
Logcrypt: Forward Security and Public Verification for Secure
Audit Logs

Jason E. Holt

Internet Security Research Lab
Brigham Young University

Email: isrl@lunkwill.org

Abstract

Logcrypt provides strong cryptographic assurances
that data stored by a logging facility before a system
compromise cannot be modified after the compromise
without detection. We build on prior work by showing
how log creation can be separated from log verifica-
tion, and describing several additional performance
and convenience features not previously considered.

Abstract

1 Introduction

The popular application Tripwire keeps cryptographic
fingerprints of all files on a computer, allowing ad-
ministrators to detect when attackers compromise the
system and modify important system files. But Trip-
wire is unsuitable for system logs and other files that
change often, since the fingerprints it creates apply to
files in their entirety. Several people have proposed
cryptographic systems which allow each new log entry
to be fingerprinted, preventing attackers from remov-
ing evidence of their attacks from system logs.

In the systems described first by Futoransky
and Kargieman [8][7], then Bellare and Yee [3] and
Schneier and Kelsey [12], a small secret is established
at log creation time and stored somewhere safe, such
as on a slip of paper locked in a safe or on a sep-
arate, trusted computer. The secret stored on the
computer is the head of a hash chain, changing via a
cryptographic one-way function every time an entry
is written to the log. This secret is used to compute a
cryptographic message authenticaion code (MAC) for
the log each time an entry is added, and optionally
to encrypt the log as well.

If the system is compromised, the attacker has no
way to recover the secrets used to create the MACs
or decryption keys for entries in the log which have
already been completed. He can delete the log en-
tirely, but can’t modify it without detection. Later,
the administrator can use the original secret to recre-
ate the hash chain and check whether the logs are

This research was supported by funding from DARPA through
SSC-SD grant number N66001-01-1-8908, the National Science
Foundation under grant no. CCR-0325951 and prime coop-
erative agreement no. IIS-0331707, and The Regents of the
University of California.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Fourth Australasian Information Security
Workshop (AISW-NetSec 2006), Hobart, Australia. Confer-
ences in Research and Practice in Information Technology (CR-
PIT), Vol. 54. Rajkumar Buyya, Tianchi Ma, Rei Safavi-Naini,
Chris Steketee and Willy Susilo, Eds. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

still intact. To keep an attacker from interfering with
this process, this should happen on a separate, secure
machine.

MACs may also be sent to another machine as
they’re written; then they can serve as commitments
to log entries. A radiologist, for instance, could send
MACs for each MRI image she creates to an audit-
ing agency. Later, she could produce the images in
court and the auditor could vouch that the images
she presented match the MACs she sent out. But
otherwise, the auditor would have no way of knowing
what the images were. The radiologist is protected
from accusations of fraud, and the patient’s privacy
is protected.

Logcrypt builds on the Schneier and Kelsey sys-
tem, adding several significant improvements. The
most significant is the ability to use public key cryp-
tography with Logcrypt. Using the symmetric tech-
niques just described, any entity who wishes to verify
a log must possess the secret used to create the MACs.
This secret gives the entity the ability to falsify log
entries as well, which could be a major drawback in
many applications. Public key cryptography allows
signatures to be created with one key and verified
with a different one. Such signatures can be used in
place of MACs to allow verification of a log without
the ability to modify it, as well as allowing publica-
tion of the initial key used to create the log, since only
the public key is needed for verification.

Other improvements we describe include a method
of securing multiple, concurrently maintained logs us-
ing a single initial value, and a method of aggregating
multiple log entries to reduce latency and computa-
tional load.

2 Applications

Logcrypt can provide data integrity and secrecy in
a wide range of applications. The most obvious and
simple application is in protecting system logs on In-
ternet servers. Such servers are always in danger of
compromise, and skilled attackers can generally make
detection after the fact quite difficult[14] for system
administrators. Logcrypt makes detection much more
feasible in systems which can successfully record com-
promises as they happen by removing the secret used
to record each entry as soon as it is used. If the log-
ging facility is properly configured, attack attempts
may be recorded before the attacker even completes
the system compromise. Entries made concurrently
with the intrusion can be logged within milliseconds,
giving attackers a very small window in which to sub-
vert the logging system.

The data integrity offered by Logcrypt is particu-
larly useful for allowing auditors outside a system to
make sure no tampering takes place within the sys-
tem. For instance, handguns used by police officers
could be fitted with a camera which takes a picture

each time the gun is fired, then stores the image with
a Logcrypt MAC. Later, the pictures can be used for
forensic analysis of a crime scene. Officers are pro-
tected against accusations of tampering, since MACs
cannot be forged later, even with access to the inter-
nals of the device.

Logcrypt secrecy allows data to be stored “write-
only”. For instance, photographers employed by news
agencies sometimes take pictures which are embarass-
ing to the government of the country in which they
take them. This can place photographers in sig-
nificant personal danger. A photographer using a
Logcrypt-equipped camera, however, could establish
a secret with the home office before leaving for his as-
signment. Logcrypt then encrypts each image a few
seconds after it is recorded. Even the photographer
himself will be unable to view the pictures he takes
until he transmits the data to the home office, since
the symmetric key used to encrypt each image will be
deleted immediately after use, and Logcrypt’s tamper
evidence will reveal any surreptitiuos modifications.

Audio recorders can make use of both the secrecy
and integrity provided by Logcrypt. A journalist tak-
ing voice notes or recording interviews could benefit
from secrecy in the same way as the photographer in
the last example. Secrecy also protects audio entries
from thieves and unscrupulous officials. Message in-
tegrity ensures that the interview isn’t edited later
without detection.

Publicly verifiable logs can be used for systems
which need to be publicly audited, such as financial
books for publicly held companies and voting systems
in democratic countries. When such logs are prop-
erly created and their initial public keys sent to ex-
ternal auditors, not even their creators can go back
and change entries once they’re entered. For exam-
ple, an honest system administrator could set up a
log to record all financial bookkeeping entries for a
company, sending the initial public key to external
auditors before the first entry arrives. After each en-
try is recorded, the private key used to create it is
destroyed automatically. Later, the CFO approaches
the administrator and demands that certain entries
be replaced to hide poor quarterly results. But the
administrator has no power to do so – the private
keys for the existing entries have been deleted, and
the auditing agency will be able to detect any miss-
ing or modified entries if it ever verifies the log. Of
course, the CFO can prevent future entries from being
recorded properly (or even reaching the system), but
existing entries are irrevocably tamper-evident.

3 Related Work

In 1995, Futoransky and Kargieman [8][7] proposed
the fundamental technique on which Logcrypt is built.
In 1997, Bellare and Yee [3] published a more theo-
retical paper based on a very similar technique. Their
systems closely relate to the simple system we present
in section 5. Futoransky and Kargieman’s work led to
MSyslog [10], an open source implementation of the
Unix syslog service with integrity protection. Bellare
and Yee mentioned the idea of forward security using
signatures, and in 1999 proposed a forward secure
public key signature scheme [2], but did not further
discuss its application to secure audit logs. By con-
trast, our system can use any signature scheme in an
easy to understand construction.

Schneier and Kelsey proposed another similar sys-
tem [12][13][9]. Their system uses the same funda-
mental construct, but gives a precise protocol for its
implementation in a distributed system, describing
how messages are sent to external machines upon log
creation and closing. Their system also closely relates

to the simple system we present in section 5, but nei-
ther system addresses public verifiability, metronome
entries, multiple concurrent logs, or high load condi-
tions.

Chong, Peng and Hartel discussed the possibilities
offered by tamper-resistant hardware in conjunction
with a system like Schneier and Kelsey’s in [5], and
implemented their system on an iButton.

Waters et al described how identity-based encryp-
tion can be used to make audit logs efficiently search-
able in [15]. Keywords which relate to each log entry
are used to form Identity Based Encryption (IBE)
public keys with which the entry’s key is encrypted.
Administrators allow searching and retrieval of entries
matching a given set of keywords by issuing clients the
corresponding IBE private keys.

4 Overview

Assuming Logcrypt’s design, construction and under-
lying cryptographic primitives are sound, then if a
system is secure from tampering at a time t, and
the computational overhead from Logcrypt’s crypto-
graphic operations takes l milliseconds, then log en-
tries created until time t− l will have forward secrecy
in the sense that tampering will be detectable with
overwhelming probability.

Three elements of Logcrypt form the foundation
of its security:

1. Logs begin in a known state which is recorded in
a secure external system.

2. The security of an earlier state can be used to
verify the integrity of a later state, assuming the
system is secure in both states.

3. Once a secret is used to secure a log entry, it is
erased from memory as soon as possible.

Hash chains make it easy to fulfill these require-
ments. In a hash chain, a secret s is hashed by a
cryptographically strong one-way function to produce
the next links in the chain, s1 = h(s), s2 = h(s1),
etc. One-wayness means it is assumed to be compu-
tationally infeasible to find s given s1, even though
calculating s1 = h(s) is generally quite efficient.

The simple system we propose is essentially a sim-
plification of the system described in [12]. We first
define our simple system, then give the public-key
variant, and then describe several other features rel-
evant to real systems.

We have to be careful in describing the assurances
our system makes. Once an attacker gains complete
control over a system, he can control virtually every-
thing that happens from that point. Consequently,
our system provides tamper-evidence by removing se-
crets from the system as soon as possible: once a se-
cret has been destroyed, that secret can effectively
protect information through cryptography.

It is also worthwhile to consider the difference be-
tween logs which merely reside on a system and logs
which are used to detect attempts at compromising
the system. In the latter case, the latency l can make
the difference between an attack being recorded in
a tamper-evident log and an attack in which all the
evidence is removed. Logcrypt can have values of l
in low milliseconds on modern PCs, and may be low
enough to prevent even automated, targeted attacks
which anticipate use of Logcrypt and attempt to pre-
vent incriminating entries from being recorded. For
logs which don’t record breakin attempts, l primar-
ily determines how quickly an attacker must decide
to manipulate an entry once it is received, which will
generally be on a long, human timescale, as in the

Figure 1: Simple forward security using Message Au-
thentication Codes.

Figure 2: Verifying entries in the simple scheme.

case of a CFO who wishes to modify financial book-
keeping entries.

5 Simple System

Our fundamental system is illustrated in figure 1. An
initial secret is used to start a hash chain in which
each link is used to derive keys for a single log entry
by hashing the constant-sized links with an additional
constant (0 for MAC keys, 1 for encryption keys).

As soon as a key is used, it is erased from memory.
Likewise, the link in the hash chain used to create
each entry must be erased as soon as it has been used.
Consequently, only the bottom link in the hash chain
and the keys it generates exist in memory while the
logging system awaits a new entry.

Figure 3 illustrates how Logcrypt can provide con-
fidentiality as well as integrity. A second key is de-
rived from each link in the hash chain and used to en-
crypt the entry. In a system without encryption, each
entry Li can briefly be described as follows, where
si = h(si−1) and s0 is the initial secret and | denotes
concatenation:

Li = 〈MAC(h(0|si), logi), logi〉
In a system using encryption, each entry addition-

ally encrypts logi:

Li = 〈MAC(h(0|si), logi), E(h(1|si), logi)〉

Figure 3: Forward security plus secrecy.

More formally, the Logcrypt algorithm for MAC-
based integrity protection with optional encryption is
as follows:

Given
A secure cryptographic hash function h(input)
A secure message authentication code

MAC(secret, plaintext)
A secure encryption function

E(secret, plaintext)
Begin

Randomly generate or accept as input an initial
unique secret s

Store s securely (generally accomplished by
sending it to a separate machine)

Loop
Ensure that the next 3 steps completely de-

stroy the prior values:
Calculate the next link: s = h(s)
Derive the MAC key: mkey = h(0|s)
Derive the encryption key: ekey = h(1|s)
Wait for the next log entry: logn
Let MACn = MAC(mkey, logn)
If encrypting,

ciphertextn = E(ekey, logn)
Output 〈MACn, ciphertextn〉

Else
Output 〈MACn, logn〉

Verifying a log later proceeds as follows:
Given

The initial secret s
The decryption function D corresponding to E
If encryption was used, a list of log entries such

that Li = 〈MACi, ciphertexti〉
Otherwise, Li = 〈MACi, logi〉

Begin
Loop for L1..L|L|:

Calculate the next link: s = h(s)
Derive the MAC key: mkey = h(0|s)
Derive the decryption key: dkey = h(1|s)
If encryption was used, set logi =

D(dkey, ciphertexti)
Abort unless MACi == MAC(mkey, logi)
(optionally output logi)

Indicate success.

6 Public Key Systems

The primary disadvantage of the symmetric system
just described is that verification of a MAC requires
the same key that was used to create it. This means
that anyone with the ability to verify a particular log

Figure 4: Forward security with public verifiability.

entry could create arbitrary alternative entries which
would also appear correct.

Public key cryptography provides the ability to
separate signing from verification and encryption
from decryption. This section describes how the sign-
ing/verification separation can be used to create logs
which can be verified by anyone. We omit discussion
of creative applications of the encryption/decryption
separation, although several such applications are
possible, particularly when using identity based en-
cryption.

Bellare and Miner proposed a public key counter-
part to hash chains in [2] which could be used with
our simple system. Here we propose a system which
is perhaps less elegant, but which can be used with
any signature scheme, avoiding the uncertainty asso-
ciated with less established public key constructions.
Then we present an optimization which works with
any identity-based signature scheme.

Figure 4 shows the public key variant of Logcrypt.
A signature replaces the MAC, and we add a special
log meta-entry listing the next n public keys which
will be used for signing. Then the next n− 1 entries
can be described as follows (i ∈ (1..n− 1)):

Li = 〈logi, Sign(privatei, logi)〉
The last private key, privaten, is used to sign the

meta-entry listing the next n public keys.
More formally, the Logcrypt algorithm for

signature-based integrity protection is as follows:
Given

A public-key signature function
Sign(private,message)

A value n describing how many public/private
keypairs will be stored in memory.

Begin
Generate an initial random public/private key-

pair, (pub0, private0)
Store pub0 securely (generally, by sending it to

a separate machine)
Loop

Figure 5: Verifying entries in the public key scheme.

Create random keypairs
〈(pub1, private1)..(pubn, privaten)〉

Create the meta-entry listing the public
keys: meta = 〈pub1..pubn〉

Generate the signature on the meta-entry:
sig0 = Sign(private0,meta)

Securely delete private0. (pub0 may also be
removed).

Output 〈meta, sig0〉
Set i = 0
Loop

Increment i
If i == n, exit the inner loop
Wait for the next log entry: logi
Calculate sigi = Sign(privatei, logi)
Securely delete privatei. (pubi may also

be removed).
Output 〈logi, sigi〉

Set pub0 = pubn
Set private0 = privaten

Recall that the second principle listed as founda-
tional to Logcrypt’s security in section 4 is the ability
to validate a later log state using the state at an ear-
lier entry. Hash chains actually derive later secrets
from earlier secrets, even though all we need is val-
idation. Consequently, it suffices to sign the public
key that will be used at a later time using an ear-
lier key, then throw away the signing key to fulfill the
requirement that secrets be erased after they’re used.

Verification proceeds as follows:
Given

The initial public key pub0
A public-key signature verification function

V erify(pub, sig,message) which returns
true iff sig is a signature for message made
with pub

A list of log entries such that Li = 〈logi, sigi〉
Begin

Set i = 0
Loop

Set meta = logi
Abort unless V erify(pub0, sig0,meta) re-

turns true

Extract public keys pub1..pubn from meta
Set j = 0
Loop

Increment i and j
If j == n, exit the inner loop
Abort unless V erify(pubj , sigi, logi) re-

turns true

Set pub0 = pubn
Indicate success.

6.1 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is becoming in-
creasingly popular as an alternative to cryptosystems
like RSA because its structure allows shorter key
lengths to provide an equivalent degree of security.
For example, an RSA key of 1620 bits is estimated
by [6] to have the same security as an ECC key with
only 256 bits, while more recent estimates [11] specify
even longer RSA key lengths.

This property can be particularly useful for
Logcrypt, since a new key must be generated and
stored for each log entry. When log entries are short,
this overhead can consume more than 50% of the to-
tal space required for the log. Since the specifica-
tion in the last section makes no distinction between
traditional and ECC cryptosystems, ECC-based sig-
nature algorithms can be used without modification
to the algorithm. However, ECC is commonly used
for identity-based encryption, which has further ad-
vantages in storage space which we consider in the
next section. Note that while ECC provides favorable
key size characteristics, it is much less supported by
libraries such as OpenSSL than its traditional pub-
lic key counterparts, and performance results vary
greatly between implementations. Thus, we exclude
ECC implementations from our performance results
in section 10.

6.2 Identity Based Signatures

Identity-based Signatures (IBS) allow public keys to
be derived from arbitary bit strings and the public key
of a Private Key Generator (PKG). Private keys can
only be extracted from that string and the PKG pri-
vate key. The construction given by Cha and Cheon
[4] uses elliptic curves as the underlying mathemati-
cal construction for an IBS sceme, allowing Logcrypt
to retain the advantage of short ECC keys while elim-
inating the need to list the individual public keys to
be used for upcoming log entries. That is, public keys
1 through n can simply be derived from the strings
”1”, ”2”, etc., while the corresponding private keys
are created with a function called Extract, cached
in memory and deleted after use. A new private key
generator (PKG) key is generated for each key block,
since it is used to generate all the private keys, and
must therefore be erased as soon as all n private keys
have been created. The n−1 entries corresponding to
a PKG key can be described as follows, just as before
(i ∈ (1..n− 1)):

Li = 〈logi, Sign(privatei, logi)〉,
where privatei = Extract(PKGprivate, i)

The last private key, privaten, is then used to sign
the meta-entry listing just the next PKG public key.

Formally, here is the Logcrypt algorithm for IBS
integrity protection:

Given
An IBS function IBSign(private,message)
A private key extraction function private =

Extract(PKGprivate, i)
Begin

Generate an initial random PKG keypair,
〈PKGpub, PKGprivate〉

Store PKGpub securely (generally, by sending
it to a separate machine)

Loop
Calculate private keys for the strings 1..n:

privatei = Extract(PKGprivate, i)
Securely delete PKGprivate.
Set i = 0
Loop

Increment i
If i == n, exit the inner loop
Wait for the next log entry: logi
Calculate sigi = IBSign(privatei, logi)
Securely delete privatei. (pubi may also

be removed)
Output 〈logi, sigi〉

Generate a new PKG keypair,
〈PKGpub, PKGprivate〉

Generate the meta-entry listing the new
PKG key: meta = 〈PKGpub〉

Generate the signature on the meta-entry:
sign = IBSign(privaten,meta)

Securely delete privaten.
Output 〈meta, sign〉

Since the public keys are always simply the strings
1 through n, they don’t need to be stored in the meta
entry. Verification proceeds as follows:

Given
The initial PKG public key PKGpub
An IBS verification function

IBV erify(PKGpub, ID, sig, message)
which returns true iff sig is a valid sig-
nature for message using the private key
derived from PKGpub and the string ID

A list of log entries such that Li = 〈logi, sigi〉
Begin

Set i = 0
Loop

Set j = 0
Loop

Increment i and j
If j == n, exit the inner loop
Abort unless
V erify(PKGpub, j, sigi, logi)
returns true

Set meta = logi
Abort unless

V erify(PKGpub, n, sigi,meta)
returns true

Extract the new PKGpub from meta
Indicate success.

7 Cumulative Verification

In the construction given in [9], verification values for
log entries validate the current log entry as well as the
verification value for the previous entry. This is an
advantage in that verifying an entry ensures that all
prior entries were correct; the last value in such a log
can be sent to an external auditor as a commitment
to the entire log up until that point. In fact, the last
value is the only value which needs to be stored –
rather than storing each entry with its signature or
MAC, log entries could be kept in one file and another
could store only the most recent verification value.

This feature can trivially be added to the symmet-
ric Logcrypt algorithm by adding the MAC of the
previous entry as a third parameter to the MAC()
function, and to the other two algorithms by includ-
ing the cumulative hash of all prior entries with the
current entry for the signing process. However, we
chose to omit this feature in our specification because

Figure 6: Forward security with public verifiability
using Identity Based Signatures.

Figure 7: Verifying entries in the IBS scheme.

it can hamper forensic analysis in some situations.
Consider an attacker who deletes some number of

log entries (not including a public key meta-entry)
from the middle of a Logcrypt log which uses public
key or identity based signatures and stores the sig-
nature for each entry. The verification process will
detect that the log has been modified in either case.
However, if cumulative hashes are being maintained,
intact entries after the deletion cannot be verified
since the cumulative hash of prior entries cannot be
reconstructed without knowledge of the missing en-
tries. Without cumulative hashing, the later entries
can still be checked for validity.

Logcrypt logs using MACs are not so heavily im-
pacted by this drawback, and users may find it worth-
while to use cumulative MACs by default. Entries
after a deleted block can still be checked once the
number of deleted entries are known as long as the
MAC for each entry is kept (rather than storing only
the last one), except for the entry immediately after
the deleted block. That entry cannot be verified in
a system using cumulative MACs since the previous
MAC is unknown and thus prevents calculation of the
current MAC.

Of course, an attacker aware of how Logcrypt
works will tend to remove a Logcrypt log entirely,
giving the analyst no information about the log, or
leave it unchanged hoping that administrators won’t
notice any incriminating entries. But especially in sit-
uations where verification values are kept separately
from a traditional-looking log, attackers may be un-
aware that Logcrypt is in use, and may remove only
a few incriminating entries from the log.

8 Detecting Truncation

Consider what happens if an attacker chooses to sim-
ply delete or truncate a Logcrypt log rather than at-
tempting to modify existing entries without detection.
Of course, no new valid entries can be added once a
log has been truncated, since intermediate secrets will
have been lost, and this will be detected during veri-
fication. But in the case of a log which only records
breakin attempts, for example, a lack of new entries
suggests that the system is still secure.

Logcrypt cannot prevent an attacker in control of a
system from deleting and truncating files. But it can
be used to let an administrator know when the log is
no longer functioning normally by using metronome
entries. Metronome entries are simply special log en-
tries which are made at regular intervals to indicate
that the log is still accepting new data. If an attacker
truncates the log just before an incriminating entry
was made, he also truncates any metronome entries
entered after that entry, and must prevent any future
entries from being recorded, since they will fail verifi-
cation. The verification process can be augmented to
ensure that all metronome entries are present at the
time of verification. If any are missing, then the last
valid entry indicates the earliest time at which the log
could have been truncated. The unix utility syslog
has built-in metronome entry support.

A related idea was described by Schneier and
Kelsey [9]. They describe how a log can be securely
closed by creating a special final entry and storing the
final MAC off-site. Such a technique would be easy to
use with Logcrypt in situations where this is needed.

9 Multiple Logs

Perhaps the most inconvenient part of Logcrypt is the
requirement that initial values be securely stored at
log creation time. Most systems maintain logs for
multiple services concurrently, and regularly prune

Figure 8: Maintaing concurrent logs with a single ini-
tial value.

out older entries by rotating log files. Unless initial
values can be automatically, securely shipped to an
external machine via a network, this quickly becomes
an unwieldy task for system administrators.

To simplify this key distribution issue, we create a
treelike structure of logs in which parent nodes store
the initial secrets for their children. New children
can be added at any time, and only the initial value
created for the root node needs to be kept securely
off the machine.

Figure 8 shows a simple case of a single encrypted
master log which maintains the secrets for other sys-
tem logs. Since the first child uses MACs instead of
signatures and therefore has a secret initial value, the
parent must encrypt all its entries. However, if all the
children of a node use public key or identity based sig-
natures, all the initial values will be public keys and
need not be encrypted. Such a subtree can then be
verified by anyone who can verify the integrity of the
initial value of the root node.

Storing multiple logs in a tree structure has other
advantages as well. If all system logs were merged
into a single log instead of being kept separately and
maintained in a tree, then the entire log will need to
be traversed in order to check the validity of the last
entry. With a tree structure, however, any individual
log can be verified by starting at the root node and
iteratively verifying the entries corresponding to the
nodes which lead to the log in question.

10 Message Aggregation

One way an attacker might try to compromise
Logcrypt is to generate a large number of spurious
events to be logged by the system or otherwise bog
down the system’s logging facility. If the attacker can
generate the events more quickly than the system can
process them, the system could end up with a backlog
of entries all vulnerable to attack since they haven’t
yet been signed.

Recall that Logcrypt only offers strong protection
for events which occur before time t− l, where t is the
time of attack and l is the time required for Logcrypt
to use and then destroy the secret corresponding to
a particular entry. Increasing the demands on the
system allows the attacker to increase the overhead l,
which defines the window in which he can compromise
entries which have already been received. To some
extent, this cannot be avoided, particularly if we as-
sume an attacker that can thoroughly overwhelm the
system.

However, we can improve the system’s resilience to
such attacks while reducing CPU and storage require-
ments under heavy load conditions by observing that
for small entries, per-entry cost greatly exceeds per-
byte processing costs. In particular, public key and
identity based signature operations have a relatively
high overhead that varies very little with the size of

 64

 256

 1024

 4096

 16384

 65536

 262144

 64 256 1024 4096 16384 65536 262144

en
tr

ie
s/

se
c

bytes/entry

SHA1
SHA1+AES

DSA

Figure 9: Without aggregation, performance is
bounded by per-entry overhead for small entries and
per-byte overhead for large entries.

 256

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

 6.71089e+07

 65536 4096 256 16

en
tr

ie
s/

se
c

bytes/entry

SHA1
SHA1+AES

DSA

Figure 10: Aggregation minimizes per-entry over-
head, leaving the system bounded almost entirely by
the per-byte costs of hashing, MACing or encrypting
entry contents. Latency in this test was kept under
150µs for MAC, 200µs for MAC+encrypt and 5ms for
public key modes.

the log entry being signed. Consequently, if multiple
new log entries arrive while the present entry is being
processed, it makes sense to create a single signature
for all of them combined rather than creating one sig-
nature for each entry, decreasing the average l across
all the entries. Of course, this requires changes to the
output format so that the entries can still be identi-
fied as distinct, and the verification process will have
to consider the entries as a single unit.

Entry aggregation creates new possibilities for at-
tackers which have the ability to overwhelm even
Logcrypt’s per-byte capacity, since they will be able
to create increasing numbers of entries which the sys-
tem will try to process before creating any signatures
at all, whereas a system which processes entries one at
a time would still create signatures on individual en-
tries even as the queue filled up. Consequently, an up-
per limit could be set on the number of entries which
may be aggregated into a single signature, providing
an upper limit on latency for the head entry in the
queue while still allowing much higher performance
in high-load situations. However, in many systems
Logcrypt’s per-byte throughput will exceed network
and disk capacity, so that external limitations will
be reached before Logcrypt performance becomes an
issue.

We tested the performance of the Logcrypt li-

brary on an Athlon64 3000+ running GNU/Linux, us-
ing OpenSSL 0.9.7g to provide the underlying crypto
algorithms. OpenSSL does not support identity-
based signature schemes, which consequently remain
unimplemented in our library. Figure 9 shows en-
try throughput without entry aggregation. The flat
slope for small entries reflects the per-entry bound
when entry-processing costs are low; with not much
data to hash or encrypt, we can see how fast our soft-
ware can run through the steps required to process
a single entry. The constant slope for large entries
reflects the dominating per-byte overhead when only
a few entries are processed per second; most of the
time here is spent in the MAC and encryption func-
tions as they process many kilobytes of message data,
dwarfing the per-entry costs since only a few entries
per second are processed. Per-entry latency (the time
lag between an entry’s arrival and its secure storage)
for MAC mode averages around 10µs, around 15µs
for MAC+encrypt, and just under 1ms for public
key mode. Obviously, the choice of MAC, encryption
and signature algorithms will greatly impact perfor-
mance, particularly in the public key system which
requires one key generation and one signature per en-
try. RSA, for instance, has high key generation times
which make it unsuitable for high volume Logcrypt
applications. For large entries, per-byte throughput
is roughly consistent with OpenSSL’s built-in bench-
mark utility for the algorithms used by Logcrypt,
averaging around 150MB/sec for MAC and public
key modes, each of which use SHA1, and around
50MB/sec for MAC+encrypt using SHA1 and AES.

To measure library performance for a system us-
ing entry aggregation, we constructed a virtual mes-
sage queue and an algorithm which maximizes en-
try arrival rate while remaining below a reasonable
average per-entry processing latency, in this case a
small multiple of the per-entry overhead. We chose
latency bounds of 150µs for MAC mode, 200µs for
MAC+encrypt and 5ms for public key mode. As fig-
ure 10 shows, this leaves an extremely small latency
window for attackers, even for systems handling mil-
lions of small entries per second. Per-byte through-
put reaches the maximal throughput given in the last
paragraph for entries as small as 16 bytes, whereas
the nonaggregating system was noticeably slowed by
per-entry overhead for entries smaller than 2kB in the
symmetric modes and 512kB using public keys.

Note that in the public key system, computing
public/private keypairs can be CPU-intensive. Con-
sequently, systems which have plenty of memory and
regular intervals with low system load may find it
beneficial to compute keypairs during these available
intervals, storing them until needed. This is similar
to increasing the parameter n which determines how
many keys are listed per meta-entry, and comes at no
security penalty as long as keys are still held securely
until used and then immediately destroyed. As fig-
ure 9 shows, our system can process about 1125 DSA
entries per second, including generating the 1125 key-
pairs. At 1184 bits per keypair, then, a megabyte of
RAM could be filled with about 7000 pregenerated
keypairs in under 7 seconds.

11 Conclusion and Future Work

In this paper, we showed several innovative ways of
achieving forward security for logs. We showed how
to allow forward secrecy as well as tamper evidence
in the simple system, as has been done in previous
work, and then added a public key variant allowing
verifiability without the ability to forge entries. We
showed how multiple logs can be maintained concur-
rently and verified using a single initial value. We sug-

gested optimizations which resist flooding attacks and
dramatically improve performance under high load
conditions. We described how logs can be made re-
sistant to truncation, and closed to further additions.
These features all address significant needs in systems
administration as well as other disciplines such as fi-
nance and medicine which deal with tamper-sensitive
data.

Future work may address further improvements to
the public key variant of Logcrypt. Hierarchical IBS
systems and meta-entries storing multiple PKG pub-
lic keys can be used to further improve performance
while keeping overhead low. Bellare and Miner’s
contribution [2] also provides an obvious avenue for
space-efficient public verification.

An initial implementation of our symmetric and
public key systems is available under the GPL at
http://isrl.cs.byu.edu/logcrypt/index.html. It imple-
ments our simple system as well as the public key
variant using DSA signatures. Recent results relating
to SHA1 and MD5 suggest that new systems should
begin using alternative algorithms. Hash/MAC algo-
rithms with significantly different performance char-
acteristics could impact the ways in which Logcrypt
is used. Future work will include performance refine-
ments and increased convenience features in the form
of both library functions and sample applications.

Thanks to Kent E. Seamons and Hans Reiser for
their feedback, and especially to Ed Schaller for writ-
ing the bulk of the implementation.

References

[1] M. Bellare and P. Rogaway, Random Oracles are
Practical: A Paradigm for Designing Efficient
Protocols, ACM Conference on Computer and
Communications Security 1993, pp62-73.

[2] M. Bellare, S. Miner. A Forward-Secure Digital
Signature Scheme. In Proc. of Crypto, pp. 431–
448, 1999.

[3] M. Bellare and B. Yee, ”Forward Integrity for Se-
cure Audit Logs,” Technical Report, Computer
Science and Engineering Department, University
of California at San Diego, November 1997.

[4] J. Cha, J. Cheon, “An ID-based signature
from Gap-Diffie-Hellman Groups,” Proc. of PKC
2003, Lecture Notes in Computer Science, Vol.
2567, pp. 18-30 (2003).

[5] C. N. Chong, Z. Peng, and P. H. Hartel. Se-
cure audit logging with tamper resistant hard-
ware. Technical report TR-CTIT-02-29, Cen-
tre for Telematics and Information Technology,
Univ. of Twente, The Netherlands, Aug 2002.

[6] A Cost-Based Security Analysis of Symmetric
and Asymmetric Key Lengths, RSA Laborato-
ries Bulletin #13, April 2000.

[7] A. Futoransky and E. Kargieman. PEO Revised.
DISC 98 (Dıá Intrenacional de la Seguridad en
Cómputo). DF, Mexico. 1998.

[8] A. Futoransky and E. Kargieman. VCR y PEO,
dos protocolos criptográficos simples. 25 Jor-
nadas Argentinas de Informática e Investigación
Operativa, July 1995.

[9] J. Kelsey, B. Schneier. Minimizing Bandwidth
for Remote Access to Cryptographically Pro-
tected Audit Logs. Recent Advances in Intrusion
Detection, 1999.

[10] MSyslog (Unix syslogd
with integrity protection).
http://oss.coresecurity.com/projects/msyslog.html

[11] H. Orman and P. Hoffman, Determining
Strengths For Public Keys Used For Exchang-
ing Symmetric Keys, Internet Engineering Task
Force RFC 3766, April 2004.

[12] B. Schneier, J. Kelsey. Cryptographic Support
for Secure Logs on Untrusted Machines. In Pro-
ceedings of the 7th USENIX Security Sympo-
sium, San Antonio, TX, USA, Jan. 1998.

[13] B. Schneier, J. Kelsey. Secure Audit Logs to Sup-
port Computer Forensics. ACM Transactions on
Information and System Security 2(2): 159-176,
1999.

[14] K. Thompson, ”Reflections on Trusting Trust,”
Communications of the ACM, Vol. 27, No. 8, Au-
gust 1984, pp. 761-763.

[15] B. R. Waters, D. Balfanz, G. Durfee, D. K. Smet-
ters. Building an Encrypted and Searchable Au-
dit Log. ACM Annual Symposium on Network
and Distributed System Security, 2004.

