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Abstract as those proposed in the project EVA [25]. However, the
perfect cryptography assumption needs valid foundations
The contributions of this paper are two fold. First, we and this is why recent works tried to weaken this hypoth-
present a general definition of correction of cryptographic esis, either by adding equational theories [12, 1] or byothe
primitives and a theorem that allows to reduce the correct- modifications of the Dolev-Yao model, adding guessing at-
ness of a composition of two cryptographic schemes to thetacks for example [20].

correctness of each one. Then, these results are used t0 | the second branch, encryption schemes are studied
show that assuming that cryptographic schemes satisfy apyrecisely using omputational modddased on Turing ma-
propriate correctness criteria safety of a cryptographiop  chines. In this context, cryptographic functions operate o
tocol in the Dolev-Yao model implies its safety in the com- strings of bits and their security is defined in terms of high
putational one. Our main contribution concerning the re- complexity and weak probability of success [15, 5]. This
lationship between Dolev-Yao and the computational mOde|computati0naI approach is recognized as more realistic tha
is that, our result applies to a large class of protocols that e formal approach, however, its complexity makes it very
may combine asymmetric as well as symmetric encryption gifficult to design automatic verification tools.
signature and hash functions. Finally, we show how equa-
tional theories can be mapped in the computational world
(by modifying a criterion) and apply this to the case of Ci-
pher Block Chaining.

Keyword: Security, Cryptographic Protocols, Formal
Encryption, Probabilistic Encryption, Dolev-Yao Model,
Computational Model.

In the last years, attempts have been made to bridge the
gap between these two approaches. The ultimate objective
is to be able to prove security in the formal model, then to
prove properties on the encryption scheme and with that to
deduce security of the protocol in the computational model.
These first works successfully proved this kind of com-
position properties. Very restrictive hypothesis havenbee
made, however, to deal with the complexity of the compu-

. tational model (as for example in the case of [21]). The
Introduction first paper in this recent trend [2] proved that a notion of
indistinguishabilityin the formal model is valid in the com-

Historically, verification of cryptographic procedures putational model when making some assumptions on the
has been separated in two distinct branches. The first oneencryption scheme. This means that if two messages are
formal verificationof security protocols, originates fromthe not distinguishable in the formal model, then their compu-
work of Dolev and Yao and was first described in [14]. The tational equivalents cannot be separated by a Turing ma-
main hypothesis, called perfect cryptography assumpison, chine in a reasonable (polynomial) time. This work has
an idealization of reality: the intruder can gain infornoati  been pushed further in [26] and then in [21]. This last paper
on an encoded message only if he knows the inverse of theproves that if the encryption scheme verifies a certain prop-
key used to crypt the message. Even with this strong as-erty (called IND-CCA), then security in the formal model
sumption, flaws have been found on protocols that were be-implies security in the computational model. The impor-
lieved to be secure (the most famous one has been exposetnt extension with respect to Abadi and Rogaway'’s work is
by G. Lowe in [19], some of them are listed in [11]). Un- that it considers active adversaries. However, as this work
der this assumption, automatic verification of security-pro contains very restrictive hypothesis, we extended it irf] [22
tocols is possible [23, 9, 24, 17, 8] (even if it needs other ab allowing transmission of secret keys and digital signature
stractions when considering an unbounded number of sesWe defined a reduction theorem that only applied for se-
sions) and has been successfully implemented in tools sucltret keys transmission and we used variants of its proof for



the combination of asymmetric encryption and digital sig- be achieved efficiently. P. Laud [18] proves safety of the

nature. formal model for symmetric encryption. In particular, he
The type of results we are seeking here is the following : deals with encryption cycles. To our knowledge the present
paper is the first to consider asymmetric and symmetric en-

If protocol IT uses the cryptographic schemes cryption as well as signing and hashing.

S1,---,Sn, if each schem&; is correct with re-
spect to the security notiofi; and if some addi-
tional syntactic conditions are satisfied Bythen

the formal model is a safe abstraction of the com-
putational, that is, correctness of the protocol es-
tablished in the formal model implies its correct-
ness in the computational one.

Paper organization The next section gives the necessary
definitions for using both the computational model and the
formal model. In the following section, we generalize and
simplify the notion of security criterion and apply it to
asymmetric encryption, signature, symmetric encryption,
hashing and a mix of all these primitives. Section 3 for-
In this paper, we introduce a Security criterion that allos's mulates the two reduction theorems and their proofs. Then,
to combine asymmetric and Symmetric key Cryptography asthiS theoremis applled in section 4 to reduce all our cateri
well as signature and hashing. To our knowledge, this is theSection 5 uses these results to show that, under some quite
first time that such combination of cryptographic schemes unrestrictive hypothesis, the formal model is a safe abstra
is considered. Then, we relate our security criterion to ex- tion of the computational model. The objective of section
isting ones, namely IND-CCA and selective forgery against 6 is to weaken the IND-CCA hypothesis and to show that
adaptive chosen message. To do so, we prove a powerfu‘he abstraction is still safe if we consider the formal model
reduction theorem for Security criteria. Typ|ca||y' thiet with equational theories and the Computational model with
orem allows us to prove results of the form: if the crypto- & modified IND-CCA criterion. Finally, a quick conclusion
graphic schem#; (resp.S-) satisfies the criterio@l; (resp.  Of this paper is drawn.

C-) then their combination satisfies criteri6h whereC' is

some combination of’1 andC,. Using our security crite- 1 Preliminaries

rion and reduction theorem, we establish safety of the for-

mal model for protocols that may combine asymmetricand 1.1  Definitions for the Computational Model
symmetric cryptography, message signing and hash func-

tions. Safety here means that a cryptographic protocol that - An asymmetric encryption schem& = (KG, &, D) is

is proven correct in the formal model is also correctin the gefined by three algorithms. The key generation algorithm
computational one. Similar results have been proven for kg is a randomized function which given a security param-
protocols that involve asymmetric encryption on one hand etery, outputs a pair of key&pk, sk), wherepk is a public

and symmetric encryption both combined with signature. key andsk the associated secret key. The encryption algo-
We are, however, not aware of any result that holds for pro-ithm ¢ is also a randomized function which given a mes-
tocols that may combine both kinds of encryption signature sage and a public key outputs the encryption of the message
and hash functions. It turns out that combining these differ y the public key. Finally the decryption algoritrintakes

ent encryption primitives is a subtle issue. And dealindwit 55 jnput a secret key and a cypher-text and outputs the cor-
hash functions on their own is challenging. Moreover, we responding plain-text, i.6R(€ (m, pk), sk) = m. The exe-

extend this result for cryptographic schemes that are base¢ytion time of the three algorithms is assumed polynomially
on Cipher Block Chaining or have some algebraic proper- hounded by.

ties. The practical consequences of these results are obvi- a symmetric encryption schens€ = (KG, &, D) is de-
ous. Automatic verification of secutity protocols based on fined by three algorithms. The key generation algorithm
the formal model can be safely applied. KG is a randomized function which given a security pa-
rametern outputs a keyk. The encryption algorithrg is
Related work Cortier and Warinschi prove in [13] safety also a randomized function which given a message and a
of the formal model for protocols that use asymmetric en- key outputs the encryption of the message by this key. Fi-
cryption and signature under the assumption that secret andhally the decryption algorithr®® takes as input a key and
signature keys are not sent. A similar result is proved by a cypher-text and outputs the corresponding plain-text, i.
Backes, Pflizmann and Waidner [3]. In the latter, the formal D(E(m, k), k) = m. The execution time of the three algo-
model is not exactly the Dolev-Yao model, although very rithms is also assumed polynomially boundedpy
close. In fact, it can be seen as a kind of implementation of A signature schem&S = (KG,S,V) is also defined by
Dolev-Yao’s model. The principal drawback is that it is not three algorithms. The key generation algorithm randomly
clear whether properties in this model can be checked auto-generates pairs of keysik, vk), wheresik is the signature
matically whereas verification in the Dolev-Yao model can key andvk is the verification key. The signature algorithm



S randomly produces a signature of a given message by aof Nonces are usually denoted by and can be thought as
given signature key. The verification algoriti/is given a random numbers. Thus, it is impossible for an intruder to
messagen, a signaturer and a verification keyk andtests  guess the value of a nonce without indications. Elements of
if o is a signature ofn with the signature key correspond- Identity are the possible names of agents involved in the
ing tovk. HenceV(m, S(m, sik), vk) returns true for any  protocol. Finally, elements aKeys represent asymmetric
messagen and any pair of keyssik, vk) generated byCgG. encryption keys. There is a unary function o¥&¢tys asso-
We say that is a valid signature undesik if there exists  ciating each key: to its inverse:~! such thak = (k—l)*l_
m such that’(m, o, vk) returns true. We still assume that Two binary operators are defined over messages: concate-
the algorithms have a polynomial complexity. nation and encryption. Concatenation of messagesdn

A hashing algorithnis a polynomial deterministic algo- is written (m, n). Encryption of message: with key k is
rithm that computes from a kdyand a bit-strings another  denoted by{m},. Finally, one unary operator, hashing, is
bit-string of sizen. The key generation algorithm is not defined over messages and is denoted.by

important and one can suppose thas chosen randomly Next, we recall the definition of thentailmentrelation

among strings of size. E + m (introduced in [14]) wheré is a finite set of mes-
sages andr a message. Intuitivelyiy - m means thatn

1.2 Randomized Turing Machines with Oracle can be deduced from the set of messageshis relation is

defined as the least binary relation verifying:

An adversary for a given scheme is a Polynomial Ran-
dom Turing Machine (PRTM) which has access to an ora- ® If m € E, thenE = m.
cle. In the following, we consider Turing machines which
execution is polynomially bounded in the security param-
etern, i.e. there exists a polynomidt such that for any
input corresponding to security parametgrthe machine
stops withinP (1) steps. o If E+ (m,n), thenE - n.

To model access to the oracle, we slightly modify the
definition of Turing machines. Our Turing machines have e If E+m andE + k, thenE F {m}.
two additional tapes, one for arguments (of function/aracl

o If EFmandE  n,thenE F (m,n).

o If EF (m,n), thenE F m.

calls) and one for the results. Then, Etbe a new action. o If EF{m},andE+ k™!, thenE I m.
We define our PRTM as a pair of a Turing machisadhat
can use transitiod and another Turing maching repre- o If E+m,thenE F h(m).

senting the oracle.F' can also be described by a PRTM
(which can also access oracles). The semantict/dtf are
the standard semantics gf except that wheneved fires
the actionF, F'is executed with the arguments tape as in-
put and the results tape as output.

It is possible to encode access to multiple oracles using
F (by giving in the arguments tape the name of the cho- 2 Security Criteria
sen oracle). Hence, to simplify notations, we directly ®rit

Note that symmetric encryption can be represented using
keysk such that:—! = k£ and signature can be represented
by encoding with a private key to sign and decoding with
the related public key to verify the signature.

A/ f1, .., fn wheref; are PRTM and oracles are called us- A security criterion is defined as an experiment involv-
ing the f; action when definingd. ~ ing an adversary (represented by a PRTM). The experiment
Afunctiong : R — R is negligible if it is ultimately  proceeds as follows. First some parametiease generated
bounded by: ™, for each positive: € N, i.e., forallc > 0 randomly. The adversary is executed and can use an oracle
there existsV. such thafg(z)| < 27, forallz > N.. F which depends of. At the end, the adversary has to
answer a string of bits which is verified by an algoritfim
1.3 Definitions for the Formal Model which also usef§ (e.g.d includes a bib and the adversary

has to output the value 6.
In this section, we give the basic definitions that are used
to introduce the formall aspects of protocol checking. For- 2.1 Security Criterion
mal studies rely on the concept of messages which are first
order terms. To define messages, we first introduce three in-

finite disjoint sets :Nonces, Identity andKeys. Elements A criteriony is a riple(6; F; V) where

LFormal is not used here in the sense of rigorous but dencgassthof e OisaPRTM that r_andomly g_enerates some challenge
formal methods. 6 (for example, a bib and a pair of key(pk, sk)).



e F'is a PRTM that takes as arguments a string of bits

s and a challengé and outputs a new string of bits.

Pattern termsre terms where new atomic constants have
been added: pattern variables. These variables reprégent t

F represents the oracles that an adversary can call todifferent challenge secret keys and are denotei]bfhis

solve its challenge.

asks the oracle to replace the pattern variable by the value
of sk;). Variables can be used as atomic messages (data pat-

e Vis a PRTM that takes as arguments a string of bits tern) or at a key position (key pattern). When a left-right or

s and a challengé and outputs either true or false.

It represents the verification made on the result com-
puted by the adversary. The answer true (resp. false),vIore formally

acle is given a pattern term, it replaces patterns by valfies o
corresponding keys and encodes the so-obtained message.
patterns are given by the following gram-

means that the adversary solved (resp. did not solve)mar wherebs is a bit-string and is an integer

the challenge.

. at
Note that® can generate an arbitrary number of parametersp

= (pat, pat) | {pat}es [ {pat}p [ bs | [i] | h(pat)

and F' can represent an arbitrary number of oracles. Thus,The computation (valuation) made by the oracle is easily

it is possible to define criteria with multipl€é3 and . As

defined recursively in a conteftassociating bit-string val-

soon as there is no risk for comprehension, we use the samees to the different keys. Its result is a bit-string and &sus

notation for the challenge generatérand the generated
challenge) (both are denoted usird).
The advantage of a PRTM againsty is

Adv’(n) = 2.(Pr[Exp)y(n) = true] — PrRand")
WhereExp is the Turing machine defined by:

Experiment Exp’; (n):
0—6(n)
d—A/n,rs.F(s,0)
return V(d, )

And PrRand” is the best probability to solve the chal-
lenge that an adversary can have without using oréatle
Formally, PrRand” is the maximum ofPr[Exp'’ () =
true] where A ranges over any possible PRTM aRap’

is similar toExp except that” cannot be used by.

Experiment Exp’’; (n):
0—0(n)
d—A/n
return V(d, )

2.2 The N-PAT-IND-CCA Criterion

the encryption algorithng and the concatenation denoted
by the operator.

v(bs,0) = bs

o([i],0) = sk
v((p1,p2),0) = v(p1,0).v(p2,0)
v({p}tu,0) = E(v(p,0),pki)
v({p}s,0) = E(v(p,0),bs)
v(h(p),0) = H(k,v(p))

There is yet a restriction. Keys are ordered and a pattern
[{] can only be encrypted undgt; if : > j. This restriction
is well-known in cryptography and widely accepted. When
a left-right pattern encryption oracle is given two pattern
termspat, andpaty, it tests that none contains a pattéh
with j < 4. If this happens, it outputs an error message, else
it produces the encryption of the message corresponding to
paty, : v(paty, ...) encoded byk;. To win, the adversary
has to guess the value of secrettbit

Criterion N-PAT-IND-CCA is denoted byyy =
(©; F; V), where© generatesV pairs of keys usingCg
and a bith at random}/ verifies that the adversary gave the
right value for bitb; and F' gives access to three oracles for
eachi : a left-right encryption oracle that takes as argument

We introduce a security criterion that turns out to be use- a pair of patterngpaty, pat;) and output®at, completed
ful for protocols where secret keys are exchanged. Thiswith the secret keysu(paty, 6)) and encoded usingk;; a
definition was first given in [22] where more discussion is decryption oracle that decodes any message not produced
available. In the classicaV-IND-CCA criterion (see [4] by the former encryption oracle; and an oracle that simply
aboutN-IND-CCA and its reduction to IND-CCA), the ad- makes the public key available.
versary can only use the left-right oracles with messages An asymmetric encryption schemd¢ is said N-
that it can compute. Since it has no information concern- PAT-IND-CCA iff for any adversary.A in PRTM,
ing secret keys, it cannot get the encryption of a challengeAde’g’A(n) is negligible. Note thatV-PAT-IND-CCA
secret key under a challenge public key. Therefore, we in-with N = 1 corresponds to IND-CCA.
troduce N-PAT-IND-CCA, which allows the adversary to
obtain the encryption of messages containing challenge se2.3 The N-UNF Criterion
cret keys, even if he does not know the value of these secret
keys. For that purpose, the adversary is allowed to give pat-
tern terms to the left-right oracles.

The N-UNF criterion is an adaptation of Selective
Forgery Against Adaptive Chosen Message Attack (a good



survey on properties for signature schemes is availableencryption oracle. TheW is satisfied ifV;xp or Vunr

in [16]). It was also already defined in [22]. Here, we
rephrase this definition to put it in the shape of our new
criterion formalization.

is satisfied. We require that there is no string that satis-
fies bothV;yp andVy y e (this can be done by asking the
name of the challenge together with its solution to the adver

The main requirement is that an adversary should not besary). The criterion related to INDO, F, Vixp) (resp. to

able to forge a pair containing a messagend the signa-
ture of m using the secret signature key. An-UNF ad-
versaryA is given N verification keys and has to produce

UNF (O, F, Vynr)) is denoted byV-PAT-SYM-CCA/IND
(resp.N-PAT-SYM-CCA/UNF).
A symmetric encryption schemeS€ is said N-

a message and its signature under one of the keys. It iPAT-SYM-CCA iff for any adversaryA in PRTM,

also given the security parametgand N signature oracles
Ssiki ()

Formally, theN-UNF criterionisyy = (O, F, V) where
O generatesV signature key pairs using the key generation
algorithm fromSS. F permits the access to two oracles
for each signature key pair: the first one allows to sign any
string of bits; the second one gives the verification key- Ver
ifier V' checks that the output of the adversary is a pair con-

Adv(: 4(n)is negligible.

Existence of a SYM-CCA encryption scheme can be
proved under the assumption that there exists an IND-
CCA asymmetric encryption scheme and an UNF signature
scheme. This is detailed in appendix A.

2.5 The HASH Criterion

taining a message and its signature. This signature must not The HASH criterion is a combination of an IND-CCA

have been produced by the signature oracle.
An adversary wins againg{-UNF when it succeeds in

criterion, an UNF criterion and a collision free criterion.
A hashing algorithm needs to verify three properties to be

producing a message and its signature. Formally, signa-Secure. First an adversary cannot obtain information on a

ture schemeSS is said N-UNF iff for any adversaryA,
Advys 5N (n) is negligible. WhenV = 1, N-UNF can
be written UNF.

2.4 The N-PAT-SYM-CCA Criterion

In some sense a symmetric encryption scheme includes

both aspects indistinguishability and authentication &na

presentin asymmetric encryption and message signature re:

spectively [6]. Therefore, our criterion for symmetric en-
cryption is in a combination of IND-CCA and UNF. In-
deed, a symmetric encryption should be secure in two ways
The first one is related to IND-CCA, any PRTM should not
be able to guess any information from messages encode
with an unknown key. The second one is related to UNF;
any PRTM should not be able to forge an encoding with-
out knowing the key. Hence, oracles are similar to those
presented in IND-CCA (except that no oracles output the
public key), but there are two different ways to win the
challenge. The hypothesis of acyclicity regarding key sti
hold: k; can only appear encoded by if i > j.

The N-PAT-SYM-CCA criterion isyy (0,FV)
where® generatesV symmetric keys and a bt F' gives
access to two oracles for each key: a left-right encryption
oracle that takes as argument a pair of pattépng,, pat;)
and outputat, completed with the secret keys(paty, 6))
and encoded witt;; a decryption oracle that decodes any

message nhot produced by the former encryption oracle. Fi-

nally, V' is composed of two partd/; yp returns true when
the adversary returns bt Vyyr returns true when the

bit-string bs when looking atH(k, bs). The second prop-
erty is that if an adversary does not know a bit-strbrgit
cannot producéi(k, bs) even if it knows hashing of mes-
sages similar tds. Finally, it must be hard for an adversary
to find two different messages which has the same hash for
a given key. More details about criteria related to HASH
can be foundin [7].

The HASH criterion isy = (0, F, V'), where© gener-
ates a bit, a keyk and a random bit-stringy? of sizer.
OracleF' gives access to two oracles: an oracle which gives
the value of keyk and a left-right hashing oracle which
takes as input a paipat, pati) of hollow patterns (these

‘patterns can ask for inclusion 8f and have to ask for it at

ne position at least) and outp@&k, pat,[N7]). More-

(gver, each pattern can only be submitted once to this oracle

in order to avoid guessing attacks. Verifiéiis the disjunc-
tion of three parts;yp returns true if the adversary out-
puts the challenge bit Vi v returns true if the adversary
outputs a paith, pat) such that, = H(k, pat|[N*]) andh
was not produced by’; Vo returns true if the adversary
outputs a paikbso, bs1) such thatH(k, bsg) = H(k,bs1),
and bit-string9 sy andbs; are different.

A hashing algorithm is said HASH iff for any adversary
Ain PRTM, Adv’{’ (n) is negligible.

The criterion related to IND(©, F, Vinyp) (resp. to
UNF (O, F,Vynr)) is denoted by HASH/IND (resp.
HASH/UNF). The last criterion related to collision free is
denoted HASH/CF.

Proposition 2.1 If an algorithm H is secure against
HASH/IND and HASH/CF and PrRand“F and

adversary outputs a message encoded by one of the symPrRandV™N*" are negligible, ther verifies HASH/UNF
metric key and this message has not been produced by amand so is secure against HASH.



Proof: This proof is detailed in appendix B. ]
It is not clear to us if there exists an algorithm that veri-
flesHASH.

3 Reductions of Criteria

In this section, we present a generic result allowing to

prove that a security criterio; can be reduced to a cri-

terion~,. This means that if there exists an adversary that

breaksy, then there exists an adversary that breaksrhe

proof is constructive in the sense that such an adversary for

~1 can be effectively computed.

Theorem 3.2 (Reduction Theorem)Let (v1,7v2,73) be a
valid partition of v. For any PRTMA, there exist three
PRTM.A°, A! and B such that

[Adv ()| < 2.[Advy (n)|+[Adv ()] + AV ()
3.2 Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following prin-
ciple: if none of the queries made b¥ to oracleF; are

This result can be seen as a tool for proving that a crite- @hswered correctly, thed must havea priori less advan-

rion ~ is at least as secure as a criterigrbut also allows
to decompose and break a criterion into simpler ones.

3.1 Criterion Partition and the Reduction Theo-
rems

Lety = (01, 09; F1, F»; V2) be a criterion. Lety; andys
be two criteria such that:
e There exist two PRTM~ and H such that:

G(H(Sa9259/2)71591) =
G(H(Sa9259/2)70591) =

F1(5791792)
F1(579179/2)

OracleG operates on a string of bits, thus it must re-
ceive two challenge informations, a biandé; .

o 2 = (02;FV2) and y1 = (b,01;G;verify)
where b generates a random bit an@rif, is the
PRTM verifying that the output of the adversarybis
verify(s,b,01) = (s < b).

o Fh(s,01,02) andVi(s, 01, 62) do not depend otk .

Then we say thatyi,v2) is avalid simplified partitionof
-
Theorem 3.1 (Simplified Reduction Theorem)Let

(71,72) be a valid simplified partition of. For any PRTM
A, there exist two PRTML® and B such that

[Adv ()] < 2.|Advys (n)| + [Adv, (n)]

To extend this result, we consider the case where the ver-

ification algorithmV does not only depend oty (like 15
before) but also useks. Hence, the PRTM is represented
by V1 v V, whereV; (resp. V3) depends only ol (resp.
03). V returns true ifl; or V; returns true.y; and~, are
defined as above but a new criterign= (b, 61; G; V1) oc-
curs in the partition. Thefwyy, y2,v3) is a valid partition of
~. However, we add the hypothesis that there is no stsing
such thatl; andV; are both verified o (intuitively, the

tage than if its queries are answered correctly.

We construct the adversadf against the criterion, =
(62, F», V2) which simulates4 and thus has to answer to
the queries made to oraclg. Since.4° cannot construct
correctly this oracle (as it does not have accesg.jo it
returns incorrect answers . Finally A° uses the output
of A to answer its own challenge. If the advantage4sf
is comparable to the advantage.4f then~ can easily be
reduced to the criteriof,.

Adversary A°:
01-01(n)
05+O2(n)
s—A/n,Xs.Fi(s,01,05), F>
return s

If the advantage afd° is negligible compared to the advan-
tage of A, then another adversarg, has the same advan-
tage asA. The adversary is playing against the criterion
v = (b,01,G,Verif,). It generates a challenge fot.
Then ifb = 1 the answers to the queries madedwre cor-
rect and ifb = 0 the answers are forged in the same way as
in A°. When.A answers its challengd verifies it. If it is
correct,5 supposes that= 1, else it supposes that= 0.

Adversary B:

02+02(n)

B —O2(1))

s—A/n, As.G(H(s,02,05)), As.Fa(s, 02)
if Va(s,02)return 1

else return0

It is now possible to relate the advantages of our three dif-
ferent PRTM. For that purpose, note that the experiment in-
volving B is successful in two cases: if= 1, then A is

adversary should know which part of the challenge it is try- confronted to its real oracle ar#l outputsl means thajd

ing to win).

solved its challenge. i = 0, then.A uses oracles as i4°



andB outputs) means tha#® failed to solve the challenge.

Advj(n) = 2.(Pr[Expj (n) = true] — PrRand™)
= Pr[Exp)(n) = true]
+PrlExp.(n) = false] — 1
= Pr[Exp)(n) = true] — PrRand”
+PrRand” — Pr[Exp i, (n) = true]

1 1
= FAdv(n) - FAdV (1)

In this computation, we used th&rRand”™ = 1/2 as bit

b is chosen among two possible values. We also used that

PrRand” = PrRand”* which is true because and~s
have the same verification oradfe.
This gives the awaited result:

|Adv ) (n)] < 2.]Advy (n)] + [Adv ] (n)]
3.3 Proof of the Reduction Theorem

AdversaryA! represents adversa@ trying to solve its
challenge againdt; .

Adversary A':
02+02(n)
s—A/n, As.G(H (s,02,02)), \s.Fa(s,02)
return s

4.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce théV-PAT-IND-CCA criterion (de-
noted byyy), we only need the simplified version of the re-
duction theorem. InV-PAT-IND-CCA, encoded messages
can be patterns and there is an order among kdyscan be
encoded usingk; iff ¢ > j. The reduction operates from
YN+1 toyn andy (i.e. IND-CCA) as follows.

e O generates the key pdipk;, sk1).

e Oy generates the other key pair@kq, sks) to
(pkn+1, sknv+1) as long as the challenge bit

e F (resp. Fy) is the oracle for encryption, decryption,
public key related to key pairs iy (resp. infs).

e 15 verifies that bith has been correctly guessed.

e H is the identity when considering decryption and
public key emission and@ is exactlyF; in that case.

e G isthe classical left-right encryption affl(s, 62, 65)
is defined as follows:

H(<pa’t07patl>7 92; 9/2) = <U(patb’2 ; 9/2)7 U(patbz ) 92)>

Whereb,, (resp.b}) is the challenge bit contained 6
(resp.0%).

We first want to verify thaty, v ) defines a valid simplified

PRTM A can gain its advantage by solving challenge Partition ofyx 1.

V1 or challengél,. As we suppose that a string can solve
at most one challenge, the following equality holds where

~, V; denotes criteriory using onlyV; as verifier.

Adv () = Adv" () + Adv 2 ()

e As secret keyk; cannot occur under any public key,
F5 only depends o#l,.

e Verifier V; only depends ofis.

As (v,vn) is a valid simplified partition ofyx 1, thus it

Then, by keeping the same construction as above, the adis possible to apply the simplified version of the reduction

vantage against; is known. Moreover, the advantage.4f
againstl/; is equal to the advantage gf* againstys.

Adv(n) = Advy(n) + Adv, +2.Adv) ()
This gives the conclusion of the theorem:

[Adv ()] < 2.|Advis (n)|+[Adv . ()| +[AdV: ()]

4 Applications of the Reduction Theorems

theorem. For any PRTM, there exist two PRTM5 and
A° such that:

|AdV ()] < 2.]Adv(n)| + [AdVY (n)]
It is then possible to conclude using a simple recursion.

Proposition 4.1 If an encryption scheme is secure against
IND-CCA, then it is secure againat-IND-CCA for anyN.

4.2 From N-PAT-SYM-CCA to SYM-CCA/IND
and SYM-CCA/UNF

In order to reduce théV-PAT-SYM-CCA criterion (de-
noted by~y), we need the full version of the reduction

This section contains application examples of our theo- theorem. As inV-PAT-IND-CCA, encoded messages can
rems. These applications are mainly useful for compositionbe patterns and there is an order among keyscan be

of security criteria.

encoded using; iff ¢ > j, but there are also two ways



to win the challenge, either by guessing the value obbit
(criterion SYM-CCA/IND) or by forging an encoded mes-
sage without using the encryption oracles (criterion SYM-
CCAJ/UNF).

The reduction operates fromy.1 to vn, vrnp (i-€.
SYM-CCAV/IND) andyynr (i.e. SYM-CCA/UNF) as fol-

lows.

O generates key;.

O, generates the other keys to kny 1 as long as the
challenge bib.

Iy (resp. F5) is the oracle for encryption and decryp-
tion related to key(s) ifl; (resp. inds).
the final output is an encoded message by a key from

0, that has not been produced by an encryption oracle.

V1 verifies that the output message is encodedpy
and has not been produced By.

H is the identity when considering decryption afid
is exactlyF} in that case.

G is the classical left-right encryption atfi(s, 62, 65)
is defined as follows:

H(<pat07patl>7 92; 9/2) = <U(patb/2 ) 9/2)7 U(patbz ) 92)>

Whereb,, (resp.b}) is the challenge bit contained 6
(resp.0%).

We first want to verify thaty;np,vn,yunr) defines a
valid partition ofyy 4.

e As keyk; cannot occur under any public kel only
depends o#.

o Verifier V; only depends ofi; andV; only depends on
61

4.3 Mixing all Criteria

Let us define theN-PAT-ASYM-SYM-SIGN-HASH-
CCA (N-PASSH-CCA) criterion ay = (0, F, V') where
O is composed of four parts:

e O, generatesV pairs of asymmetric key&ks, sk1)

to (pkN, SkN)

e O, generatesv symmetric keyg:, to k.

O. generatesV pairs of signature key&ik;, vk,) to
(SikN, UkN).

©4 generates a nonc¥”, a keyk as long as a chal-
lenge bitb.

V;, verifies that bitr has been correctly guessed or that £ 1S @lso splitin four parts:

F,, corresponds to the oracles usifigas in N-PAT-
IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signhature of a mes-
sage, signature keys, hashing of a message and nonce
N, F, depends o#,, 6, 0. andd,.

Fy, corresponds to oracles usifigas in N-PAT-SYM-
CCA, patterns are also extended but cannot include
asymmetric keys frond,. F; depends o, 6. and

4.

F,. corresponds to oracles usifig as in N-UNF, F,
depends only of..

F, corresponds to oracles usiflg as in HASH, Fy
depends only oA..

Finally V is also a disjunction of five parts:

Vinp answers true if its argument if the biin © .

VunF—syym answers true if it receives a symmetric
encryption not forged by.

VunF—sicn answers true if it receives a signature not
forged byF..

VunF—masg answers true if it receives a pdit pat

Partition (v;np, vv,yunrF) is @ valid partition ofyy 1,
thus it is possible to apply the reduction theorem. For any
PRTM A, there exist three PRTM, .4° and.A! such that:

where h H(k,v(pat, N) and h has not been
forged usingFy.

o N - - Vor—masy answers true if it receives a pair of distinct
|Adv | < 2.|Advg P |+ [Adv | + [Adv oY bit-stringsbso, bs; that have the same hash.
Itis then possible to conclude using a simple recursion.  Proposition 4.3 If an asymmetric encryption schermt
is IND-CCA, a symmetric encryption scheifié is SYM-

Proposition 4.2 If a symmetric encryption scheme is se- CCA, a signature schem®S is UNF and a hashing algo-
cure against SYM-CCA/IND and SYM-CCA/UNF, thenitis rithm H is HASH, then the Compositic(mg, 857 SS, H)

secure againsiV-PAT-SYM-CCA for anyv. is N-PASSH-CCA.



For space reason, we only present here the first stepHence, if the considered scheme is secure againitis

of the proof, the following steps are similar. L& be
(64,0) andO, be (6., 0,). In the same wayF; (resp.
Fy) can be used to access and F;, (resp. F, andFy). V3
is Vunr—sym andVs is the disjunction oMy nr_sran,
VuNF_masa, Vor_—HASH and Vinp. H is defined as
above for IND-CCA or SIG-CCA and: is also defined as
above for encryption, decryption (asymmetric and symmet-
ric keys) and public keyF}, F», Vi andV; depend on the
right parameters hence we define a valid partitiory.ofhe
reduction theorem gives that for any PRTM] there exist
three PRTMB, A° and.A! such that:

[Adv ()] < 2.|Advs (n)|+[Adv . ()| +[AdV: ()]

Criteria~i, 72 and~vs can easily be partitioned in a similar
way to get the conclusion.

4.4 Unbounded Number of Challenges

We want to consider the case where the number of chal-
lenges is not bounded any more likeARIND-CCA where
only N keys are generated for any For that purpose, crite-
ria are extended to a polynomial number of challenges. For
example, ifP is a polynomial, then th&-IND-CCA crite-
rion usesP(n) keys. The objective here is to generalize the
previous results to this case.

Proposition 4.4 Let P and (Q be two polynomials from
N[X]. LetD be a PRTM that given an integémeturns

C;, a PRTM which execution takes less th@fy)) steps.

If the execution oD also takes less tha@(n) steps, then
for any criterion-, there exists a PRTM' which execution
takes less thaB.Q(n) + P(n) steps such that for any.

P(n)
1
Adv)(n) = —P(ﬁ) E Advgi(n)
i=1

AdversaryC randomly chooses which PRTH; it is going
to use and executes it.

Adversary C:-
r—[1..P(n)]
Cy, — D/r
d—C,/n
return d

This property allows us to consider the case of a poly-
nomial number of challenge (and also the case of an un-
bounded number of challenges as only a finite part of them
can be used). If the advantage of any PRAMgainstyp is
the sum of the advantagesB{n) PRTM againsty. Then if

also secure againsp.
This method applies on all the previous applications of
our reduction theorems. Hence, we have:

Proposition 4.5 If an encryption scheme is secure against
IND-CCA, then it is secure againgt-IND-CCA for any
polynomialP.

If a symmetric encryption scheme is secure against SYM-
CCAJ/IND and SYM-CCA/UNF, then it is secure agaiRst
PAT-SYM-CCA for any polynomiél.

If an asymmetric encryption scherde is IND-CCA, a
symmetric encryption scherns¢ is SYM-CCA, a signature
schemeSS is UNF and a hashing algorithrt is HASH,
then the compositio4€, SE,SS, H) is P-PASSH-CCA
for any polynomialP.

5 Dolev-Yao is a Safe Abstraction

In the following, we use the classical definitions recalled
in [22] for protocols (usually denoted 1i¥) and the adver-
sary model.

The main result of this section is that under some condi-
tions the computational adversary acts as a formal adwersar
with overwhelming probability. This means that the com-
putational adversary, even with all the computing power of
Turing machines, cannot have a behavior not represented by
a formal adversary.

Hypothesis over Cryptographic Schemes

In order to be able to use the former results, the crypto-
graphic schemes used in the implementation of the protocol
should verify the following properties.

e The asymmetric encryption scher& used in the
protocol is IND-CCA.

e The symmetric encryption schend® is SYM-CCA
andPrRandY M/UNF s negligible.

e The signature schems&S is UNF andPr RandVN ¥
is negligible.

e The hashing algorithm H is HASH and
PrRand®ASH/UNFE and  PrRand"ASH/CF  gre
negligible.

Hypothesis over Protocols

There are also a few restrictions over protoddlsonsid-
ered. These restrictions are defined in the formal world (as

each of the latest PRTM are bounded in time using a Same&hey are easier to check there with automated tools).

polynomial@, the advantage afl is also equal (modulo a
division by P(n)) to the advantage of a PRTM against

e II has to be executable.



In an asymmetric encoding usipg, anything can ap-
pear except secret keys generated befaréand the
secret key related tok t0o0).

In a symmetric encoding using forbidden messages

the nonceV itself to B. The parsing algorithm operates as
follows.

The first received message is a hash message, hence itis
impossible to obtain its content. This first message is added
in the trace ag X, —, B, s). When the second message is

are any secret keys nor any symmetric keys generatedeceived, the algorithm knows every information present

beforek.

In a signature usingik and in any hashed message,

there cannot be any secret keys, symmetric keys nor

any signature keys.

ric and signature keys: using Dolev-Yao model, these

The protocol has to be secure for its secret, symmet-

in the former hash message. Hence, it tests if the hash is
valid and as it is,X is replaced byh(X”’). The trace is
now h(X’), —, B, s); (X', —, B, s). As the computational
trace is finished, the algorithm replaces every variables us
ing fresh nonces. Hence the final formal trace is:

(h(NI), -, B, s); (NI, -, B, s)

keys related to an honest agent cannot be revealed td)efinition 5.2 (Non Dolev-Yao Traces)A formal tracet

an intruder (this assumption is reasonable as a proto-

col should not reveal any key).

agents contains a nonce that remains secret.
5.1 Non Dolev-Yao Traces

Definition 5.1 (Traces) A trace is a list of tuples
(m1, ma, Ag, s) called transitions wheren, is a message
sent by the Adversary to ageAy for sessions andms is
the answer fromdg. Messagen,; andms can be “-” when
no message is received or sent. AssignmgnrtA./n, 1.
denotes that the track is obtained by the computational
Adversary A. confronted toIl.. We assume that only
messages accepted by an agent appear in the trace.

We define a parsing algorithm that transforms any
computational trace related to a given protocol to a formal
trace. This algorithm is mainly defined as in [22] except that

is said Non Dolev-Yao(NDY) if there exists a message
sent by the adversary which cannot be deduced from pre-
vious messages using Dolev-Yao'’s deduction, this message

Each hash message in a session between honneds called a NDY message. A computational traceés said

NDY if a(t.) is NDY or if there is a hash message that cor-
responds to hashing of two distinct messages.

5.2 Relating Computational and Formal Traces

In this section, we formulate the main theorem. It states
that if the condition given above are met, then the proba-
bility that a computational trace is NDY is negligible. A
less general version of this theorem was first given in [21]
but only for public key cryptography and protocols with
just one layer of encryption. It was then extended to proto-
cols involving emission of secret keys and signature in.[22]
Here we give a more general version of this theorem that
combines the main cryptographic primitives: public key and
symmetric cryptography, digital signature and hashing.

Theorem 5.1 Let IT be a protocol verifying the conditions

it is extended for hashing: when a hash message is receivedjiven above. Then for any concrete Adversdry

either its content is known (by the honest participants) and

it can be tested or it will be known later. In the first case, the

formal version of the hash is placed in the trace, else a freshProof:
variableX takes its place in the trace. When the honest par- pendix C.

ticipants know all the information present in this hashsit i
tested and the formal version replacésverywhere in the
formal trace.

To illustrate our parsing algorithm, let us consider the
following example. The objective is to illustrate how some

information learned at the end of the trace can be used to

modify the beginning of the trace. Our simple protocol is
defined by:

A— B
A— B

h(Na4)
Ny

Let us consider the computational trace in which the in-
truder sends the hashing of a nonédo B and then sends

10

Prte—Ac/n, 1l ; t. NDY| is negligible

The proof of this theorem is presented in ap-

]
Now, it is possible to relate formal and computational

properties LetP. denote a property in the computational

world represented by a predicate over computational traces

Hence, a protocdll verifies P. (denoted byl =, P.) iff

for any AdversaryA.,

Prlte — Ac/n, 1. ; —Pe(t.)] is negligible

Let Py denote a property in the formal world represented
by a predicate over formal traces. Hence, a protbtoer-
ifies Py (denoted byII =, Py) iff any trace produced by a
Dolev-Yao adversary against verifies Py.

There is an intuitive relation between formal and com-
putational properties which is expressed in the following
proposition: proving formally?, allows us to deducé.



Proposition 5.1 Let Py and P, be a formal and a compu-
tational property such that

Vit Vts, (Pr(ty) Aalte) =ty) = P.(tc)
If the conditions given above still hold, then
11 ):f Pf = II IZC PC

This proposition states that if the formal property conrgect

formally,

6 ({{m,n)}pk)
5.(E(s.5, pk))

{m}pk’
E(s, pk)

It is easy to verify tha{dy, d.) constitutes a correct DY-
weakening. Proof of the existence af.aIND-CCA encryp-
tion scheme for CBC is given in appendix D.

under-approximates the computational property then theg 1  Extended Dolev-Yao Model
formal abstraction is correct. It has been applied to mutual

authentification in [21] in which there is also a longer dis-
cussion about formal/computational properties. We agplie

it to secrecy as a trace property in [22]. Another version of

secrecy (given as the probability to get any information on
the secret) appears in [13].

6 Extending the Dolev-Yao Model

In the DY model, the deductibility relatio® - m is
defined by inference rules. We add a new inference that
represents that an intruder can deduce from a message its

image after applying.

TFm
Tl—éf(m)

The objective of this section is to weaken the perfect This defines an Extended Dolev-Yao model denoted by
cryptography hypothesis. This is first done in the formal EDY. Note that usuallyy; is defined on a subset of the
model by adding a new rule to possible deductions. Then inSet of messages. 8 cannot be applied to a message
the computational model, the classical IND-CCA criterion then our inference add no new deductions starting frem
has to be modified. Hence, a soundness theorem can show
that the extended Dolev-Yao model is still a safe abstractio Example 6.2 (Cipher Block Chaining) Usingd; given in
of the computational model if we suppose that the encryp- the previous example, we obtain the classical prefix rule:
tion scheme verifies the modified IND-CCA property.

To enhance the intruder capacity in both models, let us M
consider a pair of functiong; takes a message as argument T+ A{m}pk
and outputs another message apdises a string of bits to
produce another string of bits. Furthermore, these two-func 6.2 Thed.-IND-CCA Criterion
tions have to be related: they must modify their arguments
in the same way. If we consider an IND-CCA encryption scheme, then
EDY is still a safe abstraction of the computational model
. ) as EDY is an extension of DY (formall{; - oy m implies
of function(dy, ) such that: T Fepy m). However, EDY can still be a safe abstraction

a(0e(s)) = 65(as)) when considering an encryption scheme that is not IND-

CCA. The encryption scheme has to be secure againsta new

Whereq is the parsing algorithm (we suppose that in the criterion that uses,, this criterion is called.-IND-CCA.
two occurrences of this algorithm, the same names are as-  §.-IND-CCA is defined as a criteriofkG, &, Dsk)
sociated to the same nonces exactly). We also ask that givegimilar to IND-CCA. The only difference is that in IND-
astrings, the sets” = {47 (s),n > 0} can be computedin  CCA the decryption oracle does not apply to strings pro-
polynomial time. duced by the encryption oracle (stored in a set of strif)gs
here it does not apply to strings that aresih= {63(3), s €
S,n > 0}. As this set can be computed in polynomial time,
the decryption oracle can be achieved using a PRTM.

It is easy to extend.-IND-CCA to N — §.-IND-CCA
_and a trivial application of the reduction theorem gives the
following property:

Definition 6.1 (DY-weakening) A DY-weakening is a pair

This last hypothesis is useful when defining the computa-
tional criterion.

To illustrate this definition, we give a classical example:
Cipher Block Chaining. CBC allow the intruder to make
some deduction using a property verified on some block en
cryption schemes.

Example 6.1 (Cipher Block Chaining) CBC is a DY- Proposition 6.1 Let AE be_ an asymmetric e_ncryp_tion
weakening that allows the intruder to deduce from an en- scheme. Then for any, A is N — 6.-IND-CCA iff A is
coding of message: the encoding of a prefix ofi. More ~ d.-IND-CCA.

11



6.3 Soundness Result as before but also a suffix. This is encoded in the following
definition:
The definition of Non EDY (NEDY) traces is exactly
similar to the definition ofV DY traces as the parsing al- o5 ({(m,n) }p) {{m}pk, {n}pr}
gorithma remains the same. 6c(E(s.s' pk)) = {5(5,1);{;)75(5'71,/{)}
The main result is stated in the following theorem:

The EDY is modified with the two following inferences:
Theorem 6.1 LetIT be a protocol. Letd€ be the encryp-

tion scheme used ... If AE is 6.-IND-CCA then for any
concrete Adversaryl.:
Pr(te—Ac/n, 1. ; te NEDY| is negligible.

T F {{m,n)}pk
T+ {m}pk

T F {{m,n)}pk
T+ {n}pk

. . Proof of the existence of a.-IND-CCA encryption
The proof is close to the one of the previous soundness L . :
. scheme for extended CBC is given in appendix E.
theorem, an adversary against the protocol can be trans-
formed to an adversary against the encryption scheme as

soon as the trace is NEDY. Conclusion

e Parsing is done as before except that messag#s in
cannot be decoded anymore. For that purpose, mes-
sage inS’ are stored as long as their formal equivalent
to allow their parsing. Hence, it is possible to simulate
the unfolding of the protocol.

The main contributions of this paper are the following:

e A general definition of correctness of cryptographic
primitives that generalizes known criteria such as IND-
CPA and IND-CCA and allows to combine asymmet-
ric, symmetric, and signature schemes as well as hash

e Messages that are NEDY are elements of the following )
functions.

grammar wheren represents any message:

n = N|(n, m)|(m, n)|{n}p ¢ A formal definition of a correctness criterion for hash
functions.
If n is a nonce, winning the challenge can be done as

NEDY. Finally, if n is an encoding{n’},: then the
decryption oracle can be called to g€t otherwise
n € S’ but any message ifi’ is accessible in the trace

proof of correctness of a combination of cryptographic
primitives to the correctness of each primitive individ-
ually.

and so is EDY. .
e Based on this theorem, a proof of correctness of

the Dolev-Yao model for protocols that may combine
asymmetric, symmetric, and signature schemes as well
as hash functions. The proof of our theorem makes
some restrictions on the protocols that are in practice
easily met. To our knowledge, this is the first time that
correctness of Dolev-Yao is proved with such a com-
bination of primitives.

Example 6.3 (Cipher Block Chaining) Verification  of
protocols with CBC is possible when considering a
bounded number of sessions (but the problem is in general
NP-complete [10]). Thus, it is possible to verify a protocol
with this hypothesis in the formal world, if the protocol is
safe (regarding for example secret), then it is safe in the
computational world.

As future work, it would be of interest to investigate
whether correctness of Dolev-Yao can be proved under
weaker assumptions on the cryptographic primitives. More-

Here, . the weakening functions opgrate o MeS- yer, it would be significant to extend this result to other
sages/strings and produces a message/string. Althowgh th'security properties

hypothesis makes the results easier to understand, ittes qui
restrictive. This is why, we consider functiofs andd
which work on and produce sets of messages/strings. AReferences
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A Existence of a N-PAT-SYM-CCA Algo- The advantage a8 against IND is detailed thereafter.

rithm AdvIND = (B — 0in Expl¥Plb = 0)
To show that our new criterion makes sens, we prove —pr(B — 0in EXpIND|b =1)
the existence of a symmetric encryption scheme that-is = pr(ExpY™F =t)+ = 1 pr(ExpYNF = f)
PAT-SYM-CCA. However, the algorithm built here is very 2
inefficient as it uses an underlying asymmetric encryption —pr(ExpiV T =1) — 1 pr(ExpiNT = f)
scheme. Letd€ = (KGi,&1,D:1) be an asymmetric en- 2

cryption scheme that is IND-CCA. L&S = (KG2,S,V) WhereA’ is an adversary against\V F' defined by:
be a signature scheme secure against UNF. Then the sym A ..
metric encryption schemg&€ = (KG, &, D) is defined by: versary A"

KG generates a pair of asymmetric kefysk, sk) using pa,t bs—A .
KG1 as long as a pair of signature kefysk, vk); the en- N’ {0, 1}
pat’” — ([J, N')

cryption algorithm is defined b§(m, (pk, sk, sik, vk)) =
m'.S(m’, sik) wherem' = &, (m, pk); and the decryption
algorithm verifies that the signature part is valid and de- We obtain
codes the signed messagé IND UNF uNF

To prove thatS€ is N-PAT-SYM-CCA, it is sufficient 2.Advy " = Advy T — Advy
to prove thatSE is PAT-SYM-CCAVIND and PAT-SYM- Hence, asAdvg' ” is negligible andAdv ™" is not, A’
CCAJ/UNF (this is proven by proposition 4.2).

) has a non negllglble advantage against HASH/UNF.

Let A be an adversary against PAT-SYM-CCA/UNF, Finall build fromA d ) lisi

then it is easy to construct an adversalyfrom A working inally, we bulid froma an a versarg against collision
free which advantage is related to the advantagd’ofFor

against IND-UNF that has the same advantage. that purpose( generates a nondg in order to simulate
Let A be an adversary against PAT-SYM-CCA/IND, with a functionp the hash oracle used b:

then we build an adversaryl’ from A working against
IND-CCA such that:A’ is still polynomial;. A’ and.A have Adversary C:

return pat’, bs

the same advantagd has to generate a signature key pair NH — {0,1}7
and executesd. It uses IND-CCA oracles to simulate its pat,bs—A/k, p
encryption oracle. Note that for the decryption oracle, two N’ —{0,1}"
cases may occurin’ has not been produced by the IND- N"” «—{0,1}"
CCA encryption oracle, thus the IND-CCA decryption or- pat’ — ([], N')

acle can be usedp’ has been produced by the IND-CCA pat” — ([|, N")
encryption oracle but the signature part is fresh, then the  return pat'[N#], pat” [N ]
former adversary (against UNF) can be modified to have

the related advantage. Then, asPrRand®¥ is negligible, the probability that

finds a collision is negligible. Moreover, this probabilisy
) greater than the probability th&tfinds a collision and the

B HASH/IND and HASH/CF imply HASH hash ofpat’[N "] is equal to thé)s produced byA. In the

following, events likeH (pat'[N*]) = bs means: after the

Let H be a hash function that is secure against random execution dExpY™", we obtairpat’, N* andbs

HASH/IND and HASH/CF. Let us suppose that there ex- such that this equality holds. To deduce the second inequal-
ists an adversaryl against HASH/UNF which advantage ity, we use lemma B.1 that is given later in this appendix.
is not negligible. Then we build the adversasyagainst
HASH/IND which run A (A uses directly oracles given to

B). pr(Expt© =t) > pr(H(pat'[N"]) = bs = H(pat"[N"]))
Adversary B: > pr(H(pat' [NT]) = )

pat, bs—A pr(H(pat” [N ]) bs)

N'—{0,1}" > (pr(Exp" =1))”

pat’ — (1, )

bs' = H®(pat, pat')

if bs = bs'return 0 There is a contradiction agl’ has a non negligible ad-

elseb’ «— {0,1} vantage and’r RandV ™ is negligible. Hencé+ verifies

return b’ HASH/UNF.
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LemmaB.1 Let X, Y andY”’ be three random variables.

X is chosen randomly in a finite s€f, Y andY’ are cho-
sen randomly in the finite sé&% . Let £ be a predicate over
SX X Sy, then

pr(E(X,Y)AE(X,Y') > [pr(E(X,Y))]’
To prove this lemma, let be the left probability. Hence,
p’r(E(X, Y)ANEBE(X, Y’))
1

— r(E(z,Y)ANE(z,Y")
ENPIY )

B

rESXx

p =

Then, using lemma B.2, we get:

Z pr[(E(ac,Y))}.pr[(E(ac',Y))]

z,x’'€Sx

P =

2
> (r[(B(X.)])
Lemma B.2 Let(a;)1<i<n ben real numbers. Then
DRCET N DI
: 7 = n - (ad]
1<i<n 1<4,j<n
By developing(a; — a;)? > 0, we obtain

2 2
a; + a]— > 2.ai.aj

Z af—i—a?ZQ. Z a;.a;

1<i,j<n 1<i,j<n

2.n. Z afEQ. Z a;.a;

1<i<n 1<i,5<n

Z a?Z% Z a;.a;

1<i<n 1<4,j<n
C Proof of Theorem 5.1

The intuition is that if an adversaryl. can produce a

NDY trace, then it is able to break one of the cryptographic
schemes. Lef) be the polynomial bounding the execution

of A.. We build aQ-PASSH-CCA (criterion denoted by)
adversarys such that ifp is the probability:

p = Prlte—A:/n,1L ; t. NDY]
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We have the following majoration ¢f.

p < (2.Q(n) +7).Advi(n) + f(n) (1)

Wheref is a negligible function. Using proposition 4.3, it
is possible to deduce that the probability §ér to produce
a non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversarp usesA. as a subrou-
tine and deduces a string solving its challenge (for example
the challenge bit or a new signature) as soon.ds/n, I1.
produces a NDY trace. Using its own oraclés,simu-
lates the protocol oraclE,. (used by.A4.) and produces the
pseudo formal trace in order to find a NDY message.

During its initialization, the adversarys randomly
chooses an integerbetweend andQ(n). If i # 0, then
the i** nonce generated by (denoted byN) is trapped.

In order to answer queries from., B randomly gener-
ates identities for honest agents, nonces created by honest
agents exceplV. B uses its challenge keys for their differ-
ent keys. For nonc#’, 5 generates two noncég andVy,

B uses its oracles in such a way that messages involving
usesNy. N (resp. N;.N*) when the challenge bitis 0
(resp.1). N is the challenge nonce related to hashing in
PASSH-CCA (a$3 does not know ifV, or IV, is used, this

is required in order to compute the hashing of a message
involving V using an oracle).

When A, waits for a message:, 3 has to forgen =
(mq,...,m,) where messages; are not pairs of messages.
ThenB generates eaal; using its oracles (e.g. if; is an
encoding usingk, B uses the left-right encryption oracle
related topk). If N appears "under” a left-right oracle, then
No.[NH] (resp. N1.[NH]) is used for the left (resp. right)
argument of the oracle. IV appears anywhere else it is im-
possible for3 to continue the protocol simulation. HenBe
aborts its execution. Note thBtcannot be asked to reveal a
secret key, a signature key or a symmetric key in a message
m; (such keys have to be protected by an encryption layer
and so a left-right oracle is used with a pattern asking for
the key).

When A, emits a message:, m is parsed according
to the protocol specification (as described previously for
pseudo formal trace). During parsingAfhas to decrypt a
message then either this message has been produced using
a left-right encryption oracle and there is no new informa-
tion inside orB can use its decryption oracle8 fnly has
to decrypt messages encrypted using keys which inverse is
known by an honest agent). To achieve parsihpas to be
able to test whether a string is a secret/signature/synometr
key, this can easily be achieved using oracles.

Eventually, A, stops. Thend. checks that there are no
collisions between two messages parsed as hash. If this is
not the casef3 wins against HASH/CF, this eventis denoted
by Ey. Else if the trace is NDY thef$ knows the first NDY
messagen and a recursive procedure is applied :anin



order to win the challenge. Nonces are Probably Different

1. If mis Ng.N¥ or N;.N¥, B deduces the challenge We consider that anytime a computational adversary picks

bit b. up some nonces, they are different one from another. The
. adversary can only get a numberof nonces that is poly-
2. If m is another nonces aborts. nomial inn and we suppose that the numbeof possible

nonces is exponential in(som < n). Let P be the proba-

3. If mis a secret key or a symmetri8,also deduces. - !
bility that the adversary gets two times the same nonces.

4. If m is a signature key3 can forge a new signature

and thus wins its challenge. j_p_nnr-l n- (m—1)
n n n
5. If m is a pair{m1,ms), thenm; or ms is NDY and o -
this procedure is applied recursively. Thus, we have the following inequalities:
6. If m is an asymmetric encryptiofun’},, asm is 0<P<1—(1- m — 1)m

NDY it has not been produced by an oracle (otherwise, n

m would have circulated not protected). Hence using

. . o Proposition C.1 For an 0,1]anda > 1,
the decryption oraclé obtainsm’ which is also NDY. P yz € [0.1] 4=

7. If mis a signature or a symmetric encodingis NDY (I-2)" 21-wa
thus it has not been produced by an oracle Briths

forged a new signature or a new symmetric encoding. Proof: Consider the functioff (z) = (1 — )" — 1 +z.a.

Derive it twice to get the result. ]
8. If m is a hashing:(m’), thenm’ has to be known (to Applying the proposition, we get:
testm during the protocol execution). H’ contains
N, thenB3 can deduce a hollow pattepmt such that 0<P< m.(m — 1)
H(k,v(pat, NH)) = h. HenceB wins. Else B aborts. - n

As m is polynomial andr is exponential iry, P is negli-
gible inn. When considering an adversary that has a non-
negligible advantage against something, it still has its ad
Whenever3 decides to abort, it answers a random bit for vantage if we consider only executions where nonces are
the challenge bi. distinct.

If A. produces a NDY trace, then we consider the differ-

ent answers that the former procedure can have producedD Existence of a CBC-IND-CCA encryption
E; denotes the event where the procedure stopped iii'the

9. If m is a hashingi:(m’) andm’ does not contaiiV,
then3 aborts.

case of the list. Hence, scheme
9 Let bs be a positive integer representing a block size.
p= ZPT(Ei) Let us consider an IND-CCA encryption schemde€ =
=0 (KG,£,D) and a SYM-CCA encryption schemds’ =

As nonceN is chosen randomly?r(Es) and Pr(Ey) are  (KG',E", D). Then, A£” is the encryption scheme
lower than respectively)(n).Pr(E;) and Q(n).Pr(Es). (KG,£",D") wherec” (s, pk) is defined as:

Moreover, eventds; for ¢ different from2, 5 and9 imply " ,

that B wins its challenge without aborting. Let us call ¢ (s,pk) = E(s1- k1, pk) - € (s2 - k2, k1) - En, k1)

(resp.—B) the event wher#8 does not abort (resp. aborts). whens is composed by blocks; to s,, of sizebs andk; are

Hence, freshly generated symmetric keys. The decoding algorithm
p < (2Q(n) +7).Pr(B) allows to retrieve the original message by applying a simila
As PrRand is negligible for criteria related to UNF, there modification.
exists a negligible functiop such that: This encryption scheme is not IND-CCA butdsIND-
CCA. To prove that, let us assume that it is not the case.
Advy(n) = 2.Pr(Bwins)—1-g(n) Then there exists an adversafyagainst this criterion. We
= 2.Pr(B)+ Pr(-B)—1-g(n) useA to breakR-PAT-SYM-IND-CCA: for that purposed
= Pr(B)—g(n) is executed and its call to oracles are simulated using IND-

CCA oracles. Then, ifd asks for the encryption of; - ... -
Hence, it is easy to obtain formula 1 and the awaited result.s,,, the new adversary asks for encryptionsgf creation
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of a fresh challenge symmetric key SYM-CCA and so on.
When A calls its decryption oracle, the argumentis not
the prefix of any output of the new encryption oracle. Let
us suppose that = my - ... - m,,. Then ifm; has not been
produced by the left-right asymmetric encryption oradle, i
is possible to decrypt the whole message. Otherwisé, let
be the minimal index such that; has not been produced by
an encryption oracle. Then either; allows to win SYM-
CCAJ/UNF or them was not a correct encryption. Finally,
if any m; has been produced by an encryption oracle, then
m is a prefix of the output of the new encryption oracle.

E Existence of an eCBC-IND-CCA encryp-
tion scheme

Let bs be a positive integer representing a block
size. Let us consider an IND-CCA encryption scheme
AE = (KG,&,D). Then, A£' is the encryption scheme
(KG, &', D) wheref'(s, pk) is defined as:

El(s,pk) = S(Slvpk) : 5(527pk) Tt S(Snvpk)

when s is composed by blocks; to s, of sizebs. The
decoding algorithm allows to retrieve the original message
by applying a similar modification.

Then, AE" is not an IND-CCA encryption scheme but is
a 6.-IND-CCA encryption scheme. It is not IND-CCA as
an adversary can submit mess#gé® and message?
to the encryption oracle. The oracle outp§itd s}, =
{b%} k. {b** } ,x and so the adversary submits to the de-
cryption oracles (this is possible as this message has not
been produced by the encryption oracle) and obtains the
value of bitb. The restriction made on the decryption or-
acle aims at forbidding such attacks.

If A’ is not ad.-IND-CCA encryption scheme, then
there exists an adversayy against the criterion withd..
As usual, this adversary can be used to create an adversary
against IND-CCA for algorithmAE: oracles related tod
are simulated usingdA€ (this is trivial for encryption and
possible for decryption because of the formdof.

17



