Efficient Certificateless Public Key Encryption

Zhaohui Cheng and Richard Comley

School of Computing Science, Middlesex University White Hart Lane, London N17 8HR, United Kingdom {m.z.cheng, r.comley}@mdx.ac.uk

Abstract. In [3] Al-Riyami and Paterson introduced the notion of "Certificateless Public Key Cryptography" and presented an instantiation. In the paper, we construct a more efficient scheme of certificateless public key encryption and extend it to an authenticated encryption.

1 Introduction

To address the threat of the man-in-the-middle attack, a public key infrastructure (PKI) managing certificates is needed to establish a secure system in the traditional public key cryptography setting. However, a PKI faces many challenges in the practice, especially the scalability of the infrastructure. In [26], Shamir first introduced the notion of identity-based cryptography (IBC) in which the identity of an entity is the public key, so to reduce the complexity of managing certificates. However, the key escrow function is integrated in this setting. To combine the advantage of both systems, in [3] Al-Riyami and Paterson brought forth the notion of "Certificateless Public Key Cryptography" (CL-PKC).

The intuition behind the certificateless public key encryption is that even the adversary successfully replaces the victim's public key with his own choice (hence the adversary could know the corresponding private key), it still cannot decrypt the message encrypted with the public key that it published. This will dramatically reduce the adversary's interest to launch such kind of attack, which is one of the major threats in the traditional public key systems. Although the idea is attractive, it is uninstantiable in the traditional public key system in which an entity's private key corresponds merely to the entity's public key. To get around this problem, a different methodology is adopted, i.e., to prevent the adversary from freely publishing the public key for any other entity. A trusted third party (TTP) is introduced to play an active role to issue a certificate to bind a key pair with an entity. In a certificate, the identity component is merely used to identify the entity who owns the public/private key pair. While, after the first provable-practical identity-based encryption scheme finally was materialized [8], the identity of an entity can also serve as a public key and the CL-PKE becomes realistic.

So far, there are two major constructions of certificateless public key encryption (CL-PKE), i.e., the scheme proposed by Gentry in [19] and the system in [3] (we call it AP's scheme). In this paper, after reformulating the CL-PKE, we present another CL-PKE scheme which is just the combination of an IBE and a traditional PKE. The new scheme is more efficient on computation or published information than the existing schemes. Meanwhile, we extend the scheme to an authenticated encryption.

The paper is organized as follows. First we rethink the formulation of CL-PKE and review a primitive and the existing CL-PKE schemes. The new CL-PKE scheme and a tweaked version are presented in Section 3 and then we extend the scheme to an authenticated encryption. Finally, we remark the CL-PKE schemes on complexity and application.

2 Preliminaries

2.1 Certificateless Public Key Encryption

Here we follow the formulation in [3] to define the CL-PKE with some simplification. A CL-PKE scheme involving a TTP (the "Private Key Generator" (PKG)) consists of following algorithms.

- Setup. This algorithm takes a security parameter k and returns **params** (system parameters) and a **master-key**. The system parameters include a description of a message space \mathcal{M} , and a description of a ciphertext space \mathcal{C} . The system parameters will be publicly known, while the **master-key** will be known only to the PKG.
- Extract. This algorithm running on the PKG takes as input **params**, the **master-key**, and a string $ID_A \in \{0, 1\}^*$ from entity A, and returns a private key d_A denoted by PrivKeyL.
- Publish. This algorithm taking as input **params**, returns a private key t_A denoted by PrivKeyR and the public key N_A for an entity A.
- Encrypt. This algorithm takes as input **params**, the identity ID_A of entity A, a message $m \in \mathcal{M}$ and the public key N_A of A and returns a ciphertext $C \in \mathcal{C}$.
- Decrypt. This algorithm takes as inputs **params**, $C \in C$, and the private keys d_A and t_A , and returns a message $m \in \mathcal{M}$ or a message \perp indicating a decryption failure.

In the above definition, algorithms Extract and Publish can be invoked in either order. There are three private keys in the system. The **master-key** is known to the PKG; PrvkeyL is known to both the PKG and the entity, and PrvKeyR is kept secret by the entity itself. Corresponding to the threat of compromising these keys (note that, the exposure of the **master-key** immediately compromises every PrvKeyL), there are two types of adversary. Now we define two games¹

¹ It is more general to define a single game with three separate stages, i.e., Stage 1 for Step to generate the system parameters and the master key, Stage 2 corresponding to the following Game 1 and Stage 3 for Game 2 (both without the Setup phase). The adversary erases any internal state information before entering Stage 3 and before starting Stage 3, the challenger provides some extra information (i.e., the master key) apart from the system parameters to the adversary. The adversary wins any stage (Stage 2 or Stage 3) to win the game.

to formalize the adaptive chosen-ciphertext attack secure CL-PKE against these adversaries. Note that our security definition is different from the one in [3].

A Type-I adversary which does not know the **master-key**, takes part in the following game² (Game 1) with a challenger.

- Setup. The challenger takes a security parameter k and runs the Setup algorithm. It gives the adversary the resulting system parameters **params**. It keeps the **master-key** to itself.
- Phase 1. The adversary issues queries q_1, \ldots, q_n of one of follows:
 - Extraction query on ID_i (of PrvKeyL). The challenger responds by running algorithm Extract to generate the private key d_{ID_i} and passes it to the adversary.
 - Publish query on ID_i . The challenger runs algorithm Publish, passes N_{ID_i} to the adversary and maintains a key pair list to store the generated key pairs $\langle N_{ID_i}, t_{ID_i} \rangle$.
 - Replace query on ID_i with the new public key N'_{ID_i} . The challenger records the updated public key N'_{ID_i} for ID_i .
 - Get PrvKeyR query on ID_i . If the public key of ID_i has not been replaced, the challenger responds with the corresponding t_{ID_i} , otherwise it aborts the game.
 - Decryption query on $\langle ID_i, C_i, N_i \rangle$. The challenger decrypts the ciphertext by finding d_{ID_i} (through running Extract if necessary) and t_{ID_i} (in the public/private key pair list. Note that in the game, the list is of polynomial length). If t_{ID_i} cannot be found in the key pair list, the challenger outputs \perp .
- Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts $m_0, m_1 \in \mathcal{M}$, an identity ID_{ch} and the public key N_{ch} on which it wishes to be challenged. The only constraint is that ID_{ch} did not appear in any Extraction query in Phase 1 (so, N_{ch} could have been replaced). The challenger picks a random bit $b \in \{0, 1\}$ and sets $C^*=\text{Encrypt}(\text{params}, ID_{ch}, m_b, N_{ch})$. It sends C^* as the challenge to the adversary.
- Phase 2. The adversary issues more queries q_{n+1}, \ldots, q_l where query q_i is one of:
 - Extraction query on ID_i where $ID_i \neq ID_{ch}$. The challenger responds as in Phase 1.
 - Publish query on ID_i . The challenger responds as in Phase 1.
 - Replace query on ID_i with the new public key N'_{ID_i} . The challenger responds as in Phase 1.
 - Get PrvKeyR query on ID_i . The challenger responds as in Phase 1.

 $^{^2}$ Game 1 follows the IBE formulation [8] which allows the adversary to adaptively corrupt the parties. Note that the security reduction of the Boneh-Franklin's IBE is proceeded in the random oracle, while a selective identity secure IBE which forces the adversary to commit the victim's identity at the beginning of the game can be constructed in the standard model, e.g. [13]. Game 1 can be easily modified to a selective identity game.

- Decryption query on $\langle ID_i, C_i, N_i \rangle \neq \langle ID_{ch}, C^*, N_{ch} \rangle$. The challenger responds as in Phase 1.
- Guess. Finally, the adversary outputs a guess $b' \in \{0, 1\}$ and wins the game if b' = b.

A Type-II adversary which has the **master-key** (so, it knows every entity's private key PrivKeyL) takes part in the following game (Game 2) with a challenger. As this game simulates the scenario of using the traditional PKE and in the adaptive chosen-ciphertext attack game of this setting, the adversary does not adaptively corrupt entities of an entity set in the literature [20][6], here we define the game in the same way to disallow the corrupt operation.

- The challenger takes a security parameter k and runs the Setup algorithm. It gives the adversary both the resulting system parameters **params** and the **master-key**.
- The adversary chooses the victim entity with identity ID_{ch} . This step is used to define a complete game.
- Phase 1. The adversary issues queries q_1, \ldots, q_n of one of follows:
 - Publish key query on ID_i . The challenger runs algorithm Publish, passes N_{ID_i} to the adversary and maintains a key pair list to store the generated key pairs $\langle N_{ID_i}, t_{ID_i} \rangle$.
 - Decryption query on $\langle ID_{ch}, C_i, N_{ch} \rangle$. The challenger responds in the same way as in the Decryption query in Phase 1 of Game 1.
- Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts $m_0, m_1 \in \mathcal{M}$, on which it wishes to be challenged. The challenger picks a random bit $b \in \{0, 1\}$ and sets $C^*=\text{Encrypt}(\text{params}, ID_{ch}, m_b, N_{ch})$. It sends C^* as the challenge to the adversary.
- Phase 2. The adversary issues more queries q_{n+1}, \ldots, q_l where query q_i is one of:
 - Publish key query on ID_i . The challenger responds as in Phase 1.
 - Decryption query on $\langle ID_{ch}, C_i, N_{ch} \rangle$ where $C_i \neq C^*$. The challenger responds as in Phase 1.
- Guess. Finally, the adversary outputs a guess $b' \in \{0, 1\}$ and wins the game if b' = b.

We refer to these two types of adversary as IND-CCA Type-I (and Type-II) adversary. The advantage of an IND-CCA Type-I (Type-II) adversary \mathcal{A} against the scheme \mathcal{E} is the function of security parameter k: $Adv_{\mathcal{E},\mathcal{A}}^{I}(k) = |Pr[b' = b] - 1/2|$ ($Adv_{\mathcal{E},\mathcal{A}}^{II}(k) = |Pr[b' = b] - 1/2|$).

Definition 1 A CL-PKE scheme \mathcal{E} is IND-CCA secure if for any IND-CCA Type-I (and Type-II) adversary, $Adv^{I}_{\mathcal{E},\mathcal{A}}(k)$ (and $Adv^{II}_{\mathcal{E},\mathcal{A}}(k)$) is negligible.

The security definition here, which is more like the security definition of CBE without certificate updating in [19], differs from [3] (and some following-up works [30][31][4]) in two significant ways.

First, our definition of the Type-II adversary which follows the standard IND-CCA2 definition in the literature, is more conservative than the one specified

in [3] (and [30][31][4]). In [3], the Type-II adversary is allowed to adaptively corrupt the entities by an *Extract private key for entity* A query. Note that there is a subtle difference between this query and a complete corruption. A complete corruption allows the adversary to reveal an entity's current state. The Extract private key for entity A query is very close to a corruption in a multiparty computation model with erasure. If a CL-PKE scheme satisfying the formulation allowing complete corruption exists, then it is straightforward to construct an adaptively corrupting IND-CCA encryption scheme (we shorthand as ADC-IND-CCA) from the CL-PKE by just including the **master-key** as part of the system parameter. However, it appears that the construction of a practical ADC-IND-CCA secure scheme is still an open problem. Nielsen presented such a scheme that is secure in the random oracle model but proved that the scheme cannot be materialized, so to provide a separation between the random oracle model and standard model [24]. While, in [5] the authors raised a concern of Nielsen's result. For more information of ADC-IND-CCA secure schemes, please see [9][12][14]. We think that maybe it is not prudent to simply assume, without further investigation, that the extra adaptive private key extraction ability does not help the adversary to win the game which simulates a standard encryption construction. Hence we adopt the standard formulation here.

Second, in the model of [3], it is required that even if N_i is a replaced public key (by the adversary) of entity ID_i and is not in the key pair list maintained by the challenger, the challenger still needs to answer the Decrypt query correctly somehow with great probability. It appears that if the scheme \mathcal{E} is secure against any IND-CCA Type-II adversary defined in [3], the challenger in Game 1 is not able to decrypt the query without knowing the private key corresponding to the used public key and at the same time without the help of some extra facility. Specifically, if the challenger treats the adversary as a black-box, i.e., it only interacts with the adversary via an interface by answering just the queries defined in the game, the challenger of Game 1 cannot answer the decryption query without the corresponding private key. Otherwise, we can construct an adversary to use the challenger of Game 1 as a subroutine to win Game 2 defined in [3] (this is more obvious in the aforementioned single game model). Note that in the random oracle model, the challenger in the games indeed has extra advantages over the adversary if a random oracle is used, e.g., it can program the random oracle as its wish and has the full access to the complete input/output list maintained by the random oracle (so we do not regard the reduction in the random oracle model as a black-box reduction). Hence it is possible that the challenger can answer such peculiar type of decryption query while the adversary cannot win Game 2 in the random oracle model. Note that the CL-PKE construction in [3] uses the random oracle in a substantial way to achieve plaintext awareness.

In the formulation here, we do not require the challenger to answer such decryption query successfully. We argue that the formulation can simulate the chosen-ciphertext attack in the practice. If an adversary replaces B's public key with N'_B generated by itself and A encrypts a message with N'_B , we should not expect that B which behaves honestly to follow the Decrypt algorithm,

can decrypt the message successfully when it is used as a decryption oracle. Otherwise, the public key N'_B must be used in trivial means in the algorithm Encrypt. On the other hand, if a public key is used trivially in Encrypt, the adversary can easily win Game 2. The formulation also covers the malicious behavior that the adversary replaces B's public key with C's and after getting the ciphertext encrypted for B with C's public key, asks B and C to cooperate to decrypt the ciphertext somehow. In this case, the challenger will answer the decryption query correctly. In fact, this simulation maybe is still unnecessarily strong.

A secure CL-PKE scheme achieves two important properties that differ a CL-PKE from either an IBE or a traditional PKE. First, the public key of an entity can be loosely (no need of security measures) bound with the identity of the entity because a CL-PKE is secure against Type-I adversaries. This is a big advantage over the traditional PKE. Second, a secure CL-PKE achieves the master-key forward secrecy against Type-II adversaries (i.e., key-escrow free) which is not achievable in the IBE following Shamir's framework [26], while needed and realized in the traditional PKE (the compromise of the signing key of a Certificate Authority (CA) does not pose the threat on existing encrypted messages and a CA cannot decrypt a message encrypted for an entity of which only the public key is known by the CA).

Bilinear Groups $\mathbf{2.2}$

Here we briefly review some facts about bilinear groups and pairings used in the schemes in this paper.

Definition 2 A pairing is a bilinear map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ with two cyclic group \mathbb{G}_1 and \mathbb{G}_2 of prime order q, which has the following properties [8]:

- 1. Bilinear: $\hat{e}(sP, tR) = \hat{e}(P, R)^{st}$ for all $P, R \in \mathbb{G}_1$ and $s, t \in \mathbb{Z}_q^*$. 2. Non-degenerate: For a given point $Q \in \mathbb{G}_1$, $\hat{e}(Q, R) = \mathbb{I}_{\mathbb{G}_2}$ for all $R \in \mathbb{G}_1$ if and only if $Q = 1_{\mathbb{G}_1}$.
- 3. Computable: There is an efficient algorithm to compute $\hat{e}(P,Q)$ for any $P, Q \in \mathbb{G}_1$.

The Weil and the modified Tate pairings on elliptic curves can be used to build such bilinear maps [29].

Assumption 1 Bilinear Diffie-Hellman Assumption (BDH) [8] Let \mathcal{G} be a parameter generator which with system parameters k as input generates two cyclic groups $\mathbb{G}_1, \mathbb{G}_2$ of prime order q, a generator $P \in \mathbb{G}_1^*$ and a bilinear map \hat{e} . We define the advantage of an algorithm \mathcal{A} in solving the problem (given $\langle P, aP, bP, cP \rangle$, to compute $\hat{e}(P, P)^{abc}$) by:

$$Adv_{\mathcal{G},\mathcal{A}}(k) = Pr[\mathcal{A}(q,\mathbb{G}_1,\mathbb{G}_2,\hat{e},P,aP,bP,cP) = \hat{e}(P,P)^{abc}| \langle q,\mathbb{G}_1,\mathbb{G}_2,P,\hat{e}\rangle \leftarrow \mathcal{G}(1^k), P \in \mathbb{G}_1^*, a,b,c \xleftarrow{R}{=} \mathbb{Z}_a^*].$$

For any randomized polynomial time (in k) algorithm \mathcal{A} , the advantage $Adv_{\mathcal{G},\mathcal{A}}(k)$ is negligible.

Note that the BDH assumption implies the following Computational Diffie-Hellam (CDH) assumption in group \mathbb{G}_1 .

Assumption 2 Computational Diffie-Hellman Assumption (CDH) Let \mathcal{G} be a parameter generator which with system parameters k as input generates a group \mathbb{G}_1 of prime order q and a generator $P \in \mathbb{G}_1^*$. We define the advantage of an algorithm \mathcal{A} in solving the problem (given $\langle \mathbb{G}_1, P, aP, bP \rangle$, to compute abP) by:

$$\begin{aligned} Adv_{\mathcal{G}_1,\mathcal{A}}(k) &= Pr[\ \mathcal{A}(q,\mathbb{G}_1,P,aP,bP) = abP| \\ & \langle q,\mathbb{G}_1,P,\rangle \leftarrow \mathcal{G}(1^k), P \in \mathbb{G}_1^*, a, b \xleftarrow{R} \mathbb{Z}_q^*]. \end{aligned}$$

For any randomized polynomial time (in k) algorithm \mathcal{A} , the advantage $Adv_{\mathcal{G},\mathcal{A}}(k)$ is negligible.

2.3 Existing Schemes

Apart from introducing the notion of CL-PKC, Al-Riyami and Paterson also proposed a concrete scheme which extends the Boneh-Franklin's IBE based on the so called general BDH assumption, i.e., given $(\mathbb{G}_1, \mathbb{G}_2, P, aP, bP, cP)$ such that $a, b, c \xleftarrow{R} \mathbb{Z}_q^*$, it is hard to output a pair $(Q \in \mathbb{G}_1^*, \hat{e}(P, Q)^{abc})$. A certificateless signature and a hierarchical encryption system were constructed as well in [3].

As the independent work, the same authors of [3] constructed a simple CL-PKE [4] to be presented on PKC 2005, which our CL-PKE scheme is very similar to. Despite the similarity, our work is different from [4] in a few ways. First, our formulation of CL-PKE is different from [4] and can be instantiated only if can the Boneh-Franklin's IBE. Second, the construction presented here is slightly faster than the one in [4] (our scheme uses four hash functions instead of five in [4] and a tweaked version is even faster in some cases) and the reduction could be tighter as well. Third, we analyze the deficiency of the formulation of authenticated encryption and present a concrete construction.

It is not difficult to demonstrate that the scheme proposed by Gentry in [19] is also a CL-PKE. Gentry's scheme is different from AP's in a few ways. First, an entity with identity ID_A publishes $info_A$ including a single element $t_AP \in \mathbb{G}_1^*$ $(t_A \in \mathbb{Z}_q^* \text{ is the private key } PrvKeyR)$ and some other information (naturally, the identity ID_A). Second, algorithm Extract takes $info_A$, the **master-key** and **params** as input and returns $d_A = sH_1(P_{pub}||info_A)$ (a||b denotes the concatenation of two strings a and b) as PrvKeyL of A. Algorithms Encrypt and Decrypt work differently from AP's as well.

In [30], Yum and Lee presented a general construction of CL-PKE by an IBE and a traditional PKE following a formulation similar to [3], but which does not require the challenger in Game 1 to answer a decryption query without the knowledge of the corresponding private key. While, their model still allows the adaptive corruption in Game 2.

An authenticated CL-PKE is intended in [23] to improve the performance of AP's scheme. However, the scheme is not secure against the Type-I adversary. It

is easy to check that if the adversary randomly chooses $x_1, x_2 \in \mathbb{Z}_q^*$ and publishes $\langle x_1P, x_2P \rangle$ as $\langle X_B, Y_B \rangle$, the adversary can recover the decryption immediately by computing $T = x_1 x_A P$ and $\hat{e}(d_A, Y_B)^r = \hat{e}(rQ_A, x_2P_{pub})$ in the proposed scheme.

3 The New CL-PKE

Pairing is a very heavy operation compared with the point scalar, exponentiation and hash operations. In the above two concrete CL-PKE's, AP's scheme needs three (resp. one) pairings in algorithm Encrypt (resp. Decrypt), while Gentry's scheme needs two (resp. one) pairings in Encrypt (resp. Decrypt). Here we present another construction which is more efficient in encryption. Just as intended by the CL-PKE (to combine the advantage of both the traditional PKE and the IBE), our scheme is exactly the integration, using a hash function as a hinge, of two algorithms with one of each type, i.e., the Boneh-Franklin's IBE [8] and a variant of ElGamal's Diffie-Hellman encryption scheme [17][1] strengthened using the Fujisaki-Okamoto's transform [18].

Setup. Given a security parameter k, the parameter generator follows the steps.

- 1. Generate two cyclic groups \mathbb{G}_1 and \mathbb{G}_2 of prime order q and a bilinear pairing map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Pick a random generator $P \in \mathbb{G}_1^*$.
- 2. Pick a random $s \in \mathbb{Z}_q^*$ and compute $P_{pub} = sP$.
- 3. Pick four cryptographic hash functions $H_1 : \{0,1\}^* \to \mathbb{G}_1^*, H_2 : \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \to \{0,1\}^n, H_3 : \{0,1\}^n \times \{0,1\}^n \to \mathbb{Z}_q^* \text{ and } H_4 : \{0,1\}^n \to \{0,1\}^n \text{ for some integer } n > 0.$

The message space is $\mathcal{M} = \{0, 1\}^n$. The ciphertext space is $\mathcal{C} = \mathbb{G}_1^* \times \{0, 1\}^n \times \{0, 1\}^n$. The system parameters are **parame** = $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, H_1, H_2, H_3, H_4 \rangle$. s is the **master-key** of the system.

Extract. Given a string $ID_A \in \{0,1\}^*$, **params** and the **master-key**, the algorithm computes $Q_A = H_1(ID_A) \in \mathbb{G}_1^*$, $d_A = sQ_A$ and returns d_A .

Publish. Given **params**, an entity A selects a random $t_A \in \mathbb{Z}_q^*$ and computes $N_A = t_A P$. The entity can ask the PKG to publish N_A or publishes it by itself or via any directory service as its public key.

Encrypt. Given a plaintext $m \in \mathcal{M}$, the identity ID_A of entity A, the system parameters **params** and the public key N_A of the entity, the following steps are performed.

- 1. Pick a random $\sigma \in \{0, 1\}^n$ and compute $r = H_3(\sigma, m)$.
- 2. Compute $Q_A = H_1(ID_A)$, $g^r = \hat{e}(P_{pub}, Q_A)^r$ and $f = rN_A$.
- 3. Set the ciphertext to $C = \langle rP, \sigma \oplus H_2(rP, g^r, f), m \oplus H_4(\sigma) \rangle$.

Decrypt. Given a ciphertext $\langle U, V, W \rangle \in C$, the private keys d_A, t_A and **params**, follow the steps:

- 1. Compute $g' = \hat{e}(U, d_A), f' = t_A U$ and $\sigma' = V \oplus H_2(U, g', f')$
- 2. Compute $m' = W \oplus H_4(\sigma')$ and $r' = H_3(\sigma', m')$.
- 3. If $U \neq r'P$, output \perp , else return m' as the plaintext.

The consistency of the scheme can be easily verified. The security of the scheme in the random oracle model can be proved rather straightforwardly based on the existing work. The scheme's property against Type-I adversaries follows directly from the security proof of the Boneh-Franklin's IBE. The property against Type-II adversaries fairly straightly follows from the work in [18] based on the CDH assumption in \mathbb{G}_1 implied by the BDH assumption. The use of rP in H_2 is suggested in [28][15] which makes use of the Gap Diffie-Hellman³ assumption in \mathbb{G}_1 in the security proof to achieve non-malleability⁴ [6] and a tighter reduction. We skip the tedious details here.

Theorem 1 The above scheme is an IND-CCA-secure CL-PKE provided that H_1, H_2, H_3 , and H_4 are random oracles and the BDH assumption is sound.

Note that the above scheme needs one more point scalar in both encryption and decryption algorithm compared with the Boneh-Franklin's IBE and the point scalar could be slower than the corresponding exponentiation of a root of the unity 5 of the extension field in some cases. For example, for a random 0 < r < q of 160 bits, by choosing the supersingular curve of embedding degree k = 2 defined over the field \mathbb{F}_p with 512-bit prime p to achieve the 1024-bit security level, the point scalar needs about 1200 multiplications in \mathbb{F}_p (according to Table IV.3. in [11] by assuming I = 10M and the windowed NAF algorithm is used). While, using the Lucas ladder, the exponentiation of a root of unity can be done with roughly 400 multiplications. By sacrificing the bandwidth (for a longer ciphertext), we can tweak the above scheme to achieve better performance. In the tweaked scheme, an entity A publishes $N_A = \zeta^{t_A}$ where $\zeta = \hat{e}(P, P)$. The ciphertext is computed as $C = \langle rP, \zeta^r, \sigma \oplus H_2(rP, \zeta^r, g^r, f), m \oplus H_4(\sigma) \rangle$ where $f = N_A^r$ and g^r is computed as usual and the decryption algorithm is straightforward. Note that the extra component ζ^r can be computed from rPand P. Hence, the security proof follows the original scheme and by introducing one extra pairing $\hat{e}(rP, P)$ in the decryption algorithm, the ciphertext length can be reduced to the original size. Note that even with two extra exponentiations the tweaked scheme is still faster than the original one with the parameter example.

³ The Computational DH still appears hard, even in the presence of a Decisional DH oracle [25], which is exactly the setting of the scheme.

⁴ Although proved in [6] that the non-malleability and IND-CCA2 imply each other, to prove that the scheme without using rP in H_2 is secure against Type-II adversaries, we need a prerequisite that rP is uniquely represented in the ciphertext space [28].

⁵ The Weil pairing and the modified Tate pairing map two points to a root of unity of the corresponding extension field [29][10].

4 A CL-Auth-PKE

The new CL-PKE scheme can be simply extended to an authenticated encryption (Auth-PKE)(not signcryption) [22][2][32]. The formulation of identitybased Auth-PKE (with message privacy and authenticity property) can be found in [22], which can be extended to the certificatless setting with considering the extra public key. However, the formulation and construction in [22] (and the outsider security in [2]) does not achieve the forward secrecy of sender's private keys (we shorthand as *forward secrecy*), i.e., if the sender's private keys are compromised, any message encrypted with these keys, could be recovered. We think this is an unattractive property in the practice. Further analysis shows that there are two subcases. Case 1, the adversary has the interest to recover the decryption of those ciphertexts auth-encrypted before it has compromised the sender's private keys. Case 2, although the private keys were exposed, an entity continues to use these keys to auth-encrypt messages (maybe the attack is so smart that the victim entity cannot notice the fact that its keys are leaked). The adversary wants to decrypt the messages auth-encrypted after the compromise of the keys as well. In Case 1 the scheme only needs to achieve forward secrecy, while in Case 2 the scheme has to guarantee both forward and (we call it) backward secrecy. Moreover, as in Case 2 the compromised entity is still active, it could be used as a decryption oracle. Hence in Case 2^6 we should design a scheme against adaptive chosen ciphertext attacks, while in Case 1 a chosen plaintext attack Auth-PKE (IND-CPA-Auth-PKE) that is secure on the prerequisite of the secrecy of receiver's private keys is enough (for well-known reason, one-way encryption [18] is inadequate).

The *forward secrecy* of an Auth-PKE against Type-I adversaries is defined by the following sender-key-known CPA game.

- Setup. The challenger takes a security parameter k and runs the Setup algorithm. It gives the adversary the resulting system parameters **params**. It keeps the **master-key** to itself.
- Query phase. The adversary issues the following queries.
 - Extraction query on ID_s (of PrvKeyL). The challenger responds by running algorithm Extract to generate the private key d_{ID_s} and passes it to the adversary.
 - Publish query on ID_s and ID_r . The challenger runs algorithm Publish, passes N_{ID_s} and N_{ID_r} to the adversary and maintains a key pair list to store the generated key pairs.
 - Get PrvKeyR query on ID_s and ID_r . The challenger responds with t_{ID_s} and t_{ID_r} which correspond to the public key N_{ID_s} and N_{ID_r} respectively.
- Challenge. The adversary outputs two equal length plaintexts $m_0, m_1 \in \mathcal{M}$, and the public key N'_{ID_r} on which it wishes to be challenged. The challenger picks a random bit $b \in \{0, 1\}$ and sets $C^*=$ Auth-Encrypt(params,

⁶ In this case, we need the insider message privacy but outsider message authenticity formulated in [2].

 $ID_s, d_{ID_s}, t_{ID_s}, N_{ID_s}, m_b, ID_r, N'_{ID_r})$, i.e., m_b is encrypted for the receiver with identity ID_r and public key N'_{ID_r} by the sender with identity ID_s and public/private key pair N_{ID_s}/t_{ID_s} . It sends C^* as the challenge to the adversary. Note that N'_{ID_r} could be different from N_{ID_r} , while N_{ID_s} has to be the one published by the challenger.

Guess. Finally, the adversary outputs a guess $b' \in \{0, 1\}$ and wins the game if b' = b.

The advantage of a sender-key-known IND-CPA Type-I adversary \mathcal{A} against the Auth-PKE scheme \mathcal{E} is the function of security parameter k: $Adv_{\mathcal{E},\mathcal{A}}^{I-CPA}(k) =$ |Pr[b' = b] - 1/2|. Note that, the above game does not allow the adversary to adaptively choose the sender or receiver (in the *forward secrecy* setting). Similarly, we can define another game to define the *forward secrecy* of an Auth-PKE against Type-II adversaries. So, we say that a CL-Auth-PKE is secure only if it achieves message privacy, message authenticity and forward secrecy of sender's private keys.

Here we construct a CL-Auth-PKE scheme achieving the forward secrecy (in fact, the *backward secrecy* as well. See the argument in Appendix A).

Setup. Same as the algorithm Setup in the CL-PKE scheme, except that the hash function H_2 is defined as $H_2: \mathbb{G}_1 \times \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \to \{0, 1\}^n$.

Extract and Publish work in the same way as in the CL-PKE scheme.

Auth-Encrypt. Given a plaintext $m \in \mathcal{M}$, the identity ID_A , the public key N_A , the private keys d_A, t_A of sender A, the identity ID_B and the public key N_B of receiver B and **params**, the following steps are performed.

- 1. Pick a random $\sigma \in \{0,1\}^n$ and compute $r = H_3(\sigma,m)$.
- 2. Compute $Q_A = H_1(ID_A)$, $Q_B = H_1(ID_B)$, $g^r = \hat{e}(d_A, Q_B)^r$ and f = $rt_A N_B$.
- 3. Set the ciphertext to $C = \langle rN_A, rQ_A, \sigma \oplus H_2(rN_A, rQ_A, g^r, f), m \oplus H_4(\sigma) \rangle$.

Auth-Decrypt. Given a ciphertext $\langle T, U, V, W \rangle \in C$, the private keys d_B, t_B and identity ID_B of receiver B, the public key N_A and identity ID_A of sender A, and **params**, follow the steps:

- 1. Compute $g' = \hat{e}(U, d_B), f' = t_B T$ and $\sigma' = V \oplus H_2(T, U, g', f')$
- 2. Compute $m' = W \oplus H_4(\sigma')$, $r' = H_3(\sigma', m')$ and $Q_A = H_1(ID_A)$. 3. If $U \neq r'Q_A$ or $T \neq r'N_A$, output \bot , else return m' as the plaintext.

Adopting the similar method in the proof of Theorem 4.1 in [8], we can prove that the above scheme achieves the forward secrecy against Type-I adversaries. Please see Appendix A for part of the proof. Using the similar way to prove that ElGamal's DH encryption strengthened by the Fujisaki-Okamoto's transform is IND-CCA secure, we can prove that the scheme is forward secure against Type-II adversaries. Note that the scheme can be sender-anonymous, i.e., no second party (apart from the intended receiver) can recover the sender's identity merely from

the ciphertext. In this case, the sender's identity is part of the message being auth-encrypted.

5 Remarks on CL-PKE's

First, we evaluate the complexity of the CL-PKE schemes. The schemes have four major operations, i.e., <u>Pairing</u>, <u>S</u>calar, <u>E</u>xponentiation and <u>H</u>ash. Without pre-computation, pairing is the heaviest one which involves the point scalar as one of the basic operations, even if many techniques can be applied on pairing operation to dramatically improve the performance [10]. Note that some point scalar operations in \mathbb{G}_1 and exponentiations in \mathbb{G}_2 can be converted to each other and the performance difference of these two operations heavily depends on the specific implementation. We count these operations as they are presented in the schemes. Without considering the pre-computation, the complexity of the schemes is listed in Table 1. Note that the first three schemes have the same ciphertext length and both the tweaked CL-PKE and the Auth-Encryption scheme have one more component.

	Encrypt				Decrypt				pubkey len
	Р	S	Е	Η	Р	\mathbf{S}	Е	Η	
Gentry's scheme	2	1	1	5	1	1	0	3	1*
AP's scheme	3	1	1	4	1	1	0	3	2
New scheme	1	2	1	4	1	2	0	3	1
Tweaked New scheme	1	1	3	4	1	1	2^*	3	1
Auth-Encryption scheme	1	3	1	4	1	3^*	0	3	1

Table 1. The Complexity of CL-PKE's

We can find that the new scheme is fastest in Encrypt (which is more significant in a hierarchical system such as [21][3][19]), while relatively slower than other two schemes in Decrypt. AP's scheme needs to publish two elements of \mathbb{G}_1 , while the new scheme needs only one. This would save the bandwidth in some situations, e.g., if the scheme is used in a key exchange protocol which needs an entity to piggy-send its public key in a message. Note that in Gentry's scheme, $info_A$ of entity A could also include only a single element in \mathbb{G}_1^* and its identity. The new scheme does have a disadvantage, i.e., there are two private keys managed by each entity, while in other two schemes, two private keys can be combined as one, so to save storage. We also note that if the result of Step 1 in algorithm Encrypt of AP's scheme can be reused, AP's scheme becomes most efficient on computation.

Gentry's scheme works more like a traditional PKE. In the scheme, an entity *first* generates its public/private key pair and then asks the PKG to issue a certificate to bind its identity with its public key. But the certificate is going to

be used as the entity's another private key. The disadvantage of this method is that the entity cannot freely change its public key without interacting with the PKG. On the other hand, we will see later that this method has two important advantages. A good aspect of AP's scheme is that it can be easily extended to other certificateless protocols including signature. Note that the new scheme can be easily modified to integrate AP's solution. In the modified scheme, entity A publishes its public key $N_A = (X_A, Y_A) = (t_A P, t_A s P)$ as in AP's. In algorithm Encrypt, f is computed by $f = rX_A$ and then certificateless signature scheme just works as the one in [3]. All the schemes can be converted to a KEM (similar to ECIES-KEM) to be used in a hybrid encryption [28][15] (see Appendix B).

Finally, we give two comments on the CL-PKC in general. (1) In the CL-PKC system, entities have to trust that the PKG will not launch an active attack to replace an entity's public key with its own choice. Although in the traditional PKC, entities have to trust the CA as well, there is a fundamental difference between these two systems. If a CA launch such attack, it will leave a trace (a valid certificate) to face the legal penalty. While, in the CL-PKC, although suggested in [3] and implemented in [19] that an entity's public key and the identity are bound together to generated PrvKeyL (hence only the PKG can generate this key corresponding to the public key. Note that the new scheme can play this trick as well), only when the PrvKeyL is used in an underivable operation such as signing a message, the PKG's misbehavior can be traced (one advantage of Gentry's PrvKeyL generation method). This may not be good enough in many settings. (2) The public key revocation is still a great challenge. If the two private keys PrvKeyL and PrvKeyR are both compromised, the entity has to publish a revocation message to prevent others from using the corresponding public key to encrypt messages. So, a public key revocation list has to be maintained *securely*, just as the certificate revocation list (CRL) in the traditional PKC. And if the entity wants to keep its identity, then the system should generate PrvKeyL in a similar fashion as Gentry's, e.g., $PrvKeyL_A = sH_1(ID_A || N_A)$ (another advantage of Gentry's PrvKeyL generation method). We seem to come back to the starting point, to face the scalability issue. Some other solutions such as the key evolvement scheme [19], intrusion-resilient encryption [16], mediated encryption [7], etc, have been attempted. None of them can fully solve the problem.

References

- M. Abdalla, M. Bellare and P. Rogaway, "DHIES: An encryption scheme based on the Diffie-Hellman Problem," extended abstract, entitled The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES, in Topics in Cryptology - CT-RSA 2001, LNCS Vol. 2020, 2001.
- J. H. An, Y. Dodis and T. Rabin, "On the security of joint signature and encryption," In L. Knudsen, editor, Advances in Cryptology-Eurocrypt 2002, LNCS Vol. 2332, 2002.
- S. S. Al-Riyami and K. G. Paterson, "Certificateless Public Key Cryptography," Advances in Cryptology-Asiacrypt 2003, LNCS 2894, 2003. See also Cryptology ePrint Archive, Report 2003/126.

- S. S. Al-Riyami and K. G. Paterson, "CBE from CL-PKE: A Generic Construction and Efficient Schemes," to appear in PKC 2005.
- 5. M. Bellare, A. Boldyreva and Adriana Palacio, "An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem," in EUROCRYPT 2004.
- M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, "Relations among notions of security for public-key encryption schemes," in Advances in Cryptology CRYPTO 1998, LNCS Vol. 1462, 1998.
- D. Boneh, X. Ding, G. Tsudik and C. Wong, "A Method for Fast Revocation of Public Key Certificates and Security Capabilities," Proceedings of the 10th USENIX Security Symposium, USENIX, 2001.
- 8. D. Boneh and M. Franklin, "Identity Based Encryption from The Weil Pairing," extended abstract in Advances in Cryptology-Crypto 2001, LNCS Vol. 2139, 2001.
- D. Beaver and S. Haber, "Cryptographic Protocols Provably Secure Against Dynamic Adversaries," in Advance in Cryptology-Eurocrypt 1992, LNCS Vol. 658, pp. 307-323, 1992.
- P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott, "Efficient Algorithms for Pairing-Based Cryptosystems," Advances in Cryptology-Crypto 2002, LNCS Vol. 2442, pp. 354-368, 2002. See also Cryptology ePrint Archive, Report 2002/008.
- 11. I.F. Blake, G. Seroussi and N. P. Smart, "Elliptic Curve in Cryptography", Cambridage Press, 1999.
- R. Canetti, U. Feige, O. Goldreich and M. Naor, "Adaptively Secure Computation," 28th ACM Symposium on Theory of Computing (STOC), ACM, pp. 639-648, 1996. Full version in MIT-LCS-TR #682, 1996.
- 13. R. Canetti, S. Halevi and J. Katz, "A Forward-Secure Public-Key Encryption Scheme," Advances in Cryptology-Eurocrypt 2003, LNCS 2656.
- R. Canetti, S. Halevi and J. Katz, "Adaptively-Secure, Non-Interactive Public-Key Encryption," extended abstract at TCC 2005. See also Cryptology ePrint Archive, Report 2004/317.
- R. Cramer and V. Shoup, "Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack," SIAM Journal of Computing 33:167-226, 2003.
- Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, "Intrusion-Resilient Public-Key Encryption," Topics in Cryptology - CT-RSA 2003, LNCS 2612, pp. 19-32, 2003.
- 17. T. ElGamal, "A public key cryptosystem and signature scheme based on discrete logarithms," IEEE Transactions on Information Theory, 31:469-472, 1985.
- E. Fujisaki and T. Okamotom, "Secure Integration of Asymmetric and Symmetric Encryption Schemes," Advances in Cryptology - CRYPTO 1999 Proceedings, pp.535-554, Springer-Verlag, 1999.
- C. Gentry, "Certificate-Based Encryption and the Certificate Revocation Problem," Cryptology ePrint Archive, 2003/183.
- S. Goldwasser and S. Micali, "Probabilistic encryption," Journal of Computer and System Sciences Vol. 28, 270-299, 1984.
- C. Gentry and A. Silverberg, "Hierarchical ID-Based Cryptography," in Proceedings of Asiacrypt 2002, LNCS Vol. 2501, 2002.
- B. Lynn, "Authenticated Identity-Based Encryption," Cryptology ePrint Archive, Report 2002/072.
- Y.-R. Lee and H.-S. Lee, "An Authenticated Certificateless Public Key Encryption Scheme," Cryptology ePrint Archive, 2004/150.

- 24. J.B. Nielsen, "Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-Committing Encryption Case," Advance in Cryptology-Crypto 2002, LNCS vol. 2442, pp. 111-126, 2002.
- 25. T. Okamoto and D. Pointcheval, "The gap-problems: a new class of problems for the security of cryptographic schemes," In Proc. 2001 International Workshop on Practice and Theory in Public Key Cryptography (PKC 2001), 2001.
- 26. A. Shamir, "Identity-Based Cryptosystems and Signature Schemes," in Advances in Cryptology-Crypto 1984, LNCS Vol. 196, 1984.
- 27. V. Shoup, "Using hash functions as a hedge against chosen ciphertext attack," in Proc. Eurocrypt 2000.
- 28. V. Shoup, "A Proposal for an ISO Standard for Public Key Encryption," 2001.
- 29. E. Verheul, "Evidence that XTR is more secure than supersingular elliptic curve cryptosystems," Advances in Cryptology-Eurocrypt 2001, LNCS Vol. 2045, pp. 195-210, 2001.
- 30. D.H. Yum and P.J. Lee, "Identity-based cryptography in public key management," in EuroPKI 2004, LNCS vol. 3093, pp. 71-84, 2004.
- 31. D.H. Yum and P.J. Lee, "Generic construction of certificateless encryption," In ICCSA 2004, LNCS vol. 3043, pp. 802-811, 2004.
- 32. Y. Zheng, "Digital signcryption or how to achieve cost(signature & encryption) <<cost(signature) + cost(encryption)," In B. Kaliski, editor, Advances in Cryptology-Crypto 1997, LNCS 1294, Vol. 1294, 1997.

Appendix A

We can follow the method in [8] to prove that the CL-Auth-PKE achieves the forward secrecy against Type-I adversaries. Here we present only the proof of a conclusion similar to Lemma 4.3 in [8]. One can extend the result to a full proof as in [8].

First, we define a **BasicAuthPub** scheme consisting of following algorithms. **Keygen.** Given a security parameter k, the parameter generator follows the steps.

- 1. Generate two cyclic groups \mathbb{G}_1 and \mathbb{G}_2 of prime order q and a bilinear pairing map $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Pick a random generator $P \in \mathbb{G}_1^*$.
- 2. Pick a random $s \in \mathbb{Z}_q^*$ and compute $P_{pub} = sP$. Pick two random elements $Q_A, Q_B \in \mathbb{G}_1^*$. Pick two random elements $t_A, t_B \in \mathbb{Z}_q^*$. 3. Pick a cryptographic hash function $H_2 : \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \to \{0,1\}^n$ for some
- integer n > 0.
- 4. The public key is $K_{pub} = \langle q, \mathbb{G}_1, \mathbb{G}_2, n, \hat{e}, P, P_{pub}, Q_A, t_A P, Q_B, t_B P, H_2 \rangle$. The private keys are $t_A, d_A = sQ_A, t_B, d_B = sQ_B$.

Encrypt. Given a plaintext $m \in \{0,1\}^n$, K_{pub} and the private keys d_A, t_A , the following steps are performed.

- 1. Pick a random $r \in \mathbb{Z}_q^*$ and compute $g^r = \hat{e}(d_A, Q_B)^r$ and $f = rt_A t_B P$. 2. Set the ciphertext to $C = \langle rt_A P, rQ_A, m \oplus H_2(rt_A P, rQ_A, g^r, f) \rangle$.

Decrypt. Given a ciphertext $\langle T, U, V \rangle$ encrypted using the public key K_{pub} , and the private keys d_B, t_B , follow the step:

1. Compute $g' = \hat{e}(U, d_B), f' = t_B T$ and return $m = V \oplus H_2(T, U, g', f')$ as the plaintext.

Lemma 1 Let H_2 be a random oracle. Let \mathcal{A} be a sender-key-known IND-CPA adversary that has advantage $\epsilon(k)$ against **BasicAuthPub**. Suppose \mathcal{A} makes a total of $q_{H_2} > 0$ queries to H_2 . Then there is an algorithm \mathcal{B} that solves the BDH problem with advantage at least $2\epsilon(k)/q_{H_2}$ and a running time $O(time(\mathcal{A}))$.

Proof: For easiness to prove the lemma, we extend the BDH assumption to the following assumption (EBDH). Given $\langle q, \mathbb{G}_1, \mathbb{G}_2, R, aR, bR, cR, vR, vaR, vcR, t_1, t_1vR, t_1vcR, t_2, t_2vR \rangle$ such that $R \in_R \mathbb{G}_1^*$ and $a, b, c, v, t_1, t_2 \in_R \mathbb{Z}_q^*$, it is hard to compute $\hat{e}(R, R)^{abc}$. One can easily verify that the BDH and EBDH assumptions imply each other with a trivial reduction.

Algorithm \mathcal{B} given a random EBDH instance interacts with \mathcal{A} in the following way (using \mathcal{A} as a subroutine).

Setup. Algorithm \mathcal{B} creates the **BasicAuthPub** public key K_{pub} in the following way. \mathcal{B} sets K_{pub} as $\langle q, \mathbb{G}_1, \mathbb{G}_2, n, \hat{e}, vR, vaR, R, t_1vR, bR, t_2vR, H_2 \rangle$, i.e., \mathcal{B} sets P = vR, s = a (which \mathcal{B} does not known), $P_{pub} = vaR$, $Q_A = R$, $t_A = t_1$, $t_AP = t_1vR$, $Q_B = bR$, $t_B = t_2$, $t_BP = t_2vR$ and H_2 is a random oracle controlled by \mathcal{B} . Note that by definition, the private keys are $d_A = sQ_A = aR$, t_A , $d_B = sQ_B = abR$ (which \mathcal{B} does not know) and t_B .

 H_2 -queries (T_i, U_i, X_i, Y_i) . At any time algorithm \mathcal{A} can issues queries to the random oracle H_2 . To respond these queries \mathcal{B} maintains a list of tuples called H_2^{list} . Each entry in the list is a tuple of the form $\langle T_i, U_i, X_i, Y_i, H_i \rangle$. To respond a query on (T_i, U_i, X_i, Y_i) , \mathcal{B} does the following operations:

- 1. If (T_i, U_i, X_i, Y_i) is on the list in a tuple $\langle T_i, U_i, X_i, Y_i, H_i \rangle$, then \mathcal{B} responds with $H_2(T_i, U_i, X_i, Y_i) = H_i$.
- 2. Otherwise, \mathcal{B} randomly chooses a string $H_i \in \{0,1\}^n$ and adds the tuple $\langle T_i, U_i, X_i, Y_i, H_i \rangle$ to the list. It responds to \mathcal{A} with $H_2(T_i, U_i, X_i, Y_i) = H_i$.

Query phase.

- Extraction query on ID_s . \mathcal{B} responds with aR.
- Publish query on ID_s and ID_r . \mathcal{B} responds with $t_A vR$ and $t_B vR$.
- Get PrvKeyR query on ID_s and ID_r . \mathcal{B} responds with t_A and t_B .

Challenge phase. Algorithm \mathcal{A} outputs two messages m_0, m_1 and N'_B on which it wants to be challenged. \mathcal{B} chooses a random string $V \in \{0,1\}^n$ and defines $C_{ch} = \langle t_A vcR, cR, V \rangle = \langle T, U, V \rangle$. \mathcal{B} gives C_{ch} as the challenge to \mathcal{A} . Note that, by definition, $U = rQ_A = cR$ (which implies r = c because $Q_A = R$), T = $rt_A P = rt_A vR = t_A vcR$ and the decryption of C is $V \oplus H_2(T, U, \hat{c}(U, d_B), t_B T)$ where $\hat{e}(U, d_B) = \hat{e}(cR, abR) = \hat{e}(R, R)^{abc}$.

Guess. Algorithm \mathcal{A} outputs its guess $c' \in \{0, 1\}$. At this point \mathcal{B} picks a random tuple $\langle T_i, U_i, X_i, Y_i, H_i \rangle$ from the list \mathcal{H}_2^{list} and outputs X_i as the solution to the EBDH instance.

Following the same argument in the proof of Lemma 4.3 in [8], we have that \mathcal{B} outputs the correct answer to the EBDH instance with probability at least $2\epsilon(k)/q_{H_2}$. In fact in the Guess phase, \mathcal{B} can randomly choose a tuple from a set S which includes the tuples whose $T_j = T$ and $U_j = U$ on list H_2^{list} . Then, because of the randomness of cR, a tighter reduction could be obtained.

Lemma 1 shows that the **BasicAuthPub** scheme already achieves the forward secrecy again Type-I adversaries. By applying the Fujisaki-Okamoto's transform, the full scheme is secure against sender-key-known CCA adversaries. Note that, this simple reduction does not guarantee the security against the adaptively corrupting adversaries implied in Boneh-Franklin's proof [8].

Appendix B

An ECIES-KEM-similar hybrid encryption [1][28] consists of following algorithms.

Setup. Given a security parameter k, the parameter generator follows the steps.

- 1. Generate two cyclic groups \mathbb{G}_1 and \mathbb{G}_2 of prime order q and a bilinear pairing map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Pick a random generator $P \in \mathbb{G}_1^*$.
- 2. Pick a random $s \in \mathbb{Z}_q^*$ and compute $P_{pub} = sP$.
- 3. Pick two cryptographic hash functions $H_1 : \{0,1\}^* \to \mathbb{G}_1^*, KDF : \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_1 \to \{0,1\}^n \times \{0,1\}^l$ for some integers n, l > 0.
- 4. Pick a symmetric encryption algorithm $ENC_{k_1}(\cdot)$ which uses *n*-bit k_1 as the key. Pick a keyed-hash function $MAC_{k_2} : \{0,1\}^* \to \{0,1\}^t$ for some integer t > 0, which uses *l*-bit k_2 as the key.

The message space is $\mathcal{M} = \{0, 1\}^*$. The ciphertext space is $\mathcal{C} = \mathbb{G}_1^* \times \{0, 1\}^* \times \{0, 1\}^t$. The system parameters are **params** = $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, H_1, KDF, ENC_{(\cdot)}, MAC_{(\cdot)} \rangle$. s is the **master-key** of the system.

Publish. Given **params**, an entity A selects a random $t_A \in \mathbb{Z}_q^*$ and computes $N_A = t_A P$. The entity can ask the PKG to publish N_A or publishes it by itself or via any directory service as its public key.

Extract. Given a string $ID_A \in \{0,1\}^*$, the public key N_A generated in Publish, **params** and the **master-key**, the algorithm computes $Q_A = H_1(ID_A||N_A) \in \mathbb{G}_1^*$, $d_A = sQ_A$ and returns d_A .

Encrypt. Given a plaintext $m \in \mathcal{M}$, the identity ID_A of entity A, the system parameters **params** and the public key N_A of the entity, the following steps are performed.

1. Pick a random $r \in \{0,1\}^n$ and compute $Q_A = H_1(ID_A || N_A), g^r = \hat{e}(P_{pub}, Q_A)^r$ and $f = rN_A$.

- 2. Compute $\langle k_1, k_2 \rangle = KDF(rP, g^r, f);$
- 3. Compute $c = ENC_{k_1}(m)$;
- 4. Compute $t = MAC_{k_2}(c)$.
- 5. Set the ciphertext to $C = \langle rP, c, t \rangle$.

Decrypt. Given a ciphertext $\langle U, V, W \rangle \in C$, the private keys d_A, t_A and **params**, follow the steps:

- 1. Compute $g' = \hat{e}(U, d_A)$, $f' = t_A U$ and $\langle k_1, k_2 \rangle = KDF(rP, g', f')$, 2. Verify that $W = MAC_{k_2}(V)$. If the equation does not hold, return \perp indicating a decryption failure. 3. Compute $m = ENC_{k_1}^{-1}(V)$ as the plaintext.