Hierarchical Identity Based Encryption with Constant Size Ciphertext

Dan Boneh*
dabo@cs.stanford.edu

Xavier Boyen ${ }^{\dagger}$
xb@boyen.org

Eu-Jin Goh*
eujin@cs.stanford.edu

Abstract

We present a Hierarchical Identity Based Encryption (HIBE) system where the ciphertext consists of just three group elements and decryption requires only two bilinear map computations, independent of the hierarchy depth. Encryption is as efficient as in other HIBE systems. We prove that the scheme is selective-ID secure in the standard model and fully secure in the random oracle model. Our system has a number of applications: it gives very efficient forward secure public key and identity based cryptosystems (where ciphertexts are short), it converts the NNL broadcast encryption system into an efficient public key broadcast system, and it provides an efficient mechanism for encrypting to the future. The system also supports limited delegation where users can be given restricted private keys that only allow delegation to certain descendants. Sublinear size private keys can also be achieved at the expense of some ciphertext expansion.

1 Introduction

An Identity Based Encryption (IBE) system [23, 4] is a public key system where the public key can be an arbitrary string such as an email address. A central authority uses a master key to issue private keys to identities that request them. Hierarchical-IBE (HIBE) [16, 13] is a generalization of IBE that mirrors an organizational hierarchy. An identity at level k of the hierarchy tree can issue private keys to its descendant identities, but cannot decrypt messages intended for other identities (details are given in Section 2.1). The first construction for HIBE is due to Gentry and Silverberg [13] where security is based on the Bilinear Diffie-Hellman (BDH) assumption in the random oracle model. A subsequent construction due to Boneh and Boyen [1] gives an efficient (selective-ID secure) HIBE based on BDH without random oracles. In both constructions, the length of ciphertexts and private keys, as well as the time needed for decryption and encryption, grows linearly in the depth k.

There are currently two principal applications for HIBE. The first, due to Canetti, Halevi, and Katz [8], is forward secure encryption. Forward secure encryption enables users to periodically update their private keys so that a message encrypted at period t cannot be read using a private key from period $t^{\prime}>t$. To provide for 2^{ℓ} time periods, the CHK construction uses a HIBE of depth ℓ where identities are binary vectors of length ℓ. At time t, the encryptor encrypts using the identity corresponding to the t 'th node of this depth ℓ binary tree. Consequently, using previous

[^0]HIBE systems, ciphertexts in this system are of size $O(\ell)$. Private keys are of size $O\left(\ell^{2}\right)$ but can be reduced to size $O(\ell)$ by using updateable public storage. The second application for HIBE, due to Dodis and Fazio [10], is using HIBE to convert the NNL broadcast encryption system [21] into a public-key broadcast system. Unfortunately, the resulting public-key broadcast system is no better than simpler constructions because ciphertext length in previous HIBE constructions is linear in the depth of the hierarchy.

Our Contribution. We present a HIBE system where ciphertext size and also decryption cost is independent of the hierarchy depth k. Ciphertexts in our HIBE are always just three group elements and decryption requires only two bilinear map computations. Private keys in our basic system contain k group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts consisting of only three group elements, for any number of time periods. With our basic HIBE system, the private key size in this forward secure encryption system is $O\left(\ell^{2}\right)$, which is the same as the Canetti et al. (CHK) construction [8]. In Section 4 we describe a hybrid system that borrows some features from the Boneh-Boyen HIBE [1] and results in a forward secure encryption scheme where private key size is only $O\left(\ell^{3 / 2}\right)$. By using updateable public storage as in CHK [8], private key size in these systems can be reduced to size $O(\ell)$ and $O(\sqrt{\ell})$ respectively. In addition, instantiating the Dodis-Fazio [10] system with our HIBE system results in a public-key broadcast system that is as efficient as the NNL subset difference method.

It is worth noting that private keys in our system shrink as the identity depth increases; this shrinkage is the opposite behavior from previous HIBE systems where private keys become larger as we descend deeper down the hierarchy tree. This behavior leads to "limited delegation" where an identity at depth k can be given a restricted private key that only lets it issue private keys to certain descendants (as opposed to any descendant).

Security of our system is based on a natural assumption that is closely related to the DiffieHellman Inversion assumption [1, 18]. We describe the assumption in Section 2.3 and discuss its relation to existing assumptions in bilinear groups in Appendix B. To gain more confidence in the assumption, we prove in Appendix A a lower bound on the computational complexity of the problem in the generic group model. We present the system in Section 3 and prove its security in the selective identity model without using random oracles. We then observe that a selective-ID secure HIBE results in a fully secure HIBE in the random oracle model. In Sections 4 and 5 we discuss several extensions and applications of the system. For example, in addition to the applications already mentioned, we show how private keys can be further compressed to sublinear size, and describe how the system gives a very efficient mechanism for encrypting to the future.

2 Preliminaries

We briefly review the definition of security for a HIBE system. We also review the definition of bilinear groups, and introduce the (decisional) Bilinear Diffie-Hellman Exponent assumption in such groups.

2.1 Fully Secure HIBE Systems

Like an Identity Based Encryption (IBE) system, a Hierarchical Identity Based Encryption (HIBE) system consists of four algorithms [16, 13, 1]: Setup, KeyGen, Encrypt, Decrypt. In a HIBE, however, identities are vectors; a vector of dimension ℓ represents an identity at depth ℓ. The Setup algorithm generates system parameters, denoted by params, and a master key master-key. We refer to the master-key as the private key at depth 0 and note that an IBE system is a HIBE where all identities are at depth 1 . Algorithm KeyGen takes as input an identity $\mathrm{ID}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\ell}\right)$ at depth ℓ and the private key $d_{\mathrm{ID} \mid \ell-1}$ of the parent identity $\mathrm{ID}_{\mid \ell-1}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\ell-1}\right)$ at depth $\ell-1$, and then outputs the private key d_{ID} for identity ID. The encryption algorithm encrypts messages for an identity using params and the decryption algorithm decrypts ciphertexts using the private key.

Chosen ciphertext security for HIBE systems is defined under a chosen identity attack where the adversary is allowed to adaptively chose the public key on which it will be challenged. More precisely, HIBE security (IND-ID-CCA) is defined using the following game [16, 13] between an adversary \mathcal{A} and a challenger \mathcal{C} :

Setup: The challenger \mathcal{C} runs the Setup algorithm. \mathcal{C} gives \mathcal{A} the resulting system parameters params and keeps the master-key to itself.
Phase 1: \mathcal{A} issues a number of queries q_{1}, \ldots, q_{m} where query q_{i} is one of the following:

- Private key query $\left\langle\mathrm{ID}_{i}\right\rangle . \mathcal{C}$ responds by running algorithm KeyGen to generate the private key d_{i} corresponding to the public key $\left\langle\mathrm{ID}_{i}\right\rangle$ and sends d_{i} to \mathcal{A}.
- Decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle . \mathcal{C}$ responds by running algorithm KeyGen to generate the private key d corresponding to ID_{i}. It then runs algorithm Decrypt to decrypt the ciphertext C_{i} using the private key d and sends the resulting plaintext to \mathcal{A}.
\mathcal{A} may query \mathcal{C} adaptively; that is, each query q_{i} may depend on the replies to q_{1}, \ldots, q_{i-1}.
Challenge: Once \mathcal{A} decides that Phase 1 is over it outputs an identity ID* and two equal length plaintexts $M_{0}, M_{1} \in \mathcal{M}$ on which it wishes to be challenged. The only restriction is that \mathcal{A} did not previously issue a private key query for a prefix of $\mathrm{ID}^{*} . \mathcal{C}$ picks a random bit $b \in\{0,1\}$ and sets the challenge ciphertext to $\mathrm{CT}=\operatorname{Encrypt}\left(\right.$ params $\left., \mathrm{ID}^{*}, M_{b}\right)$, which is sent to \mathcal{A}.
Phase 2: \mathcal{A} issues additional queries q_{m+1}, \ldots, q_{n} where q_{i} is one of:
- Private key query $\left\langle\mathrm{ID}_{i}\right\rangle$ where $\mathrm{ID}_{i} \neq \mathrm{ID}^{*}$ and ID_{i} is not a prefix of ID^{*}.
- Decryption query $\left\langle C_{i}\right\rangle \neq\langle C\rangle$ for ID^{*} or any prefix of ID^{*}.

In both cases, \mathcal{C} responds as in Phase 1. These queries may be adaptive as in Phase 1.
Guess: Finally, the adversary outputs a guess $b^{\prime} \in\{0,1\}$. The adversary wins if $b=b^{\prime}$.
We refer to such an adversary \mathcal{A} as an IND-ID-CCA adversary. We define the advantage of the adversary \mathcal{A} in attacking the scheme \mathcal{E} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}=\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right|
$$

The probability is over the random bits used by the challenger and the adversary.
Canetti, Halevi, and Katz [8, 9] define a weaker notion of security in which the adversary commits ahead of time to the public key it will attack. We refer to this notion as selective identity, chosen ciphertext secure HIBE (IND-sID-CCA). The game is exactly the same as IND-ID-CCA except that the adversary \mathcal{A} discloses to the challenger the target identity ID* before the Setup phase. The restrictions on private key queries from phase 2 then apply in phase 1 as well.

Definition 2.1. We say that a HIBE system \mathcal{E} is $\left(t, q_{\mathrm{ID}}, q_{C}, \epsilon\right)$-secure if for any t-time IND-ID-CCA (respectively IND-sID-CCA) adversary \mathcal{A} that makes at most $q_{\text {ID }}$ chosen private key queries and at most q_{C} chosen decryption queries, we have that $\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}<\epsilon$. As shorthand, we say that \mathcal{E} is $\left(t, q_{\mathrm{ID}}, q_{C}, \epsilon\right)$-IND-ID-CCA (resp. IND-sID-CCA) secure.

Semantic Security. As usual, we define chosen plaintext security for a HIBE system as in the preceding game, except that the adversary is not allowed to issue any decryption queries. The adversary may still issue adaptive private key queries. This security notion is termed as IND-IDCPA (or IND-sID-CPA in the case of a selective identity adversary).

Definition 2.2. We say that a HIBE system \mathcal{E} is $\left(t, q_{\text {ID }}, \epsilon\right)$-IND-ID-CPA secure (respectively IND-sID-CPA) if \mathcal{E} is $\left(t, q_{\text {ID }}, 0, \epsilon\right)$-IND-ID-CCA secure (resp. IND-sID-CCA).

2.2 Bilinear Groups

We briefly review bilinear maps and bilinear map groups. We use the following notation [17, 4]:

1. \mathbb{G} and \mathbb{G}_{1} are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of \mathbb{G}.
3. e is a bilinear map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$.

Let \mathbb{G} and \mathbb{G}_{1} be two groups as above. A bilinear map is a map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$ with the properties:

1. Bilinearity: for all $u, v \in \mathbb{G}$ and $a, b \in \mathbb{Z}$, we have $e\left(u^{a}, v^{b}\right)=e(u, v)^{a b}$.
2. Non-degeneracy: $e(g, g) \neq 1$.

We say that \mathbb{G} is a bilinear group if the group action in \mathbb{G} can be computed efficiently and there exists both a group \mathbb{G}_{1} and an efficiently computable bilinear map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$ as above. Note that $e($,$) is symmetric since e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}=e\left(g^{b}, g^{a}\right)$.

2.3 Bilinear Diffie-Hellman Exponent (BDHE) Assumption

The ℓ-BDHE problem in \mathbb{G} is: given g, h, and $g^{\left(\alpha^{i}\right)}$ in \mathbb{G} for $i=1,2, \ldots, \ell-1, \ell+1, \ldots, 2 \ell$ as input, output $e(g, h)^{\left(\alpha^{\ell}\right)} \in \mathbb{G}_{1}$. Since $g^{\left(\alpha^{\ell}\right)}$ is missing from the list of powers, the bilinear map seems to be of no help in computing $e(g, h)^{\left(\alpha^{\ell}\right)}$. As a shorthand, let $y_{i}=g^{\left(\alpha^{i}\right)} \in \mathbb{G}$. An algorithm \mathcal{A} has advantage ϵ in solving ℓ-BDHE in \mathbb{G} if

$$
\operatorname{Pr}\left[\mathcal{A}\left(g, h, y_{1}, \ldots, y_{\ell-1}, y_{\ell+1}, \ldots, y_{2 \ell}\right)=e(g, h)^{\left(\alpha^{\ell}\right)}\right] \geq \epsilon
$$

where the probability is over the random choice of generators g, h in \mathbb{G}, the random choice of α in \mathbb{Z}_{p}, and the random bits used by \mathcal{A}. The decisional version of the ℓ-BDHE problem in \mathbb{G} is defined in the usual manner. Let $\vec{y}_{g, \alpha, \ell}=\left(y_{1}, \ldots, y_{\ell-1}, y_{\ell+1}, \ldots, y_{2 \ell}\right)$. An algorithm \mathcal{B} that outputs $b \in\{0,1\}$ has advantage ϵ in solving decision ℓ-BDHE in \mathbb{G} if

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell}, e(g, h)^{\left(\alpha^{\ell}\right)}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell}, T\right)=0\right]\right| \geq \epsilon
$$

where the probability is over the random choice of generators g, h in \mathbb{G}, the random choice of α in \mathbb{Z}_{p}, the random choice of $T \in \mathbb{G}_{1}$, and the random bits consumed by \mathcal{B}. We refer to the distribution on the left as $\mathcal{P}_{\text {BDHE }}$ and the distribution on the right as $\mathcal{R}_{\text {BDHE }}$.

Definition 2.3. We say that the (decision) (t, ϵ, ℓ)-BDHE assumption holds in \mathbb{G} if no t-time algorithm has advantage at least ϵ in solving the (decision) ℓ-BDHE problem in \mathbb{G}.

For conciseness we occasionally drop the t and ϵ and simply refer to the (decision) ℓ-BDHE in \mathbb{G}. In Appendix A, we show that the ℓ-BDHE assumption holds in generic bilinear groups [24]. In Appendix B, we discuss the relation of ℓ-BDHE to other assumptions in bilinear groups. We show the ℓ-BDHE is a natural extension of the Bilinear Diffie-Hellman Inversion problem, which was previously used to build an IBE system [1] and a verifiable random function [11].

3 A HIBE System with Constant Size Ciphertext

Let \mathbb{G} be a bilinear group of prime order p and let $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$ be a bilinear map. For now, we assume that public keys (that is, identities ID) at depth ℓ are vectors of elements in \mathbb{Z}_{p}^{ℓ}. We write $\mathrm{ID}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\ell}\right) \in \mathbb{Z}_{p}^{\ell}$. The k-th component corresponds to the identity at level k. We later extend the construction to public keys over $\{0,1\}^{*}$ by first hashing each component I_{k} using a collision resistant hash $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$. We also assume that the messages to be encrypted are elements in \mathbb{G}_{1}. The HIBE system works as follows:
$\operatorname{Setup}(\ell)$: To generate system parameters for an HIBE of maximum depth ℓ, select a random generator $g \in \mathbb{G}$, a random $\alpha \in \mathbb{Z}_{p}$, and set $g_{1}=g^{\alpha}$. Next, pick random elements $g_{2}, g_{3}, h_{1}, \ldots, h_{\ell} \in \mathbb{G}$ and set $g_{4}=g_{2}^{\alpha}$. The public parameters and the master key are

$$
\text { params }=\left(g, g_{1}, g_{2}, g_{3}, h_{1}, \ldots, h_{\ell}\right), \quad \text { master-key }=g_{4}=g_{2}^{\alpha} .
$$

$\operatorname{KeyGen}\left(d_{\mathbf{I D} \mid k-1}, \mathbf{I D}\right):$ To generate the private key d_{ID} for an identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in \mathbb{Z}_{p}^{k}$ of depth $k \leq \ell$, pick random $r \in \mathbb{Z}_{p}$ and output

$$
d_{1 \mathrm{D}}=\left(g_{2}^{\alpha} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r}, \quad g^{r}, \quad h_{k+1}^{r}, \quad \ldots, \quad h_{\ell}^{r}\right) \in \mathbb{G}^{2+\ell-k} .
$$

Note that $d_{1 \mathrm{D}}$ becomes shorter as the depth of ID increases. The private key for ID can be generated just given a private key for $\mathrm{ID}_{\mid k-1}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k-1}\right) \in \mathbb{Z}_{p}^{k-1}$ as required. Indeed, let

$$
\begin{aligned}
d_{\mathrm{ID} \mid k-1} & =\left(g_{2}^{\alpha} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k-1}^{\mathrm{I}_{k-1}} \cdot g_{3}\right)^{r^{\prime}}, \quad g^{r^{\prime}}, \quad h_{k}^{r^{\prime}}, \ldots, h_{\ell}^{r^{\prime}}\right) \\
& =\left(a_{0}, a_{1}, b_{k}, \ldots, b_{\ell}\right) \in \mathbb{G}^{3+\ell-k}
\end{aligned}
$$

be the private key for $\mathrm{ID}_{\mid k-1}$. To generate $d_{\mid \mathrm{ID}}$, pick a random $r^{*} \in \mathbb{Z}_{p}$ and output

$$
d_{1 \mathrm{D}}=\left(a_{0} \cdot b_{k}^{\mathrm{I}_{k}} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r^{*}}, \quad a_{1} \cdot g^{r^{*}}, \quad b_{k+1} \cdot h_{k+1}^{r^{*}}, \quad \ldots, \quad b_{\ell} \cdot h_{\ell}^{r^{*}}\right)
$$

Setting $r=r^{\prime}+r^{*}$ we see that this private key is a properly distributed private key for ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$.
Encrypt (params, ID, M): To encrypt a message $M \in \mathbb{G}_{1}$ under the public key ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in$ \mathbb{Z}_{p}^{k}, pick a random $s \in \mathbb{Z}_{p}$ and output

$$
\mathrm{CT}=\left(e\left(g_{1}, g_{2}\right)^{s} \cdot M, \quad g^{s}, \quad\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{s}\right) \in \mathbb{G}_{1} \times \mathbb{G}^{2} .
$$

$\operatorname{Decrypt}\left(d_{\mathbf{I D}}, \mathbf{C T}\right):$ Consider an identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$. To decrypt a given ciphertext $\mathrm{CT}=$ (A, B, C) using the private key $d_{\mathrm{ID}}=\left(a_{0}, a_{1}, b_{k+1} \ldots, b_{\ell}\right)$, output

$$
A \cdot e\left(a_{1}, C\right) / e\left(B, a_{0}\right)=M
$$

Indeed, for a valid ciphertext, we have

$$
\frac{e\left(a_{1}, C\right)}{e\left(B, a_{0}\right)}=\frac{e\left(g^{r},\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{s}\right)}{e\left(g^{s}, g_{2}^{\alpha}\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r}\right)}=\frac{1}{e\left(g, g_{2}\right)^{s \alpha}}=\frac{1}{e\left(g_{1}, g_{2}\right)^{s}}
$$

Observe that for identities at any depth, the ciphertext contains only 3 elements and decryption takes only 2 pairings. In previous HIBE systems, ciphertext size and decryption time grow linearly in the identity depth. Also, note that $e\left(g_{1}, g_{2}\right)$ used for encryption can be precomputed (or substituted for g_{2} in the system parameters) so that encryption does not require any pairings.

3.1 Security

We first show that our HIBE scheme is selective identity secure (IND-sID-CPA) under the decisional Bilinear Diffie-Hellman Exponent assumption. We later describe how to achieve both chosen ciphertext security (IND-sID-CCA) and full HIBE security (IND-ID-CCA).

Theorem 3.1. Let \mathbb{G} be a bilinear group of prime order p. Suppose the decision $(t, \epsilon, \ell+1)$-BDHE assumption holds in \mathbb{G}. Then the previously defined ℓ-HIBE system is $\left(t^{\prime}, q_{S}, \epsilon\right)$-selective identity, chosen plaintext (IND-sID-CPA) secure for arbitrary ℓ, q_{S}, and $t^{\prime}<t-\Theta\left(\tau \ell q_{S}\right)$, where τ is the maximum time for an exponentiation in \mathbb{G}.

Proof. Suppose \mathcal{A} has advantage ϵ in attacking the ℓ-HIBE system. Using \mathcal{A}, we build an algorithm \mathcal{B} that solves the decision $(\ell+1)$-BDHE problem in \mathbb{G}.

For a generator $g \in \mathbb{G}$ and $\alpha \in \mathbb{Z}_{p}$ let $y_{i}=g^{\left(\alpha^{i}\right)} \in \mathbb{G}$. Algorithm \mathcal{B} is given as input a random tuple $\left(g, h, y_{1}, \ldots, y_{\ell}, y_{\ell+2}, \ldots, y_{2 \ell+2}, T\right)$ that is either sampled from $\mathcal{P}_{B D H E}$ (where $T=$ $e(g, h)^{\left(\alpha^{\ell+1}\right)}$) or from $\mathcal{R}_{B D H E}$ (where T is uniform and independent in \mathbb{G}_{1}). Algorithm \mathcal{B} 's goal is to output 1 when the input tuple is sampled from $\mathcal{P}_{B D H E}$ and 0 otherwise. Algorithm \mathcal{B} works by interacting with \mathcal{A} in a selective identity game as follows:

Initialization. The selective identity game begins with \mathcal{A} first outputting an identity $\mathrm{ID}^{*}=$ $\left(\mathrm{I}_{1}^{*}, \ldots, \mathrm{I}_{m}^{*}\right) \in \mathbb{Z}_{p}^{m}$ of depth $m \leq \ell$ that it intends to attack. If $m<\ell$ then \mathcal{B} appends random elements in \mathbb{Z}_{p} to $I D^{*}$ until $I D^{*}$ is a vector of length ℓ and keeps these extra elements to itself. From here on we assume that ID* is a vector of length ℓ.

Setup. To generate the system parameters, algorithm \mathcal{B} picks a random γ in \mathbb{Z}_{p} and sets $g_{1}=$ $y_{1}=g^{\alpha}$ and $g_{2}=y_{\ell} \cdot g^{\gamma}=g^{\gamma+\left(\alpha^{\ell}\right)}$.
Next, \mathcal{B} picks random $\gamma_{1}, \ldots, \gamma_{\ell}$ in \mathbb{Z}_{p} and sets $h_{i}=g^{\gamma_{i}} / y_{\ell-i+1}$ for $i=1, \ldots, \ell$.
Algorithm \mathcal{B} also picks a random δ in \mathbb{Z}_{p} and sets $g_{3}=g^{\delta} \cdot \prod_{i=1}^{\ell} y_{\ell-i+1}^{I_{i}^{*}}$.
Finally, \mathcal{B} gives \mathcal{A} the system parameters params $=\left(g, g_{1}, g_{2}, g_{3}, h_{1}, \ldots, h_{\ell}\right)$. Observe that all these values are distributed uniformly and independently in \mathbb{G} as required.
The master key g_{4} corresponding to these system parameters is $g_{4}=g^{\alpha\left(\alpha^{\ell}+\gamma\right)}=y_{\ell+1} y_{1}^{\gamma}$, which is unknown to \mathcal{B} since \mathcal{B} does not have $y_{\ell+1}$.

Phase 1. \mathcal{A} issues up to q_{S} private key queries. Consider a query for the private key corresponding to ID $=\left(\mathrm{I}_{1}, \ldots, I_{u}\right) \in \mathbb{Z}_{p}^{u}$ where $u \leq \ell$. The only restriction is that ID is not a prefix of ID*. This restriction ensures that there exists a $k \in\{1, \ldots, u\}$ such that $\mathrm{I}_{k} \neq \mathrm{I}_{k}^{*}$ (otherwise, ID would be a prefix of ID^{*}). To respond to the query, algorithm \mathcal{B} first derives a private key for the identity $\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ from which it then constructs a private key for the requested identity $\mathrm{ID}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}, \ldots, \mathrm{I}_{u}\right)$.
To generate the private key for the identity $\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ algorithm \mathcal{B} first picks a random \tilde{r} in \mathbb{Z}_{p}. We pose $r=\frac{\alpha^{k}}{\left(\mathrm{I}_{k}-\mathrm{I}_{k}^{*}\right)}+\tilde{r} \in \mathbb{Z}_{p}$. Next, \mathcal{B} generates the private key

$$
\begin{equation*}
\left(g_{4} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} g_{3}\right)^{r}, \quad g^{r}, \quad h_{k+1}^{r}, \ldots, \quad h_{\ell}^{r}\right), \tag{1}
\end{equation*}
$$

which is a properly distributed private key for the identity $\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$. We show that \mathcal{B} can compute all elements of this private key given the values at its disposal. We use the fact that $y_{i}^{\left(\alpha^{j}\right)}=y_{i+j}$ for any i, j.
To generate the first component of the private key, first observe that

$$
\begin{equation*}
\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} g_{3}\right)^{r}=\left(g^{r\left(\delta+\sum_{i=1}^{k} \mathrm{I}_{i} \gamma_{i}\right)} \cdot \prod_{i=1}^{k-1} y_{\ell-i+1}^{r\left(\mathrm{I}_{i}^{*}-\mathrm{I}_{i}\right)} \cdot y_{\ell-k+1}^{r\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)} \cdot \prod_{i=k+1}^{\ell} y_{\ell-i+1}^{r \mathrm{I}_{i}^{*}}\right) \tag{2}
\end{equation*}
$$

Let Z denote the product of the first, second, and fourth terms. That is,

$$
Z=\left(g^{r\left(\delta+\sum_{i=1}^{k} \mathrm{I}_{i} \gamma_{i}\right)} \cdot \prod_{i=1}^{k-1} y_{\ell-i+1}^{r\left(\mathrm{I}_{i}^{*}-\mathrm{I}_{i}\right)} \cdot \prod_{i=k+1}^{\ell} y_{\ell-i+1}^{r \mathrm{I}_{i}^{*}}\right)
$$

One can verify that \mathcal{B} can compute all the terms in Z given the values at its disposal. However, \mathcal{B} cannot compute the third term in Eq (2), namely $y_{\ell-k+1}^{r\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)}$ since it requires knowledge of $y_{\ell+1}$. Observe that

$$
y_{\ell-k+1}^{r\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)}=y_{\ell-k+1}^{\tilde{r}\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)} / y_{\ell+1}=y_{\ell-k+1}^{\tilde{r}\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)} /\left(g_{4} y_{1}^{-\gamma}\right) .
$$

Hence, the first component in the private key (1) is equal to:

$$
g_{4}\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} g_{3}\right)^{r}=g_{4} \cdot Z \cdot y_{\ell-k+1}^{\tilde{r}\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)} /\left(g_{4} y_{1}^{-\gamma}\right)=Z \cdot y_{\ell-k+1}^{\tilde{r}\left(\mathrm{I}_{k}^{*}-\mathrm{I}_{k}\right)} \cdot y_{1}^{\gamma} .
$$

Since g_{4} cancels out from the expression on the right, all the terms in that expression are known to \mathcal{B}. Thus, \mathcal{B} can compute the first component of the private key.
The second component, g^{r}, is simply $y_{k}^{1 /\left(\mathrm{I}_{k}-\mathrm{I}_{k}^{*}\right)} g^{\tilde{r}}$ which \mathcal{B} can easily compute. Similarly, the remaining elements $h_{k+1}^{r}, \ldots, h_{\ell}^{r}$ can be computed by \mathcal{B} since they do not involve a $y_{\ell+1}$ term. Thus, \mathcal{B} can derive a valid private key for $\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$. Algorithm \mathcal{B} derives a private key for the requested ID from this private key and gives \mathcal{A} the result.

Challenge. When \mathcal{A} decides that Phase 1 is over, it outputs two messages $M_{0}, M_{1} \in \mathbb{G}_{1}$ on which it wishes to be challenged. Algorithm \mathcal{B} picks a random bit $b \in\{0,1\}$ and responds with the challenge ciphertext

$$
\mathrm{CT}=\left(M_{b} \cdot T \cdot e\left(y_{1}, h^{\gamma}\right), \quad h, \quad h^{\delta+\sum_{i=1}^{\ell} \mathrm{I}_{i}^{*} \gamma_{i}}\right)
$$

where h and T are from the input tuple given to \mathcal{B}. First note that if $h=g^{c}$ (for some unknown c in \mathbb{Z}_{p}) then

$$
h^{\delta+\sum_{i=1}^{\ell} I_{i}^{*} \gamma_{i}}=\left(h_{1}^{\text {Lín }_{*}^{*}} \cdots h_{\ell}^{\mathrm{L}_{\ell}^{*}} g_{3}\right)^{c}
$$

Therefore, if $T=e(g, h)^{\left(\alpha^{\ell+1}\right)}$, (i.e. when the input tuple is sampled from $\mathcal{P}_{B D H E}$) then the challenge ciphertext is:

$$
\mathrm{CT}=\left(M_{b} \cdot e\left(g_{1}, g_{2}\right)^{c}, \quad g^{c}, \quad\left(h_{1}^{\mathrm{h}_{1}^{\mathrm{K}}} \cdots h_{\ell}^{\mathrm{I}_{\ell}^{*}} g_{3}\right)^{c}\right)
$$

which is a valid encryption of M_{b} under the public key $\mathrm{ID}^{*}=\left(\mathrm{I}_{1}^{*}, \ldots, \mathrm{I}_{\ell}^{*}\right)$. On the other hand, when T is uniform and independent in \mathbb{G}_{1} (when the input tuple is sampled from $\mathcal{R}_{B D H E}$), then CT is independent of b in the adversary's view.

Phase 2. \mathcal{A} continues to issue queries not issued in Phase 1. Algorithm \mathcal{B} responds as before.
Guess. Finally, \mathcal{A} outputs a guess $b^{\prime} \in\{0,1\}$. Algorithm \mathcal{B} concludes its own game by outputting a guess as follows. If $b=b^{\prime}$ then \mathcal{B} outputs 1 meaning $T=e(g, h)^{\left(\alpha^{\ell+1}\right)}$. Otherwise, it outputs 0 meaning T is random in \mathbb{G}_{1}.

When the input tuple is sampled from $\mathcal{P}_{B D H E}$ (where $T=e(g, h)^{\left(\alpha^{\ell+1}\right)}$), then \mathcal{A} 's view is identical to its view in a real attack game and therefore \mathcal{A} satisfies $\left|\operatorname{Pr}\left[b=b^{\prime}\right]-1 / 2\right| \geq \epsilon$. When the input tuple is sampled from $\mathcal{R}_{B D H E}$ (where T is uniform in \mathbb{G}_{1}) then $\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2$. Therefore, with g, h uniform in \mathbb{G}^{*}, α uniform in \mathbb{Z}_{p}, and T uniform in \mathbb{G}_{1} we have that

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell}, e(g, h)^{\left(\alpha^{\ell+1}\right)}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell}, T\right)=0\right]\right| \geq\left|\left(\frac{1}{2} \pm \epsilon\right)-\frac{1}{2}\right|=\epsilon
$$

as required. This completes the proof of the theorem.
Chosen Ciphertext Security. Canetti et al. [9] show a general method of building an IND-sIDCCA secure ℓ-HIBE from a IND-sID-CPA secure $\ell+1$-HIBE. A more efficient construction is given by Boneh and Katz [5]. Applying either method to our HIBE construction results in a IND-sID-CCA secure ℓ-HIBE for arbitrary ℓ where the ciphertext length is independent of the hierarchy height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities $\operatorname{ID}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\ell}\right)$ with $\mathrm{I}_{i} \in\{0,1\}^{*}$ for $i=1, \ldots, \ell$ by hashing each I_{i} with a collision resistant hash function H : $\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$ in the key generation and encryption algorithms. A standard argument shows that if the original HIBE scheme is IND-sID-CCA secure, then so is the HIBE scheme using the collision resistant hash function.

3.2 Full HIBE Security

Theorem 3.1 shows that our HIBE system is selective-ID secure without random oracles. Thus, the system is secure when the adversary commits ahead of time to the identity he intends to attack. Boneh and Boyen [1] observed that IBE systems that are selective-ID secure are also fully secure (i.e., secure against adversaries that adaptively select the identity to attack) as long as one hashes the identity prior to using it. The reduction, however, is not tight. Let $H:\{0,1\}^{*} \rightarrow\{0,1\}^{d}$ be a hash function (where, e.g., $d=160$ bits). Assuming H is collision resistant, the reduction
introduces a 2^{d} multiplicative error term in the standard model. When H is viewed as a random oracle, the reduction introduces instead a q_{H} multiplicative error term where q_{H} is the number of hash oracle calls made by the adversary.

A similar observation applies to HIBE systems. Let \mathcal{E} be a selective-ID secure HIBE of depth ℓ. Let \mathcal{E}_{H} be an HIBE system where an identity $\mathrm{ID}=\left(I_{1}, \ldots, I_{k}\right)$ is hashed to $\mathrm{ID}_{H}=$ $\left(H\left(I_{1}\right), \ldots, H\left(I_{k}\right)\right)$ before using it in KeyGen or Encrypt. Then, assuming H is collision resistant, \mathcal{E}_{H} is a fully secure HIBE, but the reduction introduces an error term of $2^{\ell d}$. In the random oracle model, \mathcal{E}_{H} is a fully secure HIBE and the reduction introduces an error term of q_{H}^{ℓ}.

In the random oracle model, the public parameters params can be made constant size by including only the two group elements $\left(g, g_{1}\right)$; the remaining parameters $\left(g_{2}, g_{3}, h_{1}, \ldots, h_{\ell}\right)$ are derived by applying the oracle on predetermined input strings.

We note, for a fixed ℓ, the construction of Waters [25] applied to our HIBE could give a constant ciphertext HIBE with a polynomial time reduction to the underlying complexity assumption. The resulting private keys, however, are much larger, namely of size $d \ell$, as opposed to ℓ in our system.

4 Extensions

Before discussing the applications, we elaborate on two interesting extensions of our HIBE scheme.

4.1 Limited Delegation

Let $d_{\mathrm{ID}}=\left(a_{0}, a_{1}, b_{k}, \ldots, b_{\ell}\right)$ be the private key for the identity ID. Note that the Decrypt algorithm uses only the terms a_{0} and a_{1}, and the KeyGen algorithm uses only the remaining terms b_{k}, \ldots, b_{ℓ}.

By removing any number of b_{k}, \ldots, b_{ℓ}, an identity ID at depth k can be given a restricted private key that only lets it issue private keys to certain descendants. For example, if the private key for ID only contains $b_{k}, b_{k+1}, b_{k+2}\left(\right.$ instead of all $\left.b_{k}, \ldots, b_{\ell}\right)$, then ID can only issue private keys for three generations of descendants, and those descendants' private keys will be limited even further.

Furthermore, an identity in the hierarchy can delegate to its descendants either only the ability to decrypt, or only the ability to generate keys for their descendants, or both. This property is analogous to a traditional certificate authority's ability to specify the extent to which its descendants can themselves issue certificates.

4.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Section 5), are better served by using a HIBE system with short private keys rather than ciphertexts. We show how to construct a HIBE system whose private key size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 3 and the Boneh-Boyen HIBE [1]. Recall that in the former system the private key shrinks as the identity depth increases, while in the latter system the private key grows with the depth of an identity. The hybrid is based on the algebraic similarities between both systems, and exploits their opposite behavior with regard to private key size, to ensure that no private key ever contains more than $O(\sqrt{\ell})$ group elements.

Specifically, for $\omega \in[0,1]$, the hybrid scheme achieves $O\left(\ell^{\omega}+\ell^{1-\omega}\right)$ private key size and $O\left(\ell^{\omega}\right)$ ciphertext size at every level in a hierarchy of depth ℓ. The setting $\omega=0$ corresponds to our HIBE, whereas $\omega=1$ corresponds to the Boneh-Boyen HIBE [1]. The most efficient hybrids are obtained when $\omega \in\left[0, \frac{1}{2}\right]$. For example, when $\omega=\frac{1}{2}$, private keys and ciphertexts are of size $O(\sqrt{\ell})$.

Hybrid Scheme. As before, we assume a bilinear group \mathbb{G} and a map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$, where \mathbb{G} and \mathbb{G}_{1} have prime order p. Let $\ell_{1}=\left\lceil\ell^{\omega}\right\rceil$ and $\ell_{2}=\left\lceil\ell^{1-\omega}\right\rceil$. The basic idea is to partition levels of the hierarchy into ℓ_{1} consecutive groups of size ℓ_{2}. Within each group we use the system of Section 3. Between groups we use the Boneh-Boyen HIBE [1].

Let ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in \mathbb{Z}_{p}^{k}$ be an identity of depth $k \leq \ell$. We will represent ID as a pair (k, I) where $\mathrm{I} \in \mathbb{Z}_{p}^{\ell_{1} \times \ell_{2}}$ is an $\ell_{1} \times \ell_{2}$ matrix filled using the elements $\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}$ in typographic order: one row at a time starting from the top, in each row starting from the left (note that $\ell_{1} \cdot \ell_{2} \geq \ell \geq k$; the unfilled matrix entries are undefined). For convenience, we decompose the indices $k=1, \ldots, \ell$ into row-column pairs (k_{1}, k_{2}) such that $k=\ell_{2} \cdot\left(k_{1}-1\right)+k_{2}$ where $k_{1}, k_{2}>0$. For shorthand, we write $\left(k_{1}, k_{2}\right)=k$. It follows that in the above matrix representation of ID we have $\mathrm{I}_{\left(i_{1}, i_{2}\right)}=\mathrm{I}_{i}$ for all $i=1, \ldots, k$. Or, pictorially, for an ID at the maximum depth ℓ :

$$
\mathrm{I}=\underbrace{\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\ell}\right)}_{\ell=\ell_{1} \ell_{2}}=\left(\begin{array}{cccc}
\mathrm{I}_{1} & \mathrm{I}_{2} & \ldots & \mathrm{I}_{\ell_{2}} \\
\mathrm{I}_{\ell_{2}+1} & \mathrm{I}_{\ell_{2}+2} & \ldots & \mathrm{I}_{2 \ell_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{I}_{\left(\ell_{1}-1\right) \ell_{2}+1} & \mathrm{I}_{\left(\ell_{1}-1\right) \ell_{2}+2} & \ldots & \mathrm{I}_{\ell_{1} \ell_{2}}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{I}_{(1,1)} & \mathrm{I}_{(1,2)} & \ldots & \mathrm{I}_{\left(1, \ell_{2}\right)} \\
\mathrm{I}_{(2,1)} & \mathrm{I}_{(2,2)} & \ldots & \mathrm{I}_{\left(2, \ell_{2}\right)} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{I}_{\left(\ell_{1}, 1\right)} & \mathrm{I}_{\left(\ell_{1}, 2\right)} & \ldots & \mathrm{I}_{\left(\ell_{1}, \ell_{2}\right)}
\end{array}\right) .
$$

Using this convention, we can now describe the hybrid HIBE system as follows.
$\operatorname{Setup}(\ell, \omega)$: To generate system parameters for an HIBE of maximum depth ℓ, first determine ℓ_{1} and ℓ_{2} as above so that $\ell \leq \ell_{1} \cdot \ell_{2}$. Next, select a random generator g in \mathbb{G}, a random $\alpha \in \mathbb{Z}_{p}$, and set $g_{1}=g^{\alpha}$. Then, pick random elements $g_{2}, f_{1}, \ldots, f_{\ell_{1}}, h_{1}, \ldots, h_{\ell_{2}} \in \mathbb{G}$, and set $g_{4}=g_{2}^{\alpha}$. The public parameters params and the secret master-key are given by

$$
\text { params }=\left(g, g_{1}, g_{2}, f_{1}, \ldots, f_{\ell_{1}}, h_{1}, \ldots, h_{\ell_{2}}\right), \quad \text { master-key }=g_{4}=g_{2}^{\alpha}
$$

$\operatorname{KeyGen}\left(d_{\mathbf{I D} \mid k-1}, \mathbf{I D}\right):$ To generate the private key d_{ID} for an identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in \mathbb{Z}_{p}^{k}$ of depth $\left(k_{1}, k_{2}\right)=k \leq \ell$, where $k_{1} \leq \ell_{1}$ and $k_{2} \leq \ell_{2}$, pick random $r_{1}, \ldots, r_{k_{1}} \in \mathbb{Z}_{p}$, and output

$$
\begin{align*}
d_{\mathrm{ID}}=\left(g_{4} \cdot\right. & \left(\prod_{i=1}^{k_{1}-1}\left(h_{1}^{\mathrm{I}(i, 1)} \cdots h_{\ell_{2}}^{\mathrm{I}\left(i, \ell_{2}\right)} \cdot f_{i}\right)^{r_{i}}\right) \cdot\left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot f_{k_{1}}\right)^{r_{k_{1}}^{\prime}}, \\
& \left.g^{r_{1}}, \ldots, g^{r_{k_{1}-1}}, g^{r_{k_{1}}^{\prime}}, h_{k_{2}+1}^{r_{k_{1}}^{\prime}}, \ldots, h_{\ell_{2}}^{r_{k_{1}}^{\prime}}\right) \in \mathbb{G}^{1+k_{1}+\ell_{2}-k_{2}} .
\end{align*}
$$

Note that the factors $(\ldots)^{r_{i}}$ under the Π sign contain ℓ_{2} identity terms each, whereas the last factor $(\ldots)^{r_{k_{1}}}$ only has k_{2} such terms. Note also that the size of d_{ID} grows with k_{1} and shrinks with k_{2}; the private key thus becomes alternatively shorter and longer as the depth of ID increases, but never exceeds $\ell_{1}+\ell_{2}$ elements of \mathbb{G}.
The private key for ID can be generated with a private key for $\mathrm{ID}_{\mid k-1}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k-1}\right) \in \mathbb{Z}_{p}^{k-1}$ as required. Decompose k as (k_{1}, k_{2}) according to our convention. There are two cases:

1. If $k-1$ is written $\left(k_{1}, k_{2}-1\right)$, namely k and $k-1$ have the same row index k_{1}, then we know that the private key for $\mathrm{ID}_{\mid k-1}$ is of the form:

$$
\begin{gathered}
d_{\mathrm{ID} \mid k-1}=\left(g_{4} \cdot \prod_{i=1}^{k_{1}-1}\left(h_{1}^{\mathrm{I}_{(i, 1)}} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(i, \ell_{2}\right)}} \cdot f_{i}\right)^{r_{i}} \cdot\left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}-1}^{\mathrm{I}\left(k_{1}, k_{2}-1\right)} \cdot f_{k_{1}}\right)^{r_{k_{1}}}, g^{r_{1}}, \ldots, g^{r_{k_{1}}},\right. \\
\left.h_{k_{2}}^{r_{k_{1}}}, \ldots, h_{\ell_{2}}^{r_{k_{1}}}\right)=\left(a_{0}, b_{1}, \ldots, b_{k_{1}}, c_{k_{2}}, \ldots, c_{\ell_{2}}\right) \in \mathbb{G}^{2+k_{1}+\ell_{2}-k_{2}} .
\end{gathered}
$$

In this case, to generate d_{ID} from $d_{\mathrm{ID} \mid k-1}$, pick a random $r^{*} \in \mathbb{Z}_{p}$ and output

$$
\begin{gathered}
d_{\mathrm{ID}}=\left(a_{0} \cdot c_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot\left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot f_{k_{1}}\right)^{r^{*}}, \quad b_{1}, \ldots, b_{k_{1}-1}, b_{k_{1}} \cdot g^{r^{*}},\right. \\
\left.c_{k_{2}+1} \cdot h_{k_{2}+1}^{r^{*}}, \ldots, c_{\ell_{2}} \cdot h_{\ell_{2}}^{r^{*}}\right) \in \mathbb{G}^{1+k_{1}+\ell_{2}-k_{2}} .
\end{gathered}
$$

This tuple is of the same form as (\star) where $r_{k_{1}}^{\prime}=r_{k_{1}}+r^{*}$.
2. If the row indices differ, then necessarily $k-1=\left(k_{1}-1, \ell_{2}\right)$ and $k=\left(k_{1}, 1\right)$, and the private key for $\mathrm{ID}_{\mid k-1}$ must be of the form:

$$
d_{\mathrm{I} \mid k-1}=\left(g_{4} \cdot \prod_{i=1}^{k_{1}-1}\left(h_{1}^{\mathrm{I}(i, 1)} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(i, \ell_{2}\right)}} \cdot f_{i}\right)^{r_{i}}, \quad g^{r_{1}}, \ldots, g^{r_{k_{1}-1}}\right)=\left(a_{0}, b_{1}, \ldots, b_{k_{1}-1}\right) \in \mathbb{G}^{k_{1}} .
$$

In this case, to generate d_{ID} from $d_{\mathrm{ID} \mid k-1}$, pick a random $r \in \mathbb{Z}_{p}$ and output

$$
d_{\mathrm{ID}}=\left(a_{0} \cdot\left(h_{1}^{\mathrm{I}_{\left(k_{1}, 1\right)}} \cdot f_{k_{1}}\right)^{r}, \quad b_{1}, \ldots, b_{k_{1}-1}, \quad g^{r}, \quad h_{2}^{r}, \ldots, h_{\ell_{2}}^{r}\right) \in \mathbb{G}^{k_{1}+\ell_{2}} .
$$

Again, this tuple conforms to the expression (\star) in which $r_{k_{1}}$ has been set to r.
Encrypt(params, ID, M): To encrypt a message $M \in \mathbb{G}_{1}$ under the public key ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in$ \mathbb{Z}_{p}^{k} where $k=\left(k_{1}, k_{2}\right)$, pick a random $s \in \mathbb{Z}_{p}$ and output

$$
\begin{aligned}
& \mathrm{CT}=\left(e\left(g_{1}, g_{2}\right)^{s} \cdot M, \quad g^{s}, \quad\left(h_{1}^{\mathrm{I}(1,1)} \cdots h_{\ell_{2}}^{\mathrm{I}\left(1, \ell_{2}\right)} \cdot f_{1}\right)^{s}, \ldots, \quad\left(h_{1}^{\mathrm{I}\left(k_{1}-1,1\right)} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(k_{1}-1, \ell_{2}\right)}} \cdot f_{k_{1}-1}\right)^{s},\right. \\
& \left.\left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot f_{k_{1}}\right)^{s}\right) \in \mathbb{G}_{1} \times \mathbb{G}^{1+k_{1}} .
\end{aligned}
$$

$\operatorname{Decrypt}\left(d_{\mathrm{ID}}, \mathbf{C T}\right)$: Consider an identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ with $k=\left(k_{1}, k_{2}\right)$. To decrypt a ciphertext $\mathrm{CT}=\left(A, B, C_{1}, \ldots, C_{k_{1}-1}, C_{k_{1}}\right)$ using the private key $d_{\mathrm{ID}}=\left(a_{0}, b_{1}, \ldots, b_{k_{1}}, c_{k_{2}+1}, \ldots, c_{\ell_{2}}\right)$, output

$$
A \cdot \prod_{i=1}^{k_{1}} e\left(b_{i}, C_{i}\right) / e\left(B, a_{0}\right)=M
$$

Note that the private key components $c_{k_{2}+1}, \ldots, c_{\ell_{2}}$ are not used for decryption.
Complexity. It is easy to see that in a hierarchy of depth ℓ, private keys at all levels contain at most $\ell_{1}+\ell_{2}$ elements of \mathbb{G}, while ciphertexts contain at most $1+\ell_{1}$ elements of \mathbb{G} and one element of \mathbb{G}_{1}. Encryption, decryption, and one-level-down key generation, all require $O\left(\ell_{1}+\ell_{2}\right)$ operations, or $O(\sqrt{\ell})$ for the choice $\omega=\frac{1}{2}$ as claimed. We note that the combination of having a selectable parameter ω together with the option of using an asymmetric bilinear group geared toward reducing the ciphertext or the private key size (described in Section 4.3), gives great flexibility toward achieving the optimal trade-off for a given application.

Security. We prove security based on the $\left(\ell_{2}+1\right)$-BDHE assumption (observe that the BDHE assumption implies the BDH assumption). A notable feature of the hybrid HIBE scheme is that for $\omega=1 / 2$, security for an ℓ-level hierarchy is achieved based merely on the $O(\sqrt{\ell})$-BDHE assumption.

Theorem 4.1. Let \mathbb{G} be a bilinear group of prime order p. Consider a hybrid ℓ-HIBE system with identity hierarchy partitioned into ℓ_{1} groups each of size ℓ_{2}. Suppose the decision $\left(t, \epsilon, \ell_{2}+1\right)$ $B D H E$ assumption holds in \mathbb{G}. Then the hybrid ℓ-HIBE system is $\left(t^{\prime}, q_{S}, \epsilon\right)$-selective identity, chosen plaintext (IND-sID-CPA) secure for arbitrary ℓ, q_{S}, and $t^{\prime}<t-\Theta\left(\tau \ell q_{S}\right)$, where τ is the maximum time for an exponentiation in \mathbb{G}.

The proof is similar to that for Theorem 3.1, and is found in Appendix C.

4.3 Asymmetric Bilinear Groups and MNT Curves.

It is often desirable to use bilinear maps $e: \mathbb{G} \times \mathbb{G}^{\prime} \rightarrow \mathbb{G}_{1}$ where \mathbb{G} and \mathbb{G}^{\prime} are distinct groups. Such maps let us take advantage of certain curves called MNT curves [19]. Typically, elements of the group \mathbb{G} tend to afford a particularly compact representation compared to elements of \mathbb{G}^{\prime}. This property is used for constructing short signatures [6], secure signatures [2], and short group signatures [3]. For our system, we can use this property to shrink either the private keys or the ciphertexts.

We briefly describe how to rephrase the above HIBE in terms of asymmetric bilinear groups $e: \mathbb{G} \times \mathbb{G}^{\prime} \rightarrow \mathbb{G}_{1}$. Recall that such groups are necessarily equipped with an efficiently computable homomorphism $\phi: \mathbb{G}^{\prime} \rightarrow \mathbb{G}$. Thus, Setup picks all randomly selected group elements from \mathbb{G}^{\prime}. Before these elements are used or disclosed, each element is either converted to a point in \mathbb{G} using ϕ, or left alone in \mathbb{G}^{\prime}, depending on whether this particular element is destined to appear in the first or second argument of the bilinear map $e(\cdot, \cdot)$. It is easy to see that there are no conflicts. There are two ways to perform this conversion: we can either send the private key or the ciphertext elements to \mathbb{G}; in one case we end up with smaller private keys, and in the other, smaller ciphertexts.

5 Applications

We now discuss several applications of our compact HIBE system and its extensions.

5.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that all messages encrypted before the secret key is compromised remain secret.

A public key encryption scheme with forward security was proposed by Canetti, Halevi, and Katz [8]. Their construction requires as a building block a weaker variant of HIBE called Binary Tree Encryption (BTE). With their BTE construction, (and also with any existing HIBE substituted for it), the instantiation of their forward secure scheme for 2^{t} time periods requires ciphertexts of size $O(t)$ and private keys of size $O\left(t^{2}\right)$. Using public updateable storage, Canetti et al. reduce private key size to $O(t)$ without affecting ciphertext length - the idea is to encrypt the private key for time period i under the public key of time period $i-1$ and store the resulting ciphertext, of size $O\left(t^{2}\right)$, in public storage; consequently, only one HIBE private key, of size $O(t)$, needs to be kept in private storage.

Using our HIBE system of Section 3 in their basic framework, we readily obtain a forward secure encryption scheme with $O(1)$ ciphertext size and decryption time - independent of the number of time periods. Private keys using our basic system are of size $O\left(t^{2}\right)$. Alternatively, using the hybrid HIBE described in Section 4.2 in which we set $\omega=\frac{1}{2}$, we obtain a forward secure encryption scheme with private keys as short as $O\left(t^{3 / 2}\right)$; in this case ciphertext size and decryption time become $O(\sqrt{t})$.

Following Canetti et al. [8], we can store most of the private key in updateable public storage in order to lessen the private storage requirement. Applied to our basic forward secure system, using $O\left(t^{2}\right)$ public storage we can reduce the private key size to $O(t)$ while keeping the ciphertext size constant. In the case of the hybrid forward secure system (for $\omega=\frac{1}{2}$), the private storage requirement can be similarly reduced to $O(\sqrt{t})$ at the cost of $O\left(t^{3 / 2}\right)$ updateable public storage; ciphertext size in this case remains $O(\sqrt{t})$.

5.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [26]. Their scheme essentially uses two HIBE hierarchies in the manner of Canetti et al. [8] to obtain forward security together with the ability to derive subordinate keys. Their system has ciphertexts of size $O(\ell \log T)$ where ℓ is the depth of the identity hierarchy and $T=2^{t}$ is the number of time periods. Indeed, they pose as an open problem whether a forward secure HIBE scheme with linear complexity is possible.

Instantiating both hierarchies in their construction with our HIBE system immediately gives a forward secure HIBE scheme with ciphertexts of size $O(1)$, which resolves this question.

We also propose a more specific forward secure HIBE construction that achieves "linear" $O(\ell+$ $\log T)$ size for all components, including private keys and public parameters (ciphertexts are no longer constant size in that construction). The construction is a hybrid between the HIBE given in Section 3 and the Boneh-Boyen HIBE from [1]; it is described in detail in Appendix D.

5.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [12], are cryptosystems designed for the efficient broadcast of data to a dynamic group of users authorized to receive the data. Naor, Naor, and Lotspiech [21] considered broadcast encryption in the stateless receiver setting; they provided a general "subset cover" framework for such broadcast encryption schemes, and gave two instances of the framework - the Complete Subtree (CS) method and the more efficient Subset Difference (SD) method. Further improvements have since been proposed in the form the Layered Subset Difference (LSD) [15] and the Stratified Subset Difference (SSD) [14] methods. In the symmetric key setting, only a "center" that possesses the secret keys can broadcast to the users. In a public key broadcast encryption system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [10] showed how to translate the SD and LSD methods to the public key setting. Unfortunately, for N users and r revoked users, their SD and LSD constructions based on the Gentry-Silverberg HIBE give ciphertexts of size $O(r \cdot \log N)$, which is no better than the basic CS method. Substituting the HIBE system of Section 3 restores the full benefits of both SD and LSD, which results in ciphertexts of size $O(r)$.

5.4 Encrypting to the Future

Mont et al. [20] observed that an IBE system gives a mechanism for encrypting to the future using a trusted server. Let D be a certain date string. We view D as a public key in an IBE system. Every day, a trusted server publishes the private key corresponding to that day, which enables messages encrypted for that day to be decrypted. Methods for encrypting to the future without a trusted server were proposed by Rivest, Shamir, and Wagner [22].

One problem with the IBE timelock mechanism is that after n days have passed, the server has to publish a bulletin board with n private keys on it (one private key for each day). The amount of data on the bulletin board can be greatly reduced by using the CHK forward secure encryption scheme in reverse. Suppose the CHK framework is set up for a total of T time periods (using a tree of depth $\log _{2} T$). To encrypt a message for day $n<T$, one would use the CHK public key for time period $T-n$. Similarly, on day n the trusted server publishes the CHK private key corresponding to time period $T-n$. This single private key enables anyone to derive the private keys for CHK time periods $T-n, T-n+1, \ldots, T$. Anyone can thus decrypt messages intended for days $1, \ldots, n$.

Implementing this encoding using our $O(1)$ ciphertext HIBE, the trusted server on any day only needs to publish a single private key comprising $O\left(\log ^{2} T\right)$ group elements. Using the hybrid HIBE system of Section 4.2, the private key posted by the server can be further reduced to $O\left(\log ^{3 / 2} T\right)$ group elements, for ciphertexts of size $O(\sqrt{\log T})$. These parameters are much better than the IBE based mechanism [20], which requires the bulletin board to contain as many as T group elements.

6 Conclusions and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group elements and decryption only requires computing two bilinear maps, both of which are independent of the hierarchy depth. Encryption time is as efficient as other HIBE systems. For a hierarchy of depth ℓ we proved security based on the $(\ell+1)$-BDHE assumption, which is a natural extension of the BDHI assumption as discussed in Appendix B. We expect ℓ-BDHE to be very useful for constructing cryptosystems with short ciphertexts. For example, ℓ-BDHE was recently used to construct a broadcast encryption system [7] where both ciphertexts and private keys are short.

We discussed several applications of our system, including efficient forward secure encryption, an efficient public key version of the NNL broadcast encryption system, and an efficient mechanism for encrypting to the future. Our HIBE system allows for limited delegation and can be combined with the Boneh-Boyen HIBE to form a hybrid HIBE that has sublinear $(O(\sqrt{\ell}))$ private key size.

We note that our selective-ID proof of security is tight. On the other hand, the proof of full security (either in the random oracle model or the standard model) discussed in Section 3.2, degrades exponentially in the depth of the hierarchy. The same is true for all existing HIBE systems. It is an interesting open problem to construct an HIBE system where security does not degrade exponentially in the hierarchy depth.

Acknowledgements

The authors thank Mihir Bellare for his helpful comments.

References

[1] D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without random oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of $L N C S$, pages 223-38. Springer, 2004.
[2] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, LNCS, pages 56-73. Springer, 2004.
[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Proceedings of Crypto 2004, LNCS, pages 41-55. Springer, 2004.
[4] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213-29. Springer, 2001.
[5] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity based encryption. In Proceedings of RSA-CT 2005, 2005.
[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Proceedings of Asiacrypt 2001, volume 2248 of $L N C S$, pages 514-32. Springer, 2001.
[7] D. Boneh and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys. In submission.
[8] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS. Springer, 2003.
[9] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 207-22. Springer, 2004.
[10] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In J. Feigenbaum, editor, Proceedings of the Digital Rights Management Workshop 2002, volume 2696 of $L N C S$, pages 61-80. Springer, 2002.
[11] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In Proceedings of the Workshop on Theory and Practice in Public Key Cryptography 2005, 2005.
[12] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Proceedings of Crypto 1993, volume 773 of $L N C S$, pages 480-91. Springer, 1993.
[13] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng, editor, Proceedings of Asiacrypt 2002, volume 2501 of LNCS, pages 548-66. Springer, 2002.
[14] M. Goodrich, J. Sun, and R. Tamassia. Efficient tree-based revocation in groups of low-state devices. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 511-27. Springer, 2004.
[15] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 47-60. Springer, 2002.
[16] J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 466-81. Springer, 2002.
[17] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, Proceedings of Algorithmic Number Theory Symposium IV, volume 1838 of $L N C S$, pages 385-94. Springer, 2000.
[18] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Transactions Fundamentals, E85-A(2):481-84, 2002.
[19] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234-43, May 2001.
[20] M. C. Mont, K. Harrison, and M. Sadler. The HP time vault service: exploiting IBE for timed release of confidential information. In Proceedings of the International World Wide Web Conference 2003, pages 160-69. ACM, 2003.
[21] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In J. Kilian, editor, Proceedings of Crypto 2001, volume 2139 of $L N C S$, pages 41-62. Springer, 2001.
[22] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto. Technical Report MIT/LCS/TR-684, MIT Laboratory for Computer Science, 1996.
[23] A. Shamir. Identity-based cryptosystems and signature schemes. In G. Blakley and D. Chaum, editors, Proceedings of Crypto 1984, volume 196 of $L N C S$, pages 47-53. Springer, 1984.
[24] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256-66. Springer, 1997.
[25] B. Waters. Efficient identity-based encryption without random oracles. Cryptology ePrint Archive, Report 2004/180, Jul 2004. http://eprint.iacr.org/2004/180/.
[26] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In B. Pfitzmann, editor, Proceedings of the ACM Conference on Computer and Communications Security 2004, pages 354-63, 2004.

A Diffie-Hellman Problems in Generic Bilinear Groups

Recently a number of Diffie-Hellman-type complexity assumptions in bilinear groups have been used to construct efficient cryptosystems. These include the Bilinear DH assumption (BDH) [4], the DH Inversion assumption (DHI) [1], the Linear DH assumption [3], and others. To gain some confidence in these assumptions, one can prove computational lower bounds on breaking them in a generic bilinear group model [24]. Rather than prove a separate lower bound for each assumption, we give a general lower bound that encompasses all the assumptions listed above, in addition to the BDHE assumption proposed in this paper. This "master" generic-group lower bound can be used to qualify other assumptions that may come up in future constructions. ${ }^{1}$

[^1]General Diffie-Hellman Exponent problem. Let p be an integer prime and let s, n be positive integers. Let $P, Q \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be two s-tuples of n-variate polynomials over \mathbb{F}_{p} and let $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$. Thus, P and Q are just two ordered sets containing s multi-variate polynomials each. We write $P=\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ and $Q=\left(q_{1}, q_{2}, \ldots, q_{s}\right)$. We require that the first components of P, Q satisfy $p_{1}=q_{1}=1$; that is, the constant polynomials 1 . For a set Ω, a function $h: \mathbb{F}_{p} \rightarrow \Omega$, and a vector $x_{1}, \ldots, x_{n} \in \mathbb{F}_{p}$, we write

$$
h\left(P\left(x_{1}, \ldots, x_{n}\right)\right)=\left(h\left(p_{1}\left(x_{1}, \ldots, x_{n}\right)\right), \ldots, h\left(p_{s}\left(x_{1}, \ldots, x_{n}\right)\right)\right) \in \Omega^{s}
$$

We use similar notation for the s-tuple Q. Let $\mathbb{G}_{0}, \mathbb{G}_{1}$ be groups of order p and let $e: \mathbb{G}_{0} \times \mathbb{G}_{0} \rightarrow \mathbb{G}_{1}$ be a non-degenerate bilinear map. Let $g \in \mathbb{G}_{0}$ be a generator of \mathbb{G}_{0} and set $g_{1}=e(g, g) \in \mathbb{G}_{1}$.

We define the (P, Q, f)-Diffie-Hellman Problem in \mathbb{G} as follows: Given the vector

$$
H\left(x_{1}, \ldots, x_{n}\right)=\left(g^{P\left(x_{1}, \ldots, x_{n}\right)}, g_{1}^{Q\left(x_{1}, \ldots, x_{n}\right)}\right) \in \mathbb{G}_{0}^{s} \times \mathbb{G}_{1}^{s}
$$

compute $g_{1}^{f\left(x_{1}, \ldots, x_{n}\right)} \in \mathbb{G}_{1}$.
To obtain the most general result, we study the decisional version of this problem. We say that an algorithm \mathcal{B} that outputs $b \in\{0,1\}$ has advantage ϵ in solving the Decision (P, Q, f)-DiffieHellman problem in \mathbb{G}_{0} if

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(H\left(x_{1}, \ldots, x_{n}\right), g_{1}^{f\left(x_{1}, \ldots, x_{n}\right)}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(H\left(x_{1}, \ldots, x_{n}\right), T\right)=0\right]\right|>\epsilon
$$

where the probability is over the random choice of generator $g \in \mathbb{G}_{0}$, the random choice of x_{1}, \ldots, x_{n} in \mathbb{F}_{p}, the random choice of $T \in \mathbb{G}_{1}$, and the random bits consumed by \mathcal{B}.

Before we can state the lower bound on the decision problem above, we need the following natural definition.

Definition A.1. Let $P, Q \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be two s-tuples of n-variate polynomials over \mathbb{F}_{p}. Write $P=\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ and $Q=\left(q_{1}, q_{2}, \ldots, q_{s}\right)$ where $p_{1}=q_{1}=1$. We say that a polynomial $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$ is dependent on the sets (P, Q) if there exist $s^{2}+s$ constants $\left\{a_{i, j}\right\}_{i, j=1}^{s},\left\{b_{k}\right\}_{k=1}^{s}$ such that

$$
f=\sum_{i, j=1}^{s} a_{i, j} p_{i} p_{j}+\sum_{k=1}^{s} b_{k} q_{k}
$$

We say that f is independent of (P, Q) if f is not dependent on (P, Q).
For a polynomial $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$, we let d_{f} denote the total degree of f. For a set $P \subseteq \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ we let $d_{P}=\max \left\{d_{f} \mid f \in P\right\}$.

Lower bound in generic bilinear groups. We state the following lower bound in the framework of the generic group model [24]. We consider two random encodings ξ_{0}, ξ_{1} of the additive group \mathbb{Z}_{p}^{+}, i.e. injective maps $\xi_{0}, \xi_{1}: \mathbb{Z}_{p}^{+} \rightarrow\{0,1\}^{m}$. For $i=0,1$ we write $\mathbb{G}_{i}=\left\{\xi_{i}(x) \mid x \in \mathbb{Z}_{p}^{+}\right\}$. We are given oracles to compute the induced group action on $\mathbb{G}_{0}, \mathbb{G}_{1}$, and an oracle to compute a non-degenerate bilinear map $e: \mathbb{G}_{0} \times \mathbb{G}_{0} \rightarrow \mathbb{G}_{1}$. We refer to \mathbb{G}_{0} as a generic bilinear group. The following theorem gives a lower bound on the advantage of a generic algorithm in solving the decision (P, Q, f)-Diffie-Hellman problem. We emphasize, however, that a lower bound in generic groups does not imply a lower bound in any specific group.

Theorem A.2. Let $P, Q \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be two s-tuples of n-variate polynomials over \mathbb{F}_{p} and let $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$. Let $d=\max \left(2 d_{P}, d_{Q}, d_{f}\right)$. Let ξ_{0}, ξ_{1} and $\mathbb{G}_{0}, \mathbb{G}_{1}$ be defined as above. If f is independent of (P, Q) then for any \mathcal{A} that makes a total of at most q queries to the oracles computing the group operation in $\mathbb{G}_{0}, \mathbb{G}_{1}$ and the bilinear pairing $e: \mathbb{G}_{0} \times \mathbb{G}_{0} \rightarrow \mathbb{G}_{1}$ we have:

$$
\left.\operatorname{Pr}\left[\mathcal{A}\left(\begin{array}{c}
p, \xi_{0}\left(P\left(x_{1}, \ldots, x_{n}\right)\right), \\
\xi_{1}\left(Q\left(x_{1}, \ldots, x_{n}\right)\right), \\
\xi_{1}\left(t_{0}\right), \xi_{1}\left(t_{1}\right)
\end{array}\right)=b: \begin{array}{c}
x_{1}, \ldots, x_{n}, y \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} \\
\\
\\
t_{b} \leftarrow \underset{\mathrm{R}}{\leftarrow}\{0,1\}, \\
t_{1-b} \leftarrow y
\end{array}\right]-\frac{1}{2} \right\rvert\, \leq \frac{(q+2 s+2)^{2} \cdot d}{2 p} .
$$

Proof. Consider an algorithm \mathcal{B} that plays the following game with \mathcal{A}. Algorithm \mathcal{B} maintains two lists of pairs,

$$
L_{0}=\left\{\left(p_{i}, \xi_{0, i}\right): i=1, \ldots, \tau_{0}\right\}, \quad L_{1}=\left\{\left(q_{i}, \xi_{1, i}\right): i=1, \ldots, \tau_{1}\right\}
$$

under the invariant that at step τ in the game, $\tau_{0}+\tau_{1}=\tau+2 s+2$. Here, $p_{i} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$ and $q_{i} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}, Y_{0}, Y_{1}\right]$ are multi-variate polynomials. The $\xi_{\star, \star}$ are strings in $\{0,1\}^{m}$.

The lists are initialized at step $\tau=0$ by initializing $\tau_{0}=s$ and $\tau_{1}=s+2$. We set p_{1}, \ldots, p_{s} in L_{0} to be the polynomials in P and we set q_{1}, \ldots, q_{s} in L_{1} to be the polynomials in Q. We also set $q_{s+1}=Y_{0}$ and $q_{s+2}=Y_{1}$. Algorithm \mathcal{B} complete the preparation of the lists L_{0}, L_{1} by setting the ξ-strings associated with distinct polynomials to random strings in $\{0,1\}^{m}$. Overall, initially L_{0} contains s entries and L_{1} contains $s+2$ entries.

We can assume that \mathcal{A} makes oracle queries only on strings obtained from \mathcal{B}, since \mathcal{B} can make the strings in $\mathbb{G}_{0}, \mathbb{G}_{1}$ arbitrarily hard to guess by increasing m. We note that \mathcal{B} can easily determine the index i of any given string $\xi_{j, i}$ in L_{j} (ties are broken arbitrarily). \mathcal{B} starts the game by providing \mathcal{A} with the value of p and a tuple of strings

$$
\left\{\xi_{0, i}\right\}_{i=1}^{s}, \quad\left\{\xi_{1, i}\right\}_{i=1}^{s+2}
$$

meant to encode some tuple $\in \mathbb{G}_{0}^{s} \times \mathbb{G}_{1}^{s+2}$. Algorithm \mathcal{B} responds to \mathcal{A} 's oracle queries as follows.
Group operation in $\mathbb{G}_{0}, \mathbb{G}_{1}$. A query in \mathbb{G}_{0} consists of two operands $\xi_{0, i}, \xi_{0, j}$ with $1 \leq i, j \leq \tau_{0}$ and a selection bit indicating whether to multiply or divide the group elements. To answer, let $\tau_{0}^{\prime} \leftarrow \tau_{0}+1$. Perform the polynomial addition or subtraction $p_{\tau_{0}^{\prime}} \leftarrow p_{i} \pm p_{j}$ depending on whether multiplication or division is requested. If the result $p_{\tau_{0}^{\prime}}=p_{l}$ for some $l \leq \tau_{0}$, then set $\xi_{0, \tau_{0}^{\prime}} \leftarrow \xi_{0, l}$; otherwise, set $\xi_{0, \tau_{0}^{\prime}}$ to a new random string in $\{0,1\}^{m} \backslash\left\{\xi_{0,1}, \ldots, \xi_{0, \tau_{0}}\right\}$. Insert the pair $\left(p_{\tau_{0}^{\prime}}, \xi_{0, \tau_{0}^{\prime}}\right)$ into the list L_{0} and update the counter $\tau_{0} \leftarrow \tau_{0}^{\prime}$. Algorithm \mathcal{B} replies to \mathcal{A} with the string $\xi_{0, \tau_{0}^{\prime}}$.
\mathbb{G}_{1} queries are handled analogously, this time by working with the list L_{1} and the counter τ_{1}.
Bilinear pairing. A query of this type consists of two operands $\xi_{0, i}, \xi_{0, j}$ with $1 \leq i, j \leq \tau_{0}$. To respond, \mathcal{B} sets $\tau_{1}^{\prime} \leftarrow \tau_{1}+1$, and performs the polynomial multiplication $r_{\tau_{1}^{\prime}} \leftarrow p_{i} \cdot p_{j}$. If the result $q_{\tau_{1}^{\prime}}=q_{l}$ for some $l \leq \tau_{1}$, it assigns $\xi_{1, \tau_{1}^{\prime}} \leftarrow \xi_{1, l}$; otherwise, it sets $\xi_{1, \tau_{1}^{\prime}}$ to a fresh random string in $\{0,1\}^{m} \backslash\left\{\xi_{1,1}, \ldots, \xi_{1, \tau_{1}-1}\right\}$. Finally, it adds $\left(q_{\tau_{1}^{\prime}}, \xi_{1, \tau_{1}^{\prime}}\right)$ to the list L_{1}, updates $\tau_{1} \leftarrow \tau_{1}^{\prime}$, and outputs $\xi_{1, \tau_{1}^{\prime}}$ as answer to the query.

After at most q queries, \mathcal{A} terminates and returns a guess $b^{\prime} \in\{0,1\}$. At this point \mathcal{B} chooses random $x_{1}, \ldots, x_{n}, y \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p}$ and $b \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$. Let $y_{b}=f\left(x_{1}, \ldots, x_{n}\right)$ and $y_{1-b}=y$.

For $i=1, \ldots, n$, we set $X_{i}=x_{i}, Y_{0}=y_{0}$, and $Y_{1}=y_{1}$. It follows that the simulation provided by \mathcal{B} is perfect unless the chosen random values for the variables $X_{1}, \ldots, X_{n}, Y_{0}, Y_{1}$ result in an equality relation between intermediate values that is not an equality of polynomials. In other words, the simulation is perfect unless for some i, j one of the following holds:

1. $p_{i}\left(x_{1}, \ldots, x_{n}\right)-p_{j}\left(x_{1}, \ldots, x_{n}\right)=0$, yet the polynomials p_{i} and p_{j} are not equal.
2. $q_{i}\left(x_{1}, \ldots, x_{n}, y_{0}, y_{1}\right)-q_{j}\left(x_{1}, \ldots, x_{n}, y_{0}, y_{1}\right)=0$, yet the polynomials q_{i} and q_{j} are not equal.

Let fail be the event that one of these two conditions holds. When event fail occurs, then \mathcal{B} 's responses to \mathcal{A} 's queries deviate from the real oracles' responses when the input tuple is derived from the vector $\left(x_{1}, \ldots, x_{n}, y_{0}, y_{1}\right) \in \mathbb{F}_{p}^{n+2}$.

We first bound the probability that event fail occurs. We bound the probability in two steps. First, consider setting $Y_{b}=f\left(X_{1}, \ldots, X_{n}\right)$. We claim that this symbolic substitution does not create any new equalities between polynomials q_{i}, q_{j}. In other words, if $q_{i}-q_{j} \neq 0$ for all i, j before the substitution, then $q_{i}-q_{j} \neq 0$ also holds after we set $Y_{b}=f\left(X_{1}, \ldots, X_{n}\right)$. This statement follows because f is independent of (P, Q). Indeed, $q_{i}-q_{j}$ is a polynomial of the form

$$
\sum_{k, l=1}^{s} a_{k, l} p_{k} p_{l}+\sum_{u=1}^{s} b_{u} q_{u}+c Y_{0}+d Y_{1}
$$

for some constants $a_{k, l}, b_{u}, c, d \in \mathbb{F}_{p}$. If this polynomial is non-zero but setting $Y_{b}=f\left(X_{1}, \ldots, X_{n}\right)$ causes this polynomial to vanish, then f must be dependent on (P, Q).

We are now left with polynomials in $X_{1}, \ldots, X_{n}, Y_{1-b}$. We need to bound the probability that for some i, j we get $\left(p_{i}-p_{j}\right)\left(x_{1}, \ldots, x_{n}\right)=0$ even though $p_{i}-p_{j} \neq 0$, or that $\left(q_{i}-q_{j}\right)\left(x_{1}, \ldots, x, y\right)=0$ even though $q_{i}-q_{j} \neq 0$. By construction, the maximum total degree of these polynomials is $d=\max \left(2 d_{P}, d_{Q}, d_{f}\right)$. Therefore, for a given i, j the probability that a random assignment to $X_{1}, \ldots, X_{n}, Y_{1-b} \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p}$ is a root of $q_{i}-q_{j}$ is at most d / p. The same holds for $p_{i}-p_{j}$. Since there are no more than $2\left(\begin{array}{c}q+2 s+2\end{array}\right)$ such pairs $\left(p_{i}, p_{j}\right)$ and $\left(q_{i}, q_{j}\right)$ in total, we have that

$$
\operatorname{Pr}[\text { fail }] \leq\binom{ q+2 s+2}{2} \frac{2 d}{p} \leq(q+2 s+2)^{2} d / p
$$

If event fail does not occur, then \mathcal{B} 's simulation is perfect. Furthermore, in this case b is independent from algorithm \mathcal{A} 's view. Indeed b is only chosen after the simulation ends. Hence, $\operatorname{Pr}\left[b=b^{\prime} \mid \neg\right.$ fail $]=1 / 2$. It now follows that

$$
\begin{aligned}
& \operatorname{Pr}\left[b=b^{\prime}\right] \leq \operatorname{Pr}\left[b=b^{\prime} \mid \neg \text { fail }\right](1-\operatorname{Pr}[\text { fail }])+\operatorname{Pr}[\text { fail }]=\frac{1}{2}+\operatorname{Pr}[\text { fail }] / 2 \\
& \operatorname{Pr}\left[b=b^{\prime}\right] \geq \operatorname{Pr}\left[b=b^{\prime} \mid \neg \text { fail }\right](1-\operatorname{Pr}[\text { fail }])=\frac{1}{2}-\operatorname{Pr}[\text { fail }] / 2
\end{aligned}
$$

and hence $\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \leq \operatorname{Pr}[$ fail $] / 2 \leq(q+2 s+2)^{2} d / 2 p$ as required
Corollary A.3. Let $P, Q \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be two s-tuples of n-variate polynomials over \mathbb{F}_{p} and let $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$. Let $d=\max \left(2 d_{P}, d_{Q}, d_{f}\right)$. If f is independent of (P, Q) then any \mathcal{A} that has advantage $1 / 2$ in solving the decision (P, Q, f)-Diffie-Hellman Problem in a generic bilinear group \mathbb{G} must take time at least $\Omega(\sqrt{p / d}-s)$.

Using Corollary A.3. We briefly show that many standard (decisional) assumptions follow from Corollary A.3.

- DDH in $\mathbb{G}_{1}:$ set $P=(1), Q=(1, x, y), f=x y$.
- BDH in $\mathbb{G}_{0}:$ set $P=(1, x, y, z), Q=(1), f=x y z$.
- ℓ-BDHI in $\mathbb{G}_{0}:$ set $P=\left(1, x, x^{2}, \ldots, x^{\ell}\right), Q=(1), f=x^{2 \ell+1}$.
- ℓ-BDHE in \mathbb{G}_{0} : set $P=\left(1, y, x, x^{2}, \ldots, x^{\ell-1}, x^{\ell+1}, \ldots, x^{2 \ell}\right), Q=(1), f=x^{\ell} y$.

Extensions. To take advantage of certain families of elliptic curves (called MNT curves [19]), one often uses a more general bilinear map $e: \mathbb{G}_{0} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ where the groups \mathbb{G}_{0} and \mathbb{G}_{1} are not necessarily the same. To accurately model the algebraic structure of these groups, we let $\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{0}$ be an efficiently computable isomorphism (on MNT curves, such an isomorphism is given by the trace map). We briefly state a similar result for these more general maps. We first generalize the definition of independence.

Definition A.4. Let $P, Q, R \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be three s-tuples of n-variate polynomials over \mathbb{F}_{p}. Write $P=\left(p_{1}, p_{2}, \ldots, p_{s}\right), Q=\left(q_{1}, q_{2}, \ldots, q_{s}\right)$, and $R=\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ where $p_{1}=q_{1}=r_{1}=1$. We say that a polynomial $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$ is dependent on the sets (P, Q, R) if there exist $2 s^{2}+s$ constants $\left\{a_{i, j}\right\}_{i, j=1}^{s},\left\{b_{i, j}\right\}_{i, j=1}^{s},\left\{c_{k}\right\}_{k=1}^{s}$ such that

$$
f=\sum_{i, j=1}^{s} a_{i, j} p_{i} q_{j}+\sum_{i, j=1}^{s} b_{i, j} q_{i} q_{j}+\sum_{k=1}^{s} c_{k} r_{k}
$$

We say that f is independent of (P, Q, R) if f is not dependent on (P, Q, R).
Given $P, Q, R \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$, and generators $g_{0} \in \mathbb{G}_{0}, g_{1} \in \mathbb{G}_{1}, g_{2} \in \mathbb{G}_{2}$, we define the vector

$$
H\left(x_{1}, \ldots, x_{n}\right)=\left(g_{0}^{P\left(x_{1}, \ldots, x_{n}\right)}, g_{1}^{Q\left(x_{1}, \ldots, x_{n}\right)}, g_{2}^{R\left(x_{1}, \ldots, x_{n}\right)}\right) \in \mathbb{G}_{0}^{s} \times \mathbb{G}_{1}^{s} \times \mathbb{G}_{2}^{s}
$$

We say that an algorithm \mathcal{B} that outputs $b \in\{0,1\}$ has advantage ϵ in solving the Decision (P, Q, R, f)-Diffie-Hellman problem in $\left(\mathbb{G}_{0}, \mathbb{G}_{1}\right)$ if

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(H\left(x_{1}, \ldots, x_{n}\right), g_{1}^{f\left(x_{1}, \ldots, x_{n}\right)}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(H\left(x_{1}, \ldots, x_{n}\right), T\right)=0\right]\right|>\epsilon
$$

where the probability is over the random choice of generators $g_{0} \in \mathbb{G}_{0}, g_{1} \in \mathbb{G}_{1}, g_{2} \in \mathbb{G}_{2}$, the random choice of x_{1}, \ldots, x_{n} in \mathbb{F}_{p}, the random choice of $T \in \mathbb{G}_{2}$, and the random bits consumed by \mathcal{B}. An identical proof to that of Theorem A. 2 gives the following theorem.

Theorem A.5. Let $P, Q, R \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]^{s}$ be three s-tuples of n-variate polynomials over \mathbb{F}_{p} and let $f \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$. Let $d=\max \left(d_{P}+d_{Q}, 2 d_{Q}, d_{R}, d_{f}\right)$. If f is independent of (P, Q, R) then any \mathcal{A} that has advantage $1 / 2$ in solving the decision (P, Q, R, f)-Diffie-Hellman Problem in a generic bilinear group $\left(\mathbb{G}_{0}, \mathbb{G}_{1}\right)$ must take time at least $\Omega(\sqrt{p / d}-s)$.

B The Relation Between the Diffie-Hellman Exponent Assumption and Other Assumptions in Bilinear Groups

We showed in the previous section that BDHE falls under a fairly general umbrella of DiffieHellman assumptions in bilinear groups - all of which have comparable complexity at least when considered over generic groups. In this section, we briefly consider from a different angle, an explicit close connection between the Bilinear Diffie-Hellman Exponent assumption and the Bilinear DiffieHellman Inversion used in earlier systems.

Let \mathbb{G} be a bilinear group of order p. Let $w \in \mathbb{G}$ be a generator and $\alpha \in \mathbb{Z}_{p}^{*}$. As in Section 2.3, we define $w_{i}=w^{\left(\alpha^{i}\right)}$. The ℓ Bilinear Diffie-Hellman Inversion (ℓ-BDHI) problem [1, 11] is as follows: given $w, w_{1}, \ldots, w_{\ell}$, compute $e(w, w)^{1 / \alpha}$. Let $g=w_{\ell}$ and $\beta=1 / \alpha \in \mathbb{Z}_{p}^{*}$. Furthermore, let $h=w^{r}$ for some random $r \in \mathbb{Z}_{p}$. Then, a variant of the ℓ-BDHI problem can be stated as follows:

$$
\begin{equation*}
\text { given } h, g, g^{\beta}, g^{\left(\beta^{2}\right)}, \ldots, g^{\left(\beta^{\ell}\right)} \quad \text { compute } e(g, h)^{\left(\beta^{\ell+1}\right)} \tag{3}
\end{equation*}
$$

Indeed, since $e(g, h)^{\left(\beta^{\ell+1}\right)}=e(w, w)^{r / \alpha}$, a solution to (3) gives a solution to ℓ-BDHI.
Thus, we see that the (computational) BDHE problem of Section 2.3 is very similar to the (computational) BDHI problem. In particular, systems based on the ℓ-BDHI assumption could equally well be based on the above variant, which is a special case of the $(\ell+1)$-BDHE assumption. The main difference is that in the $(\ell+1)$-BDHE problem we are given the extra values $g^{\left(\beta^{\ell+2}\right)}, \ldots, g^{\left(\beta^{2 \ell+2}\right)} \in \mathbb{G}$. The generic group proof in the previous section suggests that these additional values provide no help in solving the problem.

C Security Proof for the Hybrid System of Section 4.2

Theorem C.1. Let \mathbb{G} be a bilinear group of prime order p. Consider a hybrid ℓ-HIBE system with identity hierarchy partitioned into ℓ_{1} groups each of size ℓ_{2}. Suppose the decision $\left(t, \epsilon, \ell_{2}+1\right)$ $B D H E$ assumption holds in \mathbb{G}. Then the hybrid ℓ-HIBE system is $\left(t^{\prime}, q_{S}, \epsilon\right)$-selective identity, chosen plaintext (IND-sID-CPA) secure for arbitrary ℓ, q_{S}, and $t^{\prime}<t-\Theta\left(\tau \ell q_{S}\right)$, where τ is the maximum time for an exponentiation in \mathbb{G}.

Proof. Suppose \mathcal{A} has advantage ϵ in attacking the hybrid ℓ-HIBE system. Using \mathcal{A}, we build an algorithm \mathcal{B} that solves the decision $\left(\ell_{2}+1\right)$-BDHE problem in \mathbb{G}.

For a generator $g \in \mathbb{G}$ and $\alpha \in \mathbb{Z}_{p}$, let $y_{i}=g^{\left(\alpha^{i}\right)} \in \mathbb{G}$. Algorithm \mathcal{B} is given as input a random tuple $\left(g, h, y_{1}, \ldots, y_{\ell_{2}}, y_{\ell_{2}+2}, \ldots, y_{2 \ell_{2}+2}, T\right)$ that is either sampled from $\mathcal{P}_{B D H E}$ (where $\left.T=e(g, h)^{\left(\alpha^{\ell_{2}+1}\right)}\right)$ or from $\mathcal{R}_{B D H E}$ (where T is uniform and independent in \mathbb{G}_{1}). Algorithm \mathcal{B} 's goal is to output 1 when the input tuple is sampled from $\mathcal{P}_{B D H E}$ and 0 otherwise. Algorithm \mathcal{B} works by interacting with \mathcal{A} in a selective identity game as follows:

Initialization. The selective identity game begins with \mathcal{A} first outputting an identity $\mathrm{ID}^{*}=$ $\left(\mathrm{I}_{1}^{*}, \ldots, \mathrm{I}_{m}^{*}\right) \in \mathbb{Z}_{p}^{m}$ of depth $m \leq \ell$ that it intends to attack. If $m<\ell$ then \mathcal{B} appends random elements in \mathbb{Z}_{p} to ID* until ID* is a vector of length ℓ and keeps these extra elements to itself. From here on we assume that ID* is a vector of length ℓ. Following our convention, we write ID^{*} as a pair $\left(\ell, \mathrm{I}^{*}\right)$ where the matrix $\mathrm{I}^{*} \in \mathbb{Z}_{p}^{\ell_{1} \times \ell_{2}}$ is filled using the elements $\mathrm{I}_{1}^{*}, \ldots, \mathrm{I}_{\ell}^{*}$.

Setup. To generate the system parameters, algorithm \mathcal{B} picks a random γ in \mathbb{Z}_{p} and sets $g_{1}=$ $y_{1}=g^{\alpha}$ and $g_{2}=y_{\ell_{2}} \cdot g^{\gamma}=g^{\gamma+\left(\alpha^{\ell_{2}}\right)}$.
Next, \mathcal{B} picks random $\gamma_{1}, \ldots, \gamma_{\ell_{2}}$ in \mathbb{Z}_{p} and sets $h_{i}=g^{\gamma_{i}} / y_{\ell_{2}-i+1}$ for $i=1, \ldots, \ell_{2}$.
Algorithm \mathcal{B} also picks random $\delta_{1}, \ldots, \delta_{\ell_{1}}$ in \mathbb{Z}_{p} and sets $f_{i}=g^{\delta_{i}} \cdot \prod_{j=1}^{\ell_{2}}\left(y_{\ell_{2}-j+1}\right)^{I_{(i, j)}^{*}}$ for $i=1, \ldots, \ell_{1}$.

Finally, \mathcal{B} gives \mathcal{A} the system parameters params $=\left(g, g_{1}, g_{2}, f_{1}, \ldots, f_{\ell_{1}}, h_{1}, \ldots, h_{\ell_{2}}\right)$. Observe that all these values are distributed uniformly and independently in \mathbb{G} as required.
The master key g_{4} corresponding to these system parameters is $g_{4}=g^{\alpha\left(\alpha^{\left.\ell_{2}+\gamma\right)}\right.}=y_{\ell_{2}+1} y_{1}^{\gamma}$, which is unknown to \mathcal{B} since \mathcal{B} does not have $y_{\ell_{2}+1}$.

Phase 1. \mathcal{A} issues up to q_{S} private key queries. Consider a query for the private key corresponding to ID $=\left(\mathrm{I}_{1}, \ldots, I_{u}\right) \in \mathbb{Z}_{p}^{u}$ where $u \leq \ell$. The only restriction is that ID is not a prefix of ID*. This restriction ensures that there exists a $k \in\{1, \ldots, u\}$ such that $\mathrm{I}_{k} \neq \mathrm{I}_{k}^{*}$ (otherwise, ID would be a prefix of ID^{*}). To respond to the query, algorithm \mathcal{B} first derives a private key for the identity $\mathrm{ID}_{k}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ from which it then constructs a private key for the requested identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}, \ldots, \mathrm{I}_{u}\right)$.
As per our convention, we write ID_{k} as a pair (k, I) where the matrix $\mathrm{I} \in \mathbb{Z}_{p}^{\ell_{1} \times \ell_{2}}$ is filled using the elements $\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}$. Recall that our convention allows for decomposing the depth index k into a row-column pair $\left(k_{1}, k_{2}\right)=k$.
To generate the private key for the identity ID_{k} at depth $k=\left(k_{1}, k_{2}\right)$ where $k_{1} \leq \ell_{1}$ and $k_{2} \leq$ ℓ_{2}, algorithm \mathcal{B} first picks random $r_{1}, \ldots, r_{k_{1}-1}, \tilde{r}_{k_{1}}$ in \mathbb{Z}_{p}. We pose $r_{k_{1}}=\frac{\alpha^{k_{2}}}{\left(I_{\left(k_{1}, k_{2}\right)}-I_{\left(k_{1}, k_{2}\right)}^{*}\right)}+$ $\tilde{r}_{k_{1}} \in \mathbb{Z}_{p}$. Next, \mathcal{B} generates the private key

$$
\begin{align*}
& d_{\mathrm{D}_{k}}=\left(g_{4} \cdot\left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot f_{k_{1}}\right)^{r_{k_{1}}} \cdot\left(\prod_{i=1}^{k_{1}-1}\left(h_{1}^{\mathrm{I}(i, 1)} \cdots h_{\ell_{2}}^{\mathrm{I}\left(i, \ell_{2}\right)} \cdot f_{i}\right)^{r_{i}}\right),\right. \tag{4}\\
& \left.g^{r_{1}}, \ldots, g^{r_{k_{1}-1}}, g^{r_{k_{1}}}, h_{k_{2}+1}^{r_{k_{1}}}, \ldots, h_{\ell_{2}}^{r_{k_{1}}}\right) \quad \in \mathbb{G}^{1+k_{1}+\ell_{2}-k_{2}} .
\end{align*}
$$

which is a properly distributed private key for the identity ID_{k}. We show that \mathcal{B} can compute all elements of this private key given the values at its disposal. We use the fact that $y_{i}^{\left(\alpha^{j}\right)}=$ y_{i+j} for any i, j.
We begin by showing how to generate the first component of the private key. Observe that

$$
\begin{align*}
& \left(h_{1}^{\mathrm{I}\left(k_{1}, 1\right)} \cdots h_{k_{2}}^{\mathrm{I}\left(k_{1}, k_{2}\right)} \cdot f_{k_{1}}\right)^{r_{k_{1}}} \\
& =\left(g^{r_{k_{1}} \cdot\left(\delta_{k_{1}}+\sum_{i=1}^{k_{2}} \mathrm{I}_{\left(k_{1}, i\right)} \gamma_{i}\right)} \cdot \prod_{i=1}^{k_{2}-1} y_{\ell_{2}-i+1}^{r_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, i\right)}^{*}-\mathrm{I}_{\left(k_{1}, i\right)}\right)} \cdot y_{\ell_{2}-k_{2}+1}^{r_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)} \cdot \prod_{i=k_{2}+1}^{\ell_{2}} y_{\ell_{2}-i+1}^{r_{k_{1}} \cdot \mathrm{I}_{\left(k_{1}, i\right)}^{*}}\right) . \tag{5}
\end{align*}
$$

Let Z denote the product of the first, second, and fourth terms. That is,

$$
Z=\left(g^{r_{k_{1}} \cdot\left(\delta_{k_{1}}+\sum_{i=1}^{k_{2}} \mathrm{I}_{\left(k_{1}, i\right)} \gamma_{i}\right)} \cdot \prod_{i=1}^{k_{2}-1} y_{\ell_{2}-i+1}^{r_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, i\right)}^{*}-\mathrm{I}_{\left(k_{1}, i\right)}\right)} \cdot \prod_{i=k_{2}+1}^{\ell_{2}} y_{\ell_{2}-i+1}^{r_{k_{1}} \cdot \mathrm{I}_{\left(k_{1}, i\right)}^{*}}\right) .
$$

One can verify that \mathcal{B} can compute all the terms in Z given the values at its disposal. However, \mathcal{B} cannot compute the third term in Eq (5) by itself, namely $\left.y_{\ell_{2}-k_{2}+1}^{r_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}\right.}{ }_{\left(k_{1}, k_{2}\right)}\right)$, since it requires knowledge of $y_{\ell_{2}+1}=y_{\ell_{2}-k_{2}+1}^{\alpha^{k_{2}}}$. However, observe that

$$
y_{\ell_{2}-k_{2}+1}^{r_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)}=y_{\ell_{2}-k_{2}+1}^{\tilde{r}_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)} / y_{\ell_{2}+1}=y_{\ell_{2}-k_{2}+1}^{\tilde{r}_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)} /\left(g_{4} y_{1}^{-\gamma}\right) .
$$

Hence, the product of the first two terms in the first component in the private key (4) is equal to:

$$
\begin{aligned}
g_{4} \cdot\left(h_{1}^{\mathrm{I}_{\left(k_{1}, 1\right)}} \cdots h_{k_{2}}^{\mathrm{I}_{\left(k_{1}, k_{2}\right)}} \cdot f_{k_{1}}\right)^{r_{k_{1}}} & =g_{4} \cdot Z \cdot y_{\ell_{2}-k_{2}+1}^{\tilde{r}_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)} /\left(g_{4} y_{1}^{-\gamma}\right) \\
& =Z \cdot y_{\ell_{2}-k_{2}+1}^{\tilde{r}_{k_{1}} \cdot\left(\mathrm{I}_{\left(k_{1}, k_{2}\right)}^{*}-\mathrm{I}_{\left(k_{1}, k_{2}\right)}\right)} \cdot y_{1}^{\gamma}
\end{aligned}
$$

Since g_{4} cancels out from the expression on the right, all the terms in that expression are known to \mathcal{B}. Thus, \mathcal{B} can compute the product of the first two terms in the first component of the private key (4). To conclude, note that the third term

$$
\prod_{i=1}^{k_{1}-1}\left(h_{1}^{\mathrm{I}_{(i, 1)}} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(i, \ell_{2}\right)}} \cdot f_{i}\right)^{r_{i}}=\prod_{i=1}^{k_{1}-1}\left(g^{r_{i} \cdot\left(\delta_{i}+\sum_{j=1}^{\ell_{2}} \mathrm{I}_{(i, j)} \gamma_{i}\right)} \cdot \prod_{j=1}^{\ell_{2}} y_{\ell_{2}-j+1}^{r_{i} \cdot\left(\mathrm{I}_{(i, j)}^{*}-\mathrm{I}_{(i, j)}\right)}\right)
$$

has a similar form to Z and can be computed by \mathcal{B} given the values at its disposal. Therefore, we have shown that \mathcal{B} can compute the first component of the private key (4).
The components $g^{r_{1}}, \ldots, g^{r_{k_{1}-1}}$ are easily computed by raising g to the powers of $r_{1}, \ldots, r_{k_{1}-1}$, all of which \mathcal{B} knows. The component $g^{r_{k_{1}}}$ is simply $y_{k_{2}}^{1 /\left(I_{\left(k_{1}, k_{2}\right)}-I_{\left(k_{1}, k_{2}\right)}^{*}\right)} \cdot g^{\tilde{r}_{k_{1}}}$, which \mathcal{B} can also compute. Finally, observe that

$$
h_{k_{2}+i}^{r_{k_{1}}}=\left(g^{\gamma_{k_{2}+i}} / y_{\ell_{2}-k_{2}-i+1}\right)^{\frac{\alpha^{k_{2}}}{\left(I_{\left(k_{1}, k_{2}\right)}\right)^{-I_{\left(k_{1}, k_{2}\right)}^{*}}}+\tilde{r}_{k_{1}}}=\left(y_{k_{2}}^{\gamma_{k_{2}+i}} / y_{\ell_{2}-i+1}\right)^{\frac{1}{\left(I_{\left(k_{1}, k_{2}\right)^{-I_{\left(k_{1}, k_{2}\right)}^{*}}}+\tilde{r}_{k_{1}}\right.}},
$$

which \mathcal{B} can compute for all $i=1, \ldots, \ell_{2}-k_{2}$ because there are no $y_{\ell_{2}+1}$ terms.
Thus, \mathcal{B} can derive a valid private key for ID_{k}. Algorithm \mathcal{B} derives a private key for the requested ID from this private key and gives \mathcal{A} the result.

Challenge. When \mathcal{A} decides that Phase 1 is over, it outputs two messages $M_{0}, M_{1} \in \mathbb{G}_{1}$ on which it wishes to be challenged. Algorithm \mathcal{B} picks a random bit $b \in\{0,1\}$ and responds with the challenge ciphertext

$$
\mathrm{CT}=\left(M_{b} \cdot T \cdot e\left(y_{1}, h^{\gamma}\right), h, h^{\delta_{1}+\sum_{j=1}^{\ell_{2}} \mathrm{I}_{(1, j)}^{*} \gamma_{j}}, h^{\delta_{2}+\sum_{j=1}^{\ell_{2}} \mathrm{I}_{(2, j)}^{*} \gamma_{j}}, \ldots, h^{\delta_{\ell_{1}}+\sum_{j=1}^{\ell_{2}} \mathrm{I}_{\left(\ell_{1}, j\right)}^{*} \gamma_{j}}\right)
$$

where h and T are from the input tuple given to \mathcal{B}. First note that if $h=g^{c}$ (for some unknown c in \mathbb{Z}_{p}) then

Therefore, if $T=e(g, h)^{\left(\alpha^{\ell_{2}+1}\right)}$, (i.e., when the input tuple is sampled from $\mathcal{P}_{B D H E}$) then the challenge ciphertext is:

$$
\mathrm{CT}=\left(M_{b} \cdot e\left(g_{1}, g_{2}\right)^{c}, \quad g^{c}, \quad\left(h_{1}^{\mathrm{I}_{(1,1)}^{*}} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(1, \ell_{2}\right)}^{*}} \cdot f_{1}\right)^{c}, \ldots,\left(h_{1}^{\mathrm{I}_{\left(\ell_{1}, 1\right)}^{*}} \cdots h_{\ell_{2}}^{\mathrm{I}_{\left(\ell_{1}, \ell_{2}\right)}^{*}} \cdot f_{\ell_{1}}\right)^{c}\right)
$$

which is a valid encryption of M_{b} under the public key $\mathrm{ID}^{*}=\left(\mathrm{I}_{1}^{*}, \ldots, \mathrm{I}_{\ell}^{*}\right)$. On the other hand, when T is uniform and independent in \mathbb{G}_{1} (when the input tuple is sampled from $\mathcal{R}_{B D H E}$), then CT is independent of b in the adversary's view.

Phase 2. \mathcal{A} continues to issue queries not issued in Phase 1. Algorithm \mathcal{B} responds as before.
Guess. Finally, \mathcal{A} outputs a guess $b^{\prime} \in\{0,1\}$. Algorithm \mathcal{B} concludes its own game by outputting a guess as follows. If $b=b^{\prime}$ then \mathcal{B} outputs 1 meaning $T=e(g, h)^{\left(\alpha^{\ell_{2}+1}\right)}$. Otherwise, it outputs 0 meaning T is random in \mathbb{G}_{1}.

When the input tuple is sampled from $\mathcal{P}_{\text {BDHE }}$ (where $T=e(g, h)^{\left(\alpha^{\ell_{2}+1}\right)}$), then \mathcal{A} 's view is identical to its view in a real attack game and therefore \mathcal{A} satisfies $\left|\operatorname{Pr}\left[b=b^{\prime}\right]-1 / 2\right| \geq \epsilon$. When the input tuple is sampled from $\mathcal{R}_{B D H E}$ (where T is uniform in \mathbb{G}_{1}) then $\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2$. Therefore, with g, h uniform in \mathbb{G}^{*}, α uniform in \mathbb{Z}_{p}, and T uniform in \mathbb{G}_{1} we have that

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell_{2}}, e(g, h)^{\left(\alpha^{\ell_{2}+1}\right)}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(g, h, \vec{y}_{g, \alpha, \ell_{2}}, T\right)=0\right]\right| \geq\left|\left(\frac{1}{2} \pm \epsilon\right)-\frac{1}{2}\right|=\epsilon
$$

as required. This completes the proof of the theorem.

D An fs-HIBE Linear in All Components

Using an idea related to the hybrid HIBE presented in an earlier section, we now construct a forward secure HIBE system in which ciphertexts, private keys, and public parameters all have "linear" $O(\ell+\log T)$ complexity, where ℓ is the depth of the identity hierarchy and T is the number of time slices for purposes of forward security. The scheme supports all the requirements set forth by Yao et al. [26], and in particular the "dynamic-join" ability for any identity at any level to generate private keys for any subordinate identities at any time.

The proposed fs-HIBE scheme, like the aforementioned hybrid HIBE, takes advantage of the complementarity and orthogonality of our basic HIBE (call it BBG) and that of Boneh and Boyen (BB). The main difference with the hybrid HIBE is that, here, each subsystem independently contributes its own hierarchy (time or identity) - something that Yao et al. [26] could not do based solely on the Gentry-Silverberg HIBE - so there is no need to consider a cross-product hierarchy. This fact allows us to achieve a complexity of $O(\ell+\log T)$ - rather than $O(\ell \cdot \log T)$ - for all components.

Consider a forward secure HIBE setting with $T=2^{t}$ time periods and ℓ levels in the ID hierarchy. We construct such a fs-HIBE based on a t-level BB scheme for the time stamps and an ℓ-level BBG scheme for the identity hierarchy. Informally, each fs-HIBE private key consists of t private BB subkeys corresponding to selected nodes in a "time tree" à la Canetti et al. [8]. Each subkey contains between 3 and $t+2$ elements, but because BB leaves most private key elements unchanged from parent to child, the whole set contains only about $2 t$ elements (instead of the $t^{2} / 2$
one would have expected). Then, viewing each BB subkey as a black box master key for a BBG system (exploiting the strong algebraic similarities between both systems), we use BBG to derive from this master key a subkey for the designated identity. Again, this adds up to ℓ elements to the subkey, but because the same ℓ elements can be shared among all t subkeys, the entire identity hierarchy ends up costing only a mere ℓ extra terms (instead of $t \ell$ as one would have expected). We end up with a total private key size $\approx 2 t+\ell=O(\ell+\log T)$, a public key size $\approx t+\ell=O(\ell+\log T)$, and a ciphertext size $\approx t=O(\log T)$, which notably remains independent of the ID hierarchy.

D. 1 Linear fs-HIBE Scheme

As before, we assume a bilinear group \mathbb{G} and a map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{1}$, where \mathbb{G} and \mathbb{G}_{1} have prime order p. Let $t=\log T$ be the depth of the time tree and ℓ be the depth of the ID hierarchy. As usual we let $\mathrm{ID}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in \mathbb{Z}_{p}^{k}$ be an identity of depth $k \leq \ell$. The linear fs-HIBE system is described as follows.
$\operatorname{Setup}(t, \ell)$: To generate system parameters for an fs-HIBE of maximum depth ℓ and a maximum of 2^{t} time periods: select a random generator g in \mathbb{G}, a random $\alpha \in \mathbb{Z}_{p}$, and set $g_{1}=g^{\alpha}$; then, pick random elements $g_{2}, g_{3}, f_{1}, \ldots, f_{t}, h_{1}, \ldots, h_{\ell} \in \mathbb{G}$, and set $g_{4}=g_{2}^{\alpha}$. The public parameters params and the secret master-key are given by

$$
\text { params }=\left(g, g_{1}, g_{2}, g_{3}, f_{1}, \ldots, f_{t}, h_{1}, \ldots, h_{\ell}\right), \quad \text { master-key }=g_{4}=g_{2}^{\alpha}
$$

$\operatorname{KeyGen}\left(d_{\mathbf{I D} \mid k-1}, \mathbf{I D}\right):$ To generate the private key $d_{1 \mathrm{D}}^{(\tau)}$ for an identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in \mathbb{Z}_{p}^{k}$ of depth $k \leq \ell$ for the time period $\tau<2^{t}$ with binary representation $\tau=\left\langle\tau_{t-1}\right| \cdots\left|\tau_{0}\right\rangle \in\{0,1\}^{t}$, pick random $r_{1}, \ldots, r_{t}, r_{1}^{\prime}, \ldots, r_{t}^{\prime}, r \in \mathbb{Z}_{p}$, and compute

$$
y=g_{2}^{\alpha} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r},
$$

to produce the output $d_{10} \in \mathbb{G}^{2+t+2 \bar{t}+(\ell-k)}$ (where $\left.\bar{t}=\left|\left\{\tau_{i}=0: 0 \leq i<t\right\}\right|\right)$, given by

Observe that the private key for ID at time interval τ can be generated from a private key for $\mathrm{ID}_{\mid k-1}=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k-1}\right) \in \mathbb{Z}_{p}^{k-1}$ with time index $\tau^{\prime} \leq \tau$, as required. We separately show how to derive $d_{1 \mathrm{D}}^{(\tau)}$ respectively from $d_{\mathrm{ID}}^{(\tau)}{ }_{k-1}^{(\tau)}$ and from $d_{1 \mathrm{D}}^{\left(\tau^{\prime}\right)}$; the general case can be obtained by composing the two types of derivations in either order. The two cases are as follows.

1. $\left[d_{\mathbf{I D} \mid k-1}^{(\tau)} \rightarrow d_{10}^{(\tau)}\right]$. The private key for $\mathrm{ID}_{\mid k-1}$ with time index τ can be written as

$$
\begin{aligned}
d_{|\mathrm{D}| k-1}^{(\tau)} & =\left(\begin{array}{lr}
y^{\prime} \cdot a_{0}^{\prime}, \\
z^{\prime}, & \\
b_{1}, \ldots, b_{t}, & \\
y^{\prime} \cdot c_{t}^{\prime}, \ldots, y^{\prime} \cdot c_{1}^{\prime}, & \text { where } y^{\prime} \cdot c_{i}^{\prime}=\perp \text { unless } \tau_{t-i}=0 \\
d_{1}, \ldots, d_{t}, & \text { where } d_{i}=\perp \text { unless } \tau_{t-i}=0 \\
h_{k}^{r}, \ldots, h_{\ell}^{r}
\end{array}\right) \\
& =\left(a_{0}, a_{1}, b_{1}, \ldots, b_{t}, c_{t}, \ldots, c_{1}, d_{1}, \ldots, d_{t}, e_{k}, \ldots, e_{\ell}\right) \quad \in \mathbb{G}^{2+t+2 \bar{t}+(\ell-k+1)},
\end{aligned}
$$

where $a_{0}^{\prime}, b_{1}, \ldots, b_{t}, c_{1}^{\prime}, \ldots, c_{t}^{\prime}, d_{1}, \ldots, d_{t}$ are independent of ID, and y^{\prime} and z^{\prime} can be written as, for unknown r^{\prime},

$$
y^{\prime}=g_{2}^{\alpha} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r^{\prime}}, \quad \quad z^{\prime}=g^{r^{\prime}}
$$

To generate $d_{1 \mathrm{D}}^{(\tau)}$ from $d_{\mathrm{ID} \mid k-1}^{(\tau)}$, pick a random $r^{*} \in \mathbb{Z}_{p}$, and compute

$$
y^{*}=e_{k}^{\mathrm{I}_{k}} \cdot\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{r^{*}}, \quad \quad z^{*}=g^{r^{*}}
$$

then, output

$$
d_{1 \mathrm{D}}^{(\tau)}=\left(\begin{array}{l}
a_{0} \cdot y^{*}, \\
a_{1} \cdot g^{*}, \\
b_{1}, \ldots, b_{t}, \\
c_{t} \cdot y^{*}, \ldots, c_{1} \cdot y^{*}, \\
d_{1}, \ldots, d_{t}, \\
e_{k+1} \cdot h_{k+1}^{r^{*}}, \ldots, e_{\ell} \cdot h_{\ell}^{r^{*}}
\end{array}\right) \in \mathbb{G}^{2+t+2 \bar{t}+(\ell-k)} .
$$

If we set $r=r^{\prime}+r^{*}$, it is easy to see that this tuple is a correctly distributed private key for identity ID and timestamp τ.
2. $\left[d_{10}^{\left(\tau^{\prime}\right)} \rightarrow d_{\text {ID }}^{(\tau)}\right]$. The private key for ID with time index $\tau^{\prime}<\tau$ can be written as, for unknown exponents $r_{1}, \ldots, r_{t}, r_{1}^{\prime}, \ldots, r_{t}^{\prime}$,

$$
\begin{aligned}
& d_{10}^{\left(\tau^{\prime}\right)}=\left(\begin{array}{lr}
y \cdot\left(g_{1}^{\tau_{t-1}} \cdot f_{1}\right)^{r_{1}} \cdots\left(g_{1}^{\tau_{1}} \cdot f_{t-1}\right)^{r_{t-1}} \cdot\left(g_{1}^{\tau_{0}} \cdot f_{t}\right)^{r_{t}}, \\
z, g^{r_{1}}, \ldots, g^{r_{t}}, & \text { if } \tau_{0}=0 \\
y \cdot\left(g_{1}^{\tau_{t-1}} \cdot f_{1}\right)^{r_{1}} \cdots\left(g_{1} \cdot f_{t}\right)^{r_{t}^{\prime}}, & \vdots \\
\vdots & \text { if } \tau_{t-2}=0 \\
y \cdot\left(g_{1}^{\tau_{t-1}} \cdot f_{1}\right)^{r_{1}} \cdot\left(g_{1} \cdot f_{2}\right)^{r_{2}^{\prime}}, & \text { if } \tau_{t-1}=0 \\
y \cdot\left(g_{1} \cdot f_{1}\right)^{r_{1}^{\prime}}, & \text { for } g^{r_{i}^{\prime}} \text { where } \tau_{t-i}=0 \\
g^{r_{1}^{\prime}, \ldots, g^{r_{t}^{\prime}},} & \\
e_{k+1}, \ldots, e_{\ell} &
\end{array}\right) \\
& =\left(a_{0}, a_{1}, b_{1}, \ldots, b_{t}, c_{t}, \ldots, c_{1}, d_{1}, \ldots, d_{t}, e_{k+1}, \ldots, e_{\ell}\right) \quad \in \mathbb{G}^{2+t+2 \bar{t}+(\ell-k)},
\end{aligned}
$$

where y and $e_{k+1}, \ldots, e_{\ell}$ are independent of the time index τ^{\prime}.
We need to compute the private key

$$
d_{1 D}^{(\tau)}=\left(\hat{a}_{0}, \hat{a}_{1}, \hat{b}_{1}, \ldots, \hat{b}_{t}, \hat{c}_{t}, \ldots, \hat{c}_{1}, \hat{d}_{1}, \ldots, \hat{d}_{t}, \hat{e}_{k+1}, \ldots, \hat{e}_{\ell}\right) .
$$

The expression of $d_{10}^{(\tau)}$ is more clearly described in reference to an instantiation of the HIBE system of Boneh and Boyen [1] where the master key is y (as opposed to explicitly formalizing $d_{10}^{(\tau)}$ in terms of $\left.d_{10}^{\left(\tau^{\prime}\right)}\right)$. Indeed, the $(t+1)$-tuple $\left[a_{0}, b_{1}, \ldots, b_{t}\right]$ can be viewed as a private key in the BB system for the level- t identity $\left\langle\tau_{t-1}^{\prime}\right| \ldots\left|\tau_{0}^{\prime}\right\rangle$. Similarly, for all $j=t, \ldots, 1$, the $(j+1)$-tuple $\left[c_{j}, b_{1}, \ldots, b_{j-1}, d_{j}\right]$ is a private key for $\left\langle\tau_{t-1}^{\prime}\right| \ldots\left|\tau_{t-j+1}^{\prime}, 1\right\rangle$ when it is defined. It is easy to see that these private keys form a $O(t)$-size "cover set" for the time periods $\left[\tau^{\prime}, 2^{t}-1\right]$, i.e., for the set of BB-identities $\in\{0,1\}^{t}$ that represent binary integers $\geq \tau^{\prime}$. Furthermore, for any $\tau>\tau^{\prime}$ it is easy to transform this cover set into a $O(t)$-size cover set for the interval $\left[\tau, 2^{t}-1\right]$ using no more than $2 t$ invocations of the (single step) Boneh-Boyen HIBE key derivation procedure.
The abstract transformation from one cover set the other is elementary and is omitted. As for the single-step BB key derivation that implements this transformation, we briefly describe it using the following case as an example. Suppose that the binary expansions of τ^{\prime} and τ agree on their $j-1$ most significant bits, but differ on the j-th one (then necessarily $\tau_{t-j}^{\prime}=0$ and $\tau_{t-j}=1$). Our cover set for $\left[\tau^{\prime}, 2^{t}-1\right]$ must contain the BB private key $\left[c_{j}, b_{1}, \ldots, b_{j-1}, d_{j}\right]$ corresponding to the BB identity $\left\langle\tau_{t-1}^{\prime}\right| \ldots\left|\tau_{t-j+1}^{\prime}, 1\right\rangle$. We need to generate the private keys of $\left\langle\tau_{t-1}^{\prime}\right| \ldots\left|\tau_{t-j+1}^{\prime}, 1, \beta\right\rangle$ where $\beta=0,1$ (we typically need both). To do so, for each β select a random $r^{(\beta)} \in \mathbb{Z}_{p}$ and compute the BB private key components:

$$
\left(c_{j} \cdot\left(g_{1}^{\beta} \cdot f_{j+1}\right)^{r^{*}}, \quad b_{1}, \ldots, b_{j-1}, d_{j}, \quad g^{r^{*}}\right)
$$

For $\beta=1$, we get the vector $\left[\hat{c}_{j+1}, b_{1}, \ldots, b_{j-1}, \hat{b}_{j}, \hat{d}_{j+1}\right]$ whose components can directly be inserted in the appropriate slots in the $d_{1 \mathrm{D}}^{(\tau)}$; we also need to insert the value $\hat{d}_{j+1}=g^{r^{(\beta)}}$ in $d_{1 \mathrm{D}}^{(\tau)}$. For $\beta=0$, we only need to insert the value $\hat{b}_{j+1}=g^{r^{(\beta)}}$ in $d_{1 \mathrm{D}}^{(\tau)}$; the other components of the private key vector are not directly stored in $d_{10}^{(\tau)}$, but are used to obtain the remaining elements of the set cover in a hierarchical manner.
Encrypt (params, ID, M): To encrypt a message $M \in \mathbb{G}_{1}$ under the public key ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right) \in$ \mathbb{Z}_{p}^{k} with timestamp $\tau=\left\langle\tau_{t-1}\right| \cdots\left|\tau_{0}\right\rangle<2^{t}$, pick a random $s \in \mathbb{Z}_{p}$ and output

$$
\begin{aligned}
\mathrm{CT} & =\left(e\left(g_{1}, g_{2}\right)^{s} \cdot M, \quad g^{s},\left(h_{1}^{\mathrm{I}_{1}} \cdots h_{k}^{\mathrm{I}_{k}} \cdot g_{3}\right)^{s},\left(g_{1}^{\tau_{t-1}} \cdot f_{1}\right)^{s}, \ldots,\left(g_{1}^{\tau_{0}} \cdot f_{t}\right)^{s}\right) \\
& \in \mathbb{G}_{1} \times \mathbb{G}^{2+t} .
\end{aligned}
$$

$\operatorname{Decrypt}\left(d_{\mathbf{1 D}}, \mathbf{C T}\right):$ To decrypt a ciphertext $\mathrm{CT}=\left(A, B, C, D_{1}, \ldots, D_{t}\right)$ for identity ID $=\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right)$ with timestamp τ, using a private key $d_{\mathrm{ID}}=\left(a_{0}, a_{1}, b_{1}, \ldots, b_{t}, c_{t}, \ldots, c_{1}, d_{1}, \ldots, d_{t}, e_{k+1}, \ldots, e_{\ell}\right)$ for matching ID and τ, output

$$
A \cdot e\left(a_{1}, C\right) \cdot \prod_{i=1}^{t} e\left(d_{i}, D_{i}\right) / e\left(B, a_{0}\right)=M .
$$

The private key components $b_{1}, \ldots, b_{\ell}, c_{t}, \ldots, c_{1}$, and $e_{k+1}, \ldots, e_{\ell}$ are not used for decryption.

D. 2 Security and Complexity

We now mention a few key properties of the linear fs-HIBE scheme.

Security. The security of the fs-HIBE scheme follows immediately from that of the main HIBE presented earlier in this paper (used for the ID hierarchy in the fs-HIBE) and that of the BonehBoyen HIBE (used for the temporal set cover construction). We mention that the "reuse" of the BB exponents r_{1}, \ldots, r_{t-1} in multiple components of $d_{\mathrm{ID}}^{(\tau)}$ is a feature of the subkey generation in the BB system, which is exploited here to reduce the overall size of the full fs-HIBE key; without it, the private key size would incur an extra $\log T$ multiplicative factor.

The proof of security is essentially based on the orthogonality of the two HIBE subsystems in the fs-HIBE construction, from which a reduction to the security of either system is easily obtained. For example, private key derivation in the time coordinate is completely oblivious to the ID-dependent blinding: indeed, as far as the BB subsystem is concerned, the ID-dependent blinding is part of the unknown master secret and left untouched by sub-level key derivation. The same can be said of the timestamp-dependent blinding factors implemented by the BB subsystem, which are unaffected by the key derivations operations in the ID hierarchy. The only place where the two subsystems meet is at decryption, which requires the blinding coefficients from both subsystems to be lifted in order to proceed.

Complexity. For a maximum of T time slices and ℓ levels in the hierarchy, all functions in the fs-HIBE above have time complexity $O(\ell+t)=O(\ell+\log T)$. Similarly, the ciphertexts, the private keys, and the public parameters all have linear size $O(\ell+\log T)$.

D. 3 "Logarithmic" Forward Secure Public Key Encryption

We note that the above linear fs-HIBE scheme immediately provides a linear (in t) or logarithmic (in $T=2^{t}$) forward secure public key encryption scheme, or fs-PKE. We derive our logarithmic fs-PKE by dropping the ID hierarchy in the above fs-HIBE. In other words, all ciphertexts and private keys are issued to the root of the ID hierarchy. It follows that private keys and ciphertexts in the resulting scheme have complexity $O(\log T)$. Notice that the resulting fs-PKE is entirely based on the Boneh-Boyen IBE scheme from [1], and thus depends only on the decisional BDH assumption.

A difference with the fs-PKE proposed by Canetti et al. [8] is that we achieve logarithmic complexity without resorting to updateable public storage. Recall that in the CHK construction [8], private keys are natively of size $O\left(\log ^{2} T\right)$, and can be compressed down to $O(\log T)$ size at the cost of maintaining polylogarithmic $O\left(\log ^{2} T\right)$ extra information in updateable public storage. The present approach does not require any such public storage.

[^0]: *Stanford University. Supported by NSF.
 ${ }^{\dagger}$ Voltage Inc., Palo Alto.

[^1]: ${ }^{1}$ The Strong Diffie-Hellman (SDH) assumption [2] stands out from this series and is not covered by the general argument developed in this section.

