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Abstract

The purpose of this note is to show that Markov chains induced by non-
singular triangular feedback shift registers and non-degenerate sources are
rapidly mixing. The results may directly be applied to the post-processing
of random generators and to stream ciphers in CFB mode.

1 Introduction

Let S = (Kt)t≥0 be a (memoryless) source, i.e. a sequence of identi-
cally distributed, independent random variables. Informally, a source is
an object that emits symbols (in general from a finite alphabet) according
to some random mechanism. This could be, for example, a physical ran-
dom generator or - in first-order approximation - a natural alphabet-based
(plain) text. The objective of this paper is to investigate the Markov be-
haviour of a class of feedback shift registers when the input symbols are
modified by the random source. To model the influence of the random
source we will assume that the underlying alphabet carries a group struc-
ture. We will show that for non-degenerate sources and non-singular tri-
angular feedback shift registers, the associated Markov chains are rapidly
mixing. We will also give estimates for mixing (convergence) rate using
the Dobrushin coefficients of the associated stochastic matrices.

2 Feedback shift registers and associated
Markov chains

In this section we introduce the class of triangular feedback shift registers
and derive some of their basic algebraic properties. Furthermore we will
define Markov chains associated with feedback shift registers.
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Let Σ be a finite alphabet. A feeedback shift register (FSR) of
length N over Σ is a finite automaton (X,φ, λ) with state space X = ΣN ,
a transition function φ : X → X which is of the form

φ = s ◦ φ0, φ0 : X → X

(with the cyclic shift s : X → X, (x1, ..., xN ) = (x′, xN ) 7→ (xN , x1, ..., xN−1) =
(xN , x

′)) and the output function

λ = pr1 ◦ φ = prN ◦ φ0 : X → Σ.

Definition 2.1. Let R = (X,φ, λ) be an FSR.
(i) R is called non-singular iff φ (or equivalently φ0) is bijective.
(ii) An FSR (X,φ, λ) is called triangular iff φ0 has the form

φ0(x1, ..., xN ) = (f1(x1), f2(x1, x2), ..., fN (x1, ..., xN )).(2.1)

with mappings fj : Σj → Σ, j = 1, ..., N .

Remark 2.2. For a family (fj : Σj → Σ)1≤j≤N define Fj : Σj → Σj ,
j ∈ {1, ..., N}, by

Fj(x1, ..., xj) = (f1(x1), f2(x1, x2), ..., fj(x1, ..., xj)).

If Fk is bijective, then all Fj , j < k, are bijective, too. To simplify nota-
tion, we will write f for fN and F for FN−1.

Remark 2.3. (i) Let (Σ, ∗) be a group, hj : Σj−1 → Σ, j ≥ 2
mappings and h1 ∈ Σ. The family (fj)1≤j≤N , defined by

fj(x1, ..., xj) = xj ∗ hj(x1, ..., xj−1) ∀(x1, ..., xj) ∈ Σj , 1 ≤ j ≤ N,

induces a non-singular triangular FSR via (2.1).
(ii) For Σ = F2 the converse is also true: For a non-singular triangular
shift register the functions fj are necessarily of the form

fj(x1, ..., xj) = xj + hj(x1, ..., xj−1),

where + denotes the addition (modulo 2) in F2.

Let (X,φ, λ) be an FSR. We will investigate the state sequence ξ =
(ξj)j≥0 ∈ XN0

ξj = φjx, j ≥ 0,(2.2)

(belonging to the initial state x ∈ X) and the corresponding output se-
quence α = (αj)j≥0 ∈ ΣN0

αj = λ(ξj) = (λ ◦ φj) x, j ≥ 0.(2.3)

To this end we introduce the mappings

sa : X → X, (x1, ..., xN ) 7→ (a, x1, ..., xN−1), a ∈ Σ.(2.4)
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The following lemma will be our basic tool.

Lemma 2.4. Let (X,φ, λ) be triangular. For x ∈ X let ξ and α be
defined as in (2.2) and (2.3), respectively. If y ∈ X an arbitrary state and
if we define inductively

η0 = y, ηj+1 = sαj ◦ φ0(ηj), j ≥ 0,(2.5)

then for each j ∈ {1, ..., N} the first j components of ξj and ηj coincide

prk(ξj) = prk(ηj) ∀k ∈ {1, ..., j}.

Especially we have

φNx = ξN = ηN = ((sαN−1 ◦ φ0) ◦ ... ◦ (sα0 ◦ φ0))y.(2.6)

Proof (by induction w.r.t. j).
(a) j = 1. By (2.2), (2.3) and (2.4) we have pr1(ξ1) = α0 = pr1(η1).

(b) j → j + 1. Let j ∈ {1, ..., N − 1} and

prk(ξj) = prk(ηj) ∀k ∈ {1, ..., j}.

By (2.1) we have

prk(φ0ξj) = prk(φ0ηj) ∀k ∈ {1, ..., j}

and thus
prk(ξj+1) = prk(ηj+1) ∀k ∈ {2, ..., j + 1}.

Finally, Definition (2.3) of αj implies

pr1(ξj+1) = αj = pr1(ηj+1)

and the assertion follows. �

Remark 2.5. As a first application of Lemma 2.4 we show that for
a non-singular triangular FSR R = (X,φ, λ) and an initial state x ∈ X
the sequences ξ and α have the same period. Recall that for a sequence
g = (gi)i∈N0 in a set D its period per(g) ∈ N ∪ {∞} is defined by

per(g) = inf{l ∈ N | ∀i ∈ N0 : gi = gi+l}.

If the period per(g) is finite, it divides each l with gi = gi+l ∀i ∈ N0.
Since R is non-singular per(ξ) is equal to the (finite) length of the orbit
x<φ> (thus dividing the order of φ). Furthermore, trivially

l := per(α) | per(ξ).

(2.6) now implies
φN+lx = φNx

and therefore (using the bijectivity of φ) φlx = x and ξj+l = ξj ∀j ≥ 0,
i.e. per(ξ) | l = per(α), which finally shows that per(ξ) = per(α).
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For the remaining part of the paper we assume that (Σ, ∗) is a group.
Our plan is to define stochastic processes associated with FSRs. First
fix some notation. For a (non-empty) finite set D let M1(D) denote the
set of all measures on D with mass 1 (also referred to as (probability)
distributions on D). The uniform distribution on D will be denoted
by γD, i.e. γD({ω}) = 1

|D| for all ω ∈ D.

Definition and Remark 2.6 We define stochastic processes associ-
ated with an FSR R = (X,φ, λ) of length N over Σ. Let S = (Kt)t≥0 be a
memoryless source, i.e. a sequence of independent, identically distributed
(i.i.d.) random variables over Σ with (common) distribution σ ∈M1(Σ).
Fix an arbitrary random variable Z0 on X and let the stochastic process
Z = (Zt)t≥0 be recursively defined by

Zt = (SKt−1 ◦ φ)Zt−1, t ≥ 1,(2.7)

where Sa : X → X, a ∈ Σ is given by

Sa(x1, ..., xn) = (a ∗ x1, ..., xn),∀(x1, ..., xn) ∈ X.(2.8)

By construction Z is a homogenous Markov chain over X with tran-
sition matrix P = P (φ, σ) = (Pxy)x,y∈X :

Pxy = Pr(Zt = y | Zt−1 = x) =


σ(a), if (Sa ◦ φ)(x) = y,
0, else.

(2.9)

We will call Z the Markov chain associated with R, S and Z0.
Note that P ∈ RX×X is stochastic (cf. Definition 3.1) and depends on R
and σ, only. Furthermore, if R is non-singular, P is doubly-stochastic (cf.
Definition 3.2 (i)); indeed, since φ is bijective, we haveX

x∈X

Pxy =
X
x̄∈X


σ(a), if Sax̄ = y,
0, else.

ff
=
X
a∈Σ

σ(a) = 1

for all y ∈ X.
If µ is the distribution of Z0, µP

j is the distribution of Zj .
In view of (2.9), mappings of the form

Φa = (Saj−1 ◦ φ) ◦ ... ◦ (Sa0 ◦ φ), a = (a0, ...aj−1) ∈ Σj , j ∈ N,

will play an important role in the investigation of the powers of P .

Theorem 2.7. Let (X,φ, λ) be a triangular FSR and F be defined as
in Remark 2.2.
(i) For bijective F , the semi-group 〈Sa ◦ φ | a ∈ Σ〉, generated by all
compositions Sa ◦ φ, acts transitively on X; more precisely, for each pair
x, y ∈ X there exists a uniquely determined a = (a0, ..., aN−1) ∈ ΣN = X
with

x = Φay = ((SaN−1 ◦ φ) ◦ ... ◦ (Sa0 ◦ φ))y.(2.10)

(ii) If y ∈ X and 1 ≤ j ≤ N , then

Σj 3 a 7→ Φa y ∈ X
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is one-to-one.
(iii) If F is not bijective, then for all x ∈ Σ × (ΣN−1 \ F (ΣN−1)), y ∈ X
and a ∈ Σj , j ∈ N :

x 6= Φay.

Proof. (i) Let ψ,ψ0 : X → X denote the bijections which are defined
by (x′, xN ) 7→ (xN , Fx

′) and (x′, xN ) 7→ (Fx′, xN ), respectively, and con-
sider the corresponding register (X,ψ, prN ). Let x, y ∈ X and (αj)j≥0 be
the output sequence, which corresponds to the initial state ψ−Nx:

αj = prN (ψj−Nx).(2.11)

Define (ηj) recursively by η0 = y and

ηj+1 = (Saj ◦ φ)(ηj), aj = αj ∗ f(ηj)
−1, j ≥ 0.(2.12)

Then
ηj+1 = (aj ∗ f(ηj), Fη

′
j) = (αj , Fη

′
j) = (sαj ◦ ψ0)ηj .

Lemma 2.4, applied to (X,ψ, prN ), shows

x = ψN (ψ−Nx) = ηN = ((SaN−1 ◦ φ) ◦ ... ◦ (Sa0 ◦ φ))y.

In particular, we have shown that the mapping

X = ΣN 3 a 7→ Φay ∈ X

is onto. Since X is finite, the mapping is also one-to-one, which proves
that representation in (2.10) is unique.
(ii) Set Aj = {Φa y | a ∈ Σj} and note that the assertion is equivalent to

|Aj | = |Σ|j .(2.13)

For the proof of (2.13) we use induction w.r.t j:
For j = N , (2.13) is a consequence of (2.10). Now assume that (2.13) is
true for a j > 1. Then |Aj−1| ≤ |Σ|j−1. Furthermore,

Σ×Aj−1 3 (a, x) 7→ (a ∗ f(x), Fx′) ∈ Aj

is onto, thus
|Σ| · |Aj−1| ≥ |Aj | = |Σ|j ,

i.e.|Aj−1| ≥ |Σ|j−1.
(iii) Clear from the definition of Φa. �

Remark 2.8. (i) The group structure ∗ on Σ induces a natural group
structure ∗̂ on X = ΣN . If φ : X → X is a group homomorphism w.r.t.
∗̂, then there is a group homomorphism Ψ : X → X s.t.

Φax = Ψ(a)∗̂φNx ∀a, x ∈ X.

For bijective F the homomorphism Ψ is bijective by Theorem 2.7(i).
(ii) Let F be bijective. Theorem 2.7 (ii) shows that for all j ≤ N

(P j)xy =

 Q
i<j σ(ai), if Φa(x) = y, (a0, ..., aj−1) ∈ Σj

0, else.
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Especially, if we define the product distribution σ̂ ∈M1(X) by

σ̂(a) =

N−1Y
i=0

σ(ai) ∀a = (a0, ..., aN−1) ∈ X,(2.14)

then
(PN )xy = σ̂(a) if Φa(x) = y, a ∈ X.(2.15)

If σ = γΣ, P has the limiting distribution (cf. Definition 3.2 (ii)) γX with
µP j = γX for all µ ∈M1(X) and j ≥ N .
(iii) For traditional FSRs we have fi = pri for 1 ≤ i < N , i.e. F = idΣN−1 ,
so the prerequisites of Theorem 2.7 (i) are automatically fulfilled. As an
application of the proof of 2.7 consider the case that

φ(x′, xN ) = (c, x′) ∀(x′, xN ) ∈ X

for a constant c ∈ Σ. The constuction (2.11)-(2.12) shows that for given
x, y the uniquely determined a with Φa(x) = y is given by

aj = yN−j ∗ c−1.

Thus P has the limiting distribution π

π = σ̂(·∗̂(c, ..., c)−1)(2.16)

with µP j = π for all µ ∈M1(X), j ≥ N . Furthermore π 6= γX if σ 6= γΣ.

Proposition 2.9. Let Fk be bijective for a k < N and let y, ȳ ∈ X
s.t. y1 6= ȳ1. Then Φa y 6= Φā ȳ for all j ∈ {1, ..., k} and a, ā ∈ Σj .

This follows immediately from Remark 2.2 and the following

Lemma 2.10. Let k ∈ {2, ..., N} s.t Fk−1 is bijective. If y, ȳ ∈ X,
j ∈ N, and (a0, ..., aj−1), (ā1, ..., āj−1) ∈ Σj with

pri(Φ(a0,...,aj−1)y) = pri(Φ(ā0,...,āj−1)ȳ) ∀i ∈ {1, ..., k},

then

pri(Φ(a0,...,aj−2)y) = pri(Φ(ā0,...,āj−2)ȳ) ∀i ∈ {1, ..., k − 1}.

Proof. Let x = Φ(a0,...,aj−2)y and x̄ = Φ(ā0,...,āj−2)ȳ. Then

Φ(a0,...,aj−1)y = (Saj−1 ◦ φ)x = (aj−1 ∗ fN (x), f1(x1), ...., fN−1(x1, ..., xN−1)),

Φ(ā0,...,āj−1)ȳ = (Sāj−1 ◦ φ)x̄ = (āj−1 ∗ fN (x̄), f1(x̄1), ...., fN−1(x̄1, ..., x̄N−1)).

By assumption,

fi(x1, ..., xi) = fi(x̄1, ..., x̄i) ∀i ∈ {1, ..., k − 1}.

and Fk−1 is one-to-one, so the assertion follows. �
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3 Stochastic matrices

The purpose of this section is to recall some notions and results from the
theory of Markov chains. For the convenience of the reader we include a
proof of Theorem 3.5 which is the main result of this section and which
will be used in Section 4. For further details and proofs we refer to [1]
and [2].

Let n ∈ N. In the real linear space Rn (ei)1≤i≤n denotes the canonical
basis and (εi)1≤i≤n the corresponding dual basis. We set e =

Pn
i=1 ei. We

identify Mn
1 = M1({1, ..., n}) with the set of all ` ∈ (Rn)∗ with ` ≥ 01

and `(e) = 1 by µ ↔
Pn

i=1 µ({i})εi. Then γ := 1
n

Pn
i=1 εi is the uniform

distribution on {1, ..., n}. We endow Mn
1 with the metric

d1(µ, ν) = ‖µ− ν‖1 =
X

i

|µi − νi|.

Since Mn
1 is closed in (Rn)∗, (Mn

1 , d1) is a complete metrc space.

Definition and Remark 3.1. A matrix P ∈ Rn×n is stochastic, iff
P ≥ 0 and Pe = e, or equivalently, iff µP ∈ Mn

1 for all µ ∈ Mn
1 . Thus,

for a stochastic P ∈ Rn×n, the operator

TP : Mn
1 3 µ 7→ µP ∈Mn

1

is well-defined and continuous. It is convenient to define certain properties
of stochastic matrices using the language of dynamical systems in metric
spaces. Let (X, d) be a metric space and T : X → X a continuous oper-
ator. A point x ∈ X is called global attractor of T iff x = limj→∞ T jy
for each y ∈ X; in this case x is the only fixed-point of T .

Definition 3.2. Let P ∈ Rn×n be stochastic.
(i) P is called doubly-stochastic, iff γ is a fixed-point of TP , i.e. iff its
transposed matrix tP is stochastic, too. (ii) A distribution π ∈ Mn

1 is
called stationary w.r.t. P iff π is a fixed-point of TP . (iii) A distribution
π ∈Mn

1 is called limiting distribution of P , iff π is the global attractor
of TP . (iv) P is called ergodic, iff it has a limiting distribution > 0.

Remark 3.3. If a stochastic P has a limiting distribution π, then
by 3.1 π is the only stationary distribution of P . If, in addition, P is
doubly-stochastic, then π = γ and P is ergodic.

Definition 3.4. Let P be a stochastic n×n-matrix. The Dobrushin
(or ergodicity) coefficient is defined to be

δ(P ) =
1

2
max
i<j

nX
k=1

|Pik − Pjk| = max
i<j

‖εiP − εjP‖1
‖εi − εj‖1

.

1For a (non-empty) finite set I and x, y ∈ RI we write x ≤ y iff xi ≤ yi ∀i ∈ I, and x < y
iff xi < yi ∀i ∈ I.
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Obviously, 0 ≤ δ(P ) ≤ 1, and

δ(P ) = 0 ⇔ ∃π ∈Mn
1 : P = e⊗ π,(3.1)

δ(P ) = 1 ⇔ ∃i, j : i < j ∧ min(εiP, εjP ) = 0.(3.2)

Furthermore, it can be shown that

‖µP − νP‖1 ≤ δ(P )‖µ− ν‖1 ∀µ, ν ∈Mn
1 .(3.3)

For permutation matrices A,B ∈ Rn×n the product BPA is stochastic
with

δ(BPA) = δ(P ).(3.4)

Theorem 3.5. Let P ∈ Rn×n be a stochastic matrix.
(i) P has a limiting distribution iff δ(PN ) < 1 for an N ∈ N.
(ii) If δ(PN ) < 1 for an N ∈ N and if π ∈Mn

1 is the limiting distribution
of P (which exists by (i) and is unique by definition), then

‖µP j − π‖1 ≤ δ(PN )b
j
N
c‖µ− π‖1 ∀µ ∈Mn

1

for all j ≥ 0.

Proof. (i) ”⇒”: Assume that δ(PN ) = 1 for all N ∈ N. Then, by
(3.2), for each N there exist indices iN < jN with min(εiNP

N , εjNP
N ) =

0. By the pigeon hole principle there are indices i < j and a sequence
(Nk)k≥1 ⊂ N s.t. limk→∞Nk = ∞ and

min(εiP
Nk , εjP

Nk ) = 0.(3.5)

Now assume that P has a limiting distribution π ∈ Mn
1 . Then π =

limk→∞ εiP
Nk = limk→∞ εjP

Nk , so by (3.5) π = 0, which is a contradic-
tion.
(i) ”⇐” and (ii): Set T = TP and let N ∈ N s.t. L = δ(PN ) < 1. Then
TN is contractive with Lipschitz constant L. By Banach’s fixed-point the-
orem, TN has a global attractor π ∈ Mn

1 . Now π is the only fixed-point
of TN and Tπ = T (TNπ) = TN (Tπ), so Tπ = π. Finally, let µ ∈ Mn

1 ,
j ≥ 0 and write j in the form j = kN + r with k = b j

N
c, 0 ≤ r < N .

Then, using (3.3) and δ(P ) ≤ 1,

d1(T
jµ, π) = d1(T

jµ, T jπ) = d1(T
NkT rµ, TNkT rπ)

≤ Lkd1(T
rµ, T rπ) ≤ Lkd1(µ, π). �

Definition and Remark 3.6. A stochastic matrix P is called prim-
itive, iff there there is an N with PN > 0. By definition, every ergodic
stochastic matrix is primitive. Conversely, if P is primitive with PN > 0,
then δ(PN ) < 1, so P has a limiting distribution π, i.e. limj→∞ P jek =
π(ek) for all k. It is now easy to see that

min
i

(P jx)i ≤ min
i

(P j+1x)i ∀x ∈ Rn, j ≥ 0,

so 0 < mini(P
Nek)i ≤ π(ek) ∀k ∈ {1, ..., n}, i.e. π > 0 and P is ergodic.

Note that a stochastic matrix is primitive iff a corresponding Markov chain
is irreducible and aperiodic.
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4 Mixing properties of FSRs

We are now ready to combine the results of Sections 2 and 3. As in Sec-
tion 2, let R = (X,φ, λ) be an FSR of length N over a finite group (Σ, ∗),
S = (Kt)t≥0 a sequence of i.i.d. random variables over Σ with (common)
distribution σ ∈ M1(Σ) and Z0 be an arbitrary random variable on X
with distribution µ ∈ M1(X). Consider the Markov chain Z = (Zt)t≥0

associated with R, S and Z0 and the corresponding stochastic matrix
P = P (φ, σ). We assume that R is triangular and let Fk, F be defined as
in 2.2.

Theorem 4.1. (i) If Fk (k < N) is bijective, then

δ(P j) = 1 ∀j ∈ {0, ..., k}.(4.1)

(ii) For bijective F every row of PN is a permutation of the tuple“
σ̂(a) | a ∈ ΣN = X

”
.

(iii) For bijective F and non-degenerate σ (i.e. mina σ(a) > 0) the matrix
P is primitive. In fact PN > 0 (and thus δ(PN ) < 1).
(iv) If F is not bijective, P is not primitive.

Proof. (i) Proposition 2.9 shows that for j < k P j has (at least)
two rows with disjoint supports. (4.1) now follows from (3.2).(ii) and (iii)
follow from (2.15). (iv) is a consequence of Theorem 2.7 (iii). �

We now come to the announced theorem concerning the rapid mix-
ing of non-singular tringular FSRs under the influence of non-degenerate
sources. The theorem actually holds under the slightly milder hypothesis
that F is bijective and is a direct consequence of Theorems 3.5 and 4.1
(iii) and Remark 3.6.

Theorem 4.2. Let F be bijective and σ non-degenerate. Then P is
ergodic with a limiting distribution π > 0. If R is non-singular, π = γX .
For the distribution µP j of Zj we have the estimate

‖µP j − π‖1 ≤ ‖µ− π‖1δ(PN )b
j
N
c ≤ C δ(PN )b

j
N
c ∀j ≥ 0,

where

C =

(
2 |X|−1

|X| , if π = γX ,

2, else,

and δ(PN ) < 1. �

Obviously, the determination of δ(PN ) plays a vital role in the analysis
of concrete FSRs. In order to shed some light on this practical problem,
we conclude this note with some remarks on ”linear” and binary FSRs.
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Theorem 4.3. Let R be non-singular and linear in the sense that φ
is a group isomorphism. Then P = P (φ, σ) fulfills

δ(PN ) =
1

2
max
x∈X

X
y

|σ̂(y)− σ̂(y∗̂x−1)| =: hN (Σ, σ).(4.2)

Proof. By Remark 2.8 (i) there is a bijection Ψ s.t.

Φax = Ψ(a)∗̂φNx ∀a, x ∈ X.

Thus
y = Φax⇔ a = Ψ−1(y∗̂(φNx)−1)

and (cf. (2.15))
(PN )xy = σ̂(Ψ−1(y∗̂(φNx)−1)).

By (3.4)
δ(PN ) = δ(Q)

where
Qxy = σ̂(y∗̂x−1).

The Dobrushin coefficient of Q is now easily calculated as

δ(Q) =
1

2
max
x∈X

X
y

|σ̂(y)− σ̂(y∗̂x−1)|. �

Remark 4.4. An important special case are binary FSRs. Let
(Σ, ∗) = (F2,+) and let σ be a non-degenerate distribution on F2, p =
max(σ(0), σ(1)) < 1 and q = min(σ(0), σ(1)) > 0. Recall that ε(σ) :=
σ(0)−σ(1) is called the bias of σ. Then the maximum in (4.3) is attained
for x = (1, 1, ..., 1) with

hN (F2, σ) =

bN
2 cX

k=0

 
N

k

!
(pN−kqk − pkqN−k).

Note that

hN+1(F2, σ)− hN (F2, σ) =

( `
N
N
2

´
(pq)

N
2 (p− q), if N is even,

0, if N is odd.

Therefore limN→∞ hN (F2, σ) = 1 (use the Taylor expansion of (1−4x)−
1
2

around x = 0). By Theorem 4.1(ii)

δ(P (φ, σ)N ) ≤ hN (F2, σ)

for all φ with bijective F . Computer experiments suggest the following

Conjecture. For all non-constant Boolean functions f : FN
2 → F2 we

have
δ(P (φf , σ)N ) ≥ |ε(σ)|

where
φf (x) = (f(x), x′), x = (x′, xN ) ∈ FN−1

2 × F2,
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the lower bound being attained e.g. for f = χ{0}, the characteristic func-
tion of the singleton {0}.

Note that we have δ(P (φf , σ)N ) = 0 for constant f (cf. (2.16) and
(3.1)).

Remark 4.5. The source S can be interpreted as a random source or
(a first-order approximation of) a plain text source. The process Z is then
a model of the sequence of states of the FSR (X,φ, λ) when operated in
cipher-feedback (CFB) mode. The results of this section may therefore be
applied to the post-processing of random generators and to stream ciphers
in CFB mode.
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