
An Improved Elegant Method to Re-initialize Hash Chains
Yuanchao Zhao, Daoben Li

Department of Information Engineering
Beijing University of Posts and Telecommunications

Beijing 100876, P. R. China
Abstract: Hash chains are widely used in various cryptographic systems such as electronic
micropayments and one-time passwords etc. However, hash chains suffer from the limitation that
they have a finite number of links which when used up requires the system to re-initialize new
hash chains. So system design has to reduce the overhead when hash chains are re-initialized.
Recently, Vipul Goyal proposed an elegant one-time-signature-based method to re-initialize hash
chains, in this efficient method an infinite number of finite length hash chains can be tied together
so that hash chains can be securely re-initialized in a non-repudiable manner. Vipul Goyal’s
method is improved in this paper to reach a little more efficient method, which, more importantly,
is a natural extension of the concept of conventional hash chains.
Key words: Hash chain, One-time signature, Non-repudiability
1 Introduction

Hash chains are first proposed by Lamport [1]. Although originally they are used to protect
one-time password against eavesdrop and replay, hash chains quickly are employed extensively in
various cryptographic systems because they have public key cryptography like properties while
they are efficient computationally.

For example, in electronic micropayment schemes which are dedicated to business
transaction only involving tiny amount of money, the non-repudiability of payment information is
required, which, however, can result in the computation overhead. Micropayments can’t use
conventional public key signature as macropayment because signing and verifying cost too much
on computing, otherwise, the cost will be higher or equal to the value of transaction itself. So
efficiency is very important for the design of micropayment system, and hash chains can satisfy
these requirements. The micropayment schemes using hash chains, such as PayWord [2], NetCard
[3] and Pederson [4], typically look each link on the hash chains as a piece of non-repudiable
payment information for one payment unit. Also multiple hash chains can be used together to
implement multi-denomination payment, as in Netpay [5].

In addition to password based authentication and micropayments, server-supported signatures
[6, 7], efficient multicasting [8, 9], certificate revocation [10] and so on are also based on the
concept of hash chains.

However, most of these systems suffer from a common limitation that the hash chains have a
finite length. And the length of hash chain can’t be selected too long because the computational
and storage capacity of sender and receiver is limited in many cases. When exhausted, hash chains
should be re-initialized. At this time, the need for a good method for the efficient and secure
re-initialization of hash chains was clear. Vipul Goyal [11] introduces the notion of ‘tying’
multiple finite length hash chains. This tying is achieved by using one time signature. This paper
improves the idea of Goyal’s to lead to a little more efficient method. Furthermore, it is in a very
natural way that our method extends the concept of hash chains.

The rest of the paper is organized as follows: Section 2 briefly introduces the idea of hash
chain and one time signature. Section 3 discusses the related works, especially the work of Vipul

 1

Goyal. Section 4 gives a detailed description of our method to re-initailze the hash chains. Section
5 compares our methods with Vipul Goyal’s. Section 6 concludes this paper.
2 The concept of hash chain and one time signature
2.1 Conventional hash chain (CHC)

A conventional hash chain is constructed by applying a public one-way hash function
(OWHF) h() iteratively to an random seed value. Function h maps a bit string of an arbitrary
length or a predetermined maximal length to a string of a fixed length. And function h satisfies 3
properties: (1) Given x, it is easy to evaluate h(x); (2) Given h(x), it is infeasible to compute x; (3)
It is infeasible to find two values x and y (x≠y) such that h(x)=h(y).

When constructing a CHC of length N, one should first select a random seed value s, then he
repeatedly applies the one-wary hash function h to s totally N times. The following sequence is
resulted:

2 (1), (), (), ... (), ... , (), ()i Ns h s h s h s h s h s− N

s s

s

where s can be written as and is called the tip of the CHC. The tip resembles the

public key in public key cryptography, because knowing and not knowing s, one can’t

generate , but given , one can easily verify its correctness by . The

rest may be deduced by analogy, i.e., knowing and not knowing s, one can’t generate

, but one can easily verify the correctness of by , where

.

0 ()h s ()Nh s

()Nh s

(1) ()Nh − (1) ()Nh − ()Nh s

()ih s

(1) ()ih s− (1) ()ih s− ()ih s

, 1,...,1i N N= −

The CHC is typically used as follows: first is securely distributed and then the

elements of the hash chain are released in turn starting from and continuing until the

seed value is used. At this time the hash chain is said to be exhausted and the whole process
should be re-initialized again with a different seed value.

()Nh s

(1) ()Nh −

2.2 One time signature (OTS)
First of all, it is import to note that OTS employs nothing more than OWHFs same as in hash

chain, so OTS adapt to the applications requiring high efficiency.
OTS is also first proposed by Lamport, whose idea is retailed in [12]: signing a single 1 bit

message. The signer selects as the secret key components two random value x1and x2,
respectively representing ‘0’ and ‘1’; Then he evaluate y0=h(x0) and y1=h(x1) using OWHF h and
publishes y0 and y1 as the public key components; To sign a one bit message, he exposes x0 if the
message is ‘0’, otherwise, he exposes x1; The verifier of the message evaluate the hash value
using the exposed value as input and compare the output to the corresponding public key
component. To sign a message of n bit length, 2n x’s and 2n y’s are needed.

Among the various improvements to this original OTS scheme, for our purpose, we exploit
the scheme proposed by Merkle [13]: the signer generates only one random value

 2

(1,2,...,)ix i = n for each bit of the message of n bit length, computes ()(1,2,...,)i iy h x i n= =

and publishes all ’s; When the ith bit of the message is ‘1’, the signer releases iy ix , otherwise,

he releases nothing. Because this gives the chances to receiver to pretend that he did not receive

some of the ix ’s and therefore to pretend that some the ‘1’s in the signed message were ‘0’s, the

signer must also sign the count of ‘0’s in the message, and the signing method for the count field is
the same as that for the message body. Now, if the receiver wants to deny that he received a ‘1’, he

must also increase the value of the count field, therefore, he must give some ix ’s that he doesn’t

know for the count field, which, however, is infeasible for him. So, in Merkle’s scheme, to sign a

n bit message, one should prepare ()2log ()n n+ ⎡ ⎤⎢ ⎥ ix ’s and the corresponding

 ’s. ()2log ()n n+ ⎡ ⎤⎥⎢ iy

3 Related works countering finite length limitation of CHC
Bicaki and Baykal [14] propose signature chains of infinite length based on conventional

public key cryptography. But this method can’t replace CHC because of its compromising on
efficiency.

Recently, Vipul Goyal [11] presents a new idea of Re-initializable Hash Chain (RHC). When
a RHC is exhausted, it can be efficiently and securely re-initialized in a non-repudiable manner to
result in another RHC. His construction can be briefly illustrated in Figure 1(a) where arrows
show the non-repudiation relations, i.e., the side from which an arrow comes provides
non-repudiable evidence for the side to which the arrow goes. This process can be continued
indefinitely to give rise to an infinite number of finite length hash chains tied together using OTS.

In Figure 1(a), and are a pair of OTS key instances, also are UP US UP ′ and ⋯. For

detailed description of Goyal’s construction, see [11].

US ′

 3

1()Nh s−

()h s

2 ()Nh s−

UP

()Uh P ′

US

1((), ())N
Uh h s h P−

()Uh P

s

1((), ())N
Uh h s h P− ′′

1()Nh s− ′

()h s′

2 ()Nh s− ′

s′
UP ′

US ′

(a) RHC construction in [11]

Exposed parts of

Exposed parts of

1()Nh s−
UP

UP ′

1((),)N
Uh h s P−

s

1((),)N
Uh h s P− ′′

1()Nh s− ′

s′

USExposed parts of

US ′Exposed parts of

(b) A variation of RHC
construction in [11]

Figure 1 RHC construction in [11] and a vatiation of it

4 The proposed construction

Similar to [11], our construction also can be called RHC. Assume that the output length of
OWHF h() is Lbits. For instance, the output of MD5 [15] algorithm is L=128bits long.

The sender first generates an pair of instances of OTS for a message of Lbits length,

including generating ()2log ()L L+ ⎡⎢ ⎤⎥

)⎤⎥

U

 random values, the concatenation of which is written as

, and evaluating the corresponding image of h() with these random values as inputs to result in

 hash values, the concatenation of which is written as . and are

respectively the secret key components and the public key components of OTS. In fact the OTS

key instances will be used to sign for the next RHC. Then sender uses the as seed value to

compute a CHC of length N, which tip is (N times). Note that

US

(2log ()L L+ ⎡⎢ UP US UP

UP

() (((... ()...)))N
Uh P h h h h P=

 4

this seed is somewhat different with usual seed of CHC, i.e., the length of former is

bits and the length of latter usually can be Lbits. is securely

distributed to the appropriate receivers depending on the application settings. Now the links in the

chain can be spent as in the usual manner till or is spent. At this point, the RHC is

exhausted and a new RHC should be generated and tied to the foregoing RHC. In order to do this,

we use and .

UP

(2log ()L L+ ⎡ ⎤⎢ ⎥) L• ()N
Uh P

0 ()Uh P UP

UP US

()N
Uh P

1()N
Uh P−

()Uh P

2 ()N
Uh P−

UP US

()N
Uh P ′

1()N
Uh P− ′

()Uh P ′

2 ()N
Uh P− ′

UP ′
US ′Exposed parts of

Figure 2 Our RHC construction

Exposed parts of

The sender generates another pair of instances of OTS, UP ′ and US ′ , in the same way as

before and computing as the tip of the new RHC. Now, the sender sends ()N
Uh P ′ ()N

Uh P ′

and the appropriate parts of required to sign US ()N
Uh P ′ to the receiver. The receiver checks

the signature on using and the exposed parts of . Once the checking is passed, ()N
Uh P ′

UP US

 5

the receiver accepts the tip of the new RHC, which is ready to be spent as CHC. This

process can continue indefinitely in the similar way so that an infinite number of finite length hash
chains tied together. Obviously, the non-repudiability is maintained during the process. Figure 2
illustrates our construction.

(N
Uh P ′)

5 Comparison between our construction and Goyal’s
Our construction also has the advantage of improving efficiency further similar to Goyal’s if

the to-be-exposed parts of OTS secret key are also spent in the same manner as the normal links of
the RHC. The operation is as following:

a) The N links of RHC are released in the usual manner till is reached. UP

b) Then, the sender computes ()N
Uh P ′ and sends it to the receiver who stores it without

verification. Now the sender sends the to-be-exposed parts of one by one (in different

messages) as links.

US

c) After the receiver gets all the required parts of , he can verify . Now the RHC

can be used as in a) and b).

US ()N
Uh P ′

On average, the number of the to-be-exposed parts of is US ()2log () 2L L+ ⎡ ⎤⎢ ⎥ , so a RHC of

length N can be used ()2log () 2N L L+ + ⎡ ⎤⎢ ⎥ times.

In addition, our construction has the following advantages over Goyal’s:

a) We note that in [11] the usage of is somewhat special. In our construction,

is a link on chain naturally so that the generation of tip need not any special operation and the

receiver need not to pre-store . Of course, [11] can also directly use instead of

, correspondingly the tip should be computed as to result in a

variation of its construction, referring to Figure 1(b), which can be thought out of Figure 1(a)
intuitively. However, when current RHC is used, no one can determine whether a new RHC

should be re-initialized. Under this condition, transferring is of no significance.

Especially, the size of is not small, if unnecessary, should not exist in traffic.

Although not illuminated in [11], it is reasonable to use to avoid unnecessary traffic.

In our construction, it is natural to transfer only when the current RHC is exhausted, so

that there can’t be any unnecessary traffic.

()Uh P ()Uh P

()Uh P UP

()Uh P 1((),N
Uh h s P−)

UP

UP UP

()Uh P

UP

b) In our construction, there is no need to generate extra random seed values for hash chain.

Because are random, the images under h(), , are also random. It is natural and US UP

 6

reasonable to make use of as seed value. UP

From above analysis, our construction is a little more efficient than Goyal’s. More
importantly, our construction is a very natural extension to the concept of CHC.
6 Conclusions

We present an improved method to re-initialize hash chains. It can efficiently and securely
re-initialize hash chains in a non-repudiable manner and extends the concept of conventional hash
chains in a very natural way. Our method is pragmatic for most systems using hash chains.

References
[1] L. Lamport. Password authentication with insecure communication. Communications of the
ACM, 1981, 24(11): 770-772.
[2] R. Rivest and A. Shamir. Payword and MicroMint: two simple micropayment schemes.
Proceedings of the 4th Security Protocols International Workshop (Security Protocols), Lecture
Notes in Computer Science, Cambridge, UK, 1996, 1189:69-87.
[3] R. Anderson, H. Manifavas and C. Sutherland. NetCard – a practical electronic cash system.
Proceedings of the 4th Security Protocols International Workshop (Security Protocols), Lecture
Notes in Computer Science, Cambridge, UK, 1996, 1189: 49-57.
[4] T. Pedersen. Electronic payments of small amounts. Proceedings of the 4th Security Protocols
International Workshop (Security Protocols), Lecture Notes in Computer Science, Cambridge, UK,
1996, 1189: 59-68.
[5] X. Dai and B. Lo. Netpay-An efficient protocol for micropayments on the WWW. URL:
http://ausweb.scu.edu.au/aw99/papers/dai/paper.html
[6] N. Asokan, G. Tsudik and M. Waidners. Server-supported signatures. Journal of Computer
Security, Nov. 1997.
[7] X. Ding, D. Mazzocchi and G. Tsudik. Experimenting with server-aided signatures. Network
and Distributed Systems Security Symposium (NDSS ’02), Feb. 2002.
[8] A. Perrig, R. Canetti, D. Song and D. Tygar. Efficient authentication and signing of multicast
streams over lossy channels. Proceedings of IEEE Security and Privacy Symposium S&P 2000,
May 2000.
[9] A. Perrig, R. Canetti, D. Song and D. Tygar. Efficient and secure source authentication for
multicast. Proceedings of Network and Distributed System Security Symposium NDSS 2001, Feb.
2001.
[10] W. Aiello, S. Lodha and R. Ostrovsky. Fast digital identity revocation. Proceedings of
Advances in Cryptography – Crypto ’98, Lecture Notes in Computer Science, Berlin, Germany,
1998, vol. 1462: 137-152.
[11] V. Goyal. How to re-initialize a hash chain. URL: http://eprint.iacr.org/ 2004/097.pdf
[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. on Information
Theory, 1976, IT-22(11): 644-654.
[13] R. Merkle. A digital signature based on a conventional encryption function. Proceedings of
Advances in Cryptology – CRYPTO ’87, Lecture Notes in Computer Science, Santa Barbara, CA,
USA, 1988, vol. 293: 369-378.
[14] K. Bicakci and N. Baykal. Infinite length hash chains and their applications. Proceedings of
the 11th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative

 7

Enterprises (WETICE’02), Pittsburgh, USA, June 2002: 57-61.
[15] R. Rivest. The MD5 message digest algorithm. RFC 1321, April 1992.

 8

