
Efficient Certificateless Public Key Encryption

Zhaohui Cheng and Richard Comley

School of Computing Science, Middlesex University
White Hart Lane, London N17 8HR, United Kingdom

{m.z.cheng, r.comley}@mdx.ac.uk

Abstract. In [3] Al-Riyami and Paterson introduced the notion of “Cer-
tificateless Public Key Cryptography” and presented an instantiation. In
the paper, we construct a more efficient scheme of certificateless public
key encryption and extend it to an authenticated encryption.

1 Introduction

To address the threat of the man-in-the-middle attack, a public key infrastruc-
ture (PKI) managing certificates is needed to establish a secure system in the tra-
ditional public key cryptography setting. However, a PKI faces many challenges
in the practice, especially the scalability of the infrastructure. In [24], Shamir
first introduced the notion of identity-based cryptography (IBC) in which the
identity of an entity is the public key, so to reduce the complexity of managing
certificates. However, the key escrow function is integrated in this setting. To
combine the advantage of both systems, in [3] Al-Riyami and Paterson brought
forth the notion of “Certificateless Public Key Cryptography” (CL-PKC).

The basic rationale behind the certificateless public key encryption is simple,
i.e., even the adversary successfully replaces the victim’s public key with his own
choice (hence the adversary could know the corresponding private key), it still
cannot decrypt the message encrypted with the public key that it published. This
will dramatically reduce the adversary’s interest to launch such kind of attack,
which is one of the major threats in the traditional public key systems. Although
the idea is attractive, it is uninstantiable in the traditional public key system in
which an entity’s private key corresponds merely to the entity’s public key. To
get around this problem, a different methodology is adopted, i.e., to prevent the
adversary from freely publishing the public key for any other entity. A trusted
third party (TTP) is introduced to play an active role to issue a certificate to bind
a key pair with an entity. In a certificate, the identity component is merely used
to identify the entity who owns the public/private key pair. While, after the first
provable-practical identity-based encryption scheme finally was materialized [8],
the identity of an entity can also serve as a public key and the CL-PKE becomes
realistic.

So far, there are two major constructions of certificateless public key en-
cryption (CL-PKE), i.e., the scheme proposed by Gentry in [17] and the system
in [3] (we call it AP’s scheme). In this paper, after reformulating the CL-PKE, we

2

present another CL-PKE scheme which is just the combination of an IBE and a
traditional PKE. The new scheme is more efficient on computation or published
information than the existing schemes. Meanwhile, we extend the scheme to an
authenticated encryption.

The paper is organized as follows. First we rethink the formulation of CL-
PKE and review a primitive and the existing CL-PKE schemes. The new CL-
PKE scheme is presented in Section 3 and then we extend it to an authenticated
encryption. Finally, we remark the three CL-PKE schemes on complexity and
application.

2 Preliminaries

2.1 Certificateless Public Key Encryption

Here we follow the formulation in [3] to define the CL-PKE with some simplifica-
tion. A CL-PKE scheme involving a TTP (the “Private Key Generator” (PKG))
consists of following algorithms.

• Setup. This algorithm takes a security parameter k and returns params
(system parameters) and a master-key. The system parameters include
a description of a finite message space M , and a description of a finite
ciphertext space C . The system parameters will be publicly known, while
the master-key will be known only to the PKG.

• Extract. This algorithm running on the PKG takes as input params, the
master-key, and a string IDA ∈ {0, 1}∗ from entity A, and returns a private
key dA denoted by PrivKeyL.

• Publish. This algorithm taking as input params, returns a private key tA
denoted by PrivKeyR and the public key NA for an entity A.

• Encrypt. This algorithm takes as input params, the identity IDA of entity
A, a message m ∈ M and the public key NA of A and returns a ciphertext
C ∈ C .

• Decrypt. This algorithm takes as inputs params, C ∈ C , and the private
keys dA and tA, and returns a message m ∈ M or a message ⊥ indicating a
decryption failure.

In the above definition, algorithms Extract and Publish can be invoked in either
order. There are three private keys in the system. The master-key is known to
the PKG; PrvkeyL is known to both the PKG and the entity, and PrvKeyR
is kept secret by the entity itself. Corresponding to the threat of compromising
these keys (note that, the exposure of the master-key immediately compromises
every PrvKeyL), there are two types of adversary. Now we define two games1

1 It is more general to define a single game with three separate stages, i.e., Stage 1 for
Step to generate the system parameters and the master key, Stage 2 corresponding
to the following Game 1 and Stage 3 for Game 2 (without the Setup phase). The
adversary erases any internal state information before entering Stage 3 and before
starting Stage 3, the challenger provides some extra information (i.e., the master
key) apart from the system parameters to the adversary. The adversary wins any
stage (Stage 2 or Stage 3) to win the game.

3

to formalize the adaptive chosen-ciphertext attack secure CL-PKE against these
adversaries. Note that our security definition is different from the one in [3].

A Type-I adversary which does not know the master-key, takes part in the
following game (Game 1) with a challenger.

– Setup. The challenger takes a security parameter k and runs the Setup al-
gorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

– Phase 1. The adversary issues queries q1, . . . , qn of one of follows:
• Extraction query on IDi (of PrvKeyL). The challenger responds by

running algorithm Extract to generate the private key dIDi and passes
it to the adversary.

• Publish query on IDi. The challenger runs algorithm Publish, passes
NIDi to the adversary and maintains a key pair list to store the generated
key pairs 〈NIDi

, tIDi
〉.

• Replace query on IDi with the new public key N ′
IDi

. The challenger
records the updated public key N ′

IDi
for IDi.

• Get PrvKeyR query on IDi. If the public key of IDi has not been
replaced, the challenger responds with the corresponding tIDi , otherwise,
it aborts the game.

• Decryption query on 〈IDi, Ci, Ni〉. The challenger decrypts the cipher-
text by finding dIDi (through running Extract if necessary) and tIDi

(in the public/private key pair list. Note that in the game, the list is
of polynomial length). If tIDi cannot be found in the key pair list, the
challenger outputs ⊥.

– Challenge. Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts m0,m1 ∈ M , an identity IDch and the public
key Nch on which it wishes to be challenged. The only constraint is that
IDch did not appear in any Extraction query in Phase 1 (so, Nch could
have been replaced). The challenger picks a random bit b ∈ {0, 1} and sets
C∗=Encrypt(params, IDch,mb, Nch). It sends C∗ as the challenge to the
adversary.

– Phase 2. The adversary issues more queries qn+1, . . . , qm where query qi is
one of:
• Extraction query on IDi where IDi 6= IDch. The challenger responds as

in Phase 1.
• Publish query on IDi. The challenger responds as in Phase 1.
• Replace query on IDi with the new public key N ′

IDi
. The challenger

responds as in Phase 1.
• Get PrvKeyR query on IDi. The challenger responds as in Phase 1.
• Decryption query on 〈IDi, Ci, Ni〉 6= 〈IDch, C∗, Nch〉. The challenger

responds as in Phase 1.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

A Type-II adversary which has the master-key (so, it knows every entity’s
private key PrivKeyL) takes part in the following game (Game 2) with a chal-
lenger. As this game simulates the scenario of using the traditional PKE and in

4

the adaptive chosen-ciphertext attack game of this setting, the adversary does
not adaptively corrupt entities of an entity set in the literature [18][6], here we
define the game in the same way to disallow the corrupt operation.

– The challenger takes a security parameter k and runs the Setup algorithm.
It gives the adversary both the resulting system parameters params and
the master-key.

– The adversary chooses the victim entity with identity IDch.
– Phase 1. The adversary issues queries q1, . . . , qn of one of follows:

• Publish key query on IDi. The challenger runs algorithm Publish, passes
NIDi

to the adversary and maintains a key pair list to store the generated
key pairs 〈NIDi

, tIDi
〉.

• Decryption query on 〈IDch, Ci, Nch〉. The challenger responds in the
same way as in the Decryption query in Phase 1 of Game 1.

– Challenge. Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts m0,m1 ∈ M , on which it wishes to be challenged.
The challenger picks a random bit b ∈ {0, 1} and sets C∗=Encrypt(params,
IDch,mb, Nch). It sends C∗ as the challenge to the adversary.

– Phase 2. The adversary issues more queries qn+1, . . . , qm where query qi is
one of:
• Publish key query on IDi. The challenger responds as in Phase 1.
• Decryption query on 〈IDch, Ci, Nch〉 where Ci 6= C∗. The challenger

responds as in Phase 1.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

We refer to these two types of adversary as IND-CCA Type-I (and Type-II)
adversary. The advantage of an IND-CCA Type-I (Type-II) adversary A against
the scheme E is the function of security parameter k: AdvI

E,A(k) = |Pr[b′ =
b]− 1/2| (AdvII

E,A(k) = |Pr[b′ = b]− 1/2|).

Definition 1 A CL-PKE scheme E is IND-CCA secure if for any IND-CCA
Type-I (and Type-II) adversary, AdvI

E,A(k) (and AdvII
E,A(k)) is negligible.

The security definition here, which is more like the security definition without
certificate updating in [17], differs from [3] (and some other work [28][29][4]) in
two significant ways.

First, our definition of the Type-II adversary which follows the standard
IND-CCA2 definition in the literature, is more conservative than the one speci-
fied in [3] (and [28][29][4]). In [3], the Type-II adversary is allowed to adaptively
corrupt the entities by an Extract private key for entity A query. Note that there
is a subtle difference between this query and a complete corruption. A complete
corruption allows the adversary to reveal an entity’s current state. The Extract
private key for entity A query is very close to a corruption in a multiparty com-
putation model on the asynchronous channel with erasure. If a CL-PKE scheme
satisfying the formulation allowing complete corruption exists, then it is straight-
forward to construct an adaptively corrupting IND-CCA encryption scheme (we

5

shorthand as ADC-IND-CCA) from a CL-PKE by just including the master-
key as part of the system parameter. However, it appears that the construction
of a practical ADC-IND-CCA secure scheme is still an open problem. Nielsen
presented such a scheme that is secure in the random oracle model but proved
that the scheme cannot be materialized, so to provide a separation between the
random oracle model and standard model [22]. While, in [5] the authors raised
a concern of Nielsen’s result. For more information of ADC-IND-CCA secure
schemes, please see [9][11][12]. We think that it is not prudent to simply assume,
without further investigation, that the extra adaptive private key extraction
ability does not help the adversary to win the game which simulates a standard
encryption construction. Hence we adopt the standard formulation here.

Second, in the model of [3], it is required that even if Ni is a replaced public
key (by the adversary) of entity IDi and is not in the key pair list maintained by
the challenger, the challenger still needs to answer the Decrypt query correctly
somehow with great probability. It appears that if the scheme E is secure against
any IND-CCA Type-II adversary defined in [3], the challenger in Game 1 is
not able to decrypt the query without knowing the private key corresponding
to the used public key and at the same time without the help of some extra
facility. Specifically, if the challenger treats the adversary as a black-box, i.e., it
only interacts with the adversary via an interface by answering just the queries
defined in the game, the challenger of Game 1 cannot answer the decryption
query without the corresponding private key. Otherwise, we can construct an
adversary to use the challenger of Game 1 as a subroutine to win Game 2 defined
in [3] (this is more obvious in the aforementioned single game model). Note
that in the random oracle model, the challenger in the games indeed has extra
advantages over the adversary if a random oracle is used, e.g., it can program the
random oracle as its wish and has the full access to the complete input/output
list maintained by the random oracle (so we do not regard the reduction in
the random oracle model as a black-box reduction). Hence it is possible that the
challenger can answer such peculiar type of decryption query while the adversary
cannot win Game 2. Note that the concrete CL-PKE scheme in [3] uses the
random oracle in a substantial way to achieve plaintext awareness.

In the formulation here, we do not require the challenger to answer such
decryption query successfully. We argue that the formulation can simulate the
chosen-ciphertext attack in the practice. If an adversary replaces B’s public key
with N ′

B generated by itself and A encrypts a message with N ′
B , we should

not expect that B which behaves honestly to follow the Decrypt algorithm,
can decrypt the message successfully when it is used as a decryption oracle.
Otherwise, the public key N ′

B must be used in trivial means in the algorithm
Encrypt. On the other hand, if a public key is used trivially in Encrypt, the
adversary can easily win Game 2. The formulation also covers the malicious
behavior that the adversary replaces B’s public key with C’s and after getting
the ciphertext encrypted for B with C’s public key, asks B and C to cooperate
to decrypt it somehow. In this case, the challenger will answer the decryption
query correctly. In fact, this simulation maybe is still unnecessarily strong.

6

A secure CL-PKE scheme achieves two important properties that differ a
CL-PKE from either an IBE or a traditional PKE. First, the public key of an
entity can be loosely (no need of security measures) bound with the identity
of the entity because a CL-PKE is secure against Type-I adversaries. This is a
big advantage over the traditional PKE. Second, a secure CL-PKE achieves the
master-key forward secrecy against Type-II adversaries (i.e., key-escrow free)
which is not achievable in the IBE following Shamir’s framework [24], while
needed and realized in the traditional PKE (the compromise of the signing key
of a Certificate Authority (CA) does not pose the threat on existing encrypted
messages and a CA cannot decrypt a message encrypted for an entity of which
only the public key is known by the CA).

2.2 Bilinear Groups

Here we briefly review some facts about bilinear groups and pairings used in the
schemes in this paper.

Definition 2 A pairing is a bilinear map ê : G1 × G1 → G2 with two cyclic
group G1 and G2 of prime order q, which has the following properties [8]:

1. Bilinear: ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Z∗q .
2. Non-degenerate: For a given point Q ∈ G1, ê(Q, R) = 1G2 for all R ∈ G1 if

and only if Q = 1G1 .
3. Computable: There is an efficient algorithm to compute ê(P,Q) for any

P, Q ∈ G1.

The modified Weil and Tate pairings on elliptic curves can be used to build such
bilinear maps [27].

Assumption 1 Bilinear Diffie-Hellman Assumption (BDH) [8] Let G be
a parameter generator which with system parameters 1k as input generates two
cyclic groups G1,G2 of prime order q, a generator P ∈ G∗1 and a bilinear map
ê. We define the advantage of an algorithm A in solving the problem (given
〈P, aP, bP, cP 〉, to compute ê(P, P)abc) by:

AdvG,A(k) = Pr[A(q,G1,G2, ê, P, aP, bP, cP) = ê(P, P)abc|
〈q,G1,G2, P, ê〉 ← G(1k), P ∈ G∗1, a, b, c

R←− Z∗q].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k)
is negligible.

Note that the BDH assumption implies the following Computational Diffie-
Hellam (CDH) assumption in group G1.

Assumption 2 Computational Diffie-Hellman Assumption (CDH) Let
G be a parameter generator which with system parameters 1k as input generates
a group G1 of prime order q and a generator P ∈ G∗1. We define the advantage of

7

an algorithm A in solving the problem (given 〈G1, P, aP, bP 〉, to compute abP)
by:

AdvG1,A(k) = Pr[A(q,G1, P, aP, bP) = abP |
〈q,G1, P, 〉 ← G(1k), P ∈ G∗1, a, b

R←− Z∗q].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k)
is negligible.

2.3 Existing Schemes

Apart from introducing the notion of CL-PKC, Al-Riyami and Paterson also
proposed a concrete scheme which extends Boneh-Franklin’s IBE based on the
so called general BDH assumption, i.e., given (G1,G2, P, aP, bP, cP) such that
a, b, c

R←− Z∗q , it is hard to output a pair (Q ∈ G∗1, ê(P,Q)abc). A certificateless
signature and a hierarchical encryption system were constructed as well [3].

The same authors constructed a simple CL-PKE [4] to be presented on PKC
2005, which our scheme is very similar to. We first became aware of this work
from the personal communication with one of the authors after we had posted
the paper on ePrint. Despite the similarity, our work is different from [4] in a
few ways. First, our formulation is different from [4] and can be instantiated
based on the instantiation of Boneh-Franklin’s IBE. Second, our construction is
slightly faster than the one in [4] (our scheme uses four hash functions instead
of five). Third, we analyze the deficiency of the formulation of authenticated
encryption and present a concrete construction.

It is not difficult to demonstrate that the scheme proposed by Gentry in [17]
is also a CL-PKE. Gentry’s scheme is different from AP’s in a few ways. First, an
entity with identity IDA publishes infoA including a single element tAP ∈ G∗1
(tA ∈ Z∗q is the private key PrvKeyR) and some other information (naturally,
the identity IDA). Second, algorithm Extract takes infoA, the master-key s
and params as input and returns dA = sH1(Ppub‖infoA) (a‖b denotes the
concatenation of two strings a and b) as PrvKeyL of A. Algorithms Encrypt
and Decrypt work differently from AP’s as well.

In [28], Yum and Lee presented a general construction of CL-PKE by an
IBE and a traditional PKE following a formulation similar to [3], but which
does not require the challenger in Game 1 to answer a decryption query without
knowledge of the corresponding private key. While, their model still allows the
adaptive corruption in Game 2.

An authenticated CL-PKE is intended in [21] to improve the performance of
AP’s scheme. However, the scheme is not secure against the Type-I adversary. It
is easy to check that if the adversary randomly chooses x1, x2 ∈ Z∗q and publishes
〈x1P, x2P 〉 as 〈XB , YB〉, the adversary can recover the decryption immediately
by computing T = x1xAP and ê(dA, YB)r = ê(rQA, x2Ppub).

8

3 The New CL-PKE

Pairing is a very heavy operation compared with the point scalar, exponentia-
tion and hash operations. In the above two concrete CL-PKE’s, AP’s scheme
needs three (resp. one) pairings in algorithm Encrypt (resp. Decrypt), while
Gentry’s scheme needs two (resp. one) pairings in Encrypt (resp. Decrypt). Here
we present another construction which is more efficient in encryption. Just as in-
tended by the CL-PKE (to combine the advantage of both the traditional PKE
and the IBE), our scheme are exactly the integration, using a hash function
as a hedge (borrowed from [25]), of two algorithms with one of each type, i.e.,
Boneh-Franklin’s IBE [8] and a variant of ElGamal’s Diffie-Hellman encryption
scheme [15][1] strengthened using Fujisaki-Okamoto’s transform [16].

Setup. Given a security parameter k, the parameter generator follows the steps.

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP .
3. Pick four cryptographic hash functions H1 : {0, 1}∗ → G∗1, H2 : G1 × G2 ×
G1 → {0, 1}n, H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n for
some integer n > 0.

The message space isM = {0, 1}n. The ciphertext space is C = G∗1×{0, 1}n×
{0, 1}n. The system parameters are params = 〈q,G1,G2, ê, n, P, Ppub,H1, H2,H3,
H4〉. s is the master-key of the system.

Extract. Given a string IDA ∈ {0, 1}∗, params and the master-key, the al-
gorithm computes QA = H1(IDA) ∈ G∗1, dA = sQA and returns dA.

Publish. Given params, an entity A selects a random tA ∈ Z∗q and computes
NA = tAP . The entity can ask the PKG to publish NA or publishes it by itself
or via any directory service as its public key.

Encrypt. Given a plaintext m ∈ M, the identity IDA of entity A, the system
parameters params and the public key NA of the entity, the following steps are
performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA), gr = ê(Ppub, QA)r and f = rNA.
3. Set the ciphertext to C = 〈rP, σ ⊕H2(rP, gr, f), m⊕H4(σ)〉.

Decrypt. Given a ciphertext 〈U, V, W 〉 ∈ C, the private keys dA, tA and params,
follow the steps:

1. Compute g′ = ê(U, dA), f ′ = tAU and σ′ = V ⊕H2(U, g′, f ′)
2. Compute m′ = W ⊕H4(σ′) and r′ = H3(σ′,m′).
3. If U 6= r′P , output ⊥, else return m′ as the plaintext.

9

The consistency of the scheme can be easily verified. The security of the scheme
in the random oracle model can be proved rather straightforwardly based on the
existing work. The scheme’s property against Type-I adversaries follows directly
from the security proof of Boneh-Franklin’s IBE. The property against Type-II
adversaries fairly straightly follows from the work in [16] based on the CDH
assumption in G1 implied by the BDH assumption. The use of rP in H2 is
suggested in [26][13] which makes use of the Gap Diffie-Hellman2 assumption in
G1 in the security proof to achieve non-malleability3 [6] and a tighter reduction.
We skip the tedious details here.

Theorem 1 The above scheme is an IND-CCA-secure CL-PKE provided that
H1, H2,H3, and H4 are random oracles and the BDH assumption is sound.

4 A CL-Auth-PKE

The new CL-PKE scheme can be simply extended to an authenticated en-
cryption (Auth-PKE)(not signcryption) [20][2][30]. The formulation of identity-
based Auth-PKE (with message privacy and authenticity property) can be found
in [20], which can be extended to the certificatless setting with considering the
extra public key. However, the formulation and construction in [20] (and the
outsider security in [2]) does not achieve the forward secrecy of sender’s pri-
vate keys (we shorthand as forward secrecy), i.e., if the sender’s private keys
are compromised, any message encrypted with these keys, could be recovered.
We think this is an unattractive property in the practice. Further analysis shows
that there are two subcases. Case 1, the adversary has the interest to recover the
decryption of those ciphertexts auth-encrypted before it has compromised the
sender’s private keys. Case 2, although the private keys were exposed, an entity
continues to use these keys to auth-encrypt messages (maybe the attack is so
smart that the victim entity cannot notice the fact that its keys are leaked). The
adversary wants to decrypt the messages auth-encrypted after the compromise
of the keys as well. In Case 1 the scheme only needs to achieve forward secrecy,
while in Case 2 the scheme has to guarantee both forward and (we call it) back-
ward secrecy. Moreover, as in Case 2 the compromised entity is still active, it
could be used as a decryption oracle. Hence in Case 2 we should design a scheme
against adaptive chosen ciphertext attacks, while in Case 1 a chosen plaintext
attack Auth-PKE (IND-CPA-Auth-PKE) that is secure on the prerequisite of
the secrecy of receiver’s private keys is enough (for well-known reason, one-way
encryption [16] is inadequate).

The forward secrecy of an Auth-PKE against Type-I adversaries is defined
by the following sender-key-known CPA game.

2 The Computational DH still appears hard, even in the presence of a Decisional DH
oracle [23].

3 Although proved in [6] that the non-malleability and IND-CCA2 imply each other, to
prove that the scheme without using rP in H2 is secure against Type-II adversaries,
we need a prerequisite that rP is uniquely represented in the ciphertext space [26].

10

– Setup. The challenger takes a security parameter k and runs the Setup al-
gorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

– Query phase. The adversary issues the following queries.
• Extraction query on IDs (of PrvKeyL). The challenger responds by

running algorithm Extract to generate the private key dIDs
and passes

it to the adversary.
• Publish query on IDs and IDr. The challenger runs algorithm Publish,

passes NIDs
and NIDr

to the adversary and maintains a key pair list to
store the generated key pairs.

• Get PrvKeyR query on IDs and IDr. The challenger responds with tIDs

and tIDr
which correspond to the public key NIDs

and NIDr
respectively.

– Challenge. The adversary outputs two equal length plaintexts m0,m1 ∈
M , and the public key N ′

IDr
on which it wishes to be challenged. The

challenger picks a random bit b ∈ {0, 1} and sets C∗=Auth-Encrypt(params,
IDs, dIDs

, tIDs
, NIDs

,mb, IDr, N
′
IDr

), i.e., mb is encrypted for the receiver
with identity IDr and public key N ′

IDr
by the sender with identity IDs

and public/private key pair NIDs/tIDs . It sends C∗ as the challenge to the
adversary. Note that N ′

IDr
could be different from NIDr , while NIDs has to

be the one published by the challenger.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

The advantage of a sender-key-known IND-CPA Type-I adversary A against
the Auth-PKE scheme E is the function of security parameter k: AdvI−CPA

E,A (k) =
|Pr[b′ = b] − 1/2|. Note that, the above game does not allow the adversary
to adaptively choose the sender or receiver (in the forward secrecy setting).
Similarly, we can define another game to define the forward secrecy of an Auth-
PKE against Type-II adversaries. So, we say that a CL-Auth-PKE is secure
only if it achieves message privacy, message authenticity and forward secrecy of
sender’s private keys.

Here we construct a CL-Auth-PKE scheme achieving the forward secrecy (in
fact, the backward secrecy as well. See the argument in Appendix A).

Setup. Same as the algorithm Setup in the CL-PKE scheme, except that the
hash function H2 is defined as H2 : G1 ×G1 ×G2 ×G1 → {0, 1}n.

Extract and Publish work in the same way as in the CL-PKE scheme.

Auth-Encrypt. Given a plaintext m ∈M, identity IDA, public key NA, private
keys dA, tA of sender A, identity IDB and public key NB of receiver B and
params, the following steps are performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA), QB = H1(IDB), gr = ê(dA, QB)r and f =

rtANB .

11

3. Set the ciphertext to C = 〈rNA, rQA, σ⊕H2(rNA, rQA, gr, f), m⊕H4(σ)〉.
Auth-Decrypt. Given a ciphertext 〈T, U, V, W 〉 ∈ C, the private keys dB , tB
and identity IDB of receiver B, the public key NA and identity IDA of sender
A, and params, follow the steps:

1. Compute g′ = ê(U, dB), f ′ = tBT and σ′ = V ⊕H2(T, U, g′, f ′)
2. Compute m′ = W ⊕H4(σ′), r′ = H3(σ′,m′) and QA = H1(IDA).
3. If U 6= r′QA or T 6= r′NA, output ⊥, else return m′ as the plaintext.

Adopting the similar method in the proof of Theorem 4.1 in [8], we can prove
that the above scheme achieves the forward secrecy against Type-I adversaries.
Please see Appendix A for part of the proof. Using the similar way to prove
that ElGamal’s DH encryption strengthened by Fujisaki-Okamoto’s transform
is IND-CCA secure, we can prove that the scheme is forward secure against
Type-II adversaries. Note that the scheme can be sender-anonymous, i.e., no
second party (apart from the intended receiver) can recover the sender’s identity
merely from the ciphertext. In this case, the sender’s identity is part of the
message being auth-encrypted.

5 Remarks on CL-PKE’s

First, we evaluate the complexity of three schemes. The schemes have four major
operations, i.e., Pairing, Scalar, Exponentiation and Hash. Pairing is the heaviest
one which involves the point scalar as one of the basic operations, even if many
techniques can be applied on pairing operation to dramatically improve the per-
formance [10]. Note that some point scalar operations in G1 and exponentiations
in G2 can be converted to each other and the performance difference of these
two operations heavily depends on the specific implementation. We count these
operations as they are presented in the schemes. Without considering the pre-
computation, the complexity of the schemes is listed in Table 1. Note that three
schemes have the same ciphertext length (except the Auth-Encryption scheme).

Encrypt Decrypt pubkey len
P S E H P S E H

Gentry’s scheme 2 1 1 5 1 1 0 3 1∗

AP’s scheme 3 1 1 4 1 1 0 3 2

New scheme 1 2 1 4 1 2 0 3 1

Auth-Encryption scheme 1 3 1 4 1 3 0 3 1

Table 1. The Complexity of CL-PKE’s

We can find that the new scheme is fastest in Encrypt (which is more sig-
nificant in a hierarchical system such as [19][3][17]), while relatively slower than

12

other two schemes in Decrypt. AP’s scheme needs to publish two elements of G1,
while the new scheme needs only one. This would save the bandwidth in some
situations, e.g., if the scheme is used in a key exchange protocol which needs the
sender to piggy-send its public key in a message. Note that in Gentry’s scheme,
infoA of entity A could also include only a single element in G1 and its iden-
tity. The new scheme does have a disadvantage, i.e, there are two private keys
managed by each entity, while in other two schemes, two private keys can be
combined as one, so to save storage. We also note that if the result of Step 1 in
algorithm Encrypt of AP’s scheme can be reused, AP’s scheme becomes most
efficient on computation.

Gentry’s scheme works more like a traditional PKE. In the scheme, an entity
first generates its public/private key pair and then asks the PKG to issue a cer-
tificate to bind its identity with its public key. The disadvantage of this method
is that the entity cannot freely change its public key without interacting with the
PKG. On the other hand, we will see later that this method has two important
advantages. A good aspect of AP’s scheme is that it can be easily extended to
other certificateless protocols including signature. Note that the new scheme can
be easily modified to integrate AP’s solution. In the modified scheme, entity A
publishes its public key NA = (XA, YA) = (tAP, tAsP) as in AP’s. In algorithm
Encrypt, f is computed by f = rXA and then certificateless signature scheme
just works as the one in [3]. All the schemes can be converted to a KEM (similar
to ECIES-KEM) to be used in a hybrid encryption [26][13] (see Appendix B).

Finally, we give two comments on the CL-PKC in general. (1) In the CL-PKC
system, entities have to trust that the PKG will not launch an active attack to
replace an entity’s public key with its own choice. Although in the traditional
PKC, entities have to trust the CA as well, there is a fundamental difference
between these two systems. If a CA launch such attack, it will leave a trace (a
valid certificate) to face the legal penalty. While, in the CL-PKC, although sug-
gested in [3] and implemented in [17] that an entity’s public key and the identity
are bound together to generated PrvKeyL (hence only the PKG can generate
this key corresponding to the public key. Note that the new scheme can play this
trick as well), only when the PrvKeyL is used in an undeniable operation such
as signing a message, the PKG’s misbehavior can be traced (one advantage of
Gentry’s PrvKeyL generation method). This may be not good enough in many
settings. (2) The public key revocation is still a great challenge. If the two private
keys PrvKeyL and PrvKeyR are both compromised, the entity has to publish a
revocation message to prevent others from using the corresponding public key to
encrypt messages. So, a public key revocation list has to be maintained securely,
just as the certificate revocation list (CRL) in the traditional PKC. And if the
entity wants to keep its identity, then the system should generate PrvKeyL
in the same fashion as Gentry’s, e.g., PrvKeyLA = sH1(IDA‖NA) (another
advantage of Gentry’s PrvKeyL generation method). We seem to come back
to the starting point, to face the scalability issue. Some other solutions such as
key evolvement scheme [17], intrusion-resilient encryption [14], mediated encryp-
tion [7], etc, have been attempted. None of them can fully solve the problem.

13

6 Acknowledgement

The first author would like to thank Kenneth G. Paterson for his critical com-
ments on the formulation of the CL-PKE.

References

1. M. Abdalla, M. Bellare and P. Rogaway, “DHIES: An encryption scheme based
on the Diffie-Hellman Problem,” extended abstract, entitled The Oracle Diffie-
Hellman Assumptions and an Analysis of DHIES, in Topics in Cryptology - CT-
RSA 2001, LNCS Vol. 2020, 2001.

2. J. H. An, Y. Dodis and T. Rabin, “On the security of joint signature and encryp-
tion,” In L. Knudsen, editor, Advances in Cryptology-Eurocrypt 2002, LNCS Vol.
2332, 2002.

3. S. S. Al-Riyami and K. G. Paterson, “Certificateless Public Key Cryptography,”
Advances in Cryptology-Asiacrypt 2003, LNCS 2894, 2003. See also Cryptology
ePrint Archive, Report 2003/126.

4. S. S. Al-Riyami and K. G. Paterson, “CBE from CL-PKE: A Generic Construction
and Efficient Schemes,” to appear in PKC 2005.

5. M. Bellare, A. Boldyreva and Adriana Palacio, “An Uninstantiable Random-
Oracle-Model Scheme for a Hybrid-Encryption Problem,” in EUROCRYPT 2004.

6. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among notions of
security for public-key encryption schemes,” in Advances in Cryptology CRYPTO
1998, LNCS Vol. 1462, 1998.

7. D. Boneh, X. Ding, G. Tsudik and C. Wong, “A Method for Fast Revocation
of Public Key Certificates and Security Capabilities,” Proceedings of the 10th
USENIX Security Symposium, USENIX, 2001.

8. D. Boneh and M. Franklin, “Identity Based Encryption from The Weil Pairing,”
extended abstract in Advances in Cryptology-Crypto 2001, LNCS Vol. 2139, 2001.

9. D. Beaver and S. Haber, “Cryptographic Protocols Provably Secure Against Dy-
namic Adversaries,” in Advance in Cryptology-Eurocrypt 1992, LNCS Vol. 658,
pp. 307-323, 1992.

10. P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott, “Efficient Algorithms for
Pairing-Based Cryptosystems,” Advances in Cryptology-Crypto 2002, LNCS Vol.
2442, pp. 354-368, 2002. See also Cryptology ePrint Archive, Report 2002/008.

11. R. Canetti, U. Feige, O. Goldreich and M. Naor, “Adaptively Secure Computa-
tion,” 28th ACM Symposium on Theory of Computing (STOC), ACM, pp. 639-
648, 1996. Full version in MIT-LCS-TR #682, 1996.

12. R. Canetti, S. Halevi and J. Katz, “Adaptively-Secure, Non-Interactive Public-Key
Encryption,” extended abstract at TCC 2005. See also Cryptology ePrint Archive,
Report 2004/317.

13. R. Cramer and V. Shoup, “Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack,” SIAM Journal of
Computing 33:167-226, 2003.

14. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “Intrusion-Resilient Public-
Key Encryption,” Topics in Cryptology - CT-RSA 2003, LNCS 2612, pp. 19-32,
2003.

15. T. ElGamal, “A public key cryptosystem and signature scheme based on discrete
logarithms,” IEEE Transactions on Information Theory, 31:469-472, 1985.

14

16. E. Fujisaki and T. Okamotom, “Secure Integration of Asymmetric and Symmet-
ric Encryption Schemes,” Advances in Cryptology - CRYPTO 1999 Proceedings,
pp.535-554, Springer-Verlag, 1999.

17. C. Gentry, “Certificate-Based Encryption and the Certificate Revocation Prob-
lem,” Cryptology ePrint Archive, 2003/183.

18. S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and
System Sciences Vol. 28, 270-299, 1984.

19. C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography,” in Proceed-
ings of Asiacrypt 2002, LNCS Vol. 2501, 2002.

20. B. Lynn, “Authenticated Identity-Based Encryption,” Cryptology ePrint Archive,
Report 2002/072.

21. Y.-R. Lee and H.-S. Lee, “An Authenticated Certificateless Public Key Encryption
Scheme,” Cryptology ePrint Archive, 2004/150.

22. J.B. Nielsen, “Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case,” Advance in Cryptology-Crypto
2002, LNCS vol. 2442, pp. 111-126, 2002.

23. T. Okamoto and D. Pointcheval, “The gap-problems: a new class of problems for
the security of cryptographic schemes,” In Proc. 2001 International Workshop on
Practice and Theory in Public Key Cryptography (PKC 2001), 2001.

24. A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” in Advances
in Cryptology-Crypto 1984, LNCS Vol. 196, 1984.

25. V. Shoup, “Using hash functions as a hedge against chosen ciphertext attack,” in
Proc. Eurocrypt 2000.

26. V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption,” 2001.
27. E. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems,” Advances in Cryptology–Eurocrypt 2001, LNCS Vol. 2045, pp.
195-210, 2001.

28. D.H. Yum and P.J. Lee, “Identitiy-based cryptography in public key management,”
in EuroPKI 2004, LNCS vol. 3093, pp. 71-84, 2004.

29. D.H. Yum and P.J. Lee, “Generic construction of certificateless encryption,” In
ICCSA 2004, LNCS vol. 3043, pp. 802-811, 2004.

30. Y. Zheng, “Digital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption),” In B. Kaliski, editor, Advances in Cryptology-
Crypto 1997, LNCS 1294, Vol. 1294, 1997.

Appendix A

We can follow the method in [8] to prove that the CL-Auth-PKE achieves the
forward secrecy against Type-I adversaries. Here we present only the proof of a
conclusion similar to Lemma 4.3 in [8]. Readers can extend the result to a full
proof as in [8].

First, we define a BasicAuthPub scheme consisting of following algorithms.
Keygen. Given a security parameter k, the parameter generator follows the
steps.

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP . Pick two random elements
QA, QB ∈ G∗1. Pick two random elements tA, tB ∈ Z∗q .

15

3. Pick a cryptographic hash function H2 : G1 × G2 × G1 → {0, 1}n for some
integer n > 0.

4. The public key is Kpub = 〈q,G1,G2, n, ê, P, Ppub, QA, tAP, QB , tBP, H2〉. The
private keys are tA, dA = sQA, tB , dB = sQB .

Encrypt. Given a plaintext m ∈ {0, 1}n, Kpub and the private keys dA, tA, the
following steps are performed.

1. Pick a random r ∈ Z∗q and compute gr = ê(dA, QB)r and f = rtAtBP .
2. Set the ciphertext to C = 〈rtAP, rQA, m⊕H2(rtAP, rQA, gr, f)〉.

Decrypt. Given a ciphertext 〈T, U, V 〉 encrypted using the public key Kpub, and
the private keys dB , tB , follow the step:

1. Compute g′ = ê(U, dB), f ′ = tBT and return m = V ⊕ H2(T, U, g′, f ′) as
the plaintext.

Lemma 1 Let H2 be a random oracle. Let A be a sender-key-known IND-CPA
adversary that has advantage ε(k) against BasicAuthPub. Suppose A makes a
total of qH2 > 0 queries to H2. Then there is an algorithm B that solves the BDH
problem with advantage at least 2ε(k)/qH2 and a running time O(time(A)).

Proof: For easy to prove the lemma, we extend the BDH assumption to the fol-
lowing assumption (EBDH). Given 〈q,G1,G2, R, aR, bR, cR, vR, vaR, vcR, t1, t1vR,
t1vcR, t2, t2vR〉 such that R ∈R G∗1 and a, b, c, v, t1, t2 ∈R Z∗q , it is hard to com-
pute ê(R, R)abc. Readers can easily verify that the BDH and EBDH assumptions
imply each other with a trivial reduction.

Algorithm B given a random EBDH instance interacts with A in the follow-
ing way (using A as a subroutine).

Setup. Algorithm B creates the BasicAuthPub public key Kpub in the following
way. B sets Kpub as 〈q,G1,G2, n, ê, vR, vaR, R, t1vR, bR, t2vR, H2〉, i.e., B sets
P = vR, s = a (which B does not known), Ppub = vaR, QA = R, tA = t1,
tAP = t1vR, QB = bR, tB = t2, tBP = t2vR and H2 is a random oracle con-
trolled by B . Note that by definition, the private keys are dA = sQA = aR, tA,
dB = sQB = abR (which B does not know) and tB .

H2-queries (Ti, Ui, Xi, Yi). At any time algorithm A can issues queries to the
random oracle H2. To response these queries B maintains a list of tuples called
H list

2 . Each entry in the list is a tuple of the form 〈Ti, Ui, Xi, Yi,Hi〉. To response
a query on (Ti, Ui, Xi, Yi), B does the following operations:

1. If (Ti, Ui, Xi, Yi) is on the list in a tuple 〈Ti, Ui, Xi, Yi,Hi〉, then B responds
with H2(Ti, Ui, Xi, Yi) = Hi.

2. Otherwise, B randomly chooses a string Hi ∈ {0, 1}n and adds the tuple
〈Ti, Ui, Xi, Yi,Hi〉 to the list. It responds to A with H2(Ti, Ui, Xi, Yi) = Hi.

Query phase.

16

– Extraction query on IDs. B responds with aR.
– Publish query on IDs and IDr. B responds with tAvR and tBvR.
– Get PrvKeyR query on IDs and IDr. B responds with tA and tB .

Challenge phase. Algorithm A outputs two messages m0,m1 and N ′
B on which

it wants to be challenged. B chooses a random string V ∈ {0, 1}n and defines
Cch = 〈tAvcR, cR, V 〉 = 〈T, U, V 〉. B gives Cch as the challenge to A . Note
that, by definition, U = rQA = cR (which implies r = c because QA = R), T =
rtAP = rtAvR = tAvcR and the decryption of C is V ⊕H2(T,U, ê(U, dB), tBT)
where ê(U, dB) = ê(cR, abR) = ê(R, R)abc.

Guess. Algorithm A outputs its guess c′ ∈ {0, 1}. At this point B picks a random
tuple 〈Ti, Ui, Xi, Yi,Hi〉 from the list Hlist

2 and outputs Xi as the solution to the
EBDH instance.

Following the same argument in the proof of Lemma 4.3 in [8], we have that
B outputs the correct answer to the EBDH instance with probability at least
2ε(k)/qH2 . In fact in the Guess phase, B can randomly choose a tuple from a
set S which includes the tuples whose Tj = T and Uj = U on list H list

2 . Then,
because of the randomness of cR, a tighter reduction could be obtained.

¤

Lemma 1 shows that the BasicAuthPub scheme already achieves the for-
ward secrecy again Type-I adversaries. By applying Fujisaki-Okamoto’s trans-
form, the full scheme is secure against sender-key-known CCA adversaries. Note
that, this simple reduction does not guarantee the security against the adaptively
corrupting adversaries implied in Boneh-Franklin’s proof [8].

Appendix B

An ECIES-KEM-similar hybrid encryption [1][26] consists of following algo-
rithms.
Setup. Given a security parameter k, the parameter generator follows the steps.

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP .
3. Pick two cryptographic hash functions H1 : {0, 1}∗ → G∗1, KDF : G1×G2×
G1 → {0, 1}n × {0, 1}l for some integers n, l > 0.

4. Pick a symmetric encryption algorithm ENCk1(·) which uses n-bit k1 as the
key. Pick a keyed-hash function MACk2 : {0, 1}∗ → {0, 1}t for some integer
t > 0, which uses l-bit k2 as the key.

The message space isM = {0, 1}∗. The ciphertext space is C = G∗1×{0, 1}∗×
{0, 1}t. The system parameters are params = 〈q,G1,G2, ê, n, P, Ppub,H1,KDF,
ENC(·),MAC(·)〉. s is the master-key of the system.

17

Publish. Given params, an entity A selects a random tA ∈ Z∗q and computes
NA = tAP . The entity can ask the PKG to publish NA or publishes it by itself
or via any directory service as its public key.

Extract. Given a string IDA ∈ {0, 1}∗, the public key NA generated in Publish,
params and the master-key, the algorithm computes QA = H1(IDA‖NA) ∈
G∗1, dA = sQA and returns dA.

Encrypt. Given a plaintext m ∈ M, the identity IDA of entity A, the system
parameters params and the public key NA of the entity, the following steps are
performed.

1. Pick a random r ∈ {0, 1}n and compute QA = H1(IDA‖NA), gr = ê(Ppub, QA)r

and f = rNA.
2. Compute 〈k1, k2〉 = KDF (rP, gr, f);
3. Compute c = ENCk1(m);
4. Compute t = MACk2(c).
5. Set the ciphertext to C = 〈rP, c, t〉.

Decrypt. Given a ciphertext 〈U, V, W 〉 ∈ C, the private keys dA, tA and params,
follow the steps:

1. Compute g′ = ê(U, dA), f ′ = tAU and 〈k1, k2〉 = KDF (rP, g′, f ′),
2. Verify that W = MACk2(V). If the equation does not hold, return ⊥ indi-

cating a decryption failure.
3. Compute m = ENC−1

k1
(V) as the plaintext.

