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Abstract

Logcrypt provides strong cryptographic assurances that
data stored by a logging facility before a system com-
promise cannot be modified after the compromise without
detection. We build on prior work by showing how log
creation can be separated from log verification, and de-
scribing several additional performance and convenience
features not previously considered.

1 Introduction

The popular application Tripwire keeps cryptographic fin-
gerprints of all files on a computer, allowing administra-
tors to detect when attackers compromise the system and
modify important system files. But Tripwire is unsuitable
for system logs and other files that change often, since the
fingerprints it creates apply to files in their entirety. Sev-
eral people have proposed cryptographic systems which
allow each new log entry to be fingerprinted, preventing
attackers from removing evidence of their attacks from
system logs.

In the systems described first by Futoransky and
Kargieman [8][7], then Bellare and Yee [3] and Schneier
and Kelsey [13], a small secret is established at log cre-
ation time and stored somewhere safe, such as on a slip
of paper locked in a safe or on a separate, trusted com-
puter. The secret stored on the computer is the head of a
hash chain, changing via a cryptographic one-way func-
tion every time an entry is written to the log. This secret
is used to compute a cryptographic message authenticaion
code (MAC) for the log each time an entry is added, and
optionally to encrypt the log as well.

If the system is compromised, the attacker has no way
to recover the secrets used to create the MACs or decryp-
tion keys for entries in the log which have already been
completed. He can delete the log entirely, but can’t mod-
ify it without detection. Later, the administrator can use
the original secret to recreate the hash chain and check

whether the logs are still intact. To keep an attacker from
interfering with this process, this should happen on a sep-
arate, secure machine.

MACs may also be sent to another machine as they’re
written; then they can serve as commitments to log en-
tries. A radiologist, for instance, could send MACs for
each MRI image she creates to an auditing agency. Later,
she could produce the images in court and the auditor
could vouch that the images she presented match the
MACs she sent out. But otherwise, the auditor would have
no way of knowing what the images were. The radiologist
is protected from accusations of fraud, and the patient’s
privacy is protected.

Logcrypt builds on the Schneier and Kelsey system,
adding several significant improvements. The most sig-
nificant is the ability to use public key cryptography with
Logcrypt. Using the symmetric techniques just described,
any entity who wishes to verify a log must possess the se-
cret used to create the MACs. This secret gives the entity
the ability to falsify log entries as well, which could be a
major drawback in many applications. Public key cryp-
tography allows signatures to be created with one key and
verified with a different one. Such signatures can be used
in place of MACs to allow verification of a log without
the ability to modify it, as well as allowing publication of
the initial key used to create the log, since only the public
key is needed for verification.

Other improvements we describe include a method of
securing multiple, concurrently maintained logs using a
single initial value, and a method of aggregating multiple
log entries to reduce latency and computational load.

2 Applications

Logcrypt can provide data integrity and secrecy in a
wide range of applications. The most obvious and sim-
ple application is in protecting system logs on Internet
servers. Such servers are always in danger of compro-
mise, and skilled attackers can generally make detection
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after the fact quite difficult[15] for system administrators.
Logcrypt makes detection much more feasible in systems
which can successfully record compromises as they hap-
pen by removing the secret used to record each entry as
soon as it is used. If the logging facility is properly config-
ured, attack attempts may be recorded before the attacker
even completes the system compromise. Entries made
concurrently with the intrusion can be logged within mil-
liseconds, giving attackers a very small window in which
to subvert the logging system.

The data integrity offered by Logcrypt is particularly
useful for allowing auditors outside a system to make sure
no tampering takes place within the system. For instance,
handguns used by police officers could be fitted with a
camera which takes a picture each time the gun is fired,
then stores the image with a Logcrypt MAC. Later, the
pictures can be used for forensic analysis of a crime scene.
Officers are protected against accusations of tampering,
since MACs cannot be forged later, even with access to
the internals of the device.

Logcrypt secrecy allows data to be stored ”write-only”.
For instance, photographers employed by news agencies
sometimes take pictures which are embarassing to the
government of the country in which they take them. This
can place photographers in significant personal danger.
A photographer using a Logcrypt-equipped camera, how-
ever, could establish a secret with the home office before
leaving for his assignment. Logcrypt then encrypts each
image a few seconds after it is recorded. Even the photog-
rapher himself will be unable to view the pictures he takes
until he transmits the data to the home office.

Audio recorders can make use of both the secrecy and
integrity provided by Logcrypt. A journalist taking voice
notes or recording interviews could benefit from secrecy
in the same way as the photographer in the last example.
Secrecy also protects audio entries from thieves and un-
scrupulous officials. Message integrity ensures that the
interview isn’t edited later without detection.

Publicly verifiable logs can be used for systems which
need to be publicly audited, such as financial books for
publicly held companies and voting systems in democratic
countries. When such logs are properly created and their
initial public keys sent to external auditors, not even their
creators can go back and change entries once they’re en-
tered. For example, an honest system administrator could
set up a log to record all financial bookkeeping entries
for a company, sending the initial public key to external
auditors before the first entry arrives. After each entry
is recorded, the private key used to create it is destroyed
automatically. Later, the CFO approaches the administra-
tor and demands that certain entries be replaced to hide
poor quarterly results. But the administrator has no power
to do so – the private keys for the existing entries have
been deleted, and the auditing agency will be able to de-

tect any missing or modified entries if it ever verifies the
log. Of course, the CFO can prevent future entries from
being recorded properly (or even reaching the system), but
existing entries are irrevocably tamper-evident.

3 Related Work

In 1995, Futoransky and Kargieman [8][7] proposed the
fundamental technique on which Logcrypt is built. In
1997, Bellare and Yee [3] published a more theoretical
paper based on a very similar technique. Their systems
closely relate to the simple system we present in section
5. Futoransky and Kargieman’s work led to MSyslog [11],
an open source implementation of the Unix syslog service
with integrity protection. Bellare and Yee mentioned the
idea of forward security using signatures, and in 1999 pro-
posed a forward secure signature scheme [1], but did not
further discuss its application to secure audit logs.

Schneier and Kelsey proposed another similar system
[13][14][10]. Their system uses the same fundamental
construct, but gives a precise protocol for its implementa-
tion in a distributed system, describing how messages are
sent to external machines upon log creation and closing.
Their system also closely relates to the simple system we
present in section 5, but neither system addresses public
verifiability, metronome entries, multiple concurrent logs,
or high load conditions.

Chong, Peng and Hartel discussed the possibilities of-
fered by tamper-resistant hardware in conjunction with
a system like Schneier and Kelsey’s in [5], and imple-
mented their system on an iButton.

Waters et al described how identity-based encryption
can be used to make audit logs efficiently searchable in
[16]. Keywords which relate to each log entry are used
to form IBE public keys with which the entry’s key is en-
crypted. Administrators allow searching and retrieval of
entries matching a given set of keywords by issuing clients
the corresponding IBE private keys.

4 Overview

Assuming Logcrypt’s design, construction and underlying
cryptographic primitives are sound, then if a system is se-
cure from tampering at a time � , and the computational
overhead from Logcrypt’s cryptographic operations takes�

milliseconds, then log entries created until time ���
�

will
have forward secrecy in the sense that tampering will be
detectable with overwhelming probability.

Three elements of Logcrypt form the foundation of its
security:

1. Logs begin in a known state which is recorded in a
secure external system.
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2. The security of an earlier state can be used to verify
the integrity of a later state, assuming the system is
secure in both states.

3. Once a secret is used to secure a log entry, it is erased
from memory as soon as possible.

Hash chains make it easy to fulfill these requirements.
In a hash chain, a secret � is hashed by a cryptographically
strong one-way function to produce the next links in the
chain, ����� ��� �	� , ��
�� �� ����� , etc. One-wayness means
it is assumed to be computationally infeasible to find �
given ��� , even though calculating ����� �� ��� is generally
quite efficient.

The simple system we propose is essentially a simplifi-
cation of the system described in [13]. We first define our
simple system, then give the public-key variant, and then
describe several other features relevant to real systems.

We have to be careful in describing the assurances our
system makes. Once an attacker gains complete con-
trol over a system, he can control virtually everything
that happens from that point. Consequently, our sys-
tem provides tamper-evidence by removing secrets from
the system as soon as possible: once a secret has been
destroyed, that secret can effectively protect information
through cryptography.

It is also worthwhile to consider the difference between
logs which merely reside on a system and logs which
are used to detect attempts at compromising the system.
In the latter case, the latency

�
can make the difference

between an attack being recorded in a tamper-evident
log and an attack in which all the evidence is removed.
Logcrypt can have values of

�
in low milliseconds on mod-

ern PCs, and may be low enough to prevent even auto-
mated, targeted attacks which anticipate use of Logcrypt
and attempt to prevent incriminating entries from being
recorded. For logs which don’t record breakin attempts,

�

primarily determines how quickly an attacker must decide
to manipulate an entry once it is received, which will gen-
erally be on a long, human timescale, as in the case of a
CFO who wishes to modify financial bookkeeping entries.

5 Simple System

Our fundamental system is illustrated in figure 1. An ini-
tial secret is used to start a hash chain in which each link is
used to derive keys for a single log entry by hashing with
an additional constant (0 for MAC keys, 1 for encryption
keys).

As soon as a key is used, it is erased from memory.
Likewise, the link in the hash chain used to create each
entry must be erased as soon as it has been used. Con-
sequently, only the bottom link in the hash chain and the

Figure 1: Simple forward security using Message Authen-
tication Codes.

Figure 2: Verifying entries in the simple scheme.

keys it generates exist in memory while the logging sys-
tem awaits a new entry.

Figure 3 illustrates how Logcrypt can provide confiden-
tiality as well as integrity. A second key is derived from
each link in the hash chain and used to encrypt the entry.
In a system without encryption, each entry ��� can briefly
be described as follows, where ����� ��� ��������� and ��� is the
initial secret and � denotes concatenation:

�������� "!$# �%���& � ���%�(' ��)�* �+�(' �,)�* �+-
In a system using encryption, each entry additionally

encrypts
��)�* � :

�������� .!$# �%���& � ���%�(' ��)�* �+�('0/ �%���21 � ���3�(' ��)�* �+�4-
More formally, the Logcrypt algorithm for MAC-based

integrity protection with optional encryption is as follows:
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Figure 3: Forward security plus secrecy.

Given
A secure cryptographic hash function

����������
�4�

A secure message authentication code
 .!$# � �	�	
��� �(' � ������� ����� �4�

A secure encryption function / � �	�	
��� �(' � ������� ����� �4�
Begin

Randomly generate or accept as input an initial
unique secret �

Store � securely (generally accomplished by send-
ing it to a separate machine)

Loop
Ensure that the next 3 steps completely destroy

the prior values:
Calculate the next link: � � �� �	�
Derive the MAC key: ��������� ���& � �	�
Derive the encryption key: ������� � ���21 � ���
Wait for the next log entry:

��)�*�
Let  .!$# � �  "!$# � ������� ' �,)�*� �
If encrypting,


 ��� � ��� ����� � � � / � ������� ' �,)�*� �
Output �� .!$# � '�
 ��� � ��� ����� � � -

Else
Output �� .!$# � ' ��)�* � -

Verifying a log later proceeds as follows:
Given

The initial secret �
The decryption function ! corresponding to /
If encryption was used, a list of log entries such that

�������� .!$#��2'�
 ��� � ��� ����� �+�%-
Otherwise, �������� "!$# � ' �,)�* �+-

Begin
Loop for � ��"#" �%$ &'$ :

Calculate the next link: � � �� �	�
Derive the MAC key: ��������� ���& � �	�

Derive the decryption key: (������ � ���21 � �	�
If encryption was used, set

��)�* � �
! � (������ '�
 ��� � ��� ����� �+�+�

Abort unless  .!$# ��� �  "!$# � ������� ' �,)�* �+�
(optionally output

��)�* � )
Indicate success.

6 Security Proofs

Theorem 6.1 Assume
�

is a random oracle and  .!$# is
a secure message authentication code. Assume the secrets
���2')��������� corresponding to every log entry � � have been
securely deleted at time �+*�'+,.- �

, and that no adversary
has information about the initial secret � . Then with over-
whelming probability, no adversary who gains access to
the system after ��* can modify any entry ��� without detec-
tion.

Proof: In the random oracle model [2],
�� � � provides

no information about � . Then knowledge of ���2' �0/
, provides no information about any ��1 '��324, since56� - & '���� � ��� ��������� . Assuming  .!$# � � is se-
cure, then knowledge of � � � �� "!$#��2' ��)�* � - where
 "!$# � �  .!$# � ���������2' �,)�* �+� provides no information
about ��������� . Since the system consists only of values
��� , ��������� , ��)�* � and  "!$# � , with overwhelming probabil-
ity no valid MAC for

��)�*�7�98� ��)�* � can be created without
���������;:

Theorem 6.2 Given the assumptions in the previous the-
orem, and additionally assuming that / is a semanti-
cally secure encryption function, then no adversary who
gains access to the system after �<* can distinguish any
/ � ���������4' ��)�* �+� from / � ���������4' ��)�*�7� � where � ��)�* ��� � � �,)�*�7� �
in any log entry � ������ .!$#��2'(/ � �=�������2' ��)�* �+�4-(' � 2>, .

Proof: If / is semantically secure, then by definition
any adversary without knowledge of ��������� cannot distin-
guish encryptions of equal length plaintexts or gain in-
formation about �=����� � from / � ���������2' ��)�* �+� . The previ-
ous theorem shows that the adversary cannot learn any
���2' � 2?, , so knowledge of all ���2' �@/ , also provides no
information about ���������;:

Note that these theorems do not address the situation
in which adversaries delete or truncate a log, effectively
making values of � � unavailable to the verifier. We ad-
dress this issue in section 11.

Proofs for the public key variants of Logcrypt are easy
to construct for secure signature schemes with protection
against existential forgery, and are sufficiently similar to
the ones presented here that we omit them.
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Figure 4: Forward security with public verifiability.

7 Public Key System

The primary disadvantage of the symmetric system just
described is that verification of a MAC requires the same
key that was used to create it. This means that anyone
with the ability to verify a particular log entry could cre-
ate arbitrary alternative entries which would also appear
correct.

Public key cryptography provides the ability to separate
signing from verification and encryption from decryption.
This section describes how the signing/verification sepa-
ration can be used to create logs which can be verified by
anyone. We omit discussion of creative applications of the
encryption/decryption separation, although several such
applications are possible, particularly when using identity
based encryption.

Bellare and Miner proposed a public key counterpart
to hash chains in [1] which could be used with our sim-
ple system. Here we propose a system which is less el-
egant, but which can be used with any signature scheme.
Then we present an optimization which works with any
identity-based signature scheme.

Figure 4 shows the public key variant of Logcrypt. A
signature replaces the MAC, and we add a special log
meta-entry listing the next n public keys which will be
used for signing. Then the next

�
�
1

entries can be de-
scribed as follows

����� �21 "#" � �
1 �4� :

Figure 5: Verifying entries in the public key scheme.

� ����� ��)�* �4'�� ��*���� � � ����� ����� ' �,)�* �+�4-
The last private key,

� � ����� ��� � , is used to sign the meta-
entry listing the next

�
public keys.

More formally, the Logcrypt algorithm for signature-
based integrity protection is as follows:

Given
A public-key signature function

� ��*���� � � ����� ����')���	�	� ��* ���
A value

�
describing how many public/private key-

pairs will be stored in memory.

Begin
Generate an initial random public/private keypair,� �6��� ��' � � ����� �����	�
Store

����� � securely (generally, by sending it to a
separate machine)

Loop
Create random keypairs

� � ����� ��' � � ����� ��� ����"�" � �6��� � ' � � ����� ��� � �4-
Create the meta-entry listing the public keys:

� � � � ��� ����� ��"�" �6��� � -
Generate the signature on the meta-entry:

� ��* � �	� �,*���� � � ����� ������')��� � � �
Securely delete

� � ����� � ��� . (
�6��� � may also be

removed).
Output ��� � � � ' � ��* �	-
Set

� � &
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Loop
Increment

�
If
� � � �

, exit the inner loop
Wait for the next log entry:

��)�* �
Calculate � �,* ���	� �,*���� � � ����� �����2' ��)�* �+�
Securely delete

� � ����� � ��� . (
����� � may also be

removed).
Output � ��)�* �2'�� �,* �+-

Set
����� � � �6��� �

Set
� � ����� ����� � � � ����� ��� �

Recall that the second principle listed as foundational
to Logcrypt’s security in section 4 is the ability to validate
a later log state using the state at an earlier entry. Hash
chains actually derive later secrets from earlier secrets,
even though all we need is validation. Consequently, it
suffices to sign the public key that will be used at a later
time using an earlier key, then throw away the signing
key to fulfill the requirement that secrets be erased after
they’re used.

Verification proceeds as follows:
Given

The initial public key
����� �

A public-key signature verification function� ��� ��� � � ����� '�� �,* ' � �	�	� � * �	� which returns true
iff � �,* is a signature for � ����� � * � made with�6���

A list of log entries such that � ����� ��)�* �2' � ��* � -
Begin

Set
� � &

Loop
Set � � � � � ��)�* �
Abort unless

� ��� ��� � � �6��� ��' � ��* ��')��� � � � re-
turns true

Extract public keys
����� ��"#" ������� from ��� � �

Set , � &
Loop

Increment
�

and ,
If , � � �

, exit the inner loop
Abort unless

� ��� ��� � � �6��� *�'�� �,* �2' ��)�* �+� re-
turns true

Set
����� � � �6��� �

Indicate success.

8 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is becoming increas-
ingly popular as an alternative to cryptosystems like RSA
because its structure allows shorter key lengths to provide
an equivalent degree of security. For example, an RSA
key of 1620 bits is estimated by [6] to have the same secu-
rity as an ECC key with only 256 bits, while more recent

estimates [12] specify even longer RSA key lengths.
This property can be particularly useful for Logcrypt,

since a new key must be generated and stored for each
log entry. When log entries are short, this overhead can
consume more than 50% of the total space required for
the log. Since the specification in the last section makes
no distinction between traditional and ECC cryptosys-
tems, ECC-based signature algorithms can be used with-
out modification to the algorithm. However, ECC is com-
monly used for identity-based encryption, which has fur-
ther advantages in storage space which we consider in the
next section.

9 Identity Based Signatures

Identity-based Signatures (IBS) allow public keys to be
derived from arbitary bit strings and the public key of a
Private Key Generator (PKG). Private keys can only be
extracted from that string and the PKG private key. The
construction given by Cha and Cheon [4] uses elliptic
curves as the underlying mathematical construction for an
IBS sceme, allowing Logcrypt to retain the advantage of
short ECC keys while eliminating the need to list the in-
dividual public keys to be used for upcoming log entries.
That is, public keys 1 through n can simply be derived
from the strings ”1”, ”2”, etc., while the corresponding
private keys are created with a function called /9� �<� � 
 � ,
cached in memory and deleted after use. A new private
key generator (PKG) key is generated for each key block,
since it is used to generate all the private keys, and must
therefore be erased as soon as all n private keys have been
created. The

�
�
1

entries corresponding to a PKG key can
be described as follows, just as before

����� �21 "�" � �
1 �4� :

������� ��)�* �4'�� �,*���� � � ����� ����� ' ��)�* �+�4-('
� � ���� � � ����� ������� /9� �<� � 
 � �����
	 � � ����� ��� ' � �

The last private key,
� � ����� ��� � , is then used to sign the

meta-entry listing just the next PKG public key.
Formally, here is the Logcrypt algorithm for IBS in-

tegrity protection:
Given

An IBS function �� � �,*���� � � ����� ����' � �	�	� � * �	�
A private key extraction function

� � ����� ��� �
/9� �<� � 
 � �����
	 � � ����� ��� ' � �

Begin
Generate an initial random PKG keypair,

� ���
	 ����� ' ���
	 � � ����� ����-
Store

���
	 �6���
securely (generally, by sending it

to a separate machine)
Loop

Calculate private keys for the strings
1 "#" � :� � ����� ������� /9� �<� � 
 � �����
	 � � ����� ����' � �
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Securely delete
���
	 � � ����� ��� .

Set
� � &

Loop
Increment

�
If
� � � �

, exit the inner loop
Wait for the next log entry:

��)�* �
Calculate � �,* ��� �� � �,*���� � � ����� �����2' ��)�* � �
Securely delete

� � ����� � ��� . (
����� � may also be

removed)
Output � ��)�* �2'�� �,* �+-

Generate a new PKG keypair,
� ���
	 �6��� ' ��� 	 � � ����� ���	-

Generate the meta-entry listing the new PKG
key: ��� � � ��� ���
	 ����� -

Generate the signature on the meta-entry:
� �,* � � � � � �,*���� � � ����� ��� � ')��� � � �

Securely delete
� � ����� ��� � .

Output ��� � � � ' � �,*� -
Since the public keys are always simply the strings 1

through n, they don’t need to be stored in the meta entry.
Verification proceeds as follows:

Given
The initial PKG public key

��� 	 �����
An IBS verification function

� � � ��� ��� � �����
	 �6��� ' ��! ' � �,* ')���	�	� ��* ���
which returns true iff � ��* is a valid signature
for ���	�	� � * � using the private key derived from���
	 �����

and the string ��!
A list of log entries such that � ����� ��)�* �2' � ��* � -

Begin
Set

� � &
Loop

Set , � &
Loop

Increment
�

and ,
If , � � �

, exit the inner loop
Abort unless� ��� ��� � �����
	 ����� '+, '�� �,* �2' ��)�* �+�
returns true

Set � � � � � ��)�* �
Abort unless� ��� ��� � ����� 	 ����� ' � ' � �,* �2')��� � � �
returns true

Extract the new
���
	 �6���

from ��� � �
Indicate success.

10 Cumulative Verification

In the construction given in [10], verification values for
log entries validate the current log entry as well as the
verification value for the previous entry. This is an advan-
tage in that verifying an entry ensures that all prior entries

Figure 6: Forward security with public verifiability using
Identity Based Signatures.

Figure 7: Verifying entries in the IBS scheme.
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were correct; the last value in such a log can be sent to an
external auditor as a commitment to the entire log up until
that point. In fact, the last value is the only value which
needs to be stored – rather than storing each entry with
its signature or MAC, log entries could be kept in one file
and another could store only the most recent verification
value.

This feature can trivially be added to the simple
Logcrypt algorithm by adding the MAC of the previous
entry as a third parameter to the  .!$# � � function, and
to the other two algorithms by including the cumulative
hash of all prior entries with the current entry for the sign-
ing process. However, we chose to omit this feature in
our specification because it can hamper forensic analysis
in some situations.

Consider an attacker who deletes some number of log
entries (not including a public key meta-entry) from the
middle of a Logcrypt log which uses public key or identity
based signatures and stores the signature for each entry.
The verification process will detect that the log has been
modified in either case. However, if cumulative hashes
are being maintained, intact entries after the deletion can-
not be verified since the cumulative hash of prior entries
cannot be reconstructed without knowledge of the missing
entries. Without cumulative hashing, the later entries can
still be checked for validity. Of course, if a meta-entry is
lost, then there will be no public key available for verify-
ing the later entries.

Logcrypt logs using MACs are not so heavily impacted
by this drawback, and users may find it worthwhile to use
cumulative MACs by default. Entries after a deleted block
can still be checked once the number of deleted entries are
known as long as the MAC for each entry is kept (rather
than storing only the last one), except for the entry im-
mediately after the deleted block. That entry cannot be
verified in a system using cumulative MACs since the pre-
vious MAC is unknown and thus prevents calculation of
the current MAC.

Of course, an attacker aware of how Logcrypt works
will tend to remove a Logcrypt log entirely, giving the an-
alyst no information about the log, or leave it unchanged
hoping that administrators won’t notice any incriminat-
ing entries. But especially in situations where verifica-
tion values are kept separately from a traditional-looking
log, attackers may be unaware that Logcrypt is in use, and
may remove only a few incriminating entries from the log.
In such cases, forensic analysis can benefit from the finer
granularity offered by not using cumulative verification.

11 Detecting Truncation

Consider what happens if an attacker chooses to simply
delete or truncate a Logcrypt log rather than attempting to

modify existing entries without detection. Of course, no
new valid entries can be added once a log has been trun-
cated, since intermediate secrets will have been lost, and
this will be detected during verification. But in the case of
a log which only records breakin attempts, for example, a
lack of new entries suggests that the system is still secure.

Logcrypt cannot prevent an attacker in control of a sys-
tem from deleting and truncating files. But it can be used
to let an administrator know when the log is no longer
functioning normally by using what we call metronome
entries. Metronome entries are simply special log entries
which are made at regular intervals to indicate that the log
is still accepting new data. If an attacker truncates the
log just before an incriminating entry was made, he also
truncates any metronome entries entered after that entry,
and must prevent any future entries from being recorded,
since they will fail verification. The verification process
can be augmented to ensure that all metronome entries are
present at the time of verification. If any are missing, then
the last valid entry indicates the earliest time at which the
log could have been truncated.

A related idea was described by Schneier and
Kelsey[10]. They describe how a log can be securely
closed by creating a special final entry and storing the fi-
nal MAC off-site. Such a technique would be easy to use
with Logcrypt in situations where this is needed.

12 Multiple Logs

Perhaps the most inconvenient part of Logcrypt is the re-
quirement that initial values be securely stored at log cre-
ation time. Most systems maintain logs for multiple ser-
vices concurrently, and regularly prune out older entries
by rotating log files. Unless initial values can be automat-
ically, securely shipped to an external machine via a net-
work, this quickly becomes an unwieldy task for system
administrators.

To simplify this key distribution issue, we create a tree-
like structure of logs in which parent nodes store the ini-
tial secrets for their children. New children can be added
at any time, and only the initial value created for the root
node needs to be kept securely off the machine.

Figure 8 shows a simple case of a single encrypted mas-
ter log which maintains the secrets for other system logs.
Since the first child uses MACs instead of signatures and
therefore has a secret initial value, the parent must encrypt
all its entries. However, if all the children of a node use
public key or identity based signatures, all the initial val-
ues will be public keys and need not be encrypted. Such a
subtree can then be verified by anyone who can verify the
integrity of the initial value of the root node.

Storing multiple logs in a tree structure has other ad-
vantages as well. If all system logs were merged into a
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Figure 8: Maintaing concurrent logs with a single initial
value.

single log instead of being kept separately and maintained
in a tree, then the entire log will need to be traversed in
order to check the validity of the last entry. With a tree
structure, however, any individual log can be verified by
starting at the root node and iteratively verifying the en-
tries corresponding to the nodes which lead to the log in
question.

13 High Volume Logging

One way an attacker might try to compromise Logcrypt
is to generate a large number of spurious events to be
logged by the system or otherwise bog down the system’s
logging facility. If the attacker can generate the events
more quickly than the system can process them, the sys-
tem could end up with a backlog of entries all vulnerable
to attack since they haven’t yet been signed.

Recall that Logcrypt only offers strong protection for
events which occur before time � �

�
, where � is the time

of attack and
�

is the time required for Logcrypt to use
and then destroy the secret corresponding to a particu-
lar entry. Increasing the demands on the system allows
the attacker to increase the overhead

�
, which defines the

window in which he can compromise entries which have
already been received. To some extent, this cannot be
avoided, particularly if we assume an attacker that can
thoroughly overwhelm the system.

However, we can improve the system’s resilience to
such attacks as well as improve its overall capacity
tremendously by observing that some of the cryptographic
operations which Logcrypt uses are much more efficient
than others. In particular, public key and identity based
signature operations have a relatively high overhead that
varies very little with the size of the log entry being
signed. This is because signatures are performed on a
constant-sized hash of the input, so that the only extra
cost to lengthening the input comes from the hash func-
tion. For example, a 1.4Ghz Pentium workstation running
OpenSSL requires 56 ms to perform an RSA signature us-
ing a 2048-bit key, whereas it can process in excess of 100

bytes of input to the SHA-1 hash per microsecond.
Consequently, if multiple new log entries arrive while

the present entry is being processed, it makes sense to cre-
ate a single signature for all of them combined rather than
creating one signature for each entry, decreasing the av-
erage

�
across all the entries. Of course, this requires

changes to the output format so that the entries can still
be identified as distinct, and the verification process will
have to consider the entries as a single unit.

This creates new possibilities for attackers which have
the ability to overwhelm even the hash function, since
they will be able to create increasing numbers of entries
which the system will try to process before creating any
signatures at all, whereas a system which processes en-
tries one at a time would still create signatures on individ-
ual entries even as the queue filled up. Consequently, an
upper limit could be set on the number of entries which
may be aggregated into a single signature, providing an
upper limit on latency for the head entry in the queue
while still allowing much higher performance in high-load
situations. However, in many systems the hash function
will have higher throughput than the network and disk
subsystems, so that external limitations will be reached
before hash function performance even becomes an issue.

Also note that in the public key system, computing pub-
lic/private keypairs can be CPU-intensive. Consequently,
systems which have plenty of memory and regular in-
tervals with low system load may find it beneficial to
compute keypairs during these available intervals, storing
them until needed. This is similar to increasing the pa-
rameter

�
which determines how many keys are listed per

meta-entry, and comes at no security penalty as long as
keys are still held securely until used and then immedi-
ately destroyed.

14 Implementation Considerations

Gutmann describes in [9] how data written to magnetic
storage or even just stored in RAM may later be recover-
able by a determined adversary. Some of the techniques
he describes involve exotic equipment and processes de-
structive to hardware, but others can be performed entirely
in software, such as scanning swap space for memory
pages containing cryptographic keys. Fortunately, Gut-
mann also describes techniques for mitigating at least the
software-based attacks, such as locking pages in memory
and regularly inverting bits of stored keys.

Logcrypt implementors should take the recommenda-
tions in [9] into account along with the threat model of
the target system in order to ensure that deleted secrets
are truly unavailable to attackers. The implementation we
provide uses the � ��) 
�� � � system call to ensure that mem-
ory pages containing secret values are not paged to disk,
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and the
� ) ���

�
� � � keyword in C to prevent the compiler

from using optimizations which might make unexpected
copies or relocations of secret values.

In particular, systems which precompute keypairs as
described in the last section must be sensitive to the is-
sues raised by Gutmann, since such systems will need to
store relatively large amounts of data for longer periods
than other Logcrypt implementations.

15 Conclusion and Future Work

In this paper, we showed several innovative ways of
achieving forward security for logs. We showed how to
allow forward secrecy as well as tamper evidence in the
simple system, as has been done in previous work, and
then added a public key variant allowing verifiability with-
out the ability to forge entries. We showed how multiple
logs can be maintained concurrently and verified using a
single initial value. We suggested optimizations which
resist flooding attacks and dramatically improve perfor-
mance under high load conditions. We described how logs
can be made resistant to truncation, and closed to further
additions. These features all address significant needs in
systems administration as well as other disciplines such
as finance and medicine which deal with tamper-sensitive
data.

Future work may address further improvements to the
public key variant of Logcrypt. Hierarchical IBS systems
and meta-entries storing multiple PKG public keys can be
used to further improve performance while keeping over-
head low. Bellare and Miner’s contribution [1] also pro-
vides an obvious avenue for space-efficient public verifi-
cation.

An initial implementation of our simple and public
key systems is available under the GPL at [removed for
anonymity]. It implements our simple system as well as
the public key variant using RSA signatures. Future work
will include performance refinements and increased con-
venience features in the form of both library functions and
sample applications.
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