
Efficient Certificateless Public Key Encryption

Zhaohui Cheng and Richard Comley

School of Computing Science, Middlesex University
White Hart Lane, London N17 8HR, United Kingdom

{m.z.cheng, r.comley}@mdx.ac.uk

April 12, 2005

Abstract. In [3] Al-Riyami and Paterson introduced the notion of “Cer-
tificateless Public Key Cryptography” and presented an instantiation.
In this paper, we revisit the formulation of certificateless public key en-
cryption and construct a more efficient scheme and then extend it to an
authenticated encryption.

1 Introduction

To address the threat of the man-in-the-middle attack, a public key infrastruc-
ture (PKI) managing certificates is needed to establish a secure system in the
traditional public key cryptography setting. However, a PKI faces with many
challenges in the practice, especially the scalability of the infrastructure. In [29],
Shamir first introduced the notion of identity-based cryptography (IBC) in which
the identity of an entity is the public key, so to reduce the complexity of manag-
ing certificates. However, the key escrow function is integrated in this setting. To
combine the advantage of both systems, in [3] Al-Riyami and Paterson brought
forth the notion of “Certificateless Public Key Cryptography” (CL-PKC).

The intuition behind the certificateless public key encryption is that even
the adversary successfully replaces the victim’s public key with his own choice
(hence the adversary could know the corresponding private key), it still cannot
decrypt the message encrypted with the public key that it published. This will
dramatically reduce the adversary’s interest to launch such kind of attack, which
is one of the major threats in the traditional public key systems. Although the
idea is attractive, it is uninstantiable in the traditional public key system in
which an entity’s private key corresponds merely to the entity’s public key. To
get around this problem, a different methodology is adopted, i.e., to prevent the
adversary from freely publishing the public key for any other entity. A trusted
third party (TTP) is introduced to play an active role to issue a certificate to bind
a key pair with an entity. In a certificate, the identity component is merely used
to identify the entity who owns the public/private key pair. While, after the first
provable-practical identity-based encryption scheme finally was materialized [8],
the identity of an entity can also serve as a public key and the CL-PKE becomes
realistic.

2

So far, there are two major constructions of certificateless public key encryp-
tion (CL-PKE), i.e., the scheme proposed by Gentry in [20] and the system in [3]
(we call it AP’s scheme). In this paper, after revisiting the formulation of CL-
PKE, we present another CL-PKE scheme which is just the combination of an
IBE and a traditional PKE. The new scheme is more efficient on computation
or published information than the existing schemes. Meanwhile, we extend the
scheme to an authenticated encryption.

The paper is organized as follows. First we rethink the formulation of CL-
PKE and review the existing CL-PKE schemes and a used primitive. The new
CL-PKE scheme and a tweaked version are presented in Section 3 and then
we extend the scheme to an authenticated encryption. Finally, we remark the
CL-PKE schemes on complexity and application.

2 Preliminaries

2.1 Revisiting Certificateless Public Key Encryption

Here we follow the formulation in [3] to define the CL-PKE with some simplifica-
tion. A CL-PKE scheme involving a TTP (the “Private Key Generator” (PKG))
consists of following algorithms.

• Setup. This algorithm takes a security parameter k and returns params
(system parameters) and a master-key. The system parameters include a
description of a message space M , and a description of a ciphertext space
C . The system parameters will be publicly known, while the master-key
will be kept secret by the PKG.

• Extract. This algorithm running on the PKG takes as input params, the
master-key, and a string IDA ∈ {0, 1}∗ from entity A, and returns a private
key dA denoted by PrivKeyL.

• Publish. This algorithm taking as input params, returns a private key tA
denoted by PrivKeyR and the public key NA for an entity A.

• Encrypt. This algorithm takes as input params, the identity IDA of entity
A, a message m ∈ M and the public key NA of A and returns a ciphertext
C ∈ C .

• Decrypt. This algorithm takes as inputs params, C ∈ C , and the private
keys dA and tA, and returns a message m ∈ M or a message ⊥ indicating a
decryption failure.

In the above definition, algorithms Extract and Publish can be invoked in
either order. There are three private keys in the system. The master-key is
known to the PKG; PrvkeyL is known to both the PKG and the entity, and
PrvKeyR is kept secret by the entity itself. Corresponding to the threat of com-
promising these keys (note that, the exposure of the master-key immediately
compromises every PrvKeyL), there are two types of adversary. Now we define

3

two games1 to formalize the adaptive chosen-ciphertext attack secure CL-PKE
against these adversaries. Note that our security definition is different from the
one in [3].

A Type-I adversary which does not know the master-key, takes part in the
following game 2 (Game 1) with a challenger.

– Setup. The challenger takes a security parameter k and runs the Setup al-
gorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

– Phase 1. The adversary issues queries q1, . . . , qn of one of follows:
• Extraction query on IDi (of PrvKeyL). The challenger responds by

running algorithm Extract to generate the private key dIDi
and passes

it to the adversary.
• Publish query on IDi. The challenger runs algorithm Publish, passes

NIDi to the adversary and maintains a key pair list to store the generated
key pairs 〈NIDi

, tIDi
〉.

• Replace query on IDi with the new public key N ′
IDi

. The challenger
records the updated public key N ′

IDi
for IDi.

• Get PrvKeyR query on IDi. If the public key of IDi has not been
replaced, the challenger responds with the corresponding tIDi ; otherwise
it aborts the game.

• Decryption query on 〈IDi, Ci, Ni〉. The challenger decrypts the cipher-
text by finding dIDi (through running Extract if necessary) and tIDi

(in the public/private key pair list. Note that in the game, the list is
of polynomial length). If tIDi cannot be found in the key pair list, the
challenger outputs ⊥.

– Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts m0,m1 ∈ M , an identity IDch and the public
key Nch on which it wishes to be challenged. The only constraint is that
IDch did not appear in any Extraction query in Phase 1 (so, Nch could
have been replaced). The challenger picks a random bit b ∈ {0, 1} and sets
C∗=Encrypt(params, IDch,mb, Nch). It sends C∗ as the challenge to the
adversary.

– Phase 2. The adversary issues more queries qn+1, . . . , ql where query qi is
one of:

1 It is more general to define a single game with three separate stages, i.e., Stage 1 to
generate the system parameters and the master key, Stage 2 corresponding to the
following Game 1, and Stage 3 for Game 2 (both without the Setup phase). The
adversary erases any internal state information before entering Stage 3 and before
starting Stage 3, the challenger provides some extra information (i.e., the master
key) apart from the system parameters to the adversary. The adversary wins any
stage (Stage 2 or Stage 3) to win the game. However, this formulation appears hard
to use.

2 Game 1 follows the IBE formulation [8] which allows the adversary to adaptively
corrupt the parties. Canetti el al. formulated a weaker security notion, selective
identity IBE [14], which forces the adversary to commit the victim’s identity at the
beginning of the game. Game 1 can be easily modified to a selective identity game.

4

• Extraction query on IDi where IDi 6= IDch. The challenger responds as
in Phase 1.

• Publish query on IDi. The challenger responds as in Phase 1.
• Replace query on IDi with the new public key N ′

IDi
. The challenger

responds as in Phase 1.
• Get PrvKeyR query on IDi. The challenger responds as in Phase 1.
• Decryption query on 〈IDi, Ci, Ni〉 6= 〈IDch, C∗, Nch〉. The challenger

responds as in Phase 1.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

A Type-II adversary which has the master-key (so, it knows every entity’s
private key PrivKeyL) takes part in the following game (Game 2) with a chal-
lenger. As this game simulates the scenario of using the traditional PKE and in
the adaptive chosen-ciphertext attack game of this setting, the adversary does
not adaptively corrupt entities from an entity set in the literature [22][6], here
we define the game in the way disallowing the corrupt operation as well.

– The challenger takes a security parameter k and runs the Setup algorithm.
It gives the adversary both the resulting system parameters params and
the master-key.

– The adversary chooses the victim entity with identity IDch.
– Phase 1. The adversary issues queries q1, . . . , qn of one of follows:

• Publish key query on IDi. The challenger runs algorithm Publish, passes
NIDi to the adversary and maintains a key pair list to store the generated
key pairs 〈NIDi , tIDi〉.

• Decryption query on 〈IDch, Ci, Nch〉. The challenger responds in the
same way as in the Decryption query in Phase 1 of Game 1.

– Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts m0,m1 ∈ M , on which it wishes to be challenged.
The challenger picks a random bit b ∈ {0, 1} and sets C∗=Encrypt(params,
IDch,mb, Nch). It sends C∗ as the challenge to the adversary.

– Phase 2. The adversary issues more queries qn+1, . . . , ql where query qi is
one of:
• Publish key query on IDi. The challenger responds as in Phase 1.
• Decryption query on 〈IDch, Ci, Nch〉 where Ci 6= C∗. The challenger

responds as in Phase 1.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

We refer to these two types of adversary as IND-CCA Type-I (and Type-II)
adversary. The advantage of an IND-CCA Type-I (Type-II) adversary A against
the scheme E is the function of security parameter k: AdvI

E,A(k) = |Pr[b′ =
b]− 1/2| (AdvII

E,A(k) = |Pr[b′ = b]− 1/2|).

Definition 1 A CL-PKE scheme E is IND-CCA secure if for any IND-CCA
Type-I (and Type-II) adversary, AdvI

E,A(k) (and AdvII
E,A(k)) is negligible.

5

The security definition here, which is more like the security definition of
CBE without certificate updating in [20], differs from [3] (and some following-up
work [35][36][4]) in two significant ways.

First, our definition of the Type-II adversary which follows the standard IND-
CCA2 definition in the literature, is more conservative than the one specified
in [3] (and [35][36][4]). In [3], the Type-II adversary is allowed to adaptively cor-
rupt the entities by an Extract private key for entity A query. However, it seems
that the existence of such kind of encryption scheme with short public/secret
keys at the same time allowing adaptive corruption is arguable.

Canetti et al. concluded that “no noninteractive encryption scheme that sup-
ports encryption of an unbounded number of messages and uses a single, un-
changing decryption key can be adaptively secure” [15]. This negative result was
original presented in Nielsen’s work [27], which argues that “the number of possi-
ble secret keys must be at the least the number of possible message-sequence” [15].
While this conclusion was reached under a condition that the encryption scheme
is used to simulate a secure channel. In the secure channel model, the adver-
sary cannot see the ciphertexts between communicating parties but only knows
the length of the messages. Note that this ciphertext unawareness is crucial in
Nielsen’s argument. Following this argument, Nielsen presented a scheme that
is secure in the random oracle model even when the adaptive corruption is al-
lowed, so to provide a separation between the random oracle model and the
standard model [27]. While, in [5] the authors raised a concern of Nielsen’s sep-
aration, which is also about the ciphertext awareness (to the environment in the
Universally Composable model [12]).

So, is Canetti et al.’s negative conclusion about the existence of the adaptively-
secure non-interactive public-key encryption founded? In fact, this question can
be tracked back to the fourth open question raised in [9]. In particular, does
the failure of direct using public key encryptions in secure multiparty compu-
tation to replace secure channels indicate a deficiency of public key encryption
(Canetti et al. designed a special type of encryption, non-committing encryp-
tion, to solve this problem [13]) or does it suggest that zero-knowledge based
(simulation-based) definitions of protocol security are not suitable for a general
approach of security? We think that the following points are of concern regarding
the question. First, in the standard public-key encryption security model [22][6],
the adversary has the access to the ciphertexts. This is different from a secure
channel formulation. A typical example is that Bellare et al. fixed the plaintext
awareness formulation [6] to allow the adversary to eavesdrop communication be-
tween parties. Second, note that there is a subtle difference between a private key
query and a complete corruption. A complete corruption allows the adversary to
reveal an entity’s current state, although the private key query is very close to a
complete corruption in a multiparty computation model with erasure (note that
even in this case, Nielsen’s negative result is sustained as well). Third, recent
work [34] shows that the identity-based encryption in the full model (allowing
the adaptive private key query) without random oracle can be constructed. This
seems to be the encouraging news for constructions of normal adaptively-secure

6

non-interactive public-key encryptions. (Note that Canetti et al.’s construction
has some constraints [15].)

Here we cannot reach a conclusion, but simply raise this concern. And we
think that maybe it is not prudent to simply assume, without further investi-
gation, that the extra adaptive private key extraction ability does not help the
adversary to win the game which simulates a standard encryption construction.
Hence here we adopt the standard formulation as in [6][22].

One point of the formulation is worth mentioning, which also sidedly backs up
our conservatism. In Game 2, the adversary is allowed to choose the challenge
identity IDch. This defines a stronger (or at least equivalent) security notion
than a game allows the challenger to choose the IDch. The intuition follows
from the same argument of difficulty to construct adaptively-secure multiparty
computation protocols.

Static corruption (allowing the adversary to corrupt some parties after Setup
but before further interaction with the challenger) is necessary and allowed. This
is important to simulate some possible attacks, such as the colluded internal
attacks. Now we show the strength of Game 2 by tweaking a normal public
key encryption that is secure in the standard formulation (where the challenger
chooses the challenge identity or public key) in the following way. Suppose the
challenger generates the private keys for parties following a particular rule, specif-
ically, if the identities of parties satisfy a relation I, then their private keys are
of a relation R. Suppose relation I is publicly known (so to the adversary) and
polynomial-time checkable; moreover, given a subset of private keys of relation
R, the other keys in the same set are polynomial-time computable. An example
of relation R is a simple secret sharing scheme that the sum of n private keys
in the set equals to a fixed value g. n-1 private keys are randomly sampled from
the private key space. The n-th key is computed from the sum equation. The
tweaked scheme is still secure if in the game, it is the challenger who chooses the
challenge identity randomly, because the set of identities is substantially larger
than the statically corrupted one. Hence it is negligibly likely that the corruption
in advance will help the adversary recover the challenging party’s private key
randomly chosen by the challenger. However, we don’t think that the tweaked
scheme is secure in some sense. While allowing the adversary to choose the chal-
lenge identity, the tweaked scheme cannot be proved secure. This easily follows
from the fact that the adversary can recover the challenging party’s private key
without explicitly querying the challenger and win the game with probability
1. The tweaked scheme also shows that there is a gap between the public key
encryptions with and without allowing adaptive corruption. For example, if this
time the challenger chooses the challenge identity IDch, the adversary can adap-
tively query other parties’s private key in the same set (the queried identities
and the challenge identity satisfy the relation I) to recover the private key of
IDch, so to win the game.

Second, in the model of [3], it is required that even if Ni is a replaced public
key (by the adversary) of entity IDi and is not in the key pair list maintained by
the challenger, the challenger still needs to answer the Decrypt query correctly

7

somehow with great probability. It appears that if the scheme E is secure against
any IND-CCA Type-II adversary defined in [3], the challenger in Game 1 is not
able to decrypt the query without knowing the private key corresponding to the
used public key and at the same time without the help of some extra facility.
Specifically, if the challenger treats the adversary as a black-box, i.e., it only in-
teracts with the adversary via an interface by answering just the queries defined
in the game, the challenger of Game 1 cannot answer the decryption query with-
out the corresponding private key. Otherwise, we can construct an adversary to
use the challenger of Game 1 as a subroutine to win Game 2 defined in [3] (this
is more obvious in the aforementioned single game model). Note that in the ran-
dom oracle model, the challenger in the games indeed has extra advantages over
the adversary if a random oracle is used, e.g., it can program the random oracle
as its wish and has the full access to the complete input/output list (this ability
is crucial to the plaintext-awareness defined in the random oracle) maintained
by the random oracle (so we do not regard the reduction in the random oracle
model as a black-box reduction). Hence it is possible that the challenger can
answer such peculiar type of decryption query while the adversary cannot win
Game 2 in the random oracle model. Note that the CL-PKE construction in [3]
uses the random oracle in a substantial way to achieve plaintext awareness.

In this paper, we also use the random oracle and the plaintext awareness
formulation to prove the security of our schemes, but we think a formulation
that cannot be instantiated in the standard model has no great interest (note
that there is a substantial difference between using random oracle to prove the
security that can be achieved in the standard model and those cannot [5]).
So, in the formulation here, we do not require the challenger to answer such
decryption query successfully. We argue that the formulation can simulate the
chosen-ciphertext attack in the practice. If an adversary replaces B’s public key
with N ′

B generated by itself and A encrypts a message with N ′
B , we should

not expect that B which behaves honestly to follow the Decrypt algorithm,
can decrypt the message successfully when it is used as a decryption oracle.
Otherwise, the public key N ′

B must be used in trivial means in the algorithm
Encrypt. On the other hand, if a public key is used trivially in Encrypt, the
adversary can easily win Game 2. The formulation also covers the malicious
behavior that the adversary replaces B’s public key with C’s and after getting
the ciphertext encrypted for B with C’s public key, asks B and C to cooperate
to decrypt the ciphertext somehow. In this case, the challenger will answer the
decryption query correctly. In fact, this simulation maybe is still unnecessarily
strong.

Although the security notion defined here seems weaker than the one in [3],
it is guaranteed that the formulation can be instantiated in the standard model
(without resorting to random oracle). An efficient IBE secure in the full model [8]
was constructed by Waters [34] and a few efficient normal public-key encryptions
achieving IND-CCA2 security were constructed in the literature, such as [16].
Yum and Lee presented a generic construction of certificateless encryption [36] by
combining these two types of encryption (note that they also used a weaker for-

8

mulation which does not require the challenger in Game 1 to answer a decryption
query without the knowledge of the corresponding private key). Although Yum
and Lee’s reduction allows the adaptive corruption to Type-II adversaries, the
majority of their argument still follows if this corruption query is removed. Note
that the constructibility of the formulation does not imply that the constructions
in this paper proved using the random oracle can definitely be instantiated.

A secure CL-PKE scheme achieves two important properties that differ a
CL-PKE from either an IBE or a traditional PKE. First, the public key of an
entity can be loosely (no need of security measures) bound with the identity
of the entity because a CL-PKE is secure against Type-I adversaries. This is a
big advantage over the traditional PKE. Second, a secure CL-PKE achieves the
master-key forward secrecy against Type-II adversaries (i.e., key-escrow free)
which is not achievable in the IBE following Shamir’s framework [29], while
needed and realized in the traditional PKE (the compromise of the signing key
of a Certificate Authority (CA) does not pose the threat on existing encrypted
messages and a CA cannot decrypt a message encrypted for an entity of which
only the public key is known by the CA).

2.2 Bilinear Groups

Here we briefly review some facts about bilinear groups and pairings used in the
schemes in this paper.

Definition 2 A pairing is a bilinear map ê : G1 × G1 → G2 with two cyclic
groups G1 and G2 of prime order q, which has the following properties [8]:

1. Bilinear: ê(sP, tR) = ê(P, R)st for all P, R ∈ G1 and s, t ∈ Z∗q .
2. Non-degenerate: For a given point Q ∈ G1, ê(Q, R) = 1G2 for all R ∈ G1 if

and only if Q = 1G1 .
3. Computable: There is an efficient algorithm to compute ê(P,Q) for any

P, Q ∈ G1.

The Weil and the modified Tate pairings on elliptic curves can be used to build
such bilinear maps [33].

Assumption 1 Bilinear Diffie-Hellman Assumption (BDH) [8] Let G be
a parameter generator which with system parameters k as input generates two
cyclic groups G1,G2 of prime order q, a generator P ∈ G∗1 and a bilinear map
ê. We define the advantage of an algorithm A in solving the problem (given
〈P, aP, bP, cP 〉, to compute ê(P, P)abc) by:

AdvG,A(k) = Pr[A(q,G1,G2, ê, P, aP, bP, cP) = ê(P, P)abc|
〈q,G1,G2, P, ê〉 ← G(1k), P ∈ G∗1, a, b, c

R←− Z∗q].

For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k)
is negligible.

9

Note that the BDH assumption implies the following Computational Diffie-
Hellam (CDH) assumption in group G1.

Assumption 2 Computation Diffie-Hellman Assumption (CDH) Let G
be a parameter generator which with system parameters k as input generates a
group G1 of prime order q and a generator P ∈ G∗1. We define the advantage of
an algorithm A in solving the problem (given 〈G1, P, aP, bP 〉, to compute abP)
by:

AdvG1,A(k) = Pr[A(q,G1, P, aP, bP) = abP |
〈q,G1, P, 〉 ← G(1k), P ∈ G∗1, a, b

R←− Z∗q].
For any randomized polynomial time (in k) algorithm A, the advantage AdvG,A(k)
is negligible.

While in the commonly used setting for pairing-based schemes where G1

is the torsion group on an elliptic curve, the decision Diffie-Hellman problem
(DDH) is simple. Specifically, given (P, aP, bP, cP), there is a polynomial-time
algorithm to decide if cP = abP by checking if the equation ê(aP, bP) =
ê(P, cP) holds. Hence essentially, we are using the Gap Diffie-Hellman assump-
tion (GDH) that the CDH still appears hard, even in the presence of the DDH
oracle [28].

2.3 Existing Schemes

Apart from introducing the notion of CL-PKC, Al-Riyami and Paterson also
proposed a concrete scheme which extends the Boneh-Franklin’s IBE based on
the so called general BDH assumption, i.e., given (G1,G2, P, aP, bP, cP) such
that a, b, c

R←− Z∗q , it is hard to output a pair (Q ∈ G∗1, ê(P,Q)abc). A certificate-
less signature and a hierarchical encryption system were constructed as well in
[3].

As the independent work, the same authors of [3] constructed a simple CL-
PKE [4] presented on PKC 20053, which our CL-PKE scheme is very similar
to. Despite the similarity, our work is different from [4] in a few ways. First,
our formulation of CL-PKE is different from [4] and can be instantiated in the
standard model. Second, our construction uses a hash function as a hinge to link
two types of encryption scheme with a similar structure and is slightly simpler
than the one in [4] (our scheme uses four hash functions instead of five in [4] and
a tweaked version is even faster in some cases) and the reduction can be tighter
as well. Third, we analyze the deficiency of the formulation of authenticated
encryption and present a concrete construction.

It is not difficult to demonstrate that the scheme proposed by Gentry in [20]
is also a CL-PKE. Gentry’s scheme is different from AP’s in a few ways. First, an
entity with identity IDA publishes infoA including a single element tAP ∈ G∗1
3 We became aware of this work from the personal communication with one of the

authors when their work was to be published, after we had posted the paper on
IACR ePrint.

10

(tA ∈ Z∗q is the private key PrvKeyR) and some other information (naturally,
the identity IDA). Second, algorithm Extract takes infoA, the master-key
and params as input and returns dA = sH1(Ppub‖infoA) (a‖b denotes the
concatenation of two strings a and b) as PrvKeyL of A. Algorithms Encrypt
and Decrypt work differently from AP’s as well.

In [35], Yum and Lee presented a general construction of CL-PKE by an IBE
and a traditional PKE following a formulation similar to [3], but which does
not require the challenger in Game 1 to answer a decryption query without the
knowledge of the corresponding private key. While, their model still allows the
adaptive corruption in Game 2.

An authenticated CL-PKE was intended in [25] to improve the performance
of AP’s scheme. However, the scheme is not secure against the Type-I adver-
sary. It is easy to check that if the adversary randomly chooses x1, x2 ∈ Z∗q and
publishes 〈x1P, x2P 〉 as 〈XB , YB〉, the adversary can recover the decryption im-
mediately by computing T = x1xAP and ê(dA, YB)r = ê(rQA, x2Ppub) in the
proposed scheme.

3 The New CL-PKE

Pairing is a very heavy operation compared with the point scalar, exponentia-
tion and hash operations. In the above two concrete CL-PKE’s, AP’s scheme
needs three (resp. one) pairings in algorithm Encrypt (resp. Decrypt), while
Gentry’s scheme needs two (resp. one) pairings in Encrypt (resp. Decrypt). Here
we present another construction which is more efficient in encryption.

Just as intended by the CL-PKE (to combine the advantage of both the
traditional PKE and the IBE), our scheme is exactly the integration, using a
hash function as a hinge, of two algorithms with one of each type, i.e., the
Boneh-Franklin’s IBE [8] and a variant of ElGamal’s Diffie-Hellman encryption
scheme [18][1] strengthened using the Fujisaki-Okamoto’s transform [19]. Using
a hash function as a hinge to link two encryptions with similar structure can be
generalized to some extent, such as the constructions in this paper.
Setup. Given a security parameter k, the parameter generator follows the steps.

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP .
3. Pick four cryptographic hash functions H1 : {0, 1}∗ → G∗1, H2 : G1 × G2 ×
G1 → {0, 1}n, H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n for
some integer n > 0.

The message space isM = {0, 1}n. The ciphertext space is C = G∗1×{0, 1}n×
{0, 1}n. The system parameters are params = 〈q,G1,G2, ê, n, P, Ppub,H1, H2,H3,
H4〉. s is the master-key of the system.

Extract. Given a string IDA ∈ {0, 1}∗, params and the master-key, the al-
gorithm computes QA = H1(IDA) ∈ G∗1, dA = sQA and returns dA.

11

Publish. Given params, an entity A selects a random tA ∈ Z∗q and computes
NA = tAP . The entity can ask the PKG to publish NA or publishes it by itself
or via any directory service as its public key.

Encrypt. Given a plaintext m ∈ M, the identity IDA of entity A, the system
parameters params and the public key NA of the entity, the following steps are
performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA), gr = ê(Ppub, QA)r and f = rNA.
3. Set the ciphertext to C = 〈rP, σ ⊕H2(rP, gr, f), m⊕H4(σ)〉.

Decrypt. Given a ciphertext 〈U, V, W 〉 ∈ C, the private keys dA, tA and params,
follow the steps:

1. Compute g′ = ê(U, dA), f ′ = tAU and σ′ = V ⊕H2(U, g′, f ′)
2. Compute m′ = W ⊕H4(σ′) and r′ = H3(σ′,m′).
3. If U 6= r′P , output ⊥, else return m′ as the plaintext.

The consistency of the scheme can be easily verified. The security of the
scheme in the random oracle model can be proved rather straightforwardly based
on the existing work. The proof of the scheme’s property against Type-I adver-
saries mainly mimics the security proof of the Boneh-Franklin’s IBE [8]. Note
that as pointed out that by Galindo [21], the reduction of Lemma 4.6 in Boneh-
Franklin’s IBE [8] is not valid (the spotted error is more obvious if we mimic
such a proof of our scheme because rP is used in H2), so are Al-Riyami and
Paterson’s work [3][4] (their reductions can be fixed easily). While our proof
has not such problem. The property against Type-II adversaries fairly straightly
follows from the work in [19] based on the CDH assumption in G1 implied by
the BDH assumption. The use of rP in H2 is suggested in [31][16] which makes
use of the Gap Diffie-Hellman assumption in G1 in the security proof to achieve
non-malleability4 [6] and a tighter reduction.

Theorem 1 The above scheme is an IND-CCA-secure CL-PKE provided that
H1, H2,H3, and H4 are random oracles and the BDH assumption is sound.

The proof is presented in Appendix A.
Note that the above scheme needs one more point scalar in both encryption

and decryption algorithm compared with the Boneh-Franklin’s IBE and the point
scalar could be slower than the corresponding exponentiation of a root of the
unity5 of the extension field in some cases. For example, for a random 0 < r < q of
160 bits, by choosing the supersingular curve of embedding degree k = 2 defined

4 Although proved in [6] that the non-malleability and IND-CCA2 imply each other, to
prove that the scheme without using rP in H2 is secure against Type-II adversaries,
we need a prerequisite that rP is uniquely represented in the ciphertext space [31].

5 The Weil pairing and the modified Tate pairing map two points to a root of unity
of the corresponding extension field [33][10].

12

over the field Fp with 512-bit prime p to achieve the security level close to a 1024-
bit RSA-based scheme, the point scalar needs about 1200 multiplications in Fp

(according to Table IV.3. in [11] by assuming I = 10M and the windowed NAF
algorithm is used). While, the exponentiation of a p-th root of unity represented
by a normal basis (which is of a special form [32]) can be computed with roughly
490 multiplications in Fp using the Lucas ladder (our experiment shows that the
speed ratio of exponentiation to point scalar is about 4.5. Part of the reason
of this ratio is because more modulo operations are used in point scalar, but
p used in the experiment is not a Solinas prime and so, the cost of modulo is
no longer trivial. Using the window method such as [26], the performance could
be improved further). By sacrificing the bandwidth (for a longer ciphertext),
we can tweak the above scheme to achieve better performance. In the tweaked
scheme, an entity A publishes NA = ζtA where ζ = ê(P, P). The ciphertext is
computed as C = 〈rP, ζr, σ ⊕H2(rP, ζr, gr, f),m ⊕H4(σ)〉 where f = Nr

A and
gr is computed as usual and the decryption algorithm is straightforward. As
the extra component ζr can be computed from rP and P , the security proof
follows the original scheme and by introducing one extra pairing ê(rP, P) in the
decryption algorithm, the ciphertext length can be reduced to the original size.
Note that even with two extra exponentiations the tweaked scheme is still faster
than the original one with the parameter example.

4 A CL-Auth-PKE

The new CL-PKE scheme can be simply extended to an authenticated en-
cryption (Auth-PKE)(not signcryption) [24][2][37]. The formulation of identity-
based Auth-PKE (with message privacy and authenticity property) can be found
in [24], which can be extended to the certificatless setting with considering the
extra public key. Due to limited space, we skip the definition of message authen-
ticity, instead focus on a deficiency of message privacy definition in the literature.

The formulation and construction in [24] (and the outsider security in [2])
does not achieve the forward secrecy of sender’s private keys (forward secrecy
for short). In particular, if the sender’s private keys are compromised, any mes-
sage encrypted with these keys could be recovered. Moreover, because lacking
of sender-key forward secrecy implies that the sender can decrypt and accept
a message encrypted by itself (so the message authenticity is breached in some
sense), a scheme can be attacked. For example, if A sends B a message “Please
transfer $1000 to C’s account” protected by Lynn’s Auth-PKE [24], C can eaves-
drop this message and replays it to A. A will be to able to decrypt this message
and accept it as a valid message from B. So, C will get $2000 with $1000 bonus.
(Note that this attack abuses the symmetry of the used pairing.) We think this
is an unattractive property in the practice. Further analysis shows that there are
two subcases. Case 1, the adversary has the interest to recover the decryption
of those ciphertexts auth-encrypted before it has compromised the sender’s pri-
vate keys. Case 2, although the private keys were exposed, an entity continues
to use these keys to auth-encrypt messages (maybe the attack is so smart that

13

the victim entity cannot notice the fact that its keys were leaked). The adver-
sary wants to decrypt the messages auth-encrypted after the compromise of the
keys as well. In Case 1 the scheme only needs to achieve forward secrecy, while
in Case 2 the scheme has to guarantee both forward and (we call it) backward
secrecy. Moreover, as in Case 2 the compromised entity is still active, it could
be used as a decryption oracle. Hence in Case 26 we should design a scheme
against adaptive chosen ciphertext attacks, while in Case 1 a chosen plaintext
attack Auth-PKE (IND-CPA-Auth-PKE) that is secure on the prerequisite of
the secrecy of receiver’s private keys is enough (for well-known reason, one-way
encryption [19] is inadequate).

To fill in the gap we define the forward secrecy of authenticated encryption
here. The forward secrecy of an Auth-PKE against Type-I adversaries is defined
by the following sender-key-known CPA game.

– Setup. The challenger takes a security parameter k and runs the Setup al-
gorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

– Query phase. The adversary issues the following queries.
• Extraction query on IDs (of PrvKeyL). The challenger responds by

running algorithm Extract to generate the private key dIDs and passes
it to the adversary.

• Publish query on IDs and IDr. The challenger runs algorithm Publish,
passes NIDs and NIDr to the adversary and maintains a key pair list to
store the generated key pairs.

• Get PrvKeyR query on IDs and IDr. The challenger responds with tIDs

and tIDr which correspond to the public key NIDs and NIDr respectively.
– Challenge. The adversary outputs two equal length plaintexts m0,m1 ∈
M , and the public key N ′

IDr
on which it wishes to be challenged. The

challenger picks a random bit b ∈ {0, 1} and sets C∗=Auth-Encrypt(params,
IDs, dIDs , tIDs , NIDs ,mb, IDr, N

′
IDr

), i.e., mb is encrypted for the receiver
with identity IDr and public key N ′

IDr
by the sender with identity IDs

and public/private key pair NIDs/tIDs . It sends C∗ as the challenge to the
adversary. Note that N ′

IDr
could be different from NIDr , while NIDs has to

be the one published by the challenger.
– Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game

if b′ = b.

The advantage of a sender-key-known IND-CPA Type-I adversary A against
the Auth-PKE scheme E is the function of security parameter k: AdvI−CPA

E,A (k) =
|Pr[b′ = b] − 1/2|. Note that, the above game does not allow the adversary
to adaptively choose the sender or receiver (in the forward secrecy setting).
Similarly, we can design another game to define the forward secrecy of an Auth-
PKE against Type-II adversaries. So, we say that a CL-Auth-PKE is secure

6 In this case, we need the insider message privacy but outsider message authenticity
formulated in [2].

14

only if it achieves message privacy, message authenticity and forward secrecy of
sender’s private keys.

Here we construct a CL-Auth-PKE scheme achieving the forward secrecy (in
fact, the backward secrecy as well. See the argument in Appendix A).

Setup. Same as the algorithm Setup in the CL-PKE scheme, except that the
hash function H2 is defined as H2 : G1 ×G1 ×G2 ×G1 → {0, 1}n.

Extract and Publish work in the same way as in the CL-PKE scheme.

Auth-Encrypt. Given a plaintext m ∈ M, the identity IDA, the public key
NA, the private keys dA, tA of sender A, the identity IDB and the public key
NB of receiver B and params, the following steps are performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA), QB = H1(IDB), gr = ê(dA, QB)r and f =

rtANB .
3. Set the ciphertext to C = 〈rNA, rQA, σ⊕H2(rNA, rQA, gr, f), m⊕H4(σ)〉.

Auth-Decrypt. Given a ciphertext 〈T, U, V, W 〉 ∈ C, the private keys dB , tB
and identity IDB of receiver B, the public key NA and identity IDA of sender
A, and params, follow the steps:

1. Compute g′ = ê(U, dB), f ′ = tBT and σ′ = V ⊕H2(T, U, g′, f ′)
2. Compute m′ = W ⊕H4(σ′), r′ = H3(σ′,m′) and QA = H1(IDA).
3. If U 6= r′QA or T 6= r′NA, output ⊥, else return m′ as the plaintext.

Adopting the similar method in the proof of Theorem 4.1 in [8], we can prove
that the above scheme achieves the forward secrecy against Type-I adversaries.
Please see Appendix A for part of the proof. Using the similar way to prove that
ElGamal’s DH encryption strengthened by the Fujisaki-Okamoto’s transform is
IND-CCA secure, we can prove that the scheme is forward secure against Type-
II adversaries. The message authenticity property can be proved using a similar
reduction as in [24]. Intuitively, without the sender and receiver’s private key,
given a plaintext, the adversary cannot generate a valid ciphertext (the Type-
I adversary needs to find 〈rQA, ê(QA, QB)rs〉 given 〈P, sP, QA, QB〉, while the
Type-II adversary needs to find 〈rNA, rtANB〉 given 〈P,NA, NB〉). Moreover the
scheme is adaptively secure (IND-CCA2) which implies non-malleability, this is,
given a ciphertext without knowing the plaintext, the adversary cannot generate
another valid ciphertext whose corresponding plaintext has a relation with the
plaintext of the first ciphertext. Hence the outsider unforgeablility (message
authenticity) is achieved.

We note that the scheme can be sender-anonymous, i.e., no second party
(apart from the intended receiver) can recover the sender’s identity merely from
the ciphertext, which cannot be achieved by Lynn’s scheme. In this case, the
sender’s identity is part of the message being auth-encrypted. This is very useful
in the environments that the sender wants to hide it identity.

15

5 Remarks on CL-PKE’s

First, we evaluate the complexity of the CL-PKE schemes. The schemes have
four major operations, i.e., Pairing, Scalar, Exponentiation and Hash. Without
pre-computation, pairing is the heaviest one which involves the point scalar as
one of the basic operations, even if many techniques can be applied on pairing
operation to dramatically improve the performance [10]. Note that some point
scalar operations in G1 and exponentiations in G2 can be converted to each
other and the performance difference of these two operations heavily depends
on the specific implementation. We count these operations as they are presented
in the schemes. Without considering the pre-computation, the complexity of
the schemes is listed in Table 1. Note that the first three schemes have the
same ciphertext length and both the tweaked CL-PKE and the Auth-Encryption
scheme have one more component.

Encrypt Decrypt pubkey len
P S E H P S E H

Gentry’s scheme 2 1 1 5 1 1 0 3 1∗

AP’s scheme 3 1 1 4 1 1 0 3 2

New scheme 1 2 1 4 1 2 0 3 1

Tweaked New scheme 1 1 3 4 1 1 2∗ 3 1

Auth-Encryption scheme 1 3 1 4 1 3∗ 0 3 1

Table 1. The Complexity of CL-PKE’s

We can find that the new scheme is fastest in Encrypt (which is more sig-
nificant in a hierarchical system such as [23][3][20]), while relatively slower than
other two schemes in Decrypt. AP’s scheme needs to publish two elements of
G1, while the new scheme needs only one. This would save the bandwidth in
some situations, e.g., if the scheme is used in a key exchange protocol which
needs an entity to piggy-send its public key in a message. Note that in Gentry’s
scheme, infoA of entity A could also include only a single element in G∗1 and its
identity. The new scheme does have a disadvantage, i.e., there are two private
keys managed by each entity, while in other two schemes, two private keys can
be combined as one, so to save storage. We also note that if the result of Step 1
in algorithm Encrypt of AP’s scheme can be reused, AP’s scheme becomes most
efficient on computation.

Gentry’s scheme works more like a traditional PKE. In the scheme, an entity
first generates its public/private key pair and then asks the PKG to issue a
certificate to bind its identity with its public key. But the certificate is going to
be used as the entity’s another private key. The disadvantage of this method is
that the entity cannot freely change its public key without interacting with the
PKG. On the other hand, we will see later that this method has two important
advantages. A good aspect of AP’s scheme is that it can be easily extended to

16

other certificateless protocols including signature. Note that the new scheme can
be easily modified to integrate AP’s solution. In the modified scheme, entity A
publishes its public key NA = (XA, YA) = (tAP, tAsP) as in AP’s. In algorithm
Encrypt, f is computed by f = rXA and then certificateless signature scheme
just works as the one in [3]. All the schemes can be converted to a KEM (similar
to ECIES-KEM) to be used in a hybrid encryption [31][16] (see Appendix B).

Finally, we give two comments on the CL-PKC in general. (1) In the CL-PKC
system, entities have to trust that the PKG will not launch an active attack to
replace an entity’s public key with its own choice. Although in the traditional
PKC, entities have to trust the CA as well, there is a fundamental difference
between these two systems. If a CA launch such attack, it will leave a trace (a
valid certificate) to face the legal penalty. While, in the CL-PKC, although sug-
gested in [3] and implemented in [20] that an entity’s public key and the identity
are bound together to generated PrvKeyL (hence only the PKG can generate
this key corresponding to the public key. Note that the new scheme can play this
trick as well), only when the PrvKeyL is used in an undeniable operation such
as signing a message, the PKG’s misbehavior can be traced (one advantage of
Gentry’s PrvKeyL generation method). This may not be good enough in many
settings. (2) The public key revocation is still a great challenge. If the two private
keys PrvKeyL and PrvKeyR are both compromised, the entity has to publish a
revocation message to prevent others from using the corresponding public key to
encrypt messages. So, a public key revocation list has to be maintained securely,
just as the certificate revocation list (CRL) in the traditional PKC. And if the
entity wants to keep its identity, then the system should generate PrvKeyL in
a similar fashion as Gentry’s, e.g., PrvKeyLA = sH1(IDA‖NA) (another ad-
vantage of Gentry’s PrvKeyL generation method). We seem to come back to
the starting point, to face the scalability issue. Some other solutions such as the
key evolvement scheme [20], intrusion-resilient encryption [17], mediated encryp-
tion [7], etc, have been attempted. None of them can fully solve the problem.

6 Acknowledgement

The first author would like to thank Kenneth G. Paterson for his comments on
the draft of this paper.

References

1. M. Abdalla, M. Bellare and P. Rogaway. DHIES: An encryption scheme based on
the Diffie-Hellman Problem. extended abstract, entitled The Oracle Diffie-Hellman
Assumptions and an Analysis of DHIES, in CT-RSA 2001, LNCS 2020, 2001.

2. J. H. An, Y. Dodis and T. Rabin. On the security of joint signature and encryption.
in Advances in Cryptology-Eurocrypt 2002, LNCS 2332, 2002.

3. S. S. Al-Riyami and K. G. Paterson. Certificateless Public Key Cryptography. in
Advances in Cryptology-Asiacrypt 2003, LNCS 2894, 2003. See also Cryptology
ePrint Archive, Report 2003/126.

17

4. S. S. Al-Riyami and K. G. Paterson. CBE from CL-PKE: A Generic Construction
and Efficient Schemes. to appear in PKC 2005.

5. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-
Model Scheme for a Hybrid-Encryption Problem. in Advances in Cryptology-
EUROCRYPT 2004, LNCS 3027, 2004.

6. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of
security for public-key encryption schemes. in Advances in Cryptology-CRYPTO
1998, LNCS 1462, 1998.

7. D. Boneh, X. Ding, G. Tsudik and C. Wong. A Method for Fast Revocation of Pub-
lic Key Certificates and Security Capabilities. in Proceedings of the 10th USENIX
Security Symposium, USENIX, 2001.

8. D. Boneh and M. Franklin. Identity Based Encryption from The Weil Pairing.
extended abstract in Advances in Cryptology-Crypto 2001, LNCS 2139, 2001.

9. D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against Dy-
namic Adversaries. in Advance in Cryptology-Eurocrypt 1992, LNCS 658, pp.
307-323, 1992.

10. P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott. Efficient Algorithms
for Pairing-Based Cryptosystems. in Advances in Cryptology-Crypto 2002, LNCS
2442, pp. 354-368, 2002. See also Cryptology ePrint Archive, Report 2002/008.

11. I.F. Blake, G. Seroussi and N. P. Smart. Elliptic Curve in Cryptography”, Cam-
bridage Press, 1999.

12. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
IEEE, pp. 136-145, 2001.

13. R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Computation.
in 28th ACM Symposium on Theory of Computing (STOC), ACM, pp. 639-648,
1996. Full version in MIT-LCS-TR #682, 1996.

14. R. Canetti, S. Halevi and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. in Advances in Cryptology-Eurocrypt 2003, LNCS 2656, 2003

15. R. Canetti, S. Halevi and J. Katz. Adaptively-Secure, Non-Interactive Public-Key
Encryption. To Appear in TCC 2005. Cryptology ePrint Archive, Report 2004/317.

16. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Com-
puting 33:167-226, 2003.

17. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. Intrusion-Resilient Public-
Key Encryption. in CT-RSA 2003, LNCS 2612, pp. 19-32, 2003.

18. T. ElGamal. A public key cryptosystem and signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469-472, 1985.

19. E. Fujisaki and T. Okamotom. Secure Integration of Asymmetric and Symmet-
ric Encryption Schemes. in Advances in Cryptology-CRYPTO 1999, LNCS 1666,
pp.535-554, 1999.

20. C. Gentry. Certificate-Based Encryption and the Certificate Revocation Problem.
Cryptology ePrint Archive, 2003/183.

21. D. Galindo. Improved Identity Based Encryption. 2005. Available on
http://www.cs.ru.nl/ dgalindo/improvedIBEfull.pdf.

22. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences Vol. 28, 270-299, 1984.

23. C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. in Proceedings
of Asiacrypt 2002, LNCS 2501, 2002.

24. B. Lynn. Authenticated Identity-Based Encryption. Cryptology ePrint Archive,
Report 2002/072.

18

25. Y.-R. Lee and H.-S. Lee. An Authenticated Certificateless Public Key Encryption
Scheme. Cryptology ePrint Archive, 2004/150.

26. B. Möller. Improved Techniques for Fast Exponentiation. in Information Security
and Cryptology-ICISC 2002, LNCS 2587, 2003.

27. J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs:
The Non-Committing Encryption Case. in Advance in Cryptology-Crypto 2002,
LNCS 2442, pp. 111-126, 2002.

28. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. in Practice and Theory in Public Key
Cryptography-PKC’2001, LNCS 1992, 2001.

29. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. in Advances in
Cryptology-Crypto 1984, LNCS 196, 1984.

30. V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. in
Advances in Cryptology-EUROCRYPT 2000, LNCS 1807, 2000.

31. V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. 2001.
32. M. Scott and P. S. L. M. Barreto. Compressed Pairings. in Advances in Cryptology-

Crypto 2004, LNCS 3152, 2004. See also Cryptology ePrint Archive, Report
2004/032.

33. E. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. in Advances in Cryptology-Eurocrypt 2001, LNCS 2045, pp. 195-
210, 2001.

34. B. R. Waters. Efficient Identity-Based Encryption Without Random Oracles. Cryp-
tology ePrint Archive, Report 2004/180.

35. D.H. Yum and P.J. Lee. Identitiy-based cryptography in public key management.
in EuroPKI 2004, LNCS 3093, pp. 71-84, 2004.

36. D.H. Yum and P.J. Lee. Generic construction of certificateless encryption. in
ICCSA 2004, LNCS 3043, pp. 802-811, 2004.

37. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption). in Advances in Cryptology-Crypto 1997, LNCS
1294, 1997.

Appendix A

Proof of Theorem 1.
The proof of the security of the new CL-PKE follows from Proposition 1 and

2.
The proof of Proposition 1 use a similar strategy of the Boneh-Franklin’s

proof [8]. Similarly we first define two basic schemes BasicPub and BasicPubhy.

Definition 3 BasicPub
BasicPub is specified by three algorithms: keygen, encrypt and decrypt.
keygen: Given a security parameter k, the parameter generator follows the steps.

1. Generate two cyclic groups G1,G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP . Choose a random QA ∈ G∗1.
3. Pick a cryptographic hash function H2 : G1 × G2 × G1 → {0, 1}n for some

integer n > 0.

19

The message space is M = {0, 1}n. The ciphertext space is C = G∗1×{0, 1}n.
The public params is 〈q,G1,G2, ê, n, P, Ppub, QA, H2〉 and the private key is
dA = sQA.
encrypt: Given a plaintext m ∈M, an element N ∈ G∗1 and the public params,
choose a random r ∈ Z∗q and compute ciphertext C = 〈rP,m⊕H2(rP, gr, rN)〉,
where g = ê(Ppub, QA).
decrypt: Given a ciphertext C = 〈U, V 〉, an element t ∈ Z∗q , the public params,
and the private key dA, compute g′ = ê(U, dA) and plaintext m = V⊕H2(U, g′, tU).

Definition 4 BasicPubhy

BasicPubhy is specified by three algorithms: keygen, encrypt, decrypt.
keygen: This algorithm is identical to keygen of BasicPub, except that it
chooses two additional hash functions H3 : {0, 1}n × {0, 1}n → Z∗q and H4 :
{0, 1}n → {0, 1}n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗1×{0, 1}n×
{0, 1}n. The public params is 〈q,G1,G2, ê, n, P, Ppub, QA,H2,H3,H4〉 and the
private key is dA = sQA.
encrypt: Given a plaintext m ∈M, an element N ∈ G∗1 and the public params,
follow the steps:

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m), and g = ê(Ppub, QA).
2. Set the ciphertext to C = 〈rP, σ ⊕H2(rP, gr, rN),m⊕H4(σ)〉.
decrypt: Given a ciphertext C = 〈U, V,W 〉, an element t ∈ Z∗p, the public
params, and the private key dA, follow the steps.

1. Compute g′ = ê(U, dA) and σ′ = V ⊕H2(U, g′, tU),
2. Compute m′ = W ⊕H4(σ′) and r′ = H3(σ′, m′),
3. If U 6= r′P , reject the ciphertext, else return m′ as the plaintext.

Proposition 1 The CL-PKE scheme is secure against the Type-I adversaries
provided that H1,H2,H3, and H4 are random oracles and the BDH assumption
is sound.

Proof: The proof follows directly from the following Lemma 1, 2, 3.

Lemma 1 Suppose that H1 is a random oracle and that there exists a Type-I
IND-CCA2 adversary A against CL-PKE with advantage ε(k) which makes at
most q1 queries to H1. Then there exits a Type-I IND-CCA2 adversary B against
BasicPubhy with advantage at least ε(k)/q1 which runs in time O(time(A)).

Proof: We construct an IND-CCA2 adversary B that uses A to gain advantage
against BasicPubhy. The game between challenger C and adversary B starts
with the challenger first generating a random public params by running algo-
rithm keygen of BasicPubhy. The result is a public params Kpub = 〈q,G1,G2,
ê, n, P, Ppub, QA,H2,H3,H4〉 and a private key dA = sQA where s ∈ Z∗q . The
challenger passes Kpub to adversary B . Adversary B mounts an IND-CCA2 at-
tack on the BasicPubhy with params Kpub using the help of A as follows.

20

B chooses an index I with 1 ≤ I ≤ q1 and simulates the algorithm Setup of
CL-PKE forA by supplyingA with the CL-PKE’s public params= 〈q,G1,G2, ê,
n, P, Ppub,H1, H2,H3,H4〉 where H1 is a random oracle controlled by B . B uses
value s as the master-key which it does not know. Adversary A can make
queries of H1 at any time. These queries are handled by the algorithm H1-
queries.
H1-queries (IDi): B maintains a list of tuples 〈IDj , Qj , hj〉 as explained below.
We refer to this list as H list

1 . The list is initially empty. WhenA queries the oracle
H1 at a point IDi, B responds as follows:

1. If IDi already appears on the H list
1 in a tuple 〈IDi, Qi, hi〉, then B responds

with H1(IDi) = Qi ∈ G∗1.
2. Otherwise, if the query is on the I-th distinct ID, then B stores 〈IDI , QA,⊥〉

into the tuple list and responds with H1(IDI) = QA.
3. Otherwise, B selects a random integer hi from Z∗q , computes Qi = hiP , and

stores 〈IDi, Qi, hi〉 into the tuple list. B responds with H1(IDi) = Qi.

Phase 1: A launches Phase 1 of its attack, by make a series of requests, each
of which is either a PrKeyL extraction, a publish query, a replace query, a
PrKeyR extraction or a decryption query. B replies to these requests as follows
(we assume that an H1 query on the related identity has been issued.):
Extract PrKeyL on (IDi): If IDi = IDI , B aborts the game (Event 1);
otherwise B responds with hisP where hi is from the tuple corresponding to
IDi in H list

1 .
Publish query on (IDi): To respond to this query, B maintains another list
Klist with tuples of the form 〈IDi, ti, tiP, Ri〉 (IDi is the index). For a new IDi,
B randomly chooses ti ∈ Z∗q and inserts the tuple 〈IDi, ti, tiP, tiP 〉 into the list;
otherwise, B responds with Ri.
Replace query on (IDi) with Ni: B replaces Ri of the tuple indexed by IDi

on Klist with Ni.
Extract PrKeyR on (IDi): B checks if Ri = tiP of the tuple indexed by IDi

on the list Klist. If Ri = tiP , B returns ti; otherwise B aborts the game (Event
2).
Decryption Query (IDi, Ci, Ni): B first searches Klist to find a tuple with
Ni = tiP . If such tuple does not exist, B aborts the game (Event 3). If the
request is to decrypt Ci = 〈U, V,W 〉 on IDI (i.e., IDi = IDI), then B sends the
decryption query 〈U, V, W 〉 and ti to C and simply relays the plaintext got from
C to A directly. Otherwise B tries to perform the decryption by first computing
gr = ê(U, hisP) and tiU , then querying Hi = H2(U, gr, tiU) (H2 is controlled
by C).
Challenge Phase: At some point, A decides to end Phase 1 and picks IDch,
Nch and two messages m0,m1 on which it wants to be challenged. If IDch 6= IDI

then B aborts the game (Event 4). Otherwise B passes C the pair of m0, m1 as
the messages on which it wishes to be challenged and Nch as well. C responds
with the challenger ciphertext Cch = 〈U ′, V ′, W ′〉. Then B forwards Cch to A .

21

Phase 2: B continues to respond to requests in the same way as it did in Phase 1.
But if any decryption query is issued on 〈IDI , Cch, Nch〉, then B aborts (Event
5).
Guess: A makes a guess b′ for b. B outputs b′ as its own guess.

Claim: If the algorithm B does not abort during the simulation then algorithm
A ’s view is identical to its view in the real attack.

Proof: B ’s responses to H1 queries are uniformly and independently distributed
in G∗1 as in the real attack. All responses to A ’s requests are valid, if B does not
abort. Furthermore, the challenge ciphertext 〈U ′, V ′,W ′〉 is a valid encryption
in CL-PKE for mb where b ∈ {0, 1} is random.

The remaining problem is to calculate the probability that B does not abort
during simulation. The algorithm B could abort when one of the following events
happens: (1) Event 1, denoted asH1:A queried PrKeyL for IDI at some point;
(2) Event 2, denoted as H2: A replaced a public key of an entity, but queried its
PrKeyR (this is not allowed in the game). (3) Event 3, denoted as H3: A asked
a decryption query under an unknown public key Ni (this is not allowed in the
game). (4) Event 4, denoted asH4: A did not choose IDI as IDch; or (5) Event
5, denoted as H5: B relayed a decryption query on Cch to C in phase 2.

Because of the way that B forwards ciphertexts, the last event implies that
A didn’t choose IDI . We also notice that the event ¬H4 implies that the event
¬H1. Hence we have

Pr[B does not abort] = Pr[¬H1 ∧ ¬H4 ∧ ¬H5] = Pr[¬H4] ≥ 1/q1.

So, the lemma follows.

Lemma 2 Let H3, H4 be random oracles. Let A be a Type-I IND-CCA2 adver-
sary against BasicPubhy. Suppose A has running time t(k), makes at most qD

decryption queries, and makes q3 and q4 queries to H3 and H4 respectively. If
A has non-negligible advantage ε(k) against BasicPubhy, then there exists a
Type-I IND-CPA (chosen plaintext attack [6]) adversary B against BasicPub
with with advantage ε1(k) and running time t1(k) where

ε1(k) ≥ 1
2(q3+q4)

[(ε(k) + 1)(1− 2
q)qD − 1]

t1(k) ≤ t(k) + O((q3 + q4) · (n + log q)).

Proof: This lemma follows from the result of the Fujisaki-Okamoto’s trans-
form [19]. The extra N in the scheme does not affect the reduction, because H2

is a random oracle.

Lemma 3 Let H2 be a random oracle. Suppose there exists a Type-I IND-CPA
adversary A against BasicPub which has non-negligible advantage ε(k) and
queries H2 at most q2 times. Then there exists an algorithm B to solve the BDH
problem with non-negligible advantage 2ε(k)/q2.

22

Proof: The proof is similar to Lemma 4.3 in [8]. Algorithm B is given as input
the BDH parameters 〈q,G1,G2, P, ê〉 produced by G and a random instance
〈P, aP, bP, cP 〉 where a, b, c are random in Z∗q . Algorithm B finds ê(P, P)abc by
interacting with A as follows:

Algorithm B simulates algorithm keygen of BasicPub to create the public
params Kpub = 〈q,G1,G2, ê, n, P, Ppub, QA,H2〉 by setting Ppub = aP (i.e.,
s = a), QA = bP . H2 is a random oracle controlled by B . So, the private key is
dA = abP which B does not know. Algorithm B passes the public params Kpub

to A and responds queries as follows.
H2-queries (Xi, Yi, Zi): At any time algorithm A can issues queries to the
random oracle H2. To respond to these queries B maintains a list of tuples called
H list

2 . Each entry in the list is a tuple of the form 〈Xi, Yi, Zi,Hi〉 indexed by the
first three items. To respond to a query on (Xi, Yi, Zi), B does the following
operations:

1. If on the list there is a tuple indexed by (Xi, Yi, Zi), then B responds with
Hi.

2. Otherwise, B randomly chooses a string Hi ∈ {0, 1}n and inserts a new tuple
(Xi, Yi, Zi,Hi) to the list. It responds to A with Hi.

Challenge: Algorithm A outputs two messages m0, m1 and an element N ∈ G∗1
on which it wants to be challenged. B chooses a random string R ∈ {0, 1}n, and
defines Cch = 〈U ′, V ′〉 = 〈cP, R〉. B gives Cch as the challenge to A . Observe
that the decryption of Cch is

V ′ ⊕H2(U ′, ê(U ′, dA), cN) = R⊕H2(cP, ê(cP, abP), cN)

Guess: Algorithm A outputs its guess c′ ∈ {0, 1}. At this point B picks a ran-
dom tuple 〈Xi, Yi, Zi, Hi〉 from the set which contains the tuples from H list

2 with
the form Xi = cP . B outputs Yi.

LetH be the event that algorithmA issues a query for H2(cP, ê(cP, abP), cN))
at some point during the simulation above. Using the same methods in [8], we
can prove the following two claims:
Claim 1: Pr[H] in the simulation above is equal to Pr[H] in the real attack.
Claim 2: In the real attack we have Pr[H] ≥ 2ε(k).

Assume that A has queried q2 distinct value on H2. Following from the above
two claims, we have that B produces the correct answer with probability at least
2ε(k)/q2.

If we separate the queries to H2 into two stages, i.e., before the challenge
phase (qa

2 times) and after the challenge phase (qp
2 times), then we can obtain

a tighter reduction 2ε(k)/qp
2 , because cP is randomly chosen and it is negligibly

likely that A has queried with this value before the challenge phase.

Proposition 2 The CL-PKE scheme is secure against the Type-II adversaries
provided that H1,H2,H3, and H4 are random oracles and the GDH assumption
in G1 is sound.

23

The proof of Proposition 2 is quite similar to the following reduction of CL-
Auth-PKE’s forward secrecy. We omit the details.

¤

Proof of forward secrecy of the CL-Auth-PKE.
We can follow the method of Lemma 4.3 in [8] to prove that the CL-Auth-

PKE achieves the forward secrecy against Type-I adversaries.
First, we define a BasicAuthPub scheme consisting of following algorithms.

Keygen. Given a security parameter k, the parameter generator follows the
steps.

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP . Pick two random elements
QA, QB ∈ G∗1. Pick two random elements tA, tB ∈ Z∗q .

3. Pick a cryptographic hash function H2 : G1 × G2 × G1 → {0, 1}n for some
integer n > 0.

4. The public key is Kpub = 〈q,G1,G2, n, ê, P, Ppub, QA, tAP, QB , tBP, H2〉. The
private keys are tA, dA = sQA, tB , dB = sQB .

Encrypt. Given a plaintext m ∈ {0, 1}n, Kpub and the private keys dA, tA, the
following steps are performed.

1. Pick a random r ∈ Z∗q and compute gr = ê(dA, QB)r and f = rtAtBP .
2. Set the ciphertext to C = 〈rtAP, rQA, m⊕H2(rtAP, rQA, gr, f)〉.

Decrypt. Given a ciphertext 〈T, U, V 〉 encrypted using the public key Kpub, and
the private keys dB , tB , follow the step:

1. Compute g′ = ê(U, dB), f ′ = tBT and return m = V ⊕ H2(T, U, g′, f ′) as
the plaintext.

Lemma 4 Let H2 be a random oracle. Let A be a sender-key-known IND-CPA
adversary that has advantage ε(k) against BasicAuthPub. Suppose A makes
a total of qH2 queries to H2. Then there is an algorithm B that solves the BDH
problem with advantage at least 2ε(k)/qH2 and a running time O(time(A)).

Proof: For ease to prove the lemma, we extend the BDH assumption to the
following assumption (EBDH). Given 〈q,G1,G2, R, aR, bR, cR, vR, vaR, vcR, t1,
t1vR, t1vcR, t2, t2vR〉 such that R ∈R G∗1 and a, b, c, v, t1, t2 ∈R Z∗q , it is hard
to compute ê(R, R)abc. One can easily verify that the BDH and the EBDH
assumption imply each other with a trivial reduction.

Algorithm B given a random EBDH instance interacts with A in the follow-
ing way (using A as a subroutine).

Setup. Algorithm B creates the BasicAuthPub public key Kpub in the fol-
lowing way. B sets Kpub as 〈q,G1,G2, n, ê, vR, vaR,R, t1vR, bR, t2vR,H2〉, i.e.,
B sets P = vR, s = a (which B does not known), Ppub = vaR, QA = R, tA = t1,

24

tAP = t1vR, QB = bR, tB = t2, tBP = t2vR and H2 is a random oracle con-
trolled by B . Note that by definition, the private keys are dA = sQA = aR, tA,
dB = sQB = abR (which B does not know) and tB .

H2-queries (Ti, Ui, Xi, Yi). At any time algorithm A can issues queries to the
random oracle H2. To respond to these queries B maintains a list of tuples called
H list

2 . Each entry in the list is a tuple of the form 〈Ti, Ui, Xi, Yi,Hi〉. To respond
to a query on (Ti, Ui, Xi, Yi), B does the following operations:

1. If (Ti, Ui, Xi, Yi) is on the list in a tuple 〈Ti, Ui, Xi, Yi,Hi〉, then B responds
with H2(Ti, Ui, Xi, Yi) = Hi.

2. Otherwise, B randomly chooses a string Hi ∈ {0, 1}n and adds the tuple
〈Ti, Ui, Xi, Yi,Hi〉 to the list. It responds to A with H2(Ti, Ui, Xi, Yi) = Hi.

Query phase.

– Extraction query on IDs. B responds with aR.
– Publish query on IDs and IDr. B responds with tAvR and tBvR.
– Get PrvKeyR query on IDs and IDr. B responds with tA and tB .

Challenge phase. Algorithm A outputs two messages m0,m1 and N ′
B on which

it wants to be challenged. B chooses a random string V ∈ {0, 1}n and defines
Cch = 〈tAvcR, cR, V 〉 = 〈T, U, V 〉. B gives Cch as the challenge to A . Note
that, by definition, U = rQA = cR (which implies r = c because QA = R), T =
rtAP = rtAvR = tAvcR and the decryption of C is V ⊕H2(T,U, ê(U, dB), tBT)
where ê(U, dB) = ê(cR, abR) = ê(R, R)abc.

Guess. Algorithm A outputs its guess c′ ∈ {0, 1}. At this point B picks a ran-
dom tuple 〈Ti, Ui, Xi, Yi,Hi〉 from the list Hlist

2 and outputs Xi as the solution
to the EBDH instance.

Following the same argument in the proof of Lemma 4.3 in [8], we have that
B outputs the correct answer to the EBDH instance with probability at least
2ε(k)/qH2 . In fact in the Guess phase, B can randomly choose a tuple from a
set S which includes the tuples whose Tj = T and Uj = U on list H list

2 . Then,
because of the randomness of cR, a tighter reduction could be obtained.

¤
Lemma 4 shows that the BasicAuthPub scheme already achieves the for-

ward secrecy again Type-I adversaries. By applying the Fujisaki-Okamoto’s trans-
form, the full scheme is secure against sender-key-known CCA adversaries. Note
that, this simple reduction does not guarantee the security against the adaptively
corrupting adversaries implied in Boneh-Franklin’s proof [8].

Appendix B

An ECIES-KEM-similar hybrid encryption [1][31] consists of following algo-
rithms.
Setup. Given a security parameter k, the parameter generator follows the steps.

25

1. Generate two cyclic groups G1 and G2 of prime order q and a bilinear pairing
map ê : G1 ×G1 → G2. Pick a random generator P ∈ G∗1.

2. Pick a random s ∈ Z∗q and compute Ppub = sP .
3. Pick two cryptographic hash functions H1 : {0, 1}∗ → G∗1, KDF : G1×G2×
G1 → {0, 1}n × {0, 1}l for some integers n, l > 0.

4. Pick a symmetric encryption algorithm ENCk1(·) which uses n-bit k1 as the
key. Pick a keyed-hash function MACk2 : {0, 1}∗ → {0, 1}t for some integer
t > 0, which uses l-bit k2 as the key.

The message space isM = {0, 1}∗. The ciphertext space is C = G∗1×{0, 1}∗×
{0, 1}t. The system parameters are params = 〈q,G1,G2, ê, n, P, Ppub,H1,KDF,
ENC(·),MAC(·)〉. s is the master-key of the system.

Publish. Given params, an entity A selects a random tA ∈ Z∗q and computes
NA = tAP . The entity can ask the PKG to publish NA or publish it by itself or
via any directory service as its public key.

Extract. Given a string IDA ∈ {0, 1}∗, the public key NA generated in Publish,
params and the master-key, the algorithm computes QA = H1(IDA‖NA) ∈
G∗1, dA = sQA and returns dA.

Encrypt. Given a plaintext m ∈ M, the identity IDA of entity A, the system
parameters params and the public key NA of the entity, the following steps are
performed.

1. Pick a random r ∈ {0, 1}n and compute QA = H1(IDA‖NA), gr = ê(Ppub, QA)r

and f = rNA.
2. Compute 〈k1, k2〉 = KDF (rP, gr, f);
3. Compute c = ENCk1(m);
4. Compute t = MACk2(c).
5. Set the ciphertext to C = 〈rP, c, t〉.

Decrypt. Given a ciphertext 〈U, V, W 〉 ∈ C, the private keys dA, tA and params,
follow the steps:

1. Compute g′ = ê(U, dA), f ′ = tAU and 〈k1, k2〉 = KDF (rP, g′, f ′),
2. Verify that W = MACk2(V). If the equation does not hold, return ⊥ indi-

cating a decryption failure.
3. Compute m = ENC−1

k1
(V) as the plaintext.

