
Efficient Pairing Computation on
Supersingular Abelian Varieties

Paulo S. L. M. Barreto1, Steven Galbraith2,
Colm O hEigeartaigh3, and Michael Scott3

1 Universidade de São Paulo, Escola Politécnica.
Av. Prof. Luciano Gualberto, tr. 3, n. 158, s. C1-46.

BR 05508-900, São Paulo(SP), Brazil.
pbarreto@larc.usp.br

2 Mathematics Department, Royal Holloway University of London.
Egham, Surrey TW20 0EX, UK.
steven.galbraith@rhul.ac.uk

3 School of Computing, Dublin City University.
Ballymun, Dublin 9, Ireland.

{coheigeartaigh,mike}@computing.dcu.ie

Abstract. We present a general technique for the efficient computation
of pairings on supersingular Abelian varieties. As particular cases, we
describe efficient pairing algorithms for elliptic and hyperelliptic curves
in characteristic 2. The latter is faster than all previously known pairing
algorithms, and as a bonus also gives rise to faster conventional Jacobian
arithmetic.

Keywords: Tate pairing, supersingular curves, pairing-based cryptosystem,
efficient algorithms.

1 Introduction

Efficient computation of pairings is essential to the large and ever growing area
of pairing-based cryptosystems (see e.g. [4] for a comprehensive overview).

There has been a lot of work on efficient implementation of pairings on elliptic
curves. Supersingular curves lead to more efficient implementations in terms
of processing speed [2, 8, 5] and bandwidth requirements [15, 9] than the best
available algorithms for ordinary curves [3]. Pairings on hyperelliptic curves have
received considerably less attention than their elliptic counterparts. The best
results are by Duursma and Lee [5] for a very special family of supersingular
hyperelliptic curves. These results suggest that supersingular hyperelliptic curves
may provide similar efficiency to elliptic curves, but these issues have not been
at all clear until now.

We tackle this problem by providing criteria under which pairings on su-
persingular hyperelliptic curves are efficiently computable. Our method is fairly
general and includes that of [5] as a particular case. We illustrate the method



by describing efficient pairing algorithms for supersingular genus 1 and genus 2
curves in characteristic 2. As a bonus, we derive explicit formulae for faster
conventional arithmetic on the Jacobian of supersingular genus 2 curves in char-
acteristic 2.

This paper is organised as follows. Section 2 gives a brief summary on stan-
dard techniques for the efficient computation of the Tate pairing. Section 3 dis-
cusses the contributions of Duursma and Lee for certain supersingular curves,
and section 4 generalises those contributions using the simpler, unified approach
of eta pairings. Section 5 explores the consequences of the eta pairing approach
for curves in characteristic 2. We compare the eta pairing approach with the work
of Rubin and Silverberg in section 6, and present some experimental results in
section 7. Finally, we draw our conclusions in section 8.

Parts of this work were presented by one of the authors [1] at the ECC’2004
conference on September 20–22, 2004. Subsequently and independently, on
November 14 2004, a paper [10] containing some results related to those in this
paper was posted on the ePrint archive.

2 The Tate pairing on supersingular curves

Let C be a smooth projective curve over a finite field K = Fqk . We denote the
degree zero divisor class group of C over K by PicK

0 (C). Let r be an integer
such that r | #PicK

0 (C). We denote by PicK
0 (C)[r] the divisor classes of order

dividing r.
Let D1 be a divisor representing a class in PicK

0 (C)[r] and let D2 be a divisor
on C defined over K such that the supports of D1 and D2 are disjoint. Since
rD1 is principal there is a function f on C defined over K such that (f) = rD1.
The Tate pairing (also called the Tate-Lichtenbaum pairing) is

〈D1, D2〉r = f(D2).

One can show (see Frey and Rück [7]) that the Tate pairing is a well-defined,
non-degenerate, bilinear pairing

PicK
0 (C)[r]× PicK

0 (C)/rPicK
0 (C) → K∗/(K∗)r.

The fact that the Tate pairing is only defined up to r-th powers is often
undesirable. To obtain a unique value, one defines the reduced pairing

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r .

Throughout the paper we will refer to the extra powering required to compute
the reduced pairing as the final exponentiation.

One very important property of the reduced pairing is the following [8]. Let
N = hr for some h.

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = 〈D1, D2〉(q
k−1)/N

N . (1)

2



2.1 Miller’s algorithm in the elliptic case

We recall how the Tate pairing can be computed in polynomial time using
Miller’s algorithm [12]. For simplicity we restrict to the case of elliptic curves.
The divisor class group of an elliptic curve is isomorphic to the curve itself, so
all divisors may be assumed to have the form D = (P )− (∞).

Let E be an elliptic curve over Fq and let r | #E(Fq) be a prime. Suppose
the embedding degree is k (i.e., k is the smallest positive integer such that
r | (qk − 1)). Let P ∈ E[r] and Q ∈ E(Fqk), where typically Q is the image of
some multiple of P under a non-rational endomorphism called a distortion map.
We construct an Fqk -rational divisor D equivalent to (Q) − (∞) by taking a
random point R ∈ E(Fqk) and defining D = (Q+R)− (R). We aim to compute

e(P,Q) = e((P )− (∞), D).

For every integer n and point P there is a function fn,P such that

(fn,P ) = n(P )− ([n]P )− (n− 1)(∞).

Miller’s algorithm builds up these functions fn,P according to the following for-
mula: If l and v are the lines which arise in the addition rule for adding [n]P
and [m]P then we have

fn+m,P = fn,P fm,P l/v.

The pairing value 〈(P )− (∞), D〉r is fr,P (D).
Thus, Miller’s algorithm is the following:

Algorithm 1 Miller’s algorithm
Input: r, P , Q + R, R, where the binary representation of r is {ri}.
Output: 〈P, Q〉r
1: T ← P
2: f ← 1
3: for i← blog2(r)c − 1 downto 0 do
4: . Calculate lines l and v in doubling T
5: T ← [2]T
6: f ← f2 · l(Q + R)v(R)/(v(Q + R)l(R))
7: if ri = 1 then
8: . Calculate lines l and v in adding P to T
9: T ← T + P

10: f ← f · l(Q + R)v(R)/((v(Q + R)l(R))
11: end if
12: end for
13: return f

Note that the addition in the final iteration is simplified in that l is a vertical
line and v disappears.

Miller’s algorithm can be generalised to general divisor class groups. The
basic algorithm is the same, but the functions are more complicated

3



2.2 Improvements to Miller’s algorithm

Several improved implementation techniques to compute the reduced Tate pair-
ing on supersingular elliptic curves have been proposed [2, 8]. These include:

Exploiting properties of the field of definition: It is typical in pairing
applications to pair a point defined over Fq with a point defined over Fqk . Hence
it makes sense to represent Fqk as an extension of Fq and to try to simplify the
operations in Fqk as much as possible.

The final exponentiation eliminates terms defined over subfields. Hence,
terms defined over subfields can be omitted from the calculations. For exam-
ple, if k > 1 then the point R can be chosen to be defined over a subfield, in
which case all terms l(R) and v(R) may be ignored.

Changing the base in Miller’s algorithm: Miller’s algorithm is usually pre-
sented as a loop through the binary expansion of the group order. It is sometimes
more efficient to use other bases, for example to write the group order in base
three when implementing pairings in characteristic three.

Replacing divisors by points: As explained above, the point R can be ig-
nored. In fact, one can choose R = ∞ by [2, Theorem 1]. Hence, the reduced
pairing can be computed as

e(P,Q) = fr(Q)(q
k−1)/r,

where the function fr is now evaluated on a point rather than on a divisor.

Exploiting the form of the distortion maps and denominator elimina-
tion: If the distortion map is chosen so that the x-coordinates always lies in a
subfield, then all terms v(Q) may be eliminated. As a result there are no longer
any divisions in Miller’s algorithm.

Hamming weight/group order issues: Miller’s algorithm to compute fr

involves a number of arithmetic operations proportional to the Hamming weight
of r, and for this reason it is advantageous to choose r with low Hamming weight
(with respect to the base being used) whenever possible. In many cases it is
worth using a small multiple of r which has low Hamming weight and exploiting
formula (1).

Speeding up the final exponentiation: The naive way to compute the final
powering to (qk−1)/N (for some multipleN of r) has cubic complexity. However,
this exponent has a rather simple structure for supersingular curves when one
chooses N to be the full curve order rather than a factor r thereof. By carefully
exploiting that structure, one can replace the powering by a few applications
of the Frobenius, a couple of multiplications, and one inversion. Details can be
found in [2, Appendix A.2].

4



Pairing value compression: It is possible to save the bandwidth requirements
of pairing values by storing and manipulating traces [15], or by working on a
torus [9]. These methods compress pairing values to half their usual size (or to
a third thereof, in the specific case of pairing on supersingular elliptic curves in
characteristic 3).

The techniques mentioned above give impressive results for pairing imple-
mentation. For the remainder of the paper we focus on further improvements.
We consider only supersingular curves over Fq with embedding degree k > 1
and with suitable distortion maps ψ. We will always be computing a modified
pairing

êr(P,Q) = 〈P,ψ(Q)〉r

where P and Q are defined over Fq.

3 The Duursma-Lee techniques

Duursma and Lee [5] had several ideas which give a significant improvement to
the computation of pairings on curves of the form y2 = xp − x + d over Fpm

(these curves have embedding degree 2p). In particular, they give new results in
the case of the embedding degree 6 curve in characteristic three.

The presentation in [5] is ad hoc and quite involved, but a careful examination
shows that it contains four independent contributions:

1. A nice choice of function for computing pD in the divisor class group;
2. The definition of a pairing on points (in g > 1) rather than divisors;
3. A shorter loop than would be expected for the given group order;
4. Incorporating the large powering and other Frobenius operations directly

into the formulae.

One of the aims of this paper is to clarify the presentation in [5] so that it
can easily be generalised to other cases. Points 1, 2 and 4 are relatively straight-
forward to adapt, but the third contribution is less obvious. We give a general
explanation of this idea in the next section.

4 The eta pairing approach

One crucial aspect of [5] is that they work with a group order of the form pmk +1
where the embedding degree is 2k (so k = p for the family of curves considered
in [5]) and where gcd(m, 2k) = 1. This group order has Hamming weight 2 in
base p, which is minimal. The final powering by pmk − 1 is simply computing a
Frobenius conjugation and a division.

However, instead of requiring a loop with mk iterations, they have a loop
with only m iterations. In this section we explain how this can be achieved in a
very general way.

5



4.1 Generic view of the method

Let P be a point on a hyperelliptic curve C of genus g over Fqk (where q = pm)
and let ∞ be a (fixed) point on C. Assume we have a distortion map ψ which
gives rise to denominator elimination in the usual way. Let D be the divisor
D = (P )− (∞) and suppose that D has order dividing qk + 1. We will develop
the functions required for a Miller algorithm in base p.

Define effective divisors Ei of degree di ≤ g such that piD ≡ Ei − di(∞) in
the divisor class group. Define fpj ,piP to be functions such that

(fpj ,piP ) = pjEi − Ei+j − (pjdi − di+j)(∞).

Then one can choose the fpj ,piP such that

fpi+1,P = fp
pi,P fp,piP . (2)

Miller’s algorithm requires computing fqk+1,P , but as we will now show,
since C is hyperelliptic it suffices to compute fqk,P , which can be done using
equation (2). This follows because qk((P ) − (∞)) ≡ ((P ) − (∞)) where P is
the image of P under the hyperelliptic involution. Therefore, the final step in
Miller’s algorithm involves a function which depends only on x. Hence, if the
point Q ∈ E(Fq2k) has x-coordinate in Fqk (i.e., if the distortion map is of a
suitable form) then this operation may be omitted. In other words, there are no
longer any addition steps in Miller’s algorithm in base p.

By expanding out the definitions we obtain

〈P,ψ(Q)〉qk+1 = fqk,P (ψ(Q)) =
km−1∏
i=0

fp,piP (ψ(Q))pkm−1−i

. (3)

where we should complete the calculation by exponentiating to the power (qk−1).
What Duursma and Lee noticed is that this loop can be shortened from a

product of km terms to a product of k terms. We now give a general explanation
of this fact.

Definition 1. Let notation be as above. We define the ηT pairing as

ηT (P,Q) =
m−1∏
i=0

fp,piP (ψ(Q))pm−1−i

.

It is clear that equation (3) can be written as a product of ηT (P,Q) terms
as follows.

〈P,ψ(Q)〉qk+1 = ηT (P,Q)qk−1
ηT (qP,Q)qk−2

· · · ηT (qk−1P,Q). (4)

We will prove that in certain special cases ηT (P,Q) is bilinear and hence that

〈P,ψ(Q)〉qk+1 = ηT (P,Q)pqk−1
.

6



An important observation is that, for many supersingular curves, multipli-
cation by p has an extremely special form. This has already been exploited by
many authors. Essential to the case of curves of genus > 1 is the fact that mul-
tiplication by p (or a power of p) of a special divisor of the form (P ) − (∞)
may be another divisor of this form. Hence, from now on we assume that
q((P )− (∞)) = (γ(P ))− (∞) for some automorphism γ on the curve.

The key to our results is the following condition on the distortion map ψ
which relates multiplication by q with the q-power Frobenius. The condition is

γψq(Q) = ψ(Q). (5)

We can now give our main result.

Theorem 1. If ψ satisfies condition (5) then

ηT (qP,Q) = ηT (P,Q)q.

Note that this is a rather subtle case of bilinearity as we consider the q on
the left hand side as point exponentiation while the q on the right hand side is
a Galois action on field elements.

Proof. Define the function

gP =
m−1∏
i=0

fpkm−1−i

p,piP

so that gP = fq,P and ηT (P,Q) = gP (ψ(Q)). The first step is to compare gP

and gqP .
It is known (see Silverman [17] Chapter II page 33) that

γ∗
(∑

nP (P )
)

=
∑

S∈γ−1(P )

nP eγ(S)(S).

and so

γ∗(fp,pm+i,P ) = γ∗(p(pipmP )− (pi+1pmP )− (p− 1)(∞)

= p(piP )− (pi+1P )− (p− 1)(∞)
= (fp,piP ).

Also, (Silverman [17] pages 33-34)

γ∗(fp,pm+iP ) = (γ∗fp,pm+iP ) = (fp,pm+iP ◦ γ).

Hence, we can take
fp,pm+iP = fp,piP γ

−1

which implies that
gqP = gP γ

−1.

7



We want to deduce that

ηT (P,Q)q = ηT (qP,Q).

The left hand side is

ηT (P,Q)q = gP (ψ(Q))q = gP (ψq(Q))

since both P and Q are defined over Fq and so gP and Q are preserved by the
Frobenius action. The right hand side is

ηT (qP,Q) = gqP (ψ(Q)) = gP γ
−1ψ(Q).

The result follows from condition (5). ut

Note: The proof has been presented in a way which emphasises the key role
of condition (5). It seems unlikely that the result would be true if condition (5)
is not satisfied, but we can’t prove this.

We now show that these results explain the loop shortening achieved by
Duursma and Lee. They have the curve E : y2 = x3 − x + b over F3m where
gcd(m, 6) = 1. The tripling formula is [3](x, y) = φπ2(x, y) where π is the 3-
power Frobenius and φ(x, y) = (x−b,−y). Note that φ2(x, y) = (x−2b, y), φ3 =
−1 etc. The distortion map is ψ(x, y) = (ρ−x, iy) where i2 = −1 and ρ3 = ρ+ b

(and thus ρ32
= ρ+ 2b, ρ33

= ρ). We will show that γψq = ψ.
Let q = 3m with m ≡ 1 (mod 6). Suppose (x, y) ∈ E(Fq). Then γ(x, y) =

[q](x, y) = φ(x, y) and ψq = ψ3. Then

γψq(x, y) = φ(ρ+ b− x,−iy) = (ρ+ b− x− b, iy) = (ρ− x, iy) = ψ(x, y).

Similarly, when m ≡ 5 (mod 6) we have γ = −φ2 and ψq = −ψ32
and so

γψq(x, y) = φ2(ρ+ 2b− x, iy) = (ρ+ 2b− x− 2b, iy) = ψ(x, y).

Hence condition (5) is satisfied and so the ηT pairing is bilinear. The method of
Duursma and Lee computes the eta pairing in a way which combines the other
three techniques mentioned at the start of this section.

5 Supersingular pairings in characteristic 2

5.1 The elliptic case

We now consider the case of the supersingular curve E : y2 + y = x3 +x+ b over
F2m where m is odd. We will use the ideas presented in section 4. The order of
E is given in table 1.

We write x(i) for x2i

. Depending on the field of definition we will usually
have either x(m) = x or x(4m) = x. Hence we can consider the values (i) as being
modulo m or 4m. This allows us to extend to negative values such as x(−i),
which can be interpreted as the 2i-th root of x.

8



Table 1. Order of the curve E : y2 + y = x3 + x + b over F2m , b ∈ F2.

#E(F2m) condition

2m + 1 + (−1)b2(m+1)/2 m ≡ 1, 7 (mod 8)

2m + 1− (−1)b2(m+1)/2 m ≡ 3, 5 (mod 8)

The field F24m has elements s, t such that s2 = s + 1 and t2 = t + s; we
will represent F24m in basis {1, s, t, st}. Element s satisfies s(1) = s2, s(2) = s,
and thus s(i) = s + i and s(−i) = s(m−i) = s + (m − i); the latter simplifies to
s(−i) = s + i + 1 because m is odd. Similarly for t, t(1) = t + s, t(2) = t + 1,
t(3) = t + s + 1, t(4) = t, and thus t(i) = t + is + τ(i) and t(−i) = t(m−i) =
t+ (m− i)s+ τ(m− i) = t+ (i+ 1)s+ τ(m) + τ(i), where τ(i) = 0 for i ≡ 0, 1
(mod 4) and τ(i) = 1 for i ≡ 2, 3 (mod 4).

We adopt the following notation:

φ(x, y) ≡ (x+ 1, y + x),
ψ(x, y) ≡ (x+ s2, y + sx+ t).

One can verify that φ2(x, y) = (x, y + 1), φ3(x, y) = (x + 1, y + x + 1), and
φ4(x, y) = (x, y).

Let P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m). We have x(m)
P = xP (and similarly

for the other point coordinates). One can show by induction that

2iP = φi(x(2i)
P , y

(2i)
P ).

We now show that the eta pairing can be applied in this case.

Lemma 1. With notation as above, condition (5) is satisfied.

Proof. Write q = 2m where m ≡ 1, 3 (mod 4). For P = (xP , yP ) we have

γ(P ) = [q]P = φm(xP , yP ) = φm(P )

We must show that γψq = ψ.
Consider first the case m ≡ 1 (mod 4). We have

γψ2m

(x, y) = φψ2(x, y) = φ(x+ s, y + s2x+ (t+ s))
= (x+ s+ 1, y + s2x+ t+ s+ x+ s) = (x+ s2, y + sx+ t) = ψ(x, y).

Similarly, when m ≡ 3 (mod 4) we find that

γψ2m

(x, y) = φ3ψ23
(x, y) = φ3(x+ s, y + s2x+ (t+ s+ 1))

= (x+ s+ 1, y + s2x+ t+ s+ 1 + x+ s+ 1) = ψ(x, y).

This completes the proof. ut

9



Given a point V , the function

gV (x, y) ≡ (x2
V + 1)(xV + x) + yV + y

has divisor 2(V )− (2V )− (∞). We desire to compute the function

〈P,ψ(Q)〉q2+1 = ηT (P,Q)2q ≡
m−1∏
i=0

gi,

where gi ≡ (g2iP (ψ(Q))(−i))q. A straightforward but tedious calculation gives

gi = (x(i+1)
P + 1)(x(i)

P + x
(−i)
Q ) + x

(i+1)
P + y

(i)
P + y

(−i)
Q + (x(i+1)

P + x
(−i)
Q + 1)s+ t.

Algorithm 2 computes the above product.

Algorithm 2 Computation of ê(P,Q) on E(F2m) : y2 + y = x3 + x+ b

Input: P, Q
Output: ê(P, Q)
1: let P = (xP , yP ), Q = (xQ, yQ)
2: f ← 1
3: for i← 1 to m do
4: u← x2

P

5: g ← (u + 1) · (xP + xQ) + u + yP + yQ + (u + xQ + 1)s + t
6: f ← f · g
7: xP ← u, yP ← y2

P , xQ ←
√

xQ, yQ ←
√

yQ

8: end for
9: return fq2−1

Each step costs 7 Fq multiplications (1 to compute g, 6 to accumulate it into
f by making use of the sparse structure of g), except the first step which costs
only 1 Fq multiplication (because f = 1). The total loop cost is therefore 7m−6
multiplications.

A further speed-up may be possible by precomputing all squares xP and yP ,
and then referencing them backwards to get rid of the square roots. However,
using the technique described in [6] calculating square roots in the field F2m is
just as fast as squaring. In fact it may be a little faster as large precomputed
tables can lead to memory cache misses which are detrimental to performance.

5.2 The genus 2 case

Here we consider the curve Cd : y2 + y = x5 + x3 + d with d = 0 or 1 over F2m ,
where m is coprime to 6. This curve is supersingular and has embedding degree
12. We give an octupling formula which enables fast point exponentiation and
give a corresponding function for Miller’s algorithm. The group order is given in
Table 2; some examples are listed in Table 3.

10



Table 2. Order of Jac(Cd) for the curve Cd : y2 + y = x5 + x3 + d over F2m , d ∈ F2.

#Jac(Cd)(F2m) condition

22m + (−1)d2(3m+1)/2 + 2m + (−1)d2(m+1)/2 + 1 m ≡ 1, 7, 17, 23 (mod 24)

22m − (−1)d2(3m+1)/2 + 2m − (−1)d2(m+1)/2 + 1 m ≡ 5, 11, 13, 19 (mod 24)

Table 3. Some examples.

field curve cofactor

F279 y2 + y = x5 + x3 + 1 151681
F2103 y2 + y = x5 + x3 13 · 1237
F2127 y2 + y = x5 + x3 + 1 198168459411337
F2199 y2 + y = x5 + x3 + 1 2389 · 121789
F2239 y2 + y = x5 + x3 + 1 1
F2313 y2 + y = x5 + x3 + 1 1

Appendix A gives detailed formulae for arithmetic in Jac(C) over F2m . These
derive from, and improve upon, the explicit formulae given in [11] (1 inversion, 20
multiplications and 4 squarings in the most expensive addition case; 1 inversion,
8 multiplications, and 4 squarings in the most expensive doubling case; and 24
squarings for octupling, without inversions nor multiplications).

5.3 The distortion map

Choose w ∈ F26 to be a root of the polynomial

x6 + x5 + x3 + x2 + 1.

Note that w8 = w+ 1. Define s1 = w2 +w4, s2 = w4 + 1, and let s0 ∈ F212 be a
solution of s20 + s0 = w5 + w3.

We will represent elements of the field F212m as 12-tuples with respect to the
basis

{1, w, w2, w3, w4, w5, s0, ws0, w
2s0, w

3s0, w
4s0, w

5s0}.

The distortion map is

ψ(x, y) = (x+ w, y + s2x
2 + s1x+ s0).

5.4 Octupling

Consider a divisor of form D = (P ) − (∞). In general, jD is not equivalent
to a divisor of the form (Q) − (∞), but as shown in Appendix B in this case
we have the octupling formula 8D = (P ′) − (∞) where P ′ = φπ6(P ), π is the
2-power Frobenius map, and φ(x, y) = (x + 1, y + x2 + 1) so that φ2 = −1.
As a suggestive (but non-standard) notation, we write [8]P = φπ6(P ) and so

11



8D = ([8]P )− (∞). Similar results for other supersingular curves were obtained
by Duursma and Lee [5].

Since our basic operation is octupling, we are forced to consider the ηT pairing
in the case where we have a power of 23. Hence we will work with q = 23m and
we will only be reducing the base 8 loop from 2m iterations to m iterations. It
would be interesting to know if the loop can be shortened further in this case.

We now show that condition (5) is satisfied for our distortion map.

Lemma 2. Let the notation be as above with q = 23m. Then condition (5) is
satisfied.

Proof. We have q = 23m where m ≡ 1, 5, 7 or 11 (mod 12). Hence we have
3m ≡ 3, 9 (mod 12) and γ = φ3m.

We will repeatedly use the formulae w8 = w + 1 and s80 = s0 + w2 (from
which we deduce s8

2

0 = s0 + 1 and s8
3

0 = s0 + w2 + 1).
The cases m ≡ 7, 11 (mod 12) (i.e., 3m ≡ 1 (mod 4)) yield

γψq(x, y) = φψ8(x, y) = φ(x+ w + 1, y + w4x2 + s1x+ s0 + w2)
= (x+ w, y + w4x2 + s1x+ s0 + w2 + x2 + w2 + 1 + 1) = ψ(x, y).

Similarly, when 3m ≡ 3 (mod 4) we have

γψq(x, y) = φ3ψ83
(x, y) = −φ(x+ w + 1, y + w4x2 + s1x+ s0 + w2 + 1)

= −(x+ w, y + w4x2 + s1x+ s0 + w2 + 1 + x2 + w2 + 1 + 1) = ψ(x, y).

This proves the lemma. ut

5.5 Functions

Let f8,P be a function such that (f8,P ) = 8(P ) − ([8]P ) − 7(∞). We show in
appendix B that, for ψ(Q) = (x, y):

f8,P (ψ(Q)) =
(y + b4(x))2(y + b′′8(x))

a′4(x)2a
′
8(x)

where

b4(x) = x3 + (x8
P + x4

P )x2 + (x4
P )x+ y4

P

and

b′′8(x) = (x32
P + 1)x2 + (x32

P + x16
P )x+ (y16

P + x16
P + x48

P + 1).

The denominator a′4(x)
2a′8(x) can be ignored for the usual reasons.

We can write f8,P = αβ where α = (y + b4(x))2 ◦ ψ and β = (y + b′′8) ◦ ψ.

12



5.6 Miller’s algorithm

Miller’s algorithm (using the Octupling formulae) computes (cf. eq. 3):

〈P,ψ(Q)〉26m+1 =
2m−1∏
i=0

f8,[8i]P (ψ(Q))8
2m−1−i

.

Following our general presentation of the ηT pairing, we will instead compute

ηT (P,Q) =
m−1∏
i=0

f8,[8i]P (ψ(Q))8
m−1−i

.

By Lemma 2 the pairing is bilinear, so that (for q = 23m):

〈P,ψ(Q)〉26m+1 = ηT (P,Q)q · ηT ([q]P,Q) = ηT (P,Q)2q.

In the Appendix we show how this product may be efficiently computed,
leading to a very fast pairing implementation on genus 2 curves in characteristic
two. Details of timings are given in Section 7.

Note that to compute a pairing between general elements D1 = (P1)+(P2)−
2(∞) and D2 = (Q1)+(Q2)−2(∞) in the divisor class group of C it is necessary
to compute

e(P1, Q1)e(P1, Q2)e(P2, Q1)e(P2, Q2).

Obviously there are some optimisations available (for example, the final exponen-
tiation only needs to be performed once and the calculation of the functions can
be shared for both e(P1, Q1) and e(P1, Q2)), but nevertheless, a general pairing
will be much slower than a pairing of two special divisors. This can be exploited
in protocol design. For example, one can set-up the Boneh-Franklin IBE system
so that encryption is fast (by arranging that identities map to special divisors)
at some cost to decryption.

Appendix C discusses implementation issues in detail.

6 The Rubin-Silverberg approach

Rubin and Silverberg [13] (also see [14, 16]) have proposed an alternative way
to view pairings on Abelian varieties. Their method can be thought of as a
method for computing pairings on trace zero subvarieties of Weil restrictions of
elliptic curves. A simpler way to think about their method is as a form of point
compression for pairings on elliptic curves. We recall their approach in the case
of characteristic 2.

Let Eb : y2 +y = x3 +x+ b with b = 0, 1 over F2 be the supersingular elliptic
curves with embedding degree k = 4. The idea of Rubin and Silverberg is to
compute pairings with points defined over F23m where m is coprime to 12. This
means that pairing values lie in F212m .

To transmit group elements, Rubin and Silverberg propose a compression
method so that the element is represented using only 2 elements in F2m . Hence,

13



the bandwidth is about 2m bits but the finite field security is 212m, which cor-
responds to ‘security multiplier 6’.

The group E(F23m) clearly has E(F2m) as a subgroup. Indeed, we can write

E(F23m) ∼= E(F2m)×A

where A is a finite group and one can check that the order of A is 22m ±
2(3m+1)/2 + 2m ± 2(m+1)/2 + 1. Note that this agrees with the group orders
in Table 2.

The following result is an important classification of A.

Lemma 3. Let m be coprime to 12. Let Tr be the trace map with respect to
F23m/F2m . Then A = {P ∈ E(F23m) : Tr(P ) = 0}.

The method is to perform pairing computations with the curve E over F23m

so that the pairing values lie in F212m . Suitable group orders are the same as in
the genus 2 case (e.g. m = 103 with a 192-bit subgroup).

Write F23m as F2m(θ) where θ3 = θ+1. So points in E(F23m) are represented
as (x, y) where x is represented as a triple (x0, x1, x2) over F2m with respect to
the basis {1, θ, θ2}.

To transmit a point we first apply point compression so that we need send
only the x-coordinate and a single bit determining the sign (sometimes even this
bit can be removed). Then to transmit the x-coordinate just send x0 and x1

(and possibly another bit).
To recover (decompress) we must do the following: Given x0 and x1 compute

an element x2 ∈ F2m such that there is a point P with x-coordinate (x0, x1, x2)
which satisfies Tr(P ) = 0.

In this case the trace is Tr(P ) = P + π(P ) + π2(P ) where π is the 2m-power
Frobenius map. So the condition is that P, π(P ) and π2(P ) sum to zero, or in
other words, lie on a straight line. The decompression procedure is to deduce
which x2 ensures that there is a line l(x, y) = 0 through the three points.

Let P = (xP , yP ) and write l(x, y) = y+u0x+u1 where u0, u1 ∈ F23m . Define
l(x, y) = l(x, y) + 1. Then

l(x, y)l(x, y) = y2+y+(u0x+u1)+(u0x+u1)2 = x3+u2
0x

2+(u0+1)x+(u2
1+u1+b).

Also,

l(x, y)l(x, y) = (x− xP )(x− xπ(P ))(x− xπ2(P )) = x3 + Tx2 + Sx+N

from which we deduce that T = S2 + 1. One can check that T = x0 and S =
x2

0 + x2
1 + x1x2 + x2

2. Hence x2 is a solution to the equation

y4 + x1y
2 + (x4

0 + x0 + 1 + x2
1) = 0.

Solving this equation involves solving a quadratic and then taking square roots.
A single bit is needed to distinguish the two roots of the quadratic and to ensure
a unique solution to the decompression process.

14



The total cost is solving a quadratic and then taking a square root, plus
solving another quadratic to recover the y-coordinate of the point.

From a performance point of view it is essential to compare the running
time of the pairing computation on the genus 2 curve with the Rubin-Silverberg
method. In a general implementation, where we may be required to compute
the pairing of general divisors on the genus 2 curve, then the Rubin-Silverberg
approach may be superior.

7 Experimental results

7.1 The ηT pairing

The Jacobian of the supersingular genus 2 curve y2+y = x5+x3+b, defined over
F2, is a 2-dimensional Abelian variety over F2m with embedding degree k = 12.
Another way to get this Abelian variety is with the Rubin-Silverberg approach,
by taking the k = 4 elliptic case and using the Rubin-Silverberg construction
with r = 3, to obtain a 2-dimensional Abelian variety with embedding degree
3× 4 = 12. We can use this to compare the performance of the ηT pairing in the
elliptic and genus 2 case, by comparing the running time of the pairing using
the Jacobian of the curve over F2m with using E(F23m).

Note: this does not take into account the cost of conversion between the
Rubin-Silverberg Abelian variety representation and the elliptic curve over the
larger field. The base-field size is chosen as F2103 because the Jacobian has order
13 times a 192-bit prime.

Table 4. Running times for pairing computation.

case curve optimisation pairing time (ms)

1 E(F2239) algorithm 2 3.16
2 E(F23·103) algorithm 2 5.83
3 C(F2103) single precomp 4.53
4 C(F2103) double precomp 3.47
5 C(F2103) unroll 3.14
6 C(F2103) integrate 2q-power 3.20
7 E(F397) see [9] 4.05

Table 4 gives some running times for calculating the ηT pairing for two points.
Cases 1 and 2 illustrate the elliptic curve algorithm over the field F23·103 . Case 3
uses the genus 2 algorithm over the field F2103 with the formulae given in Ap-
pendix C, and precomputes the values x(i)

P and y
(i)
P . The precomputation time

is included in the running time. Case 4 does this precomputation for both input
points. Case 5 does likewise, except that it unrolls the pairing function computa-
tion, also described in Appendix C. Case 6 integrates the 2q exponentiation into

15



the formulae, and also applies all previous optimisations. For comparison pur-
poses, we finally provide the timings of an optimised pairing in characteristic 3
as case 7.

As can be seen from the table, the fastest hyperelliptic implementation is
about 46% faster than the elliptic curve case in characteristic 2, and about 16%
faster than the elliptic curve characteristic 3 case. Note that bringing the final
2q exponentiation into the formulae does not seem to provide any speedup.

7.2 Scalar Multiplication

Appendix A gives explicit formulae for calculating the group law for supersingu-
lar hyperelliptic curves of genus 2 of the form y2 + y = x5 + x3 + d defined over
F2. They are based on explicit formulae given in [11], and contain additional
optimisations.

Scalar multiplication for a general divisor over the above curve is significantly
faster using the octupling formulae given in Appendix A and 8-ary windowing,
than using a plain sliding-window method (with window width 4). Table 5 gives
the observed running times for these two methods. As can be seen, the octupling
method is more than twice as fast as the sliding-window method. For comparison,
we also include the running time for scalar multiplication over F397 .

Table 5. Running times over F2103 .

Method time (ms)

Sliding window 1.603
Octupling 0.631

9-ary over F397 1.028

One of the potential advantages of using hyperelliptic curves is that the base
field can be much smaller than that required for an elliptic curve, for the same
level of security. Great potential savings can be realised if an element of the base
field can be represented in a single machine word, rather than using a multi-
precision representation, and for comparison with elliptic curves we regard it as
quite “fair” to try to exploit this feature.

So in implementing arithmetic in the field F2103 we take advantage of the 128-
bit registers available to those processors, like the Pentium IV, which support
the SSE2 instruction set, and have written a special function to carry out field
multiplication using SSE2 instructions. This is twice as fast as a standard multi-
precision implementation, and improves the overall timings by about 50%.

All timings were done on a Pentium IV running at 3 GHz.

16



8 Conclusions

We have presented the eta pairing approach to compute pairings on supersingular
curves. This approach generalises and clarifies the Duursma-Lee algorithm. We
have provided full examples of the method in characteristic 2 for genus 1 and 2,
which turn out to be very efficiently implementable; in the former case we also
described more efficient formulae for conventional arithmetic.

References

1. P. S. L. M. Barreto. The well-tempered pairing. Bochum, Germany, 2004. 8th
Workshop on Elliptic Curve Cryptography – ECC’2004. Invited talk.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer-Verlag, 2002.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-
based cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

4. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptography: A survey. Cryptol-
ogy ePrint Archive, Report 2004/064, 2004. http://eprint.iacr.org/2004/064.

5. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer-Verlag, 2003.

6. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point
halving revisited. Technical report CORR 2003-18, University of Waterloo, 2002.

7. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm problem in the divisor class group of curves. Math. Comp., 52:865–874,
1994.

8. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithm Number Theory Symposium – ANTS V, volume 2369 of Lecture Notes
in Computer Science, pages 324–337. Springer-Verlag, 2002.

9. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in
pairing-based cryptography. Cryptology ePrint Archive, Report 2004/132, 2004.

10. S. Kwon. Efficient Tate pairing computation for supersingular elliptic curves over
binary fields. Cryptology ePrint Archive, Report 2004/303, 2004. http://eprint.
iacr.org/2004/303.

11. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. In Appli-
cable Algebra in Engineering, Communication and Computing, Online publica-
tion. Springer-Verlag, 2004. http://www.springerlink.com/openurl.asp?genre=
article&id=doi:10.1007/s0%0200-004-0154-8.

12. V. S. Miller. Short programs for functions on curves. Unpublished manuscript,
1986. http://crypto.stanford.edu/miller/miller.pdf.

13. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In
Advances in Cryptology – Crypto’2002, volume 2442 of Lecture Notes in Computer
Science, pages 336–353. Springer-Verlag, 2002.

14. K. Rubin and A. Silverberg. Using primitive subgroups to do more with fewer
bits. In Algorithmic Number Theory –ANTS VI, volume 3076 of Lecture Notes in
Computer Science, pages 18–41. Springer-Verlag, 2004.

17



15. M. Scott and Paulo S. L. M. Barreto. Compressed pairings. In Proceedings, Lecture
Notes in Computer Science, Santa Barbara, USA, 2004. Advances in Cryptology –
Crypto’2004, Springer-Verlag. to appear.

16. A. Silverberg. Compression for trace zero subgroups of elliptic curves. Preprint,
2004. Available from http://www.math.uci.edu/~asilverb/bibliography/

compress.pdf.
17. J. H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate

Texts in Mathematics. Springer-Verlag, Berlin, Germany, 1986.

A Supersingular hyperelliptic arithmetic

Tanja Lange describes general explicit formulae for arithmetic on the Jacobian
of the hyperelliptic curve

y2 + (h2x
2 + h1x+ h0)y = x5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0

over any finite field. Here we consider the special case over F2m with odd m
where h2 = h1 = 0, h0 = 1, f4 = f2 = f1 = 0, f3 = 1, f0 = d ∈ F2, i.e. the
supersingular hyperelliptic curve

y2 + y = x3 + x+ d.

We assume divisors in Mumford representation, hence as pairs [u, v] for
polynomials u and v where u is monic and deg(u) > deg(v); the zero element
is denoted [1, 0]. Algorithm 3 describes divisor doubling, algorithms 4 and 5
describe divisor addition, and algorithm 6 describes divisor octupling.

B The hyperelliptic function f8,P

We now derive an explicit expression for the function f8,P needed for Miller’s
algorithm on the supersingular hyperelliptic curve Cb : y2 + y = x5 + x3 + b.

Let P = (xP , yP ). We will consider divisors Dn = n(P )− n(∞). To achieve
this we will consider the reduced divisor (via Cantor’s algorithm) D′

n which is
equivalent to Dn. We will consider functions such that Dn = D′

n + (fn).
The divisor D1 = (P )− (∞) has Mumford representation

(a1(x), b1(x)) = (x+ xP , yP ).

We take the function f1 = 1.
Now considerD2 = 2(P )−2(∞). One can show that this divisor has Mumford

representation (a2(x), b2(x)) = (x2+x2
P , (x

4
P +x2

P )x+y2
P ). This divisor is reduced

(so no reduction step in Cantor’s algorithm is performed). Hence D′
2 = D2 and

so the function f2 may be chosen to be 1.
Now consider D4 = 4(P ) − 4(∞). The Mumford representation (after per-

forming the composition step of Cantor’s algorithm) is

(a4(x), b4(x)) = (x4 + x4
P , x

3 + (x8
P + x4

P )x2 + (x4
P )x+ y4

P ).

18



Algorithm 3 Doubling of a divisor [u, v]
Input: divisor [u, v].
Output: [u′, v′] = 2[u, v].
1: if deg(u) = 0 then . [u, v] = [1, 0]
2: [u′, v′]← [1, 0]
3: else if deg(u) = 1 then . [u, v] = [x + u0, v0]
4: u′0 ← u2

0, v′1 ← u′0
2

+ u′0, v′0 ← v2
0 + d

5: [u′, v′]← [x2 + u′0, v
′
1x + v′0] . (3S)

6: else . [u, v] = [x2 + u1x + u0, v1x + v0]
7: if u1 = 0 then
8: s′0 ← v2

1 , l′0 ← u0s
′
0

9: u′0 ← s′0
2

10: w1 ← s′0 + 1, w0 ← w1 + u′0 + u0, w1 ← u′0w1 + l′0,
11: v′1 ← w0 + v1, v

′
0 ← w1 + v0 + 1

12: [u′, v′]← [x2 + x + u′0, v
′
1x + v′0] . (2S, 3M)

13: else if u1 = 1 then
14: s′0 ← v2

1 , u′0 ← s′0
2

15: v′0 ← s′0(u
′
0 + u′0

2
+ u0) + u′0v1 + v0 + 1

16: [u′, v′]← [x + u′0, v
′
0] . (3S, 3M)

17: else . u1 6∈ {0, 1}
18: s′1 ← 1 + u2

1, s′0 ← u1s
′
1 + v2

1

19: w1 ← 1/s′1, w0 ← s′0w1

20: l′2 ← u1 + w0, l′1 ← u1w0 + u0, l′0 ← u0w0

21: u′1 ← w2
1, u′0 ← w2

0

22: w1 ← l′2 + u′1, w0 ← u′1w1 + u′0 + l′1, w1 ← u′0w1 + l′0,
23: v′1 ← w0s

′
1 + v1, v′0 ← w1s

′
1 + v0 + 1

24: [u′, v′]← [x2 + u′1x + u′0, v
′
1x + v′0] . (I, 4S, 8M)

25: end if
26: end if

Algorithm 4 Addition of divisors [u, v1] and [u, v2], v1 6= v2
Input: divisors [u, v1] and [u, v2] with v1 6= v2.
Output: [u′, v′] = [u, v1] + [u, v2].
1: if v2 = v1 + 1 then . [u, v1] = −[u, v2]
2: [u′, v′]← [1, 0]
3: else . u = x2 + u1x + u0, vi = vi1x + vi0, [u, vi] = (P1) + ((−1)iP2)− 2(∞)
4: w0 ← (v10 + v20)u1, z0 ← v11w0 + v10

5: u′0 ← w2
0, v′1 ← u′0

2
+ u′0, v′0 ← z2

0 + d
6: [u′, v′]← [x2 + u′0, v

′
1x + v′0] . (3S, 2M)

7: end if

19



Algorithm 5 Addition of divisors [u1, v1] and [u2, v2], u1 6= u2

Input: divisors [u1, v1] and [u2, v2] with deg(u1) 6 deg(u2) and u1 6= u2.
Output: [u′, v′] = [u1, v1] + [u2, v2].
1: if deg(u1) = 0 then . [u1, v1] = [1, 0]
2: [u′, v′]← [u2, v2]
3: else if deg(u1) = 1 then . u1 = x + u10, v1 = v10

4: if deg(u2) = 1 then . u2 = x + u20, v2 = v20

5: w0 ← (u10 + u20)
−1, z1 ← w0(v10 + v20), z0 ← w0(v20u10 + v10u20)

6: [u′, v′]← [x2 + (u10 + u20)x + u10u20, z1x + z0] . (I, 5M)
7: else . u2 = x2 + u21x + u20, v2 = v21x + v20

8: r ← u10(u10 + u21) + u20, t← v21u10 + v20 + v10

9: if r 6= 0 then
10: s0 ← r−1t, w0 ← s2

0

11: u′1 ← u10 + u21 + w0, u′0 ← 1 + u2
21 + r + w0(u10 + u21)

12: v′1 ← s0(u
′
1 + u21) + v21, v′0 ← s0(u

′
0 + u20) + v20 + 1

13: [u′, v′]← [x2 + u′1x + u′0, v
′
1x + v′0] . (I, 2S, 6M)

14: else if t = 1 then
15: [u′, v′]← [x + u21 + u10, v21(u21 + u10) + v20] . (3M)
16: else if u21 6= 0 then
17: [u′, v′]← [x + u21 + u10, v21(u21 + u10) + v20] + 2[u1, v1]
18: else
19: [u′, v′]← [u1, v1 + 1] + 2[u2, v2]
20: end if
21: end if
22: else
23: z0 ← u10 + u20, z1 ← u11 + u21, z2 ← u11z1 + z0

24: w0 ← v10 + v20, w1 ← v11 + v21, w2 ← z1w1

25: r ← z0z2 + z2
1u10, s′1 ← z1w0 + z0w1, s′0 ← z2w0 + u10w2

26: if r 6= 0 then
27: if s′1 6= 0 then
28: w1 ← (rs′1)

−1, w2 ← rw1, w3 ← s′1
2
w1,

29: w4 ← rw2, w5 ← w2
4, s′′0 ← s′0w2

30: l′2 ← u21 + s′′0 , l′1 ← u21s
′′
0 + u20, l′0 ← u20s

′′
0

31: u′1 ← z1 + w5, u′0 ← s′′0
2

+ z2 + z1w5

32: w1 ← l′2 + u′1, w2 ← u′1w1 + u′0 + l′1, v′1 ← w2w3 + v21

33: w2 ← u′0w1 + l′0, v′0 ← w2w3 + v20 + 1
34: [u′, v′]← [x2 + u′1x + u′0, v

′
1x + v′0] . (I, 4S, 20M)

35: else
36: t← r−1, s0 ← s′0t, w0 ← s2

0, w1 ← s0(u11 + w0) + v21

37: [u′, v′]← [x + u11 + u21 + w0, u
′
0w1 + s0 + v20 + 1] . (I, 2S, 3M)

38: end if
39: else let gcd(u1, u2) = x + w0

40: w1 ← u11 + w0, w2 ← u21 + w0, z1 ← v11w1 + v10, z2 ← v21w2 + v20

41: if v11w0 + v10 = v21w0 + v20 ≡ z0 then
42: D0 ← 2[x + w0, z0], D1 ← [x + w1, z1] + D0, D2 ← [x + w2, z2] + D1

43: [u′, v′]← D2

44: else
45: [u′, v′]← [x + w1, z1] + [x + w2, z2]
46: end if
47: end if
48: end if

20



Algorithm 6 Octupling of a divisor [u, v]
Input: divisor [u, v].
Output: [u′, v′] = 8[u, v].
1: if deg(u) = 2 then . [u, v] = [x2 + u1x + u0, v1x + v0]
2: [u′, v′]← [x2 + u64

1 x + (u1 + u0 + 1)64, (v1 + u1)
64x + (u1 + u0 + v1 + v0 + 1)64]

3: else if deg(u) = 1 then . [u, v] = [x + u0, v0]
4: [u′, v′]← [x + (u0 + 1)64, (v0 + u2

0 + 1)64]
5: else . [u, v] = [1, 0]
6: [u′, v′]← [1, 0]
7: end if

This divisor is not reduced. We have (b24 +b4 +x5 +x3 +b)/a4(x) = a′4(x) = x2 +
x+(x16

P +x8
P ) and b′4(x) := b4(x)+1 mod a′4(x) = (x16

P +1)x+(y8
P +x8

P +x24
P +1).

We must consider functions and divisors. The divisor D4 is equivalent to the
divisor D′

4 = E − 2(∞) where E is effective. The divisor D′
4 has the Mumford

representation (a′4(x), b
′
4(x)) given above. Denote by E the ‘negative’ of E. The

function a4(x) has divisor 4(P ) + 4(P ) − 8(∞) while the function a′4(x) has
divisor E+E− 4(∞). The function y+ b4(x) has divisor 4(P )+E− 6(∞) while
the function y + b4(x) + 1 has divisor 4(P ) + E − 6(∞). It follows that

((y + b4(x))/a′4(x)) = 4(P )− E − 2(∞).

Hence we define f4 = (y + b4(x))/a′4(x) and we have D4 = D′
4 + (f4).

Now for the final step (thankfully!). We double the divisor D′
4 using Cantor’s

composition rule to obtain D′′
8 = 2E − 4(∞). Note that D8 = 2D4 = 2(D′

4 +
(f4)) = D′′

8 + (f2
4 ). One computes the Mumford representation of D′′

8 to be

(a′′8(x), b′′8(x)) = (a′4(x)
2, (x32

P + 1)x2 + (x32
P + x16

P )x+ (y16
P + x16

P + x48
P + 1))

and one can check that ((b′′8)2+b′′8 +f(x))/a′′8(x) = a′8(x) = (x+(x64
P +1)). Thus,

b′8(x) := b′′8(x) + 1 mod a′8(x) = y64
P + x128

P + 1. Define [8]P = (x64
P + 1, y64

P +
x128

P + 1). We obtain D′
8 = ([8]P ) − (∞) which confirms the octupling formula

for the point [8]P .
We now consider principal divisors. As before, y + b′′8(x) has divisor 2E +

([8]P )−5(∞) and (a′8(x)) = ([8]P )+([8]P )−2(∞). Hence we haveD′′
8 = D′

8+(f ′8)
where f ′8 = (y + b′′8(x))/a′8(x).

Putting it all together, we get

(f8) = 8(P )− ([8]P )− 7(∞)

where

f8 =
(
y + b4(x)
a′4(x)

)2
y + b′′8(x)
a′8(x)

.

21



C Efficient implementation of pairings in genus 2

C.1 Precomputation

We will precompute a table of powers of xP and yP (these are the initial input
values for the point P ) labelled as

x
(i)
P = πi(xP ) = x2i

P , and y
(i)
P = πi(yP ) = y2i

P

for i = 0, 1, . . . ,m− 1.
We focus on computing the term f8,P (ψ(Q)) (i.e. we do not bring Frobenius

actions into this computation).
Note that, at loop iteration i, the current value of the x-coordinate of [23i]P

can be written in terms of the precomputed initial values as

x
(6i)
P + γ1(i)

where γ1(i) is 1 when i is odd and 0 otherwise. Similarly, the current value of
the y-coordinate of [23i]P is

y
(6i)
P + γ1(i)x

(6i+1)
P + γ3(i)

where γ3(i) = 1 when i ≡ 1, 2 (mod 4) and 0 otherwise.
Obviously, in the above the exponents 6i in x

(6i)
P are taken modulo m. One

sees that they wrap around rapidly.

C.2 The α factor

Write α = (y + b4(x))2 ◦ ψ as a function of (xQ, yQ). We have (y + b4(x)) ◦ ψ =

y + s2x
2 + s1x+ s0 + (x+ w)3 + (x8

P + x4
P )(x+ w)2 + (x4

P )(x+ w) + y4
P

and squaring gives

y2+s22x
4+s21x

2+s20+x
6+x4w2+x2w4+w6+(x16

P +x8
P )(x4+w4)+(x8

P )(x2+w2)+y8
P .

Now, s22 = (w4 + 1)2 = w and s21 = (w2 + w4)2 = w4 + w + 1. Also, s20 =
s0 + w5 + w3.

Expressing as a 12-tuple we get α as follows: The first component is

y2 + x2 + x6 + 1 + (x16
P + x8

P )x4 + x8
Px

2 + y8
P

and the remaining components are

(x4 + x2, x4 + 1 + x8
P , 1 + 1, x2 + x2 + x16

P + x8
P , 1 + 1, 1, 0, 0, 0, 0, 0)

which can be slightly simplified.
Finally, we want to evaluate this on (xQ, yQ) and to replace the current value

for xP with the precomputed values. We obtain the 12-tuple with first component

y2
Q+x6

Q+(x(6i+4)
P +x(6i+3)

P )x4
Q+(x(6i+3)

P +1+γ1(i))x2
Q+y(6i+3)

P +γ1(i)x
(6i+4)
P +γ3(i)+1

and remaining components

(x4
Q + x2

Q, x
4
Q + x

(6i+3)
P + γ1(i) + 1, 0, x(6i+4)

P + x
(6i+3)
P , 0, 1, 0, 0, 0, 0, 0).

22



C.3 The β factor

We then do a similar thing for β = (y + b′′8) ◦ ψ. We have

β = y+s2x2+s1x+s0+(x32
P +1)(x+w)2+(x32

P +x16
P )(x+w)+(y16

P +x16
P +x48

P +1).

We expand s2 = 1 +w4 etc and write x16
P + x48

P = x16
P (1 + x32

P ). Hence, β can be
expressed as a 12-tuple with first component

y + (x32
P )x2 + (x32

P + x16
P )x+ y16

P + x16
P (1 + x32

P ) + 1

and remaining components

(x32
P + x16

P , x+ x32
P + 1, 0, x2 + x, 0, 1, 0, 0, 0, 0, 0).

Finally, we substitute (x, y) = (xQ, yQ) and insert the precomputed values
xP = x

(6i)
P + γ1(i) and yP = y

(6i)
P + γ1(i)x

(6i+1)
P + γ3(i). Using the formula

γ1(i)(1 + γ1(i)) = 0 gives the 12-tuple with first component

yQ + (x(6i+5)
P + γ1(i))x2

Q + (x(6i+5)
P + x

(6i+4)
P )xQ

+y(6i+4)
P + x

(6i+4)
P

(
x

(6i+5)
P + γ1(i) + 1

)
+ γ3(i) + 1.

and remaining components

(x(6i+5)
P + x

(6i+4)
P , xQ + x

(6i+5)
P + γ1(i) + 1, 0, x2

Q + xQ, 0, 1, 0, 0, 0, 0, 0).

It remains to multiply the α and β together efficiently. But first we consider
how to absorb the powers of 8 into the equations.

C.4 Absorbing powers of 8

The eta pairing ηT (P,Q) can be expressed as the product

m−1∏
i=0

f8,23iP (ψ(Q))2
3(m−1−i)

where f8,23iP = αβ as described previously. The goal of this section is to write
this as

m−1∏
i=0

fi

where each fi is an equation which has the 2-power Frobenius action already
brought into the equation. Using the formulae for α and β above we will compute
α23(m−1−i)

and β23(m−1−i)
.

23



To achieve this efficiently requires precomputation of the 2-power Frobenius
orbit of the point Q, so define for i = 0, 1, . . . ,m− 1

x
(i)
Q = x2i

Q and y
(i)
Q = y2i

Q .

The most delicate part of the argument is handling how w and s0 behave
under powering by 23(m−1−i). Recall that w8 = w + 1 from which we deduce

s80 = s0 + w2

s8
2

0 = s0 + 1

s8
3

0 = s0 + w2 + 1

Note that m is coprime to 12 and so is odd. We have w8 = w + 1 and so, since
m− 1− i ≡ i (mod 2) we have w23(m−1−i)

= w+ γ1(i). The same formula holds
when w is replaced by w2 or w4. For s0 note that if m ≡ 1 (mod 4) then

s2
3(m−1−i)

0 = s0 + γ1(i)w2 + γ3(i)

while if m ≡ 3 (mod 4) then

s2
3(m−1−i)

0 = s0 + γ1(i)w2 + γ3(i) + 1.

We denote by γ4(m, i) the value γ3(i) when m ≡ 1 (mod 4) and γ3(i) + 1 oth-
erwise.

C.5 The α factor

The basic shape of the term α will be similar to previously, except a few extra
terms due to equation (6). The process is simple, just bring the 2-power operation
into the formula and simplify the ‘exponents’.

The “constant” term will be

y
(3m−2−3i)
Q + (x(3m−2−3i)

Q )3 + (x(3i+1)
P + x

(3i)
P )x(3m−1−3i)

Q

+(x(3i)
P + γ1(i) + 1)x(3m−2−3i)

Q + y
(3i)
P + γ1(i)x

(3i+1)
P + γ3(i) + 1

plus when m − 1 − i is odd (i.e., when i is odd) another term must be added
(coming from the fact that (w2j)8 = w2j + 1 and the s0 term). We write this
other term as

γ1(i)
(
x

(3m−2−3i)
Q + 1 + γ1(i) + x

(3i+1)
P

)
+ γ4(m, i).

We can apply γ1(i)(1 + γ1(i)) = 0, cancel various terms and simplify the cubing
of x(3m−2−3i)

Q . The expression simplifies to

y
(3m−2−3i)
Q +(x(3i+1)

P +x(3i)
P )x(3m−1−3i)

Q +(x(3i)
P +1+x(3m−1−3i)

Q )x(3m−2−3i)
Q +y(3i)

P +γ5(m)

24



where γ5(m) = 1 if m ≡ 1 (mod 4) and 0 otherwise.
The remaining terms are (note that there is an additional γ1(i)w2 term due

to the s0 term):

(x(3m−1−3i)
Q +x(3m−2−3i)

Q )w+(x(3m−1−3i)
Q +x(3i)

P +1)w2+(x(3i+1)
P +x(3i)

P )w4+s0.

As usual, the indices inside round brackets should be reduced modulo m to the
range {0, 1, . . . ,m− 1}.

In terms of checking, this can be easily done in an implementation: in loop
iteration i then this value should be equal to α23(m−1−i)

.

C.6 The β factor

We now consider the β factor. One sees that the “constant term” of β23(m−1−i)

is

y
(3m−3−3i)
Q + (x(3i+2)

p + γ1(i))x
(3m−2−3i)
Q + (x(3i+2)

P + x
(3i+1)
P )x(3m−3−3i)

Q

+y(3i+1)
P + x

(3i+1)
P (1 + γ1(i) + x

(3i+2)
P ) + γ3(i) + 1

plus
γ1(i)

(
x

(3i+1)
P + x

(3m−2−3i)
Q + γ1(i) + 1

)
+ γ4(m, i).

This simplifies to

y
(3m−3−3i)
Q + x

(3i+2)
p x

(3m−2−3i)
Q + (x(3i+2)

P + x
(3i+1)
P )x(3m−3−3i)

Q

+y(3i+1)
P + x

(3i+1)
P (1 + x

(3i+2)
P ) + γ5(m).

The remaining terms are (again, including a γ1(i)w2 term)

(x(3i+2)
P +x(3i+1)

P )w+(x(3m−3−3i)
Q +x(3i+2)

P +1)w2+(x(3m−2−3i)
Q +x(3m−3−3i)

Q )w4+s0.

C.7 Unrolling the αβ multiplication

Let α = a + bw + cw2 + dw4 + s0 and β = e + fw + gw2 + hw4 + s0, where α
and β are the terms given in the sections C.5 and C.6. Then:

αβ = (a+ bw + cw2 + dw4 + s0)(e+ fw + gw2 + hw4 + s0)
= ae+ afw + agw2 + ahw4 + as0 +
bew + bfw2 + bgw3 + bhw5 + bws0 +
cew2 + cfw3 + cgw4 + ch(w5 + w3 + w2 + 1) + cw2s0 +
dew4 + dfw5 + dg(w5 + w3 + w2 + 1) + dh(w + 1) + dw4s0 +
es0 + fws0 + gw2s0 + hw4s0 + (s0 + w5 + w3)

25



(remember that w6 = w5 + w3 + w2 + 1 and s20 = s0 + w5 + w3). Using the
basis described earlier, this gives us;

αβ = (ae+ ch+ dg + dh) +
(af + be+ dh)w +
(ag + bf + ce+ ch+ dg)w2 +
(bg + cf + ch+ dg + 1)w3 +
(ah+ cg + de)w4 +
(bh+ ch+ df + dg + 1)w5 +
(a+ e+ 1)s0 +
(b+ f)ws0 +
(c+ g)w2s0 +
(d+ h)w4s0

We can eliminate some multiplications using Karatsuba in the following way.
Let dh = d · h, dg = d · g, ch = c · h, cg = c · g, ae = a · e, bf = b · f . Then we can
write:

αβ = (ae+ ch+ dg + dh)
((a+ b) · (f + e) + ae+ bf + dh)w +
((a+ c) · (g + e) + ae+ cg + bf + ch+ dg)w2 +
((b+ c) · (g + f) + bf + cg + ch+ dg + 1)w3 +
((a+ d) · (h+ e) + ae+ dh+ cg)w4 +
((b+ d) · (h+ f) + bf + dh+ ch+ dg + 1)w5 +
(a+ e+ 1)s0 +
(b+ f)ws0 +
(c+ g)w2s0 +
(d+ h)w4s0

�

26


