been
raised about the security of multimedia data transmitted over open networks. Also, secure storage of digital
multimedia is demanded in many real applications, such as confidential teleconferencing, pay-TV, medical and
military imaging, and privacy-related multimedia services. Due to the prevalence of multimedia services in consumer
electronic devices, users of handheld devices have started to require content protection of multimedia data including
recorded speech segments, personal photos and private movie clips.

To meet all these needs in practice, some encryption algorithms are required to offer a sufficient level of security
for different multimedia applications. Apparently, the simplest way to encrypt multimedia data is to treat them as
1-D bit-streams, and then to encrypt them with any available cipher [1,2]. In some multimedia applications, such a
simple idea of naive encryption may be enough. However, in many other applications, especially when digital images
and videos are involved, encryption schemes considering special features of the multimedia data, such as bulky size
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and large redundancy in uncompressed images/videos, are still required to achieve a better overall performance
and to make the integration of the encryption scheme into the whole processing procedure easier. In the past
several decades, many different algorithms have been proposed to provide solutions to image encryption [3–28],
video encryption [3,22–26,28–47]and speech encryption [48–50]. Meanwhile, some cryptanalysis work has also been
published and a number of multimedia encryption schemes have been found to be insecure from the cryptographical
point of view [23–25, 31, 32, 49–68]. For recent surveys on image and video encryption algorithms, see [69–74], and
for surveys on speech encryption, see [75–78].

In image encryption, secret permutations are widely used to shuffle the positions of pixels (and/or pixel
planes/bits) [3–18, 20, 21, 25, 26, 28], which is an effective and easy way to make the cipher-image look “chaotic”.
Similarly, in video encryption, secret permutations are widely used to shuffle the DCT/wavelet coefficients, slices,
blocks or macroblocks or any other components of the video signal [25, 29, 30, 33, 39, 43–45, 47]. The same idea has
also been used in speech encryption, by permuting the samples within each frame [48–50]. In fact, there are many
image/video/speech encryption algorithms that are based only on secret permutations [3–8,11–18,25,25,29,30,33,
39, 48–50], in this paper which are called permutation-only (image/video/speech) ciphers. Note that some ciphers
can be formalized as permutation-only ciphers, even though some other encryption techniques are used together
with secret permutations. As typical examples, the video ciphers proposed in [43–45] become permutation-only
ciphers, if the sign bits of all encrypted data elements are neglected. The main advantages of using only secret
permutations in a cipher include easy implementation and the universality for most multimedia data formats (which
work well in both spatial and frequency domains).

When most permutation-only ciphers were proposed, the security was analyzed only for ciphertext-only attacks,
i.e., brute-force attacks of exhaustively searching the secret key. Some permutation-only ciphers had already been
found not secure against ciphertext-only attacks, due to the high information redundancy in multimedia data and/or
some specific weaknesses in the encryption algorithms [32, 51, 55, 56]. However, from the cryptographical point of
view, such a security analysis is not enough, since there exist other more powerful attacks, such as known/chosen-
plaintext attacks and chosen-ciphertext attacks (see the next section for a brief introduction to different kinds of
cryptographical attacks). In fact, it has been widely known that permutation-only multimedia ciphers are not secure
against known/chosen-plaintext attacks [23–25, 31, 32, 49, 50, 53–55, 57–59], but almost all previous cryptanalysis
results are proposed for some specific permutation-only image/video ciphers. To the best of our knowledge, a
general quantitative study about the number of required plaintexts and the computational complexity of such an
attack has not been reported1. Thus, it remains unclear how strong the attack is in the reality and whether or not
the security of permutation-only multimedia encryption algorithms can be effectively enhanced by designing new
methods to generate better secret permutations.

This paper presents a general cryptanalysis of permutation-only multimedia encryption algorithms, mainly
focusing on the quantitative relation between the breaking performance and the number of required known or chosen
plaintexts, as well as the estimation of the attack complexity. It will be pointed out that secret permutations alone
cannot provide sufficient security against known/chosen-plaintext attacks, from both theoretical and experimental
points of view. The cryptanalysis is performed on a general model of permutation-only image ciphers working in
the spatial domain, which then is generalized to permutation-only image ciphers working in the frequency domain
and permutation-only video/speech ciphers. As a typical example of permutation-only image ciphers, a recently-
proposed image encryption scheme called HCIE (hierarchical chaotic image encryption) [12–14]2 is investigated
in detail, to show how the known/chosen-plaintext attacks work. For permutation-only image ciphers working in
the spatial domain, it has been shown that only O (logL(MN)) known/chosen plain-images are enough to reveal
the secret permutations, where MN is the size of the image (i.e., the number of pixels) and L is the number of
different pixel values. An upper bound of the attack complexity has also been derived to be O(n · (MN)2), where
n is the number of known/chosen plain-images. Similar results also hold for multimedia ciphers of other kinds.
What’s more, it is found that the hierarchical encryption structure suggested in HCIE cannot provide any higher
security against known/chosen-plaintext attacks, but actually make the security weaker. As a conclusion, secure
permutations must be used together with other encryption mechanisms to design a secure multimedia encryption
scheme, as in some compound image/video ciphers [9, 10,20,21,26,28].

The rest of this paper is organized as follows. Section 2 gives some background knowledge of cryptography and
1Though there were some simple discussions on the quantitative aspects of known/chosen-plaintext attacks of bit-permutation ciphers

in the cryptology community [79], this problem has not been systematically and quantitatively studied in a general way for any case,
especially for permutation-only multimedia ciphers.

2The chaotic image encryption (CIE) scheme proposed in [11] is an initial version of HCIE.
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cryptanalysis. In Sec. 3, a normalized encryption/decryption model of permutation-only image ciphers working in
the spatial domain is described, and then HCIE is briefly introduced as a typical example to show how the secret
pixel permutations are realized. Cryptanalysis on common permutation-only image ciphers and one special version,
HCIE, are studied in detail in Sec. 4. Some experiments are shown in Sec. 5 to support the cryptanalysis. Section 6
discusses the generalization of the cryptanalysis results to permutation-only image ciphers working in the frequency
domain and permutation-only video/speech ciphers. The last section concludes the paper.

2 Preliminaries of Cryptography and Cryptanalysis

To facilitate the following discussion, this section gives a brief introduction to the basic theory of modern cryp-
tography and cryptanalysis, which compose the technology of encryption — cryptology [1, 2]. Simply speaking,
cryptography studies how to design good (secure and fast) encryption algorithms, and cryptanalysis tries to find
security weaknesses of existing algorithms and studies whether or not they are vulnerable to some attacks.

An encryption scheme is called a cipher (or a cryptosystem3). The message for encryption is called plaintext,
and the encrypted message is called ciphertext, which are denoted here by P and C, respectively. The encryption
procedure of a cipher can be described as C = EKe

(P ), where Ke is the encryption key and E(·) is the encryption
function. Similarly, the decryption procedure is P = DKd

(C), where Kd is the decryption key and D(·) is the
decryption function. When Ke = Kd, the cipher is called a private-key cipher or a symmetric cipher. For private-
key ciphers, the encryption-decryption key must be transmitted from the sender to the receiver via a separate secret
channel. When Ke 6= Kd, the cipher is called a public-key cipher or an asymmetric cipher. For public-key ciphers,
the encryption key Ke is published, and the decryption key Kd is kept secret, for which no additional secret channel
is needed for key transfer.

Encryption
Plaintext

Ke

Ciphertext
Decryption

Kd

Recovered plaintext

Public channel

Figure 1: The encryption and decryption procedures of a cipher.

Following the widely-acknowledged Kerckhoffs’ principle in the cryptology community [1], it is assumed that all
details of the encryption/decryption algorithms are known to attackers. This means that the security of a cipher
relies on the decryption key Kd only. Thus, the main task of cryptanalysis is to reconstruct the key, or its equivalent
form that can successfully decrypt all or partial contents of any plaintext encrypted by the cipher.

From the cryptographical point of view, a cryptographically strong cipher should be secure enough against all
kinds of attacks. For most ciphers, the following four attacks corresponding to different scenarios should be checked:

• the ciphertext-only attack - attackers can only observe part of the ciphertexts;

• the known-plaintext attack - attackers can get some plaintexts and the corresponding ciphertexts;

• the chosen-plaintext attack - attackers can choose some plaintexts and get the corresponding ciphertexts;

• the chosen-ciphertext attack - attackers can choose some ciphertexts and get the corresponding plaintexts.

The last two attacks, which seem to seldom occur in practice, are feasible in some real applications [1, Sec. 1.1]
and become more and more common in the digital world today. This paper mainly focuses on known-plaintext and
chosen-plaintext attacks.

3Note that a “cryptosystem” may not be a cipher, since it could be defined as “a set of cryptographic primitives used to provide
information security services” [2].
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3 Permutation-Only Image Ciphers Working in the Spatial Domain

3.1 A normalized model for encryption and decryption

When working in the spatial domain, just as its name implies, permutation-only image ciphers encrypt images by
permuting the positions of all pixels in a secret way. The secret permutations have to be invertible to make the
decryption possible. This means that all permutation-only ciphers belong to symmetry ciphers, i.e., Ke = Kd = K,
which is used to generate the secret permutations. Although many different methods have been proposed to realize
secret key-dependent pixel permutations, for a given plain-image of size M ×N (“height×width”), a permutation-
only image cipher can be normalized with an invertible key-dependent permutation matrix of size M ×N , denoted
by

W = [w(i, j) = (i′, j′) ∈ M× N]M×N , (1)

where M = {0, · · · ,M − 1} and N = {0, · · · , N − 1}. With the permutation matrix W and its inverse W−1 =
[w−1(i, j)]M×N , for a plain-image f = [f(i, j)]M×N and its corresponding cipher-image f ′ = [f ′(i, j)]M×N , the
encryption and decryption procedures of a permutation-only image cipher can always be described as follows:

• the encryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), f ′(w(i, j)) = f(i, j);

• the decryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), f(w−1(i, j)) = f ′(i, j).

In a short form, one can express the encryption procedure as f ′(W (I)) = f(I) and the decryption procedure as
f(W−1(I)) = f ′(I), where

I =

 (0, 0) · · · (0, N − 1)
...

. . .
...

(M − 1, 0) · · · (M − 1, N − 1)


M×N

.

To ensure the invertibility of the permutation matrix, i.e., to make the decryption possible, the following should
be satisfied: ∀(i1, j1) 6= (i2, j2), w(i1, j1) 6= w(i2, j2). This means that W determines a bijective (i.e., one-to-one)
permutation mapping, FW : M× N → M× N.

From the above description, one can see that the design of a permutation-only image cipher focuses on two
points: 1) what the secret key K is; 2) how the permutation matrix W and W−1 are derived from the secret key
K. Generally speaking, each key defines a permutation matrix, and each permutation-only image cipher defines a
finite set containing a number of permutation matrices selected from (MN)! possible permutation matrices. In the
relevant literature, many different methods have been proposed to derive a permutation matrix from a key, some
of which are listed as follows:

• SCAN language based methods [4–6, 8, 26, 28]: define some different scan patterns of the 2-D image and
combine these patterns to define a permutation matrix by scanning the whole image pixel by pixel;

• quadtree based methods [6, 8]: divide the image into multi-level quadtree and shuffle the order of four nodes
in each level to realize a permutation matrix;

• 2-D chaotic maps based methods [9, 10, 20, 21]: iterate a discretized 2-D chaotic map over the M ×N image
lattice for many times to realize a permutation matrix;

• Fractal curves based methods [3, 7]: use a fractal(-like) curve to replace the normal scan order to realize a
permutation matrix;

• pseudo-random rotations based methods [11–14]: pseudo-randomly rotate pixels along some straight lines for
many times to realize a permutation matrix;

• matrix transformation based methods [15]: use (integer) transformations of matrix, such as n-dimensional
Arnold transformation and Fibonacci-Q transformation, to define permutation matrices;

• composite methods [16]: combine different methods to realize more complicated permutation matrices.

Although different types of secret keys are used in different permutation-only image ciphers to generate the
permutation matrix, it is reasonable to consider the permutation matrix W itself as the equivalent encryption key
and W−1 as the equivalent decryption key. From such a point of view, all permutation-only image ciphers can be
considered the same. This is the base for the security analysis to be carried out below in this paper.
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3.2 A typical permutation-only image cipher – HCIE [11–14]

HCIE is a two-level hierarchical permutation-only image cipher, and all involved permutation matrices are defined
by pseudo-random combinations of four rotation mappings with pseudo-random parameters. For an image, f =
[f(i, j)]M×N , the four mapping operations are described as follows, where p < min(M,N) holds for each mapping.

Definition 1 The mapping f ′ = ROLRi,p
b (f) (0 ≤ i ≤ M − 1) is defined to rotate the i-th row of f , in the left

(when b = 0) or right (when b = 1) direction by p pixels.

Definition 2 The mapping f ′ = ROUDj,p
b (f) (0 ≤ j ≤ N − 1) is defined to rotate the j-th column of f , in the up

(when b = 0) or down (when b = 1) direction by p pixels.

Definition 3 The mapping f ′ = ROURk,p
b (f) (0 ≤ k ≤ M + N − 2) is defined to rotate all pixels satisfying

i + j = k, in the lower-left (when b = 0) or upper-right (when b = 1) direction by p pixels.

Definition 4 The mapping f ′ = ROULl,p
b (f) (1−N ≤ l ≤ M−1) is defined to rotate all pixels satisfying i−j = l,

in the upper-left (when b = 0) or lower-right (when b = 1) direction by p pixels.

Given a pseudo-random bit sequence {b(i)} starting from i0, the following Sub HCIE function is used to permute
an SM × SN image fsub to be another SM × SN image f ′sub, where (α, β, γ, no) are control parameters. Note that
all codes in this paper is described in C-language style.

for (ite = 0; ite < no; ite + +) {
q = i0 + (3SM + 3SN − 2)× ite;
p = α + β × b(q + 0) + γ × b(q + 1);
for (i = 0; i ≤ (SM − 1); i + +)

f ′sub = ROLRi,p
b(i+q)(fsub);

for (j = 0; j ≤ (SN − 1); j + +)
f ′sub = ROUDj,p

b(j+q+SM )(f
′
sub);

for (k = 0; k ≤ (SM + SN − 2); k + +)
f ′sub = ROURk,p

b(k+q+SM+SN )(f
′
sub);

for (l = (1− SN ); l ≤ (SM − 1); l + +)
f ′sub = ROULl,p

b(l+q+2×SM+3×SN−2)(f
′
sub);

}
i0 = i0 + (3SM + 3SN − 2)× no;

One can see that the above Sub HCIE function actually defines an SM × SN permutation matrix pseudo-randomly
controlled by (3SM + 3SN − 2)× no bits in the bit sequence {b(i)} from i0. Based on this function, for an M ×N
image f = [f(i, j)]M×N , the encryption procedure of HCIE can be briefly described in two levels.

• The secret key is the initial condition x(0) and the control parameter µ of the chaotic Logistic map, f(x) =
µx(1− x) [80], which is realized in L-bit finite precision.

• Some public parameters: SM , SN , α, β, γ and no, where
√

M ≤ SM ≤ M , M mod SM = 0,
√

N ≤ SN ≤ N ,
and N mod SN = 0.

Note: Although (SM , SN , α, β, γ, no) can be all included in the secret key, they are not suitable for such a use
due to the following reasons: 1) SM , SN are related to M,N ; 2) α, β, γ are related to SM , SN (and then related
to M,N , too); 3) SM , SN can be easily guessed from the mosaic effect of the cipher-image; 4) no cannot be
too large to achieve an acceptable encryption speed.

• The initialization procedure of generating the bit sequence used in the Sub HCIE function: run the Logistic map
from x(0) to generate a chaotic sequence {x(i)}dLb/8e−1

i=0 , and then extract the 8 bits following the decimal point

of each chaotic state x(i) to yield a bit sequence {b(i)}Lb−1
i=0 , where Lb =

(
1 + M

SM
· N

SN

)
· (3SM +3SN −2) ·no;

finally, set i0 = 0 to let the Sub HCIE function run from b(0).

• The two-level hierarchical encryption procedure:
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– The high-level encryption – permuting image blocks: divide the plain-image f into blocks of size SM×SN ,
which compose an M

SM
× N

SN
block-image Pf = [Pf (i, j)] M

SM
× N

SN

, where Pf (i, j) is the block of size SM×SN

at the position (i, j). Then, permute the positions of all blocks with the Sub HCIE function in the following
way:

∗ create a pseudo-image fp = [fp(i, j)]SM×SN
containing

(
M
SM

· N
SN

)
non-zero indices of all image

blocks in Pf and
(
M ·N − M

SM
· N

SN

)
zero-elements, and permute fp with the Sub HCIE function to

get a shuffled pseudo-image f∗p ;
∗ generate a permuted block-image Pf∗ from Pf (i.e., permute f blockwise) using the shuffled indices

contained in f∗p .

The above high-level encryption procedure can be considered as the permutation of the block-image:

Pf

f∗
p =Sub HCIE(fp)
−−−−−−−−−−→ Pf∗ , where f∗p actually corresponds to an M

SM
× N

SN
permutation matrix.

– The low-level encryption – permuting pixels in each image block : for i = 0 ∼
(

M
SM

− 1
)

and j = 0 ∼(
N
SN

− 1
)
, call the Sub HCIE function to permute each block Pf∗(i, j) to get the corresponding block of

the cipher-image f ′: Pf ′(i, j) = Sub HCIE (Pf∗(i, j)).

In HCIE, a total of
(
1 + M

SM
· N

SN

)
permutation matrices are involved: 1) one high-level permutation matrix of size

M
SM

× N
SN

; 2)
(

M
SM

· N
SN

)
low-level permutation matrices of size SM ×SN . With the above-mentioned representation

of permutation-only image ciphers, the secret key (µ, x(0)) of HCIE is equivalent to the
(
1 + M

SM
· N

SN

)
permu-

tation matrices. To facilitate the following discussions, we use W0 = [w0(i, j)] M
SM

× N
SN

to denote the high-level

permutation matrix, and use
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 to denote the
(

M
SM

× N
SN

)
low-level permutation matrices, where

W(i,j) =
[
w(i,j)(i′, j′)

]
SM×SN

. Apparently, the
(
1 + M

SM
· N

SN

)
permutation matrices can be easily transformed to

an equivalent permutation matrix of size M ×N : W = [w(i, j)]M×N .
When SM = M and SN = N (or SM = SN = 1), the two hierarchical encryption levels merge a single layer;

the
(
1 + M

SM
· N

SN

)
permutation matrices become one permutation matrix of size M ×N ; and HCIE is simplified to

be CIE [11] – a typical permutation-only image cipher in which each pixel can be freely permuted to be any other
positions in the whole image by a single M ×N permutation matrix W .

4 Cryptanalysis of Permutation-Only Image Ciphers Working in the
Spatial Domain

In this section, we discuss the known/chosen-plaintext attacks to the above-normalized permutation-only image
ciphers working in the spatial domain and the typical example – HCIE. Also, we will point out in passing that the
security of HCIE against brute-force attacks was much over-estimated in [12–14]. Note that HCIE has not been
cryptanalyzed yet till now.

4.1 Cryptanalysis of general permutation-only image ciphers working in the spatial
domain

4.1.1 The known-plaintext attack

As shown above, when a permutation-only image cipher is used to encrypt images in the spatial domain, a pixel
at the position (i, j) will be secretly permuted to another fixed position (i′, j′) while the pixel value is unchanged.
Therefore, by comparing a number of known plain-images and the corresponding cipher-images, it is possible
for an attacker to (partially or even totally) reconstruct the secret permutations of all pixels, i.e., to derive the
encryption/decryption keys – the permutation matrix W and its inverse W−1.
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Given n known plain-images f1 ∼ fn and their cipher-images f ′1 ∼ f ′n, the deduction procedure of W and W−1

can be shown in a function named Get Permutation Matrix. With the input parameters (f1 ∼ fn, f ′1 ∼ f ′n,M,N),
this function returns an estimation of the permutation matrix W and its inverse W−1. Assuming the value of each
pixel ranges in {0, · · · , L− 1}, the function Get Permutation Matrix is described as follows.

• Step 1: compare pixel values within the n cipher-images f ′1 ∼ f ′n to get (n · L) sets of pixel positions:

Λ′
1(0) ∼ Λ′

1(L− 1), · · · ,Λ′
n(0) ∼ Λ′

n(L− 1),

where Λ′
m(l) ⊆ M × N denotes a set containing positions of all pixels in f ′m (m = 1 ∼ n) whose values are

equal to l ∈ {0, · · · , L − 1}, i.e., ∀(i′, j′) ∈ Λ′
m(l), f ′m(i′, j′) = l. Note that Λ′

m(0) ∼ Λ′
m(L − 1) actually

compose a partition of the set of all pixel positions:
⋃L−1

l=0 Λ′
m(l) = M×N = {(0, 0), · · · , (M − 1, N − 1)}, and

∀l1 6= l2, Λ′
m(l1) ∩ Λ′

m(l2) = ∅;

• Step 2: get a multi-valued permutation matrix, Ŵ = [ŵ(i, j)]M×N , where ŵ(i, j) =
⋂n

m=1 Λ′
m(fm(i, j)). Here,

note that ŵ(0, 0) ∼ ŵ(M − 1, N − 1) actually composes a new partition of the position set M× N;

• Step 3: determine a single-valued permutation matrix, W̃ = [w̃(i, j)]M×N from Ŵ , where w̃(i, j) ∈ ŵ(i, j)
and ∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2);

• Step 4: output W̃ and its inverse W̃−1 = [w̃−1(i, j)]M×N as the estimations of W and W−1.

Apparently, if and only if # (ŵ(0, 0)) = · · · = # (ŵ(SM − 1, SN − 1)) = 1, i.e., each element of Ŵ contains only
one pixel position, it is true that W̃ = W and the cipher is totally broken. However, because some elements of
Ŵ contain more than one pixel position, generally W̃ is not an exact estimation of W . Assume that there are
(N̂ ≤ MN) different elements in Ŵ , and that the N̂ different elements are ŵ1 ∼ ŵ bN . Then, it can be easily verified

that there are
∏ bN

k=1 #(ŵk)! possibilities of W̃ . To make the estimation of W̃ as accurate as possible, some specific
optimization algorithms can be used to choose a better position from ŵ(i, j) as the value of w̃(i, j), such as genetic
and simulated annealing algorithms. Our experiments show that even a simple algorithm can achieve a rather good
estimation when n ≥ 3 for 256× 256 gray-scale images. The simple algorithm is called “taking-the-first” algorithm,
which sets w̃(i, j) to be the first available element in ŵ(i, j), where the term “available” refers to the constraint
that ∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2).

0∑
k=d−1

2k ·
(

MN

Ld−k

)2

=
d∑

k′=1

2d−k′ ·
(

MN

Lk′

)2

= 2d · (MN)2 ·

(
d∑

k′=0

1
(2 · L2)k′

− 1

)

= n · (MN)2 ·
(

1− ((2L2)−1)d+1

1− (2L2)−1
− 1
)

< n · (MN)2 ·
(

1
1− (2L2)−1

− 1
)

=
n(MN)2

2L2 − 1
. (2)

Now, let us consider the decryption performance of the estimated permutation matrix W̃ when W̃ 6= W .
Generally speaking, due to the large information redundancy existing in a digital image, only partially-recovered
pixels are enough to reveal most visual information. Therefore, if there are enough correct elements in W̃ , the
decryption performance may be acceptable from a practical point of view. From the above discussions, one can see
that correctly-recovered elements in W̃ belong to two different classes:

• the absolutely correct elements: derived from the single-valued elements of Ŵ ;

• the probabilistically correct elements: derived from the multi-valued elements of Ŵ , and are correctly guessed
by an optimization algorithm of selecting a proper position from each ŵ(i, j).
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Assuming that the number of single-valued elements of Ŵ is nc and the probability of success of the optimization
algorithm is ps, the average number of correct elements in W̃ will be nc + ps · (MN − nc). Because ps is generally
not fixed (tightly dependent on the employed optimization algorithm), only the absolutely correct elements are
considered here (i.e., ps = 0 is assumed) to perform a qualitative analysis. Now the problem of correct elements in
W̃ is simplified to be the problem of singe-value elements in Ŵ . Observing the Get Permutation Matrix function,
one can see that the cardinality of ŵ(i, j) is uniquely determined by Λ′

1(f1(i, j)) ∼ Λ′
n(fn(i, j)). To further simplify

the analysis, assume that the value of each pixel distributes uniformly in {0, · · · , L− 1}, and that the values of any
two pixels (within the same image or in two different cipher-images4) are independent of each other. Then, one can
consider the following two types of positions in ŵ(i, j):

• the only one real position w(i, j), which absolutely occurs in ŵ(i, j);

• other fake positions, each of which occurs in each Λ′
m(fm(i, j)) with a probability of 1

L , i.e., each of which
occurs in all the n sets, Λ′

1(f1(i, j)) ∼ Λ′
n(fn(i, j)), with a probability of 1

Ln .

Based on the above results, one can qualitatively deduce that the average cardinality of ŵ(i, j) is # (ŵ(i, j)) =(
1 + MN−1

Ln

)
, which approaches 1 exponentially as n increases. Generally speaking, when 1 + MN−1

Ln < 1.5, i.e.,
about half elements in W̃ are correct, the decryption performance will be acceptable. Solving this inequality, one
has n ≥ dlogL(2(MN − 1))e. As an example, for 256 × 256 gray-scale images, M = N = L = 256, one has
n ≥ dlogL(2(MN − 1))e = d2.125e = 3. The average cardinality is about 1.0039 when n = 3, so it is expected
that the decryption performance for n ≥ 3 will be rather good, which is verified by the experiments given in the
next section. Here, note that the actual decryption performance is generally better than the above theoretical
expectation for the following two reasons:

• human eyes have a powerful capability of suppressing image noises and extracting significant features: 10%
noisy pixels cannot make much influence on the visual quality of a digital image, and it only needs 50% of
pixels to reveal most visual information of the original image;

• due to the short-distance and long-distance relationships in natural images, two pixel values are close to each
other with a non-negligible probability larger than the average probability; as a result, the wrongly-decrypted
pixel are close to the right value with a probability larger than the average probability.

The second point implies that the decryption performance of natural images will be better than the performance
of noise-like images, from the point of view of decryption error ratio. For experimental verification and more
explanations, see Sec. 5.1, Figs. 4 and 5.

Next, let us consider the time complexity of the above-discussed known-plaintext attack, i.e., the time complexity
of the Get Permutation Matrix function. Note that the time complexity depends on the implementation details
of this function. This paper only gives a conservative estimation, i.e., an upper bound, of the time complexity. The
time complexity of each step is as follows:

• Step 1 : The L sets of each cipher-image f ′l are obtained by scanning f ′l once: for i = 0 ∼ (M − 1) and
j = 0 ∼ (N − 1), add (i, j) into the set Λ′

m(f ′l (i, j)). Thus, the time complexity of this step is O(n ·MN).

• Step 2 : Without loss of generality, assume all cipher-pixels satisfy uniform distributions. Then, the average
cardinality of Λm(l) is MN

L and an upper bound of the time complexity of this step is MN ·
(

MN
L ·

(
1
2 ·

MN
L

)n−1
)

=

2MN ·
(

MN
2L

)n
, which exponentially increase as n increases if MN > 2L. However, in practice, the real com-

plexity is much smaller due to the optimization of the calculation process. Here, we consider the so-called
halving algorithm, which calculates the intersection of n sets A1 ∼ An by dividing them into multi-level groups
of (2, 4, · · · , 2i, · · · ) sets. For example, when n = 11, the calculation process is described by

((A1

1
∩A2)

3
∩ (A3

2
∩A4))

7
∩ ((A5

4
∩A6)

6
∩ (A7

5
∩A8))

10
∩ ((A9

8
∩A10)

9
∩A11),

where
i
∩ denotes the i-th intersection operation. The goal of this halving algorithm is to minimize the

cardinalities of the two sets involved in each intersection operation so as to reduce the global complexity. To
4Note that a plain-image and its cipher-image are totally related via the secret permutation matrix.
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make the estimation of the complexity easier, let us consider the case of n = 2d, where d is an integer. In
this case, the overall complexity is shown in Eq. (2). As two typical examples, when M = N = 256 and
L = 2 (monotonic images), the complexity is about

(
229.2 · n

)
; when M = N = 256 and L = 256 (gray-

scale images), the complexity is only
(
215 · n

)
. One can see that now the complexity is always much smaller

than 2MN ·
(

MN
L

)n
. When n is not a power of 2, the complexity will be smaller than 2dlog2 ne

2L2−1 · (MN)2 ≤
2n

2L2−1 · (MN)2.

• Step 3 : The time complexity of this step is determined by the details of the involved optimization algorithm.
For the “taking-the-first” algorithm, the complexity is MN ·

(
1 + MN−1

Ln

)
≈ MN + (MN)2

Ln .

• Step 4 : The time complexity of this step is O(MN).

Combing the above discussions, the final time complexity of the function Get Permutation Matrix is always of
order n · (MN)2, which is practically small even for a PC.

From the above analysis, one can see that the time complexity is mainly determined by Step 2. When the
“taking-the-first” algorithm is adopted in the function Get Permutation Matrix, Step 2 can be skipped so that
the total complexity will still be of order O

(
n · (MN)2

)
, even without using the halving algorithm to calculate the

intersections. In this case, Step 3 can be described as follows:

• Step 3’ : For i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), do the following operations:

– Step 3’a: find the first element satisfying f1(i, j) = f ′1(i
′, j′), · · · , fn(i, j) = f ′n(i′, j′) by searching each

element in Λ′
1(f1(i, j)) and checking whether it occurs in Λ′

2(f2(i, j)) ∼ Λ′
n(fn(i, j));

– Step 3’b: set w̃(i, j) = (i′, j′) and then delete (i′, j′) from Λ′
1(f1(i, j)) ∼ Λ′

n(fm(i, j)).

It is obvious that the time complexity of Step 3’a is always less than n · (MN) and averagely is O
(
n · MN

L

)
, so the

time complexity of Step 3’ is always less than n · (MN)2 and averagely is O
(
n · (MN)2

L

)
.

4.1.2 The chosen-plaintext attack

The chosen-plaintext attack works in the same way as the known-plaintext attack, but the plain-images can be
deliberately chosen to optimize the estimation of W̃ (i.e., to maximize the decryption performance). The following
two rules are useful in the creation of the n chosen plain-images f1 ∼ fn:

• the histogram of each chosen plain-image should be as uniform as possible;

• the i-dimensional (2 ≤ i ≤ n) histogram of any i chosen plain-images should be as uniform as possible, which
is a generalization of the above rule.

The goal of the above two rules is to minimize the average cardinality of the elements in Ŵ , and then to maximize
the number of correct elements in the estimated permutation matrix W̃ .

As an example of the two rules, consider the condition when M = N = L = 256 (256-valued gray-scale images
of size 256× 256). In this case, the following two chosen plain-images are enough to ensure a perfect estimation of
the permutation matrix W : f1 = [f1(i, j) = i]256×256 and f2 = [f2(i, j) = j]256×256, i.e.,

f1 = fT
2 =



0 · · · 0
...

. . .
...

i · · · i
...

. . .
...

255 · · · 255


256×256

(3)

and

f2 = fT
1 =

0 · · · j · · · 255
...

. . .
...

. . .
...

0 · · · j · · · 255


256×256

. (4)
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For the above two chosen plain-images, it is true that ∀(i1, j1) 6= (i2, j2), (f1(i1, j1), f1(i2, j2)) 6= (f2(i1, j1), f2(i2, j2)).
This can ensure that ∀l1, l2 ∈ {0, · · · , L − 1}, # (Λ′

1(l1) ∩ Λ′
2(l2)) = 1. For n images satisfying this constraint, we

say that they compose an orthogonal image set. This concept is introduced to facilitate the following discussion on
the chosen-plaintext attack to HCIE.

In general cases, it can be easily deduced that n = dlogL(MN)e orthogonal images5 have to be created to carry
out a successful chosen-plaintext attack. Apparently, it will never be larger than dlogL(2(MN − 1))e – the number
of required plain-images in the known-plaintext attack with a good breaking performance (recall the above sub-
subsection). This means the chosen-plaintext attack is a little (but not so much) stronger than the chosen-plaintext
attack in the present case of discussion.

4.2 Cryptanalysis of HCIE

4.2.1 The known-plaintext attack

Since HCIE is a permutation-only image cipher, given n known plain-images f1 ∼ fn of size M × N and the
corresponding cipher-images f ′1 ∼ f ′n, one can simply call the above Get Permutation Matrix function with the
input parameter (f1 ∼ fn, f ′1 ∼ f ′n,M,N) to estimate an M × N permutation matrix W , which is equivalent to
the

(
1 + M

SM
· N

SN

)
smaller permutation matrices. However, if the hierarchical structure of HCIE is considered, the

known-plaintext attack may be quicker and the estimation will be more effective, as demonstrated later in the next
section. Thus, the following hierarchical procedure of known-plaintext attacks to HCIE is suggested6:

• Reconstruct the high-level permutation matrix W0:

– for i = 0 ∼
(

M
SM

− 1
)

and j = 0 ∼
(

N
SN

− 1
)
, calculate the mean values of the 2n blocks Pf1(i, j) ∼

Pfn
(i, j), Pf ′

1
(i, j) ∼ Pf ′

n
(i, j) and denote them by Pf1(i, j) ∼ Pfn

(i, j) and Pf ′
1
(i, j) ∼ Pf ′

n
(i, j);

– generate 2n images P f1 ∼ P fn and P f ′
1
∼ P f ′

n
of size M

SM
× N

SN
as follows: ∀m = 1 ∼ n,

P fm
=
[
Pfm

(i, j)
]

M
SM

× N
SN

(5)

and
P f ′

m
=
[
Pf ′

m
(i, j)

]
M

SM
× N

SN

, (6)

and call the Get Permutation Matrix function with the input parameters(
P f1 ∼ P fn

, P f ′
1
∼ P f ′

n
,

M

SM
,

N

SN

)
to get an estimated permutation matrix W̃0 = [w̃0(i, j)] M

SM
× N

SN

and its inverse W̃−1
0 =

[
w̃−1

0 (i, j)
]

M
SM

× N
SN

.

• Reconstruct the
(

M
SM

· N
SN

)
low-level permutation matrices

{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 :

– for i = 0 ∼
(

M
SM

− 1
)

and j = 0 ∼
(

N
SN

− 1
)
, call Get Permutation Matrix function with the input

parameters (Pf1(i, j) ∼ Pfn
(i, j), Pf ′

1
(i′, j′) ∼ Pf ′

n
(i′, j′), SM , SN ), where (i′, j′) = W0(i, j), to determine

an estimated permutation matrix W̃(i,j) and its inverse W̃−1
(i,j).

With the
(
1 + M

SM
· N

SN

)
inverse matrices W−1

0 and
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0 , one can decrypt a new cipher-image
f ′n+1 as follows to get an estimated plain-image f∗n+1:
for (i = 0; i ≤ (M/SM )− 1; i + +)

5When MN ≤ L, only one chosen plain-image is enough, if each pixel value is different from the others.
6For HCIE, the permutation matrices also depend on the values of the public parameters. To simplify the following description,

without loss of generality, it is assumed that all public parameters are fixed for all known plain-images.
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for (j = 0; j ≤ (N/SN )− 1; j + +) {
ftemp = Pf ′

n+1
(w−1

0 (i, j));
for (ii = 0; ii ≤ SM − 1; ii + +)

for (jj = 0; jj ≤ SN − 1; jj + +)
f∗temp(ii, jj) = ftemp

(
w−1

(i,j)(ii, jj)
)
;

Pf∗
n+1

(i, j) = f∗temp;
}

In fact, in the above procedure, any measure keeping invariant in the block permutations can be used instead
of the mean value. A typical measure is the histogram of each SM × SN block. Although the mean value is less
precise than the histogram, it works well in most cases and is useful to reduce the time complexity. When L and
SM ×SN are both too small, the efficiency of the mean value will become low, and the histogram or the array of all
pixel values can be used as a replacement. Apparently, in most cases it is easier to get the high-level permutation
matrix W0 than the low-level permutation matrices.

Finally, let us see whether the hierarchical structure used in HCIE is helpful to enhance the security against the
known-plaintext attack to the common permutation image ciphers. As discussed above, n ≥ dlogL(2(MN − 1))e
known plain-images are needed to achieve an acceptable breaking performance. Since the hierarchical structure
makes it possible for an attacker to work on permutation matrices of size SM ×SN or M

SM
× N

SN
(both smaller than

M ×N), it is obvious that for HCIE the number of required known plain-image will be smaller than dlogL(2(MN −
1))e. Also, the attack complexity will become less, since it is proportional to the square of the matrix sizes. In such
a sense, hierarchical permutation-only image ciphers are less secure than non-hierarchical ones, which discourages
the use of HCIE. This result has been confirmed by our experiments (see the next section).

4.2.2 The chosen-plaintext attack

Following the same way introduced in the chosen-plaintext attack to common permutation-only image ciphers, one
can choose n = dlogL(MN)e plain-images to carry out a chosen-plaintext attack to HCIE. Similar to the known-
plaintext attack, the use of a hierarchical structure in HCIE can also make the construction of chosen plain-images
easier. Accordingly, an attacker can also work hierarchically to construct n chosen plain-images, f1, · · · , fn, as
follows:

• high-level : P f1 ∼ P fn
, which are defined in Eq. (5), compose an orthogonal image set;

• low-level : ∀(i, j), Pf1(i, j) ∼ Pfn(i, j) compose an orthogonal image set.

In this case, the minimal number of required chosen plain-image becomes

n = max
(
dlogL(SM · SN )e ,

⌈
logL

(
M

SM
· N

SN

)⌉)
≤ dlogL(MN)e , (7)

where the equality holds if and only if the hierarchical encryption structure is disabled, i.e., when (SM = M,SN = N)
or (SM = SN = 1).

4.2.3 The brute-force attack

In [12–14], it was claimed that the complexity of brute-force attacks to HCIE is O
(
2Lb
)
, since there are Lb =(

1 + M
SM

· N
SN

)
· (3SM + 3SN − 2) · no secret chaotic bits in {b(i)}Lb−1

i=0 that are unknown to attackers. However,
this statement is not true due to the following fact: the Lb bits are uniquely determined by the secret key, i.e., the
initial condition x(0) and the control parameter µ, which have only 2L secret bits. This means that there are only
22L different chaotic bit sequences. Now, let us study the real complexity of brute-force attacks. For each pair of
guessed values of x(0) and µ, the following operations are needed:

• generating the chaotic bit sequence: Lb/8 chaotic iterations;

• creating the pseudo-image fp: the complexity is SM · SN ;
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• shuffling the pseudo-image fp: running the Sub HCIE function once;

• generating Pf∗ : the complexity is M ·N ;

• shuffling the partition image Pf∗ : running the Sub HCIE function for
(

M
SM

· N
SN

)
times.

Assume that the computing complexity of the Sub HCIE function is (4SM +4SN ) ·no. Then, the total complexity of
brute-force attacks to HCIE can be calculated about O

(
22L · (Lb + MN)

)
, which is much smaller than O

(
2Lb/8

)
when Lb is not too small. Additionally, considering the fact that the Logistic map can exhibit a sufficiently strong
chaotic behavior only when µ is close to 4 [80], the complexity should be even smaller. The above analysis shows
that the security of HCIE was much over-estimated by the authors in [12–14], even under brute-force attacks.

5 Experiments

To verify the decryption performance of the above-discussed known-plaintext attack7 to general permutation-only
image ciphers working in the spatial domain and particularly to HCIE, some experiments are performed using the
six 256 × 256 test images with 256 gray scales shown in Fig. 2. Assume that the first n = 1 ∼ 5 test images are
known to an attacker, the cipher-image of the last test image is decrypted with the estimated permutation matrices
to see the breaking performance. In the experiments, the “taking-the-first” algorithm is used to generate W̃ from
Ŵ in the Get Permutation Matrix function. It turns out that such a simple algorithm is enough to achieve a
considerable performance in real attacks.

Image #1 Image #2 Image #3

Image #4 Image #5 Image #6

Figure 2: The six 256× 256 test images used in the experiments.

In the experiments, three different configurations of HCIE are used: SM = SN = 256, SM = SN = 32,
SM = SN = 16. As mentioned above, the configuration of SM = SN = 256 corresponds to general permutation-
only image ciphers working in the spatial domain (without using hierarchical structures). It is shown that three

7The chosen-plaintext attack is omitted in this section, since one can absolutely break the permutation matrix by choosing two
plain-images f1 and f2 as shown in Eqs. (3) and (4). Of course, some experiments have been performed to verify the theoretical results
and the correctness of the uniquely-determined permutation matrix.
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known plain-images are always enough to achieve a good breaking performance, and that an almost perfect breaking
performance can be achieved with four plain-images. Thus, the theoretical analysis given in the last section is
verified. Also, it has been confirmed that the security of the two-level hierarchical encryption structure is weaker
than the security of the non-hierarchical structure. As a result, the security of HCIE against known-plaintext attack
is even weaker than the security of other common permutation-only image ciphers.

5.1 The experimental results with SM = SN = 256

The public parameters are α = 6, β = 3, γ = 3 and no = 9. The cipher-images of the six test images are shown in
Fig. 3. When the first n = 1 ∼ 5 image(s) and the corresponding cipher-image(s) are known to the attacker, the
breaking results of Cipher-Image #6 are demonstrated in Fig. 4. It can be seen that one known plain-image is not
enough to reveal any visual information, but two are capable to recover a rough view, and three or more are quite
enough to achieve a very good performance.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 3: The cipher-images of the six test images, when SM = SN = 256.

To verify the fact that the breaking performance is better than the theoretical prediction based on the correctly-
recovered elements in W̃ , let us see the decryption performance with n = 2 as an example. For this case, the
number of the absolutely correct elements in W̃ are only 10,600, and the number of all correct elements in W̃ is
26,631. In comparison, the number of correctly-recovered pixels are 27,210. Although only about 27210

65536 ≈ 41.52%
of the pixels are recovered, most visual information in the plain-image #6 has been revealed successfully. Now, let
us consider the correct pixels that are not recovered from the correct elements in W̃ , i.e, the (27210− 26631 = 579)
more correct pixels. These pixels are correctly decrypted with a frequency 579

65536−26631 ≈ 0.0149, which is larger
than the average probability L−1 ≈ 0.0039. If we also count those pixels whose values close to the right ones, this
frequency will be even larger. In fact, excluding the pixels correctly determined by the 26,631 correct elements in
W̃ , the histogram of the other (65536− 26631 = 38905) pixels of the difference image between the recovered image
and the original plain-image #6 is a Gaussian-like function as shown in Fig. 5. In comparison, the histogram of
the difference image corresponding to a randomly-generated noise image of the same size 256× 256 is also shown.
It is clear that the Gaussian-like histogram corresponding to Image #6 is caused by the correlation information
existing in natural images. Note that the triangular histogram of the noise image can be easily deduced under the
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n = 1 n = 2 n = 3

n = 4 n = 5

Figure 4: The decrypted images of Cipher-Image #6 when the first n test images are known to the attacker, when
SM = SN = 256.

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

100

200

300

400

500

600

Image #6

A noise image

Figure 5: The histogram of the difference image between the recovered image and the original plain-image, when
the plain-image is Image #6 (the blue line) or a randomly-generated noise image (the red line).

assumption that the two involved images (i.e., the noise image and the corresponding cipher-image) are independent
of each other and have a uniform histogram: ∀i = −255 ∼ 255, the occurrence probability of the difference value i
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in the histogram is: 256−|i|
65536 = 1

256 −
|i|

65536 .

5.2 The experimental results with SM = SN = 32

The public parameters are α = 4, β = 2, γ = 1 and no = 2. The cipher-images of the six test images are all
shown in Fig. 6. When the first n = 1 ∼ 5 test images are known to the attacker, the five decrypted images of the
sixth cipher-image are shown in Fig. 7. As can be seen, one known plain-image cannot reveal much useful visual
information, but two is enough to obtain a good performance.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 6: The cipher-images of the six 256× 256 test images, when SM = SN = 32.

5.3 The experimental results with SM = SN = 16

The public parameters are α = 4, β = 2, γ = 1 and no = 2. The cipher-images of the six test images are all shown
in Fig. 8. When the first n = 1 ∼ 5 test images are known to the attacker, the five decrypt images of the sixth
cipher-image are shown in Fig. 9. As can be seen, even one known plain-image can reveal a rough view of the
plain-image, and two is enough to obtain a nearly-perfect recovery.

5.4 A comparison of the performances

This subsection gives a performance comparison of the known-plaintext attack to HCIE with the above three
different configurations. Figure 10a shows the quantitative relation between the number of known plain-images and
the decryption quality (represented by the decryption error ratio). It can be seen that three known plain-images
are enough for all three configurations to achieve an acceptable breaking performance, and two can reveal quite a
lot of pixels (which means that most significant visual information is revealed). Also, it is shown that the breaking
performance is dependent on the configuration: when SM = SN = 16, the best performance is achieved, which
coincides with the expectation from Eq. (7): n is minimized when SM = SN =

√
256 = 16.

Figure 10b shows the average cardinality of the elements in Ŵ , which is an indicator of the probability of getting
correct permutation elements in W̃ and an indicator of the time complexity as analyzed above. Comparing Figures
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n = 1 n = 2 n = 3

n = 4 n = 5

Figure 7: The decrypted image of Cipher-Image #6 when the first n test images are known to the attacker, when
SM = SN = 32.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 8: The cipher-images of the six 256× 256 test images, when SM = SN = 16.
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n = 1 n = 2 n = 3

n = 4 n = 5

Figure 9: The decrypted images of Cipher-Image #6 when the first n test images are known to an attacker, when
SM = SN = 16.

10a and 10b, one can see that the occurrence probability of decryption errors has a good correspondence with the
average cardinality.

From the above comparison, it is true that the security of HCIE with a hierarchical structure is even weaker
than the security of general permutation-only image ciphers without hierarchical structures: when SM = SN = 32
and SM = SN = 16, two known plain-images are enough to achieve an acceptable breaking performance; while
when SM = SN = 256, the breaking performance with two known plain-images is not satisfactory, and three
plain-images are needed to achieve an acceptable performance. Therefore, from the viewpoint of security against
known/chosen-plaintext attacks, the hierarchical idea proposed in HCIE has no technical merits. This verifies the
theoretical analysis given in the last section.

6 Generalization of the Cryptanalysis

In the previous sections, it has been shown that permutation-only image cipher working in the spatial domain are
not secure against known/chosen-plaintext attacks. In this section, the above cryptanalysis results is generalized to
permutation-only image ciphers working in the frequency domain, permutation-only video ciphers and permutation-
only speech ciphers. Since the cryptanalysis procedure is almost identical except for the format of plaintexts and
ciphertexts, the following discussions only focus on a rough comparison of the breaking performances in different
situations.

6.1 Cryptanalysis of Permutation-Only Image Ciphers Working in the Frequency
Domain

Many digital images are stored by lossy compression techniques, which generally work in the frequency domain,
especially in DCT or wavelet domain. Accordingly, when permutation-only image ciphers are used to encrypt such
images, the secret permutations are exerted on the transformation coefficients in the frequency domain, not on the
pixels in the spatial domain. In most transformation-based compression formats, the image is divided into many
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Figure 10: A performance comparison of the known-plaintext attack to HCIE.

blocks of smaller size to reduce the time complexity of compression. For example, in DCT-based formats, the image
is generally divided into 8× 8 blocks; and in wavelet-based formats, the image is generally divided into a quadtree.
In this case, the secret permutations can also be exerted on the blocks or the nodes of the tree, i.e., there may exist
a hierarchical encryption structure.

Generally speaking, it is easy to directly generalize the above known/chosen-plaintext cryptanalysis, by consid-
ering the transformed image T(f) as the plain-image f , i.e., considering the transform coefficients as the pixels in
the spatial domain. The main difference between the two cases is that the there exists energy concentration in T(f)
– generally most significant transform coefficients distribute within low-frequency band. What does this mean for
cryptanalysis? Apparently, to achieve an acceptable breaking performance, one can only reconstruct the elements in
W and W−1 that correspond to low-frequency coefficients. This implies that the reduction of the image size, which
immediately leads to a smaller number of required known/chosen plain-images and to the decline of the security
against known/chosen-plaintext attacks. In fact, in [32, Sec. 3.4.2], it has been pointed out that the non-uniform
distribution of DCT coefficients in MPEG videos (also for JPEG images) can even be used to partially break the
secret permutations in ciphertext-only attacks. For example, one can correctly locate the DC coefficient of each
8× 8 block with a large probability since the DC coefficient generally has the largest amplitude among all 64 DCT
coefficients.

As shown in previous sections, the existence of hierarchical structures in compression techniques further reduces
the security. What’s more, some elements in W and W−1 that correspond to high-frequency coefficients can also
be determined in the attacks, which can further help refine the visual quality of the recovered plain-image.

As a result, generally permutation-only image ciphers working in the frequency domain are less secure against
known/chosen-plaintext attack than those working in the spatial domain. If it is possible to avoid the energy-
concentration property and the hierarchical structure, the security at best will be equivalent to that in the spatial-
domain case.
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6.2 Cryptanalysis of Permutation-Only Video Ciphers

A video stream is composed of a series of 2-D consecutive images, which are called frames of the video. Essentially,
permutation-only video ciphers work in the same way on each frame as permutation-only image ciphers. Due
to the bulky size of most videos, transform-based lossy compression techniques are widely used for storage and
transmission of videos. Also, the block-based or quadtree-based hierarchical structure is widely used in various
video formats. So, despite the details of different video formats, the security of most permutation-only video
ciphers against known/chosen-plaintext attacks is in the same order as that of permutation-only image ciphers
working in the frequency domain.

As a result, the security of a video cipher can be evaluated by considering it as an image cipher encrypting the
following two types of plain-images: 1) independent frames, such as I-frames in MPEG videos; 2) frames dependent
on others, such as B/P-frames in MPEG videos. In such a way, the security analysis of the video cipher becomes
simpler and clearer. The major extra consideration in the design of a video cipher is how to make the cipher faster
and easier for implementation in the whole video processing system.

Here, note the following fact: if the permutation matrix is fixed for all frames, then only one partially-
known/chosen plain-video is enough to reveal the secret permutation matrix. From such a point of view, the
security of a permutation-only video cipher may be even weaker than its image counterpart. However, if the per-
mutation matrix is changed from frame to frame, it will be more difficult to maintain the fast speed of the video
cipher. This is another consideration in the design of a good video cipher.

6.3 Cryptanalysis of Permutation-Only Speech Ciphers

The general cryptanalysis of permutation-only image and video ciphers given in this paper can be easily applied to
permutation-only speech ciphers. In this case, the permutation matrix is of size 1×N . Apparently, permutation-
only speech ciphers are just 1-D special cases of permutation-only image/video ciphers, so the above-discussed
cryptanalysis still works with the same breaking performance. Also, if the encryption is made in the frequency
domain, the energy-concentration effect will expedite the attack in the same way as in the case of permutation-only
image/video ciphers working in the frequency domain. Some other existing cryptanalysis work on permutation-only
speech ciphers can be found in, for example, [49, 50].

7 Conclusions

By normalizing the encryption and decryption procedures of permutation-only image ciphers working in the spa-
tial domain, from a general perspective the present paper analyzes the security of such image ciphers against
known/chosen-plaintext attacks, and then generalizes the basic results related to permutation-only image ciphers
working in the frequency domain, as well as permutation-only video ciphers and permutation-only speech data
ciphers. A recently-proposed permutation-only image cipher, named HCIE, has been studied as a typical exam-
ple for illustrating the cryptanalysis. When the plain-images have size M × N with L possible pixel values, it is
found that only O (logL(MN)) known/chosen plain-images are enough for an attacker to achieve a rather good
breaking performance, leading to the conclusion that all permutation-only ciphers are not secure enough against
known/chosen-plaintext attacks. Also, it has been found that the attack complexity is practically small – only
O(n · (MN)2), when n plain-images are known or chosen to use. Some experiments have been shown to support the
cryptanalysis of general permutation-only image ciphers as well as the specific HCIE. As a natural result, it is also
found that hierarchical permutation-only image ciphers such as HCIE are less secure than normal permutation-only
image ciphers without using hierarchical encryption structures.

In summary, secret permutations are incapable of providing a sufficiently high level of security against known/chosen-
plaintext attacks, so they must be used together with other encryption techniques in the design of highly secure
multimedia encryption algorithms. To the best of our knowledge, this is the first time in the literature to quanti-
tatively clarify the security principle on multimedia encryption algorithms, from both theoretical and experimental
points of view.
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