
Hierarchical Identity Based Encryption with

Constant Size Ciphertext

Dan Boneh∗

dabo@cs.stanford.edu

Xavier Boyen†

xb@boyen.org

Eu-Jin Goh∗

eujin@cs.stanford.edu

Abstract

We present a Hierarchical Identity Based Encryption (HIBE) system where the ciphertext
consists of just three group elements and decryption requires only two bilinear map computa-
tions, independent of the hierarchy depth. Encryption is as efficient as in other HIBE systems.
We prove that the scheme is selective-ID secure in the standard model and fully secure in the
random oracle model. Our system has a number of applications: it gives very efficient forward
secure public key and identity based cryptosystems (where ciphertexts are short), it converts
the NNL broadcast encryption system into an efficient public key broadcast system, and it pro-
vides an efficient mechanism for encrypting to the future. The system also supports limited
delegation where users can be given restricted private keys that only allow delegation to certain
descendants. Sublinear size private keys can also be achieved at the expense of some ciphertext
expansion.

1 Introduction

An Identity Based Encryption (IBE) system [23, 4] is a public key system where the public key
can be an arbitrary string such as an email address. A central authority uses a master key to issue
private keys to identities that request them. Hierarchical-IBE (HIBE) [16, 13] is a generalization
of IBE that mirrors an organizational hierarchy. An identity at level k of the hierarchy tree can
issue private keys to its descendant identities, but cannot decrypt messages intended for other
identities (details are given in Section 2.1). The first construction for HIBE is due to Gentry and
Silverberg [13] where security is based on the Bilinear Diffie-Hellman (BDH) assumption in the
random oracle model. A subsequent construction due to Boneh and Boyen [1] gives an efficient
(selective-ID secure) HIBE based on BDH without random oracles. In both constructions, the
length of ciphertexts and private keys, as well as the time needed for decryption and encryption,
grows linearly in the depth k.

There are currently two principal applications for HIBE. The first, due to Canetti, Halevi, and
Katz [8], is forward secure encryption. Forward secure encryption enables users to periodically
update their private keys so that a message encrypted at period t cannot be read using a private
key from period t′ > t. To provide for 2` time periods, the CHK construction uses a HIBE of
depth ` where identities are binary vectors of length `. At time t, the encryptor encrypts using the
identity corresponding to the t’th node of this depth ` binary tree. Consequently, using previous

∗Stanford University. Supported by NSF.
†Voltage Inc., Palo Alto.

1

HIBE systems, ciphertexts in this system are of size O(`). Private keys are of size O(`2) but can
be reduced to size O(`) by using updateable public storage. The second application for HIBE, due
to Dodis and Fazio [10], is using HIBE to convert the NNL broadcast encryption system [21] into a
public-key broadcast system. Unfortunately, the resulting public-key broadcast system is no better
than simpler constructions because ciphertext length in previous HIBE constructions is linear in
the depth of the hierarchy.

Our Contribution. We present a HIBE system where ciphertext size and also decryption cost
is independent of the hierarchy depth k. Ciphertexts in our HIBE are always just three group
elements and decryption requires only two bilinear map computations. Private keys in our basic
system contain k group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts consisting of only
three group elements, for any number of time periods. With our basic HIBE system, the private
key size in this forward secure encryption system is O(`2), which is the same as the Canetti et al.
(CHK) construction [8]. In Section 4 we describe a hybrid system that borrows some features from
the Boneh-Boyen HIBE [1] and results in a forward secure encryption scheme where private key size
is only O(`3/2). By using updateable public storage as in CHK [8], private key size in these systems
can be reduced to size O(`) and O(

√
`) respectively. In addition, instantiating the Dodis-Fazio [10]

system with our HIBE system results in a public-key broadcast system that is as efficient as the
NNL subset difference method.

It is worth noting that private keys in our system shrink as the identity depth increases; this
shrinkage is the opposite behavior from previous HIBE systems where private keys become larger
as we descend deeper down the hierarchy tree. This behavior leads to “limited delegation” where
an identity at depth k can be given a restricted private key that only lets it issue private keys to
certain descendants (as opposed to any descendant).

Security of our system is based on a natural assumption that is closely related to the Diffie-
Hellman Inversion assumption [1, 18]. We describe the assumption in Section 2.3 and discuss its
relation to existing assumptions in bilinear groups in Appendix B. To gain more confidence in
the assumption, we prove in Appendix A a lower bound on the computational complexity of the
problem in the generic group model. We present the system in Section 3 and prove its security in the
selective identity model without using random oracles. We then observe that a selective-ID secure
HIBE results in a fully secure HIBE in the random oracle model. In Sections 4 and 5 we discuss
several extensions and applications of the system. For example, in addition to the applications
already mentioned, we show how private keys can be further compressed to sublinear size, and
describe how the system gives a very efficient mechanism for encrypting to the future.

2 Preliminaries

We briefly review the definition of security for a HIBE system. We also review the definition of
bilinear groups, and introduce the (decisional) Bilinear Diffie-Hellman Exponent assumption in
such groups.

2

2.1 Fully Secure HIBE Systems

Like an Identity Based Encryption (IBE) system, a Hierarchical Identity Based Encryption (HIBE)
system consists of four algorithms [16, 13, 1]: Setup, KeyGen, Encrypt, Decrypt. In a HIBE,
however, identities are vectors; a vector of dimension ` represents an identity at depth `. The
Setup algorithm generates system parameters, denoted by params, and a master key master-key.
We refer to the master-key as the private key at depth 0 and note that an IBE system is a HIBE
where all identities are at depth 1. Algorithm KeyGen takes as input an identity ID = (I1, . . . , I`) at
depth ` and the private key dID|`−1 of the parent identity ID|`−1 = (I1, . . . , I`−1) at depth `− 1, and
then outputs the private key dID for identity ID. The encryption algorithm encrypts messages for
an identity using params and the decryption algorithm decrypts ciphertexts using the private key.

Chosen ciphertext security for HIBE systems is defined under a chosen identity attack where
the adversary is allowed to adaptively chose the public key on which it will be challenged. More
precisely, HIBE security (IND-ID-CCA) is defined using the following game [16, 13] between an
adversary A and a challenger C:

Setup: The challenger C runs the Setup algorithm. C gives A the resulting system parameters
params and keeps the master-key to itself.

Phase 1: A issues a number of queries q1, . . . , qm where query qi is one of the following:

– Private key query 〈IDi〉. C responds by running algorithm KeyGen to generate the private
key di corresponding to the public key 〈IDi〉 and sends di to A.

– Decryption query 〈IDi, Ci〉. C responds by running algorithm KeyGen to generate the
private key d corresponding to IDi. It then runs algorithm Decrypt to decrypt the
ciphertext Ci using the private key d and sends the resulting plaintext to A.

A may query C adaptively; that is, each query qi may depend on the replies to q1, . . . , qi−1.
Challenge: Once A decides that Phase 1 is over it outputs an identity ID∗ and two equal length

plaintexts M0,M1 ∈ M on which it wishes to be challenged. The only restriction is that A
did not previously issue a private key query for a prefix of ID∗. C picks a random bit b ∈ {0, 1}
and sets the challenge ciphertext to CT = Encrypt(params, ID∗,Mb), which is sent to A.

Phase 2: A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, C responds as in Phase 1. These queries may be adaptive as in Phase 1.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define the advantage of the
adversary A in attacking the scheme E as

AdvE,A =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The probability is over the random bits used by the challenger and the adversary.

Canetti, Halevi, and Katz [8, 9] define a weaker notion of security in which the adversary
commits ahead of time to the public key it will attack. We refer to this notion as selective identity,
chosen ciphertext secure HIBE (IND-sID-CCA). The game is exactly the same as IND-ID-CCA except
that the adversary A discloses to the challenger the target identity ID∗ before the Setup phase.
The restrictions on private key queries from phase 2 then apply in phase 1 as well.

3

Definition 2.1. We say that a HIBE system E is (t, qID, qC , ε)-secure if for any t-time IND-ID-CCA
(respectively IND-sID-CCA) adversary A that makes at most qID chosen private key queries and
at most qC chosen decryption queries, we have that AdvE,A < ε. As shorthand, we say that E is
(t, qID, qC, ε)-IND-ID-CCA (resp. IND-sID-CCA) secure.

Semantic Security. As usual, we define chosen plaintext security for a HIBE system as in the
preceding game, except that the adversary is not allowed to issue any decryption queries. The
adversary may still issue adaptive private key queries. This security notion is termed as IND-ID-
CPA (or IND-sID-CPA in the case of a selective identity adversary).

Definition 2.2. We say that a HIBE system E is (t, qID, ε)-IND-ID-CPA secure (respectively IND-
sID-CPA) if E is (t, qID, 0, ε)-IND-ID-CCA secure (resp. IND-sID-CCA).

2.2 Bilinear Groups

We briefly review bilinear maps and bilinear map groups. We use the following notation [17, 4]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1 with the properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists both a group G1 and an efficiently computable bilinear map e : G×G→ G1 as above. Note
that e(,) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.3 Bilinear Diffie-Hellman Exponent (BDHE) Assumption

The `-BDHE problem in G is: given g, h, and g(αi) in G for i = 1, 2, . . . , `−1, `+1, . . . , 2` as input,
output e(g, h)(α

`) ∈ G1. Since g(α`) is missing from the list of powers, the bilinear map seems to
be of no help in computing e(g, h)(α

`). As a shorthand, let yi = g(αi) ∈ G. An algorithm A has
advantage ε in solving `-BDHE in G if

Pr
[
A
(
g, h, y1, . . . , y`−1, y`+1, . . . , y2`

)
= e(g, h)(α

`)
]
≥ ε,

where the probability is over the random choice of generators g, h in G, the random choice of α
in Zp, and the random bits used by A. The decisional version of the `-BDHE problem in G is
defined in the usual manner. Let ~yg,α,` = (y1, . . . , y`−1, y`+1, . . . , y2`). An algorithm B that outputs
b ∈ {0, 1} has advantage ε in solving decision `-BDHE in G if∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`, e(g, h)(α

`)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g, h in G, the random choice of α in
Zp, the random choice of T ∈ G1, and the random bits consumed by B. We refer to the distribution
on the left as PBDHE and the distribution on the right as RBDHE .

4

Definition 2.3. We say that the (decision) (t, ε, `)-BDHE assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (decision) `-BDHE problem in G.

For conciseness we occasionally drop the t and ε and simply refer to the (decision) `-BDHE in G.
In Appendix A, we show that the `-BDHE assumption holds in generic bilinear groups [24]. In
Appendix B, we discuss the relation of `-BDHE to other assumptions in bilinear groups. We show
the `-BDHE is a natural extension of the Bilinear Diffie-Hellman Inversion problem, which was
previously used to build an IBE system [1] and a verifiable random function [11].

3 A HIBE System with Constant Size Ciphertext

Let G be a bilinear group of prime order p and let e : G×G→ G1 be a bilinear map. For now, we
assume that public keys (that is, identities ID) at depth ` are vectors of elements in Z`

p. We write
ID = (I1, . . . , I`) ∈ Z`

p. The k-th component corresponds to the identity at level k. We later extend
the construction to public keys over {0, 1}∗ by first hashing each component Ik using a collision
resistant hash H : {0, 1}∗ → Zp. We also assume that the messages to be encrypted are elements
in G1. The HIBE system works as follows:

Setup(`): To generate system parameters for an HIBE of maximum depth `, select a random
generator g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick random elements
g2, g3, h1, . . . , h` ∈ G and set g4 = gα

2 . The public parameters and the master key are

params = (g, g1, g2, g3, h1, . . . , h`) , master-key = g4 = gα
2 .

KeyGen(dID|k−1, ID): To generate the private key dID for an identity ID = (I1, . . . , Ik) ∈ Zk
p of depth

k ≤ `, pick random r ∈ Zp and output

dID =
(
gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r
, gr, hr

k+1, . . . , hr
`

)
∈ G2+`−k.

Note that dID becomes shorter as the depth of ID increases. The private key for ID can be
generated just given a private key for ID|k−1 = (I1, . . . , Ik−1) ∈ Zk−1

p as required. Indeed, let

dID|k−1 =
(
gα
2 ·
(
hI1

1 · · ·h
Ik−1

k−1 · g3
)r′
, gr′ , hr′

k , . . . , h
r′
`

)
= (a0, a1, bk, . . . , b`) ∈ G3+`−k

be the private key for ID|k−1. To generate dID, pick a random r∗ ∈ Zp and output

dID =
(
a0 · bIkk ·

(
hI1

1 · · ·h
Ik
k · g3

)r∗
, a1 · gr∗ , bk+1 · hr∗

k+1, . . . , b` · hr∗
`

)
Setting r = r′ + r∗ we see that this private key is a properly distributed private key for
ID = (I1, . . . , Ik).

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈
Zk

p, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s) ∈ G1 ×G2.

5

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given ciphertext CT =
(A,B,C) using the private key dID = (a0, a1, bk+1 . . . , b`), output

A · e(a1, C)
/
e(B, a0) = M.

Indeed, for a valid ciphertext, we have

e(a1, C)
e(B, a0)

=
e
(
gr, (hI1

1 · · ·h
Ik
k · g3)

s
)

e
(
gs, gα

2 (hI1
1 · · ·h

Ik
k · g3)r

) =
1

e(g, g2)sα
=

1
e(g1, g2)s

.

Observe that for identities at any depth, the ciphertext contains only 3 elements and decryp-
tion takes only 2 pairings. In previous HIBE systems, ciphertext size and decryption time grow
linearly in the identity depth. Also, note that e(g1, g2) used for encryption can be precomputed (or
substituted for g2 in the system parameters) so that encryption does not require any pairings.

3.1 Security

We first show that our HIBE scheme is selective identity secure (IND-sID-CPA) under the deci-
sional Bilinear Diffie-Hellman Exponent assumption. We later describe how to achieve both chosen
ciphertext security (IND-sID-CCA) and full HIBE security (IND-ID-CCA).

Theorem 3.1. Let G be a bilinear group of prime order p. Suppose the decision (t, ε, `+1)-BDHE
assumption holds in G. Then the previously defined `-HIBE system is (t′, qS, ε)-selective identity,
chosen plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t − Θ(τ ` qS), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the `-HIBE system. Using A, we build an algorithm
B that solves the decision (`+ 1)-BDHE problem in G.

For a generator g ∈ G and α ∈ Zp let yi = g(αi) ∈ G. Algorithm B is given as input a
random tuple (g, h, y1, . . . , y`, y`+2, . . . , y2`+2, T) that is either sampled from PBDHE (where T =
e(g, h)(α

`+1)) or from RBDHE (where T is uniform and independent in G1). Algorithm B’s goal is
to output 1 when the input tuple is sampled from PBDHE and 0 otherwise. Algorithm B works by
interacting with A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
m) ∈ Zm

p of depth m ≤ ` that it intends to attack. If m < ` then B appends
random elements in Zp to ID∗ until ID∗ is a vector of length ` and keeps these extra elements
to itself. From here on we assume that ID∗ is a vector of length `.

Setup. To generate the system parameters, algorithm B picks a random γ in Zp and sets g1 =
y1 = gα and g2 = y` · gγ = gγ+(α`).

Next, B picks random γ1, . . . , γ` in Zp and sets hi = gγi/y`−i+1 for i = 1, . . . , `.

Algorithm B also picks a random δ in Zp and sets g3 = gδ ·
∏`

i=1 y
I∗i
`−i+1.

Finally, B gives A the system parameters params = (g, g1, g2, g3, h1, . . . , h`). Observe that all
these values are distributed uniformly and independently in G as required.

The master key g4 corresponding to these system parameters is g4 = gα(α`+γ) = y`+1y
γ
1 , which

is unknown to B since B does not have y`+1.

6

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ Zu

p where u ≤ `. The only restriction is that ID is not a prefix of ID∗.
This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗). To respond to the query, algorithm B first derives a private key for
the identity (I1, . . . , Ik) from which it then constructs a private key for the requested identity
ID = (I1, . . . , Ik, . . . , Iu).

To generate the private key for the identity (I1, . . . , Ik) algorithm B first picks a random r̃ in
Zp. We pose r = αk

(Ik−I∗k) + r̃ ∈ Zp. Next, B generates the private key(
g4 · (hI1

1 · · ·h
Ik
k g3)

r, gr, hr
k+1, . . . , hr

`

)
, (1)

which is a properly distributed private key for the identity (I1, . . . , Ik). We show that B can
compute all elements of this private key given the values at its disposal. We use the fact that
y

(αj)
i = yi+j for any i, j.

To generate the first component of the private key, first observe that

(hI1
1 · · ·h

Ik
k g3)

r =

(
gr(δ+

Pk
i=1 Iiγi) ·

k−1∏
i=1

y
r(I∗i −Ii)
`−i+1 · yr(I∗k−Ik)

`−k+1 ·
∏̀

i=k+1

y
rI∗i
`−i+1

)
. (2)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =

(
gr(δ+

Pk
i=1 Iiγi) ·

k−1∏
i=1

y
r(I∗i −Ii)
`−i+1 ·

∏̀
i=k+1

y
rI∗i
`−i+1

)
.

One can verify that B can compute all the terms in Z given the values at its disposal. However,
B cannot compute the third term in Eq (2), namely y

r(I∗k−Ik)
`−k+1 since it requires knowledge of

y`+1. Observe that
y

r(I∗k−Ik)
`−k+1 = y

r̃(I∗k−Ik)
`−k+1 /y`+1 = y

r̃(I∗k−Ik)
`−k+1 /(g4y

−γ
1).

Hence, the first component in the private key (1) is equal to:

g4(hI1
1 · · ·h

Ik
k g3)

r = g4 · Z · y
r̃(I∗k−Ik)
`−k+1 /(g4y

−γ
1) = Z · yr̃(I∗k−Ik)

`−k+1 · yγ
1 .

Since g4 cancels out from the expression on the right, all the terms in that expression are
known to B. Thus, B can compute the first component of the private key.

The second component, gr, is simply y1/(Ik−I∗k)
k gr̃ which B can easily compute. Similarly, the

remaining elements hr
k+1, . . . , h

r
` can be computed by B since they do not involve a y`+1 term.

Thus, B can derive a valid private key for (I1, . . . , Ik). Algorithm B derives a private key for
the requested ID from this private key and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on which
it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT = (Mb · T · e(y1, h
γ), h, hδ+

P`
i=1 I∗i γi)

7

where h and T are from the input tuple given to B. First note that if h = gc (for some
unknown c in Zp) then

hδ+
P`

i=1 I∗i γi = (hI∗1
1 · · ·h

I∗`
` g3)

c

Therefore, if T = e(g, h)(α
`+1), (i.e. when the input tuple is sampled from PBDHE) then the

challenge ciphertext is:

CT = (Mb · e(g1, g2)c, gc, (hI∗1
1 · · ·h

I∗`
` g3)

c)

which is a valid encryption of Mb under the public key ID∗ = (I∗1, . . . , I
∗
`). On the other hand,

when T is uniform and independent in G1 (when the input tuple is sampled from RBDHE),
then CT is independent of b in the adversary’s view.

Phase 2. A continues to issue queries not issued in Phase 1. Algorithm B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`+1). Otherwise, it outputs
0 meaning T is random in G1.

When the input tuple is sampled from PBDHE (where T = e(g, h)(α
`+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RBDHE (where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore,
with g, h uniform in G∗, α uniform in Zp, and T uniform in G1 we have that∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`, e(g, h)(α

`+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`, T

)
= 0
]∣∣∣∣ ≥

∣∣∣∣(1
2
± ε
)
− 1

2

∣∣∣∣ = ε

as required. This completes the proof of the theorem.

Chosen Ciphertext Security. Canetti et al. [9] show a general method of building an IND-sID-
CCA secure `-HIBE from a IND-sID-CPA secure `+ 1-HIBE. A more efficient construction is given
by Boneh and Katz [5]. Applying either method to our HIBE construction results in a IND-sID-CCA
secure `-HIBE for arbitrary ` where the ciphertext length is independent of the hierarchy height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities ID = (I1, . . . , I`)
with Ii ∈ {0, 1}∗ for i = 1, . . . , ` by hashing each Ii with a collision resistant hash function H :
{0, 1}∗ → Zp in the key generation and encryption algorithms. A standard argument shows that if
the original HIBE scheme is IND-sID-CCA secure, then so is the HIBE scheme using the collision
resistant hash function.

3.2 Full HIBE Security

Theorem 3.1 shows that our HIBE system is selective-ID secure without random oracles. Thus, the
system is secure when the adversary commits ahead of time to the identity he intends to attack.
Boneh and Boyen [1] observed that IBE systems that are selective-ID secure are also fully secure
(i.e., secure against adversaries that adaptively select the identity to attack) as long as one hashes
the identity prior to using it. The reduction, however, is not tight. Let H : {0, 1}∗ → {0, 1}d
be a hash function (where, e.g., d = 160 bits). Assuming H is collision resistant, the reduction

8

introduces a 2d multiplicative error term in the standard model. When H is viewed as a random
oracle, the reduction introduces instead a qH multiplicative error term where qH is the number of
hash oracle calls made by the adversary.

A similar observation applies to HIBE systems. Let E be a selective-ID secure HIBE of
depth `. Let EH be an HIBE system where an identity ID = (I1, . . . , Ik) is hashed to IDH =
(H(I1), . . . ,H(Ik)) before using it in KeyGen or Encrypt. Then, assuming H is collision resistant,
EH is a fully secure HIBE, but the reduction introduces an error term of 2`d. In the random oracle
model, EH is a fully secure HIBE and the reduction introduces an error term of q`

H .
In the random oracle model, the public parameters params can be made constant size by includ-

ing only the two group elements (g, g1); the remaining parameters (g2, g3, h1, . . . , h`) are derived by
applying the oracle on predetermined input strings.

We note, for a fixed `, the construction of Waters [25] applied to our HIBE could give a constant
ciphertext HIBE with a polynomial time reduction to the underlying complexity assumption. The
resulting private keys, however, are much larger, namely of size d`, as opposed to ` in our system.

4 Extensions

Before discussing the applications, we elaborate on two interesting extensions of our HIBE scheme.

4.1 Limited Delegation

Let dID = (a0, a1, bk, . . . , b`) be the private key for the identity ID. Note that the Decrypt algorithm
uses only the terms a0 and a1, and the KeyGen algorithm uses only the remaining terms bk, . . . , b`.

By removing any number of bk, . . . , b`, an identity ID at depth k can be given a restricted private
key that only lets it issue private keys to certain descendants. For example, if the private key for ID
only contains bk, bk+1, bk+2 (instead of all bk, . . . , b`), then ID can only issue private keys for three
generations of descendants, and those descendants’ private keys will be limited even further.

Furthermore, an identity in the hierarchy can delegate to its descendants either only the ability
to decrypt, or only the ability to generate keys for their descendants, or both. This property is
analogous to a traditional certificate authority’s ability to specify the extent to which its descendants
can themselves issue certificates.

4.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Section 5), are better
served by using a HIBE system with short private keys rather than ciphertexts. We show how to
construct a HIBE system whose private key size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 3 and the Boneh-Boyen HIBE [1].
Recall that in the former system the private key shrinks as the identity depth increases, while in
the latter system the private key grows with the depth of an identity. The hybrid is based on the
algebraic similarities between both systems, and exploits their opposite behavior with regard to
private key size, to ensure that no private key ever contains more than O(

√
`) group elements.

Specifically, for ω ∈ [0, 1], the hybrid scheme achieves O(`ω + `1−ω) private key size and O(`ω)
ciphertext size at every level in a hierarchy of depth `. The setting ω = 0 corresponds to our HIBE,
whereas ω = 1 corresponds to the Boneh-Boyen HIBE [1]. The most efficient hybrids are obtained
when ω ∈ [0, 1

2]. For example, when ω = 1
2 , private keys and ciphertexts are of size O(

√
`).

9

Hybrid Scheme. As before, we assume a bilinear group G and a map e : G × G → G1, where
G and G1 have prime order p. Let `1 = d`ωe and `2 = d`1−ωe. The basic idea is to partition levels
of the hierarchy into `1 consecutive groups of size `2. Within each group we use the system of
Section 3. Between groups we use the Boneh-Boyen HIBE [1].

Let ID = (I1, . . . , Ik) ∈ Zk
p be an identity of depth k ≤ `. We will represent ID as a pair (k, I)

where I ∈ Z`1×`2
p is an `1 × `2 matrix filled using the elements I1, . . . , Ik in typographic order: one

row at a time starting from the top, in each row starting from the left (note that `1 · `2 ≥ ` ≥ k;
the unfilled matrix entries are undefined). For convenience, we decompose the indices k = 1, . . . , `
into row-column pairs (k1, k2) such that k = `2 · (k1 − 1) + k2 where k1, k2 > 0. For shorthand, we
write (k1, k2) = k. It follows that in the above matrix representation of ID we have I(i1,i2) = Ii for
all i = 1, . . . , k. Or, pictorially, for an ID at the maximum depth `:

I = (I1, . . . , I`)︸ ︷︷ ︸
`=`1`2

=

I1 I2 . . . I`2

I`2+1 I`2+2 . . . I2 `2
...

...
. . .

...
I(`1−1)`2+1 I(`1−1)`2+2 . . . I`1`2

 =

I(1,1) I(1,2) . . . I(1,`2)

I(2,1) I(2,2) . . . I(2,`2)
...

...
. . .

...
I(`1,1) I(`1,2) . . . I(`1,`2)

 .

Using this convention, we can now describe the hybrid HIBE system as follows.

Setup(`, ω): To generate system parameters for an HIBE of maximum depth `, first determine `1
and `2 as above so that ` ≤ `1 · `2. Next, select a random generator g in G, a random α ∈ Zp,
and set g1 = gα. Then, pick random elements g2, f1, . . . , f`1 , h1, . . . , h`2 ∈ G, and set g4 = gα

2 .
The public parameters params and the secret master-key are given by

params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2) , master-key = g4 = gα
2 .

KeyGen(dID|k−1, ID): To generate the private key dID for an identity ID = (I1, . . . , Ik) ∈ Zk
p of depth

(k1, k2) = k ≤ `, where k1 ≤ `1 and k2 ≤ `2, pick random r1, . . . , rk1 ∈ Zp, and output

dID =

(
g4 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r′k1 ,

gr1 , . . . , grk1−1 , g
r′k1 , h

r′k1
k2+1, . . . , h

r′k1
`2

)
∈ G1+k1+`2−k2 . (?)

Note that the factors (. . .)ri under the
∏

sign contain `2 identity terms each, whereas the
last factor (. . .)rk1 only has k2 such terms. Note also that the size of dID grows with k1 and
shrinks with k2; the private key thus becomes alternatively shorter and longer as the depth
of ID increases, but never exceeds `1 + `2 elements of G.
The private key for ID can be generated with a private key for ID|k−1 = (I1, . . . , Ik−1) ∈ Zk−1

p

as required. Decompose k as (k1, k2) according to our convention. There are two cases:
1. If k− 1 is written (k1, k2− 1), namely k and k− 1 have the same row index k1, then we know

that the private key for ID|k−1 is of the form:

dID|k−1 =
(
g4 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri ·
(
h

I(k1,1)

1 · · ·hI(k1,k2−1)

k2−1 · fk1

)rk1 , gr1 , . . . , grk1 ,

h
rk1
k2
, . . . , h

rk1
`2

)
= (a0, b1, . . . , bk1 , ck2 , . . . , c`2) ∈ G2+k1+`2−k2 .

10

In this case, to generate dID from dID|k−1, pick a random r∗ ∈ Zp and output

dID =
(
a0 · c

I(k1,k2)

k2
·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r∗
, b1, . . . , bk1−1, bk1 · gr∗ ,

ck2+1 · hr∗
k2+1, . . . , c`2 · hr∗

`2

)
∈ G1+k1+`2−k2 .

This tuple is of the same form as (?) where r′k1
= rk1 + r∗.

2. If the row indices differ, then necessarily k − 1 = (k1 − 1, `2) and k = (k1, 1), and the private
key for ID|k−1 must be of the form:

dID|k−1 =
(
g4 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri , gr1 , . . . , grk1−1

)
= (a0, b1, . . . , bk1−1) ∈ Gk1 .

In this case, to generate dID from dID|k−1, pick a random r ∈ Zp and output

dID =
(
a0 ·

(
h

I(k1,1)

1 · fk1

)r
, b1, . . . , bk1−1, gr, hr

2, , . . . , hr
`2

)
∈ Gk1+`2 .

Again, this tuple conforms to the expression (?) in which rk1 has been set to r.
Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈

Zk
p where k = (k1, k2), pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
h

I(1,1)

1 · · ·hI(1,`2)

`2
· f1

)s
, . . . ,

(
h

I(k1−1,1)

1 · · ·hI(k1−1,`2)

`2
· fk1−1

)s
,(

h
I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)s) ∈ G1 ×G1+k1 .

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik) with k = (k1, k2). To decrypt a ciphertext
CT = (A,B,C1, . . . , Ck1−1, Ck1) using the private key dID = (a0, b1, . . . , bk1 , ck2+1, . . . , c`2),
output

A ·
k1∏
i=1

e(bi, Ci)
/
e(B, a0) = M.

Note that the private key components ck2+1, . . . , c`2 are not used for decryption.

Complexity. It is easy to see that in a hierarchy of depth `, private keys at all levels contain at
most `1 + `2 elements of G, while ciphertexts contain at most 1+ `1 elements of G and one element
of G1. Encryption, decryption, and one-level-down key generation, all require O(`1+`2) operations,
or O(

√
`) for the choice ω = 1

2 as claimed. We note that the combination of having a selectable
parameter ω together with the option of using an asymmetric bilinear group geared toward reducing
the ciphertext or the private key size (described in Section 4.3), gives great flexibility toward
achieving the optimal trade-off for a given application.

11

Security. We prove security based on the (`2 + 1)-BDHE assumption (observe that the BDHE
assumption implies the BDH assumption). A notable feature of the hybrid HIBE scheme is that for
ω = 1/2, security for an `-level hierarchy is achieved based merely on the O(

√
`)-BDHE assumption.

Theorem 4.1. Let G be a bilinear group of prime order p. Consider a hybrid `-HIBE system
with identity hierarchy partitioned into `1 groups each of size `2. Suppose the decision (t, ε, `2 + 1)-
BDHE assumption holds in G. Then the hybrid `-HIBE system is (t′, qS, ε)-selective identity, chosen
plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t−Θ(τ ` qS), where τ is the maximum
time for an exponentiation in G.

The proof is similar to that for Theorem 3.1, and is found in Appendix C.

4.3 Asymmetric Bilinear Groups and MNT Curves.

It is often desirable to use bilinear maps e : G × G′ → G1 where G and G′ are distinct groups.
Such maps let us take advantage of certain curves called MNT curves [19]. Typically, elements
of the group G tend to afford a particularly compact representation compared to elements of G′.
This property is used for constructing short signatures [6], secure signatures [2], and short group
signatures [3]. For our system, we can use this property to shrink either the private keys or the
ciphertexts.

We briefly describe how to rephrase the above HIBE in terms of asymmetric bilinear groups
e : G×G′ → G1. Recall that such groups are necessarily equipped with an efficiently computable
homomorphism φ : G′ → G. Thus, Setup picks all randomly selected group elements from G′.
Before these elements are used or disclosed, each element is either converted to a point in G using
φ, or left alone in G′, depending on whether this particular element is destined to appear in the first
or second argument of the bilinear map e(·, ·). It is easy to see that there are no conflicts. There are
two ways to perform this conversion: we can either send the private key or the ciphertext elements
to G; in one case we end up with smaller private keys, and in the other, smaller ciphertexts.

5 Applications

We now discuss several applications of our compact HIBE system and its extensions.

5.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that all messages encrypted
before the secret key is compromised remain secret.

A public key encryption scheme with forward security was proposed by Canetti, Halevi, and
Katz [8]. Their construction requires as a building block a weaker variant of HIBE called Binary Tree
Encryption (BTE). With their BTE construction, (and also with any existing HIBE substituted for
it), the instantiation of their forward secure scheme for 2t time periods requires ciphertexts of size
O(t) and private keys of size O(t2). Using public updateable storage, Canetti et al. reduce private
key size to O(t) without affecting ciphertext length — the idea is to encrypt the private key for
time period i under the public key of time period i − 1 and store the resulting ciphertext, of size
O(t2), in public storage; consequently, only one HIBE private key, of size O(t), needs to be kept in
private storage.

12

Using our HIBE system of Section 3 in their basic framework, we readily obtain a forward
secure encryption scheme with O(1) ciphertext size and decryption time — independent of the
number of time periods. Private keys using our basic system are of size O(t2). Alternatively, using
the hybrid HIBE described in Section 4.2 in which we set ω = 1

2 , we obtain a forward secure
encryption scheme with private keys as short as O(t3/2); in this case ciphertext size and decryption
time become O(

√
t).

Following Canetti et al. [8], we can store most of the private key in updateable public storage
in order to lessen the private storage requirement. Applied to our basic forward secure system,
using O(t2) public storage we can reduce the private key size to O(t) while keeping the ciphertext
size constant. In the case of the hybrid forward secure system (for ω = 1

2), the private storage
requirement can be similarly reduced to O(

√
t) at the cost of O(t3/2) updateable public storage;

ciphertext size in this case remains O(
√
t).

5.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [26]. Their scheme essentially
uses two HIBE hierarchies in the manner of Canetti et al. [8] to obtain forward security together
with the ability to derive subordinate keys. Their system has ciphertexts of size O(` log T) where `
is the depth of the identity hierarchy and T = 2t is the number of time periods. Indeed, they pose
as an open problem whether a forward secure HIBE scheme with linear complexity is possible.

Instantiating both hierarchies in their construction with our HIBE system immediately gives a
forward secure HIBE scheme with ciphertexts of size O(1), which resolves this question.

We also propose a more specific forward secure HIBE construction that achieves “linear” O(`+
log T) size for all components, including private keys and public parameters (ciphertexts are no
longer constant size in that construction). The construction is a hybrid between the HIBE given
in Section 3 and the Boneh-Boyen HIBE from [1]; it is described in detail in Appendix D.

5.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [12], are cryptosystems designed for the
efficient broadcast of data to a dynamic group of users authorized to receive the data. Naor, Naor,
and Lotspiech [21] considered broadcast encryption in the stateless receiver setting; they provided
a general “subset cover” framework for such broadcast encryption schemes, and gave two instances
of the framework — the Complete Subtree (CS) method and the more efficient Subset Difference
(SD) method. Further improvements have since been proposed in the form the Layered Subset
Difference (LSD) [15] and the Stratified Subset Difference (SSD) [14] methods. In the symmetric
key setting, only a “center” that possesses the secret keys can broadcast to the users. In a public
key broadcast encryption system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [10] showed how to translate the SD and LSD
methods to the public key setting. Unfortunately, for N users and r revoked users, their SD and
LSD constructions based on the Gentry-Silverberg HIBE give ciphertexts of size O(r · logN), which
is no better than the basic CS method. Substituting the HIBE system of Section 3 restores the full
benefits of both SD and LSD, which results in ciphertexts of size O(r).

13

5.4 Encrypting to the Future

Mont et al. [20] observed that an IBE system gives a mechanism for encrypting to the future using a
trusted server. Let D be a certain date string. We view D as a public key in an IBE system. Every
day, a trusted server publishes the private key corresponding to that day, which enables messages
encrypted for that day to be decrypted. Methods for encrypting to the future without a trusted
server were proposed by Rivest, Shamir, and Wagner [22].

One problem with the IBE timelock mechanism is that after n days have passed, the server has
to publish a bulletin board with n private keys on it (one private key for each day). The amount
of data on the bulletin board can be greatly reduced by using the CHK forward secure encryption
scheme in reverse. Suppose the CHK framework is set up for a total of T time periods (using a tree
of depth log2 T). To encrypt a message for day n < T , one would use the CHK public key for time
period T − n. Similarly, on day n the trusted server publishes the CHK private key corresponding
to time period T − n. This single private key enables anyone to derive the private keys for CHK
time periods T −n, T −n+1, . . . , T . Anyone can thus decrypt messages intended for days 1, . . . , n.

Implementing this encoding using our O(1) ciphertext HIBE, the trusted server on any day only
needs to publish a single private key comprising O(log2 T) group elements. Using the hybrid HIBE
system of Section 4.2, the private key posted by the server can be further reduced to O(log3/2 T)
group elements, for ciphertexts of size O(

√
log T). These parameters are much better than the IBE

based mechanism [20], which requires the bulletin board to contain as many as T group elements.

6 Conclusions and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group elements and decryp-
tion only requires computing two bilinear maps, both of which are independent of the hierarchy
depth. Encryption time is as efficient as other HIBE systems. For a hierarchy of depth ` we
proved security based on the (`+ 1)-BDHE assumption, which is a natural extension of the BDHI
assumption as discussed in Appendix B. We expect `-BDHE to be very useful for constructing
cryptosystems with short ciphertexts. For example, `-BDHE was recently used to construct a
broadcast encryption system [7] where both ciphertexts and private keys are short.

We discussed several applications of our system, including efficient forward secure encryption,
an efficient public key version of the NNL broadcast encryption system, and an efficient mechanism
for encrypting to the future. Our HIBE system allows for limited delegation and can be combined
with the Boneh-Boyen HIBE to form a hybrid HIBE that has sublinear (O(

√
`)) private key size.

We note that our selective-ID proof of security is tight. On the other hand, the proof of
full security (either in the random oracle model or the standard model) discussed in Section 3.2,
degrades exponentially in the depth of the hierarchy. The same is true for all existing HIBE systems.
It is an interesting open problem to construct an HIBE system where security does not degrade
exponentially in the hierarchy depth.

Acknowledgements

The authors thank Mihir Bellare for his helpful comments.

14

References

[1] D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without random
oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027
of LNCS, pages 223–38. Springer, 2004.

[2] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, LNCS, pages 56–73. Springer, 2004.

[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, LNCS, pages 41–55. Springer, 2004.

[4] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian,
editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29. Springer, 2001.

[5] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity
based encryption. In Proceedings of RSA-CT 2005, 2005.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Proceedings
of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer, 2001.

[7] D. Boneh and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and
private keys. In submission.

[8] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Bi-
ham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS. Springer, 2003.

[9] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 207–22. Springer, 2004.

[10] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In J. Feigen-
baum, editor, Proceedings of the Digital Rights Management Workshop 2002, volume 2696 of
LNCS, pages 61–80. Springer, 2002.

[11] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In
Proceedings of the Workshop on Theory and Practice in Public Key Cryptography 2005, 2005.

[12] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Proceedings of Crypto 1993,
volume 773 of LNCS, pages 480–91. Springer, 1993.

[13] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng, editor, Pro-
ceedings of Asiacrypt 2002, volume 2501 of LNCS, pages 548–66. Springer, 2002.

[14] M. Goodrich, J. Sun, and R. Tamassia. Efficient tree-based revocation in groups of low-state
devices. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages
511–27. Springer, 2004.

[15] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In M. Yung, editor,
Proceedings of Crypto 2002, volume 2442 of LNCS, pages 47–60. Springer, 2002.

15

[16] J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In L. Knudsen,
editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 466–81. Springer, 2002.

[17] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, Proceedings
of Algorithmic Number Theory Symposium IV, volume 1838 of LNCS, pages 385–94. Springer,
2000.

[18] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Transactions Funda-
mentals, E85-A(2):481–84, 2002.

[19] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43, May 2001.

[20] M. C. Mont, K. Harrison, and M. Sadler. The HP time vault service: exploiting IBE for
timed release of confidential information. In Proceedings of the International World Wide Web
Conference 2003, pages 160–69. ACM, 2003.

[21] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers.
In J. Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 41–62. Springer,
2001.

[22] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-release crypto. Technical
Report MIT/LCS/TR-684, MIT Laboratory for Computer Science, 1996.

[23] A. Shamir. Identity-based cryptosystems and signature schemes. In G. Blakley and D. Chaum,
editors, Proceedings of Crypto 1984, volume 196 of LNCS, pages 47–53. Springer, 1984.

[24] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256–66. Springer, 1997.

[25] B. Waters. Efficient identity-based encryption without random oracles. Cryptology ePrint
Archive, Report 2004/180, Jul 2004. http://eprint.iacr.org/2004/180/.

[26] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption for complex hierarchies
with applications to forward security and broadcast encryption. In B. Pfitzmann, editor,
Proceedings of the ACM Conference on Computer and Communications Security 2004, pages
354–63, 2004.

A Diffie-Hellman Problems in Generic Bilinear Groups

Recently a number of Diffie-Hellman-type complexity assumptions in bilinear groups have been
used to construct efficient cryptosystems. These include the Bilinear DH assumption (BDH) [4],
the DH Inversion assumption (DHI) [1], the Linear DH assumption [3], and others. To gain some
confidence in these assumptions, one can prove computational lower bounds on breaking them in a
generic bilinear group model [24]. Rather than prove a separate lower bound for each assumption,
we give a general lower bound that encompasses all the assumptions listed above, in addition to
the BDHE assumption proposed in this paper. This “master” generic-group lower bound can be
used to qualify other assumptions that may come up in future constructions.1

1The Strong Diffie-Hellman (SDH) assumption [2] stands out from this series and is not covered by the general
argument developed in this section.

16

General Diffie-Hellman Exponent problem. Let p be an integer prime and let s, n be positive
integers. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and let
f ∈ Fp[X1, . . . , Xn]. Thus, P and Q are just two ordered sets containing s multi-variate polynomials
each. We write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs). We require that the first components
of P,Q satisfy p1 = q1 = 1; that is, the constant polynomials 1. For a set Ω, a function h : Fp → Ω,
and a vector x1, . . . , xn ∈ Fp, we write

h(P (x1, . . . , xn)) =
(
h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))

)
∈ Ωs.

We use similar notation for the s-tuple Q. Let G0,G1 be groups of order p and let e : G0×G0 → G1

be a non-degenerate bilinear map. Let g ∈ G0 be a generator of G0 and set g1 = e(g, g) ∈ G1.

We define the (P,Q, f)-Diffie-Hellman Problem in G as follows: Given the vector

H(x1, . . . , xn) =
(
gP (x1,...,xn), g

Q(x1,...,xn)
1

)
∈ Gs

0 ×Gs
1,

compute gf(x1,...,xn)
1 ∈ G1.

To obtain the most general result, we study the decisional version of this problem. We say that
an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision (P,Q, f)-Diffie-
Hellman problem in G0 if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generator g ∈ G0, the random choice of x1, . . . , xn

in Fp, the random choice of T ∈ G1, and the random bits consumed by B.
Before we can state the lower bound on the decision problem above, we need the following

natural definition.

Definition A.1. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp.
Write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) where p1 = q1 = 1. We say that a polynomial
f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q) if there exist s2+s constants {ai,j}si,j=1, {bk}sk=1

such that

f =
s∑

i,j=1

ai,jpipj +
s∑

k=1

bkqk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . , Xn]s, we let df denote the total degree of f . For a set
P ⊆ Fp[X1, . . . , Xn]s we let dP = max{df | f ∈ P}.

Lower bound in generic bilinear groups. We state the following lower bound in the framework
of the generic group model [24]. We consider two random encodings ξ0, ξ1 of the additive group
Z+

p , i.e. injective maps ξ0, ξ1 : Z+
p → {0, 1}m. For i = 0, 1 we write Gi = {ξi(x) | x ∈ Z+

p }.
We are given oracles to compute the induced group action on G0,G1, and an oracle to compute
a non-degenerate bilinear map e : G0 × G0 → G1. We refer to G0 as a generic bilinear group.
The following theorem gives a lower bound on the advantage of a generic algorithm in solving the
decision (P,Q, f)-Diffie-Hellman problem. We emphasize, however, that a lower bound in generic
groups does not imply a lower bound in any specific group.

17

Theorem A.2. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). Let ξ0, ξ1 and G0,G1 be defined as above. If
f is independent of (P,Q) then for any A that makes a total of at most q queries to the oracles
computing the group operation in G0,G1 and the bilinear pairing e : G0 ×G0 → G1 we have:

∣∣∣∣Pr

A
 p, ξ0(P (x1, . . . , xn)),

ξ1(Q(x1, . . . , xn)),
ξ1(t0), ξ1(t1)

 = b :

x1, . . . , xn, y
R← Fp,

b
R← {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

 − 1
2

∣∣∣∣ ≤ (q + 2s+ 2)2 · d
2p

.

Proof. Consider an algorithm B that plays the following game with A. Algorithm B maintains two
lists of pairs,

L0 = {(pi, ξ0,i) : i = 1, . . . , τ0} , L1 = {(qi, ξ1,i) : i = 1, . . . , τ1} ,

under the invariant that at step τ in the game, τ0 + τ1 = τ + 2s+ 2. Here, pi ∈ Fp[X1, . . . , Xn] and
qi ∈ Fp[X1, . . . , Xn, Y0, Y1] are multi-variate polynomials. The ξ?,? are strings in {0, 1}m.

The lists are initialized at step τ = 0 by initializing τ0 = s and τ1 = s + 2. We set p1, . . . , ps

in L0 to be the polynomials in P and we set q1, . . . , qs in L1 to be the polynomials in Q. We also
set qs+1 = Y0 and qs+2 = Y1. Algorithm B complete the preparation of the lists L0, L1 by setting
the ξ-strings associated with distinct polynomials to random strings in {0, 1}m. Overall, initially
L0 contains s entries and L1 contains s+ 2 entries.

We can assume that A makes oracle queries only on strings obtained from B, since B can make
the strings in G0,G1 arbitrarily hard to guess by increasing m. We note that B can easily determine
the index i of any given string ξj,i in Lj (ties are broken arbitrarily). B starts the game by providing
A with the value of p and a tuple of strings

{ξ0,i}si=1, {ξ1,i}s+2
i=1 ,

meant to encode some tuple ∈ Gs
0 ×Gs+2

1 . Algorithm B responds to A’s oracle queries as follows.

Group operation in G0,G1. A query in G0 consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0
and a selection bit indicating whether to multiply or divide the group elements. To answer,
let τ ′0 ← τ0 + 1. Perform the polynomial addition or subtraction pτ ′0

← pi ± pj depending on
whether multiplication or division is requested. If the result pτ ′0

= pl for some l ≤ τ0, then
set ξ0,τ ′0

← ξ0,l; otherwise, set ξ0,τ ′0
to a new random string in {0, 1}m \{ξ0,1, . . . , ξ0,τ0}. Insert

the pair (pτ ′0
, ξ0,τ ′0

) into the list L0 and update the counter τ0 ← τ ′0. Algorithm B replies to
A with the string ξ0,τ ′0

.

G1 queries are handled analogously, this time by working with the list L1 and the counter τ1.

Bilinear pairing. A query of this type consists of two operands ξ0,i, ξ0,j with 1 ≤ i, j ≤ τ0. To
respond, B sets τ ′1 ← τ1 + 1, and performs the polynomial multiplication rτ ′1 ← pi · pj . If
the result qτ ′1 = ql for some l ≤ τ1, it assigns ξ1,τ ′1

← ξ1,l; otherwise, it sets ξ1,τ ′1
to a fresh

random string in {0, 1}m\{ξ1,1, . . . , ξ1,τ1−1}. Finally, it adds (qτ ′1 , ξ1,τ ′1
) to the list L1, updates

τ1 ← τ ′1, and outputs ξ1,τ ′1
as answer to the query.

After at most q queries, A terminates and returns a guess b′ ∈ {0, 1}. At this point B chooses
random x1, . . . , xn, y

R← Fp and b R← {0, 1}. Let yb = f(x1, . . . , xn) and y1−b = y.

18

For i = 1, . . . , n, we set Xi = xi, Y0 = y0, and Y1 = y1. It follows that the simulation provided
by B is perfect unless the chosen random values for the variables X1, . . . , Xn, Y0, Y1 result in an
equality relation between intermediate values that is not an equality of polynomials. In other words,
the simulation is perfect unless for some i, j one of the following holds:

1. pi(x1, . . . , xn)− pj(x1, . . . , xn) = 0, yet the polynomials pi and pj are not equal.

2. qi(x1, . . . , xn, y0, y1)− qj(x1, . . . , xn, y0, y1) = 0, yet the polynomials qi and qj are not equal.

Let fail be the event that one of these two conditions holds. When event fail occurs, then B’s
responses to A’s queries deviate from the real oracles’ responses when the input tuple is derived
from the vector (x1, . . . , xn, y0, y1) ∈ Fn+2

p .
We first bound the probability that event fail occurs. We bound the probability in two steps.

First, consider setting Yb = f(X1, . . . , Xn). We claim that this symbolic substitution does not
create any new equalities between polynomials qi, qj . In other words, if qi− qj 6= 0 for all i, j before
the substitution, then qi−qj 6= 0 also holds after we set Yb = f(X1, . . . , Xn). This statement follows
because f is independent of (P,Q). Indeed, qi − qj is a polynomial of the form

s∑
k,l=1

ak,lpkpl +
s∑

u=1

buqu + cY0 + dY1

for some constants ak,l, bu, c, d ∈ Fp. If this polynomial is non-zero but setting Yb = f(X1, . . . , Xn)
causes this polynomial to vanish, then f must be dependent on (P,Q).

We are now left with polynomials inX1, . . . , Xn, Y1−b. We need to bound the probability that for
some i, j we get (pi− pj)(x1, . . . , xn) = 0 even though pi− pj 6= 0, or that (qi− qj)(x1, . . . , x,y) = 0
even though qi − qj 6= 0. By construction, the maximum total degree of these polynomials is
d = max(2dP , dQ, df). Therefore, for a given i, j the probability that a random assignment to

X1, . . . , Xn, Y1−b
R← Fp is a root of qi − qj is at most d/p. The same holds for pi − pj . Since there

are no more than 2
(
q+2s+2

2

)
such pairs (pi, pj) and (qi, qj) in total, we have that

Pr[fail] ≤
(
q + 2s+ 2

2

)
2d
p
≤ (q + 2s+ 2)2d/p

If event fail does not occur, then B’s simulation is perfect. Furthermore, in this case b is
independent from algorithm A’s view. Indeed b is only chosen after the simulation ends. Hence,
Pr[b = b′|¬fail] = 1/2. It now follows that

Pr[b = b′] ≤ Pr[b = b′|¬fail](1− Pr[fail]) + Pr[fail] =
1
2

+ Pr[fail]/2

Pr[b = b′] ≥ Pr[b = b′|¬fail](1− Pr[fail]) =
1
2
− Pr[fail]/2

and hence |Pr[b = b′]− 1
2 | ≤ Pr[fail]/2 ≤ (q + 2s+ 2)2d/2p as required

Corollary A.3. Let P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp and
let f ∈ Fp[X1, . . . , Xn]. Let d = max(2dP , dQ, df). If f is independent of (P,Q) then any A that
has advantage 1/2 in solving the decision (P,Q, f)-Diffie-Hellman Problem in a generic bilinear
group G must take time at least Ω(

√
p/d − s).

19

Using Corollary A.3. We briefly show that many standard (decisional) assumptions follow from
Corollary A.3.

• DDH in G1: set P = (1), Q = (1, x, y), f = xy.

• BDH in G0: set P = (1, x, y, z), Q = (1), f = xyz.

• `-BDHI in G0: set P = (1, x, x2, . . . , x`), Q = (1), f = x2`+1.

• `-BDHE in G0: set P = (1, y, x, x2, . . . , x`−1, x`+1, . . . , x2`), Q = (1), f = x`y.

Extensions. To take advantage of certain families of elliptic curves (called MNT curves [19]),
one often uses a more general bilinear map e : G0 × G1 → G2 where the groups G0 and G1 are
not necessarily the same. To accurately model the algebraic structure of these groups, we let
ψ : G1 → G0 be an efficiently computable isomorphism (on MNT curves, such an isomorphism is
given by the trace map). We briefly state a similar result for these more general maps. We first
generalize the definition of independence.

Definition A.4. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over Fp.
Write P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs), and R = (r1, r2, . . . , rs) where p1 = q1 = r1 = 1. We
say that a polynomial f ∈ Fp[X1, . . . , Xn] is dependent on the sets (P,Q,R) if there exist 2s2 + s
constants {ai,j}si,j=1, {bi,j}si,j=1, {ck}sk=1 such that

f =
s∑

i,j=1

ai,jpiqj +
s∑

i,j=1

bi,jqiqj +
s∑

k=1

ckrk

We say that f is independent of (P,Q,R) if f is not dependent on (P,Q,R).

Given P,Q,R ∈ Fp[X1, . . . , Xn]s, and generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, we define the
vector

H(x1, . . . , xn) =
(
g

P (x1,...,xn)
0 , g

Q(x1,...,xn)
1 , g

R(x1,...,xn)
2

)
∈ Gs

0 ×Gs
1 ×Gs

2

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decision
(P,Q,R, f)-Diffie-Hellman problem in (G0,G1) if∣∣∣∣Pr

[
B(H(x1, . . . , xn), gf(x1,...,xn)

1) = 0
]
− Pr

[
B(H(x1, . . . , xn), T) = 0

]∣∣∣∣ > ε

where the probability is over the random choice of generators g0 ∈ G0, g1 ∈ G1, g2 ∈ G2, the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the random bits consumed
by B. An identical proof to that of Theorem A.2 gives the following theorem.

Theorem A.5. Let P,Q,R ∈ Fp[X1, . . . , Xn]s be three s-tuples of n-variate polynomials over Fp

and let f ∈ Fp[X1, . . . , Xn]. Let d = max(dP + dQ, 2dQ, dR, df). If f is independent of (P,Q,R)
then any A that has advantage 1/2 in solving the decision (P,Q,R, f)-Diffie-Hellman Problem in
a generic bilinear group (G0,G1) must take time at least Ω(

√
p/d − s).

20

B The Relation Between the Diffie-Hellman Exponent Assump-
tion and Other Assumptions in Bilinear Groups

We showed in the previous section that BDHE falls under a fairly general umbrella of Diffie-
Hellman assumptions in bilinear groups — all of which have comparable complexity at least when
considered over generic groups. In this section, we briefly consider from a different angle, an explicit
close connection between the Bilinear Diffie-Hellman Exponent assumption and the Bilinear Diffie-
Hellman Inversion used in earlier systems.

Let G be a bilinear group of order p. Let w ∈ G be a generator and α ∈ Z∗
p. As in Section 2.3,

we define wi = w(αi). The ` Bilinear Diffie-Hellman Inversion (`-BDHI) problem [1, 11] is as follows:
given w,w1, . . . , w`, compute e(w,w)1/α. Let g = w` and β = 1/α ∈ Z∗

p. Furthermore, let h = wr

for some random r ∈ Zp. Then, a variant of the `-BDHI problem can be stated as follows:

given h, g, gβ, g(β2), . . . , g(β`) compute e(g, h)(β
`+1) (3)

Indeed, since e(g, h)(β
`+1) = e(w,w)r/α, a solution to (3) gives a solution to `-BDHI.

Thus, we see that the (computational) BDHE problem of Section 2.3 is very similar to the
(computational) BDHI problem. In particular, systems based on the `-BDHI assumption could
equally well be based on the above variant, which is a special case of the (` + 1)-BDHE assump-
tion. The main difference is that in the (` + 1)-BDHE problem we are given the extra values
g(β`+2), . . . , g(β2`+2) ∈ G. The generic group proof in the previous section suggests that these addi-
tional values provide no help in solving the problem.

C Security Proof for the Hybrid System of Section 4.2

Theorem C.1. Let G be a bilinear group of prime order p. Consider a hybrid `-HIBE system
with identity hierarchy partitioned into `1 groups each of size `2. Suppose the decision (t, ε, `2 + 1)-
BDHE assumption holds in G. Then the hybrid `-HIBE system is (t′, qS, ε)-selective identity, chosen
plaintext (IND-sID-CPA) secure for arbitrary `, qS, and t′ < t−Θ(τ ` qS), where τ is the maximum
time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the hybrid `-HIBE system. Using A, we build an
algorithm B that solves the decision (`2 + 1)-BDHE problem in G.

For a generator g ∈ G and α ∈ Zp, let yi = g(αi) ∈ G. Algorithm B is given as input
a random tuple (g, h, y1, . . . , y`2 , y`2+2, . . . , y2`2+2, T) that is either sampled from PBDHE (where
T = e(g, h)(α

`2+1)) or from RBDHE (where T is uniform and independent in G1). Algorithm B’s
goal is to output 1 when the input tuple is sampled from PBDHE and 0 otherwise. Algorithm B
works by interacting with A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
m) ∈ Zm

p of depth m ≤ ` that it intends to attack. If m < ` then B appends
random elements in Zp to ID∗ until ID∗ is a vector of length ` and keeps these extra elements
to itself. From here on we assume that ID∗ is a vector of length `. Following our convention,
we write ID∗ as a pair (`, I∗) where the matrix I∗ ∈ Z`1×`2

p is filled using the elements I∗1, . . . , I
∗
` .

21

Setup. To generate the system parameters, algorithm B picks a random γ in Zp and sets g1 =
y1 = gα and g2 = y`2 · gγ = gγ+(α`2).

Next, B picks random γ1, . . . , γ`2 in Zp and sets hi = gγi/y`2−i+1 for i = 1, . . . , `2.
Algorithm B also picks random δ1, . . . , δ`1 in Zp and sets fi = gδi ·

∏`2
j=1(y`2−j+1)

I∗
(i,j) for

i = 1, . . . , `1.

Finally, B gives A the system parameters params = (g, g1, g2, f1, . . . , f`1 , h1, . . . , h`2). Observe
that all these values are distributed uniformly and independently in G as required.

The master key g4 corresponding to these system parameters is g4 = gα(α`2+γ) = y`2+1y
γ
1 ,

which is unknown to B since B does not have y`2+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private key corresponding
to ID = (I1, . . . , Iu) ∈ Zu

p where u ≤ `. The only restriction is that ID is not a prefix of ID∗.
This restriction ensures that there exists a k ∈ {1, . . . , u} such that Ik 6= I∗k (otherwise, ID
would be a prefix of ID∗). To respond to the query, algorithm B first derives a private key for
the identity IDk = (I1, . . . , Ik) from which it then constructs a private key for the requested
identity ID = (I1, . . . , Ik, . . . , Iu).

As per our convention, we write IDk as a pair (k, I) where the matrix I ∈ Z`1×`2
p is filled using

the elements I1, . . . , Ik. Recall that our convention allows for decomposing the depth index k
into a row-column pair (k1, k2) = k.

To generate the private key for the identity IDk at depth k = (k1, k2) where k1 ≤ `1 and k2 ≤
`2, algorithm B first picks random r1, . . . , rk1−1, r̃k1 in Zp. We pose rk1 = αk2

(I(k1,k2)−I∗
(k1,k2)

) +

r̃k1 ∈ Zp. Next, B generates the private key

dIDk
=

(
g4 ·

(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

)
,

gr1 , . . . , grk1−1 , grk1 , h
rk1
k2+1, . . . , h

rk1
`2

)
∈ G1+k1+`2−k2 .

(4)

which is a properly distributed private key for the identity IDk. We show that B can compute
all elements of this private key given the values at its disposal. We use the fact that y(αj)

i =
yi+j for any i, j.

We begin by showing how to generate the first component of the private key. Observe that(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1

=

grk1
·(δk1

+
Pk2

i=1 I(k1,i)γi) ·
k2−1∏
i=1

y
rk1

·(I∗(k1,i)−I(k1,i))

`2−i+1 · y
rk1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1 ·
`2∏

i=k2+1

y
rk1

·I∗(k1,i)

`2−i+1

 .

(5)
Let Z denote the product of the first, second, and fourth terms. That is,

Z =

grk1
·(δk1

+
Pk2

i=1 I(k1,i)γi) ·
k2−1∏
i=1

y
rk1

·(I∗(k1,i)−I(k1,i))

`2−i+1 ·
`2∏

i=k2+1

y
rk1

·I∗(k1,i)

`2−i+1

 .

22

One can verify that B can compute all the terms in Z given the values at its disposal.

However, B cannot compute the third term in Eq (5) by itself, namely y
rk1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1 ,
since it requires knowledge of y`2+1 = yαk2

`2−k2+1. However, observe that

y
rk1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1 = y
r̃k1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1

/
y`2+1 = y

r̃k1
·(I∗(k1,k2)−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1).

Hence, the product of the first two terms in the first component in the private key (4) is equal
to:

g4 ·
(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)rk1 = g4 · Z · y
r̃k1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1

/
(g4y

−γ
1)

= Z · y
r̃k1

·(I∗(k1,k2)−I(k1,k2))

`2−k2+1 · yγ
1 .

Since g4 cancels out from the expression on the right, all the terms in that expression are
known to B. Thus, B can compute the product of the first two terms in the first component
of the private key (4). To conclude, note that the third term

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,`2)

`2
· fi

)ri

=
k1−1∏
i=1

gri·(δi+
P`2

j=1 I(i,j)γi) ·
`2∏

j=1

y
ri·(I∗(i,j)−I(i,j))

`2−j+1

has a similar form to Z and can be computed by B given the values at its disposal. Therefore,
we have shown that B can compute the first component of the private key (4).

The components gr1 , . . . , grk1−1 are easily computed by raising g to the powers of r1, . . . , rk1−1,

all of which B knows. The component grk1 is simply y
1/(I(k1,k2)−I∗

(k1,k2)
)

k2
· gr̃k1 , which B can

also compute. Finally, observe that

h
rk1
k2+i =

(
gγk2+i

/
y`2−k2−i+1

) αk2
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

=
(
y

γk2+i

k2

/
y`2−i+1

) 1
(I(k1,k2)−I∗

(k1,k2)
)
+r̃k1

,

which B can compute for all i = 1, . . . , `2 − k2 because there are no y`2+1 terms.

Thus, B can derive a valid private key for IDk. Algorithm B derives a private key for the
requested ID from this private key and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on which
it wishes to be challenged. Algorithm B picks a random bit b ∈ {0, 1} and responds with the
challenge ciphertext

CT =
(
Mb · T · e(y1, h

γ), h, h
δ1+

P`2
j=1 I∗(1,j)γj , h

δ2+
P`2

j=1 I∗(2,j)γj , . . . , h
δ`1

+
P`2

j=1 I∗(`1,j)γj

)
where h and T are from the input tuple given to B. First note that if h = gc (for some
unknown c in Zp) then

h
δi+

P`2
j=1 I∗(i,j)γj =

(
h

I∗(i,1)
1 · · ·h

I∗(i,`2)

`2
· fi

)c

23

Therefore, if T = e(g, h)(α
`2+1), (i.e., when the input tuple is sampled from PBDHE) then the

challenge ciphertext is:

CT =
(
Mb · e(g1, g2)c, gc,

(
h

I∗(1,1)

1 · · ·h
I∗(1,`2)

`2
· f1

)c

, . . . ,

(
h

I∗(`1,1)

1 · · ·h
I∗(`1,`2)

`2
· f`1

)c)
which is a valid encryption of Mb under the public key ID∗ = (I∗1, . . . , I

∗
`). On the other hand,

when T is uniform and independent in G1 (when the input tuple is sampled from RBDHE),
then CT is independent of b in the adversary’s view.

Phase 2. A continues to issue queries not issued in Phase 1. Algorithm B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If b = b′ then B outputs 1 meaning T = e(g, h)(α

`2+1). Otherwise, it
outputs 0 meaning T is random in G1.

When the input tuple is sampled from PBDHE (where T = e(g, h)(α
`2+1)), then A’s view is

identical to its view in a real attack game and therefore A satisfies |Pr[b = b′]− 1/2| ≥ ε. When the
input tuple is sampled from RBDHE (where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore,
with g, h uniform in G∗, α uniform in Zp, and T uniform in G1 we have that∣∣∣∣Pr

[
B
(
g, h, ~yg,α,`2 , e(g, h)

(α`2+1)
)

= 0
]
− Pr

[
B
(
g, h, ~yg,α,`2 , T

)
= 0
]∣∣∣∣ ≥

∣∣∣∣(1
2
± ε
)
− 1

2

∣∣∣∣ = ε

as required. This completes the proof of the theorem.

D An fs-HIBE Linear in All Components

Using an idea related to the hybrid HIBE presented in an earlier section, we now construct a
forward secure HIBE system in which ciphertexts, private keys, and public parameters all have
“linear” O(`+log T) complexity, where ` is the depth of the identity hierarchy and T is the number
of time slices for purposes of forward security. The scheme supports all the requirements set forth
by Yao et al. [26], and in particular the “dynamic-join” ability for any identity at any level to
generate private keys for any subordinate identities at any time.

The proposed fs-HIBE scheme, like the aforementioned hybrid HIBE, takes advantage of the
complementarity and orthogonality of our basic HIBE (call it BBG) and that of Boneh and Boyen
(BB). The main difference with the hybrid HIBE is that, here, each subsystem independently
contributes its own hierarchy (time or identity) — something that Yao et al. [26] could not do
based solely on the Gentry-Silverberg HIBE — so there is no need to consider a cross-product
hierarchy. This fact allows us to achieve a complexity of O(` + log T) — rather than O(` · log T)
— for all components.

Consider a forward secure HIBE setting with T = 2t time periods and ` levels in the ID
hierarchy. We construct such a fs-HIBE based on a t-level BB scheme for the time stamps and an
`-level BBG scheme for the identity hierarchy. Informally, each fs-HIBE private key consists of t
private BB subkeys corresponding to selected nodes in a “time tree” à la Canetti et al. [8]. Each
subkey contains between 3 and t + 2 elements, but because BB leaves most private key elements
unchanged from parent to child, the whole set contains only about 2t elements (instead of the t2/2

24

one would have expected). Then, viewing each BB subkey as a black box master key for a BBG
system (exploiting the strong algebraic similarities between both systems), we use BBG to derive
from this master key a subkey for the designated identity. Again, this adds up to ` elements to
the subkey, but because the same ` elements can be shared among all t subkeys, the entire identity
hierarchy ends up costing only a mere ` extra terms (instead of t ` as one would have expected). We
end up with a total private key size ≈ 2t+` = O(`+log T), a public key size ≈ t+` = O(`+log T),
and a ciphertext size ≈ t = O(log T), which notably remains independent of the ID hierarchy.

D.1 Linear fs-HIBE Scheme

As before, we assume a bilinear group G and a map e : G×G→ G1, where G and G1 have prime
order p. Let t = log T be the depth of the time tree and ` be the depth of the ID hierarchy. As
usual we let ID = (I1, . . . , Ik) ∈ Zk

p be an identity of depth k ≤ `. The linear fs-HIBE system is
described as follows.

Setup(t, `): To generate system parameters for an fs-HIBE of maximum depth ` and a maximum
of 2t time periods: select a random generator g in G, a random α ∈ Zp, and set g1 = gα;
then, pick random elements g2, g3, f1, . . . , ft, h1, . . . , h` ∈ G, and set g4 = gα

2 . The public
parameters params and the secret master-key are given by

params = (g, g1, g2, g3, f1, . . . , ft, h1, . . . , h`) , master-key = g4 = gα
2 .

KeyGen(dID|k−1, ID): To generate the private key d(τ)
ID for an identity ID = (I1, . . . , Ik) ∈ Zk

p of depth
k ≤ ` for the time period τ < 2t with binary representation τ = 〈τt−1| · · · |τ0〉 ∈ {0, 1}t, pick
random r1, . . . , rt, r

′
1, . . . , r

′
t, r ∈ Zp, and compute

y = gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r
,

to produce the output dID ∈ G2+t+2t̄+(`−k) (where t̄ = |{τi = 0 : 0 ≤ i < t}|), given by

d
(τ)
ID =

y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
gτ0
1 · ft

)rt ,

gr,

gr1 , gr2 , . . . , grt−1 , grt ,

y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
g1 · ft

)r′t , if τ0 = 0
y ·
(
g

τt−1

1 · f1

)r1 ·
(
g

τt−2

1 · f2

)r2 · · · ·
(
g1 · ft−1

)r′t−1 , if τ1 = 0
...

...
y ·
(
g

τt−1

1 · f1

)r1 ·
(
g1 · f2

)r′2 , if τt−2 = 0
y ·
(
g1 · f1

)r′1 , if τt−1 = 0

gr′1 , gr′2 , . . . , gr′t−1 , gr′t , restricted to the gr′i such that τt−i = 0

hr
k+1, hr

k+2, . . . , hr
`−1, hr

`

.

Observe that the private key for ID at time interval τ can be generated from a private key
for ID|k−1 = (I1, . . . , Ik−1) ∈ Zk−1

p with time index τ ′ ≤ τ , as required. We separately show

how to derive d(τ)
ID respectively from dID

(τ)
|k−1 and from d

(τ ′)
ID ; the general case can be obtained

by composing the two types of derivations in either order. The two cases are as follows.

25

1. [dID
(τ)
|k−1 → d

(τ)
ID]. The private key for ID|k−1 with time index τ can be written as

dID
(τ)
|k−1 =

y′ · a′0 ,
z′ ,

b1, . . . , bt,

y′ · c′t, . . . , y′ · c′1, where y′ · c′i = ⊥ unless τt−i = 0
d1, . . . , dt, where di = ⊥ unless τt−i = 0
hr

k, . . . , hr
`

= (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek, . . . , e`) ∈ G2+t+2t̄+(`−k+1),

where a′0, b1, . . . , bt, c
′
1, . . . , c

′
t, d1, . . . , dt are independent of ID, and y′ and z′ can be written

as, for unknown r′,

y′ = gα
2 ·
(
hI1

1 · · ·h
Ik
k · g3

)r′
, z′ = gr′ .

To generate d(τ)
ID from dID

(τ)
|k−1, pick a random r∗ ∈ Zp, and compute

y∗ = eIkk ·
(
hI1

1 · · ·h
Ik
k · g3

)r∗
, z∗ = gr∗ .

then, output

d
(τ)
ID =

a0 · y∗,
a1 · g∗,
b1, . . . , bt,

ct · y∗, . . . , c1 · y∗,
d1, . . . , dt,

ek+1 · hr∗
k+1, . . . , e` · hr∗

`

∈ G2+t+2t̄+(`−k).

If we set r = r′ + r∗, it is easy to see that this tuple is a correctly distributed private key for
identity ID and timestamp τ .

2. [d(τ ′)
ID → d

(τ)
ID]. The private key for ID with time index τ ′ < τ can be written as, for unknown

exponents r1, . . . , rt, r′1, . . . , r
′
t,

d
(τ ′)
ID =

y ·
(
g

τt−1

1 · f1

)r1 · · · ·
(
gτ1
1 · ft−1

)rt−1 ·
(
gτ0
1 · ft

)rt ,

z, gr1 , . . . , grt ,

y ·
(
g

τt−1

1 · f1

)r1 · · · ·
(
g1 · ft

)r′t , if τ0 = 0
...

...

y ·
(
g

τt−1

1 · f1

)r1 ·
(
g1 · f2

)r′2 , if τt−2 = 0

y ·
(
g1 · f1

)r′1 , if τt−1 = 0

gr′1 , . . . , gr′t , for gr′i where τt−i = 0

ek+1, . . . , e`

= (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek+1, . . . , e`) ∈ G2+t+2t̄+(`−k),

26

where y and ek+1, . . . , e` are independent of the time index τ ′.
We need to compute the private key

d
(τ)
ID = (â0, â1, b̂1, . . . , b̂t, ĉt, . . . , ĉ1, d̂1, . . . , d̂t, êk+1, . . . , ê`).

The expression of d(τ)
ID is more clearly described in reference to an instantiation of the HIBE

system of Boneh and Boyen [1] where the master key is y (as opposed to explicitly formalizing
d

(τ)
ID in terms of d(τ ′)

ID). Indeed, the (t+ 1)-tuple [a0, b1, . . . , bt] can be viewed as a private key
in the BB system for the level-t identity 〈τ ′t−1| . . . |τ ′0〉. Similarly, for all j = t, . . . , 1, the
(j + 1)-tuple [cj , b1, . . . , bj−1, dj] is a private key for 〈τ ′t−1| . . . |τ ′t−j+1, 1〉 when it is defined.
It is easy to see that these private keys form a O(t)-size “cover set” for the time periods
[τ ′, 2t − 1], i.e., for the set of BB-identities ∈ {0, 1}t that represent binary integers ≥ τ ′.
Furthermore, for any τ > τ ′ it is easy to transform this cover set into a O(t)-size cover set
for the interval [τ, 2t− 1] using no more than 2t invocations of the (single step) Boneh-Boyen
HIBE key derivation procedure.
The abstract transformation from one cover set the other is elementary and is omitted. As for
the single-step BB key derivation that implements this transformation, we briefly describe it
using the following case as an example. Suppose that the binary expansions of τ ′ and τ agree
on their j − 1 most significant bits, but differ on the j-th one (then necessarily τ ′t−j = 0 and
τt−j = 1). Our cover set for [τ ′, 2t − 1] must contain the BB private key [cj , b1, . . . , bj−1, dj]
corresponding to the BB identity 〈τ ′t−1| . . . |τ ′t−j+1, 1〉. We need to generate the private keys
of 〈τ ′t−1| . . . |τ ′t−j+1, 1, β〉 where β = 0, 1 (we typically need both). To do so, for each β select
a random r(β) ∈ Zp and compute the BB private key components:(

cj · (gβ
1 · fj+1)r∗ , b1, . . . , bj−1, dj , gr∗

)
.

For β = 1, we get the vector [ĉj+1, b1, . . . , bj−1, b̂j , d̂j+1] whose components can directly be
inserted in the appropriate slots in the d(τ)

ID ; we also need to insert the value d̂j+1 = gr(β)
in

d
(τ)
ID . For β = 0, we only need to insert the value b̂j+1 = gr(β)

in d
(τ)
ID ; the other components

of the private key vector are not directly stored in d(τ)
ID , but are used to obtain the remaining

elements of the set cover in a hierarchical manner.
Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key ID = (I1, . . . , Ik) ∈

Zk
p with timestamp τ = 〈τt−1| · · · |τ0〉 < 2t, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s
,
(
g

τt−1

1 · f1

)s
, . . . ,

(
gτ0
1 · ft

)s)
∈ G1 ×G2+t.

Decrypt(dID,CT): To decrypt a ciphertext CT = (A,B,C,D1, . . . , Dt) for identity ID = (I1, . . . , Ik)
with timestamp τ , using a private key dID = (a0, a1, b1, . . . , bt, ct, . . . , c1, d1, . . . , dt, ek+1, . . . , e`)
for matching ID and τ , output

A · e(a1, C) ·
t∏

i=1

e(di, Di)
/
e(B, a0) = M.

The private key components b1, . . . , b`, ct, . . . , c1, and ek+1, . . . , e` are not used for decryption.

27

D.2 Security and Complexity

We now mention a few key properties of the linear fs-HIBE scheme.

Security. The security of the fs-HIBE scheme follows immediately from that of the main HIBE
presented earlier in this paper (used for the ID hierarchy in the fs-HIBE) and that of the Boneh-
Boyen HIBE (used for the temporal set cover construction). We mention that the “reuse” of the
BB exponents r1, . . . , rt−1 in multiple components of d(τ)

ID is a feature of the subkey generation in
the BB system, which is exploited here to reduce the overall size of the full fs-HIBE key; without
it, the private key size would incur an extra log T multiplicative factor.

The proof of security is essentially based on the orthogonality of the two HIBE subsystems in the
fs-HIBE construction, from which a reduction to the security of either system is easily obtained. For
example, private key derivation in the time coordinate is completely oblivious to the ID-dependent
blinding: indeed, as far as the BB subsystem is concerned, the ID-dependent blinding is part of the
unknown master secret and left untouched by sub-level key derivation. The same can be said of the
timestamp-dependent blinding factors implemented by the BB subsystem, which are unaffected by
the key derivations operations in the ID hierarchy. The only place where the two subsystems meet
is at decryption, which requires the blinding coefficients from both subsystems to be lifted in order
to proceed.

Complexity. For a maximum of T time slices and ` levels in the hierarchy, all functions in the
fs-HIBE above have time complexity O(`+ t) = O(`+log T). Similarly, the ciphertexts, the private
keys, and the public parameters all have linear size O(`+ log T).

D.3 “Logarithmic” Forward Secure Public Key Encryption

We note that the above linear fs-HIBE scheme immediately provides a linear (in t) or logarithmic
(in T = 2t) forward secure public key encryption scheme, or fs-PKE. We derive our logarithmic
fs-PKE by dropping the ID hierarchy in the above fs-HIBE. In other words, all ciphertexts and
private keys are issued to the root of the ID hierarchy. It follows that private keys and ciphertexts
in the resulting scheme have complexity O(log T). Notice that the resulting fs-PKE is entirely
based on the Boneh-Boyen IBE scheme from [1], and thus depends only on the decisional BDH
assumption.

A difference with the fs-PKE proposed by Canetti et al. [8] is that we achieve logarithmic
complexity without resorting to updateable public storage. Recall that in the CHK construction [8],
private keys are natively of size O(log2 T), and can be compressed down to O(log T) size at the
cost of maintaining polylogarithmic O(log2 T) extra information in updateable public storage. The
present approach does not require any such public storage.

28

