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Abstract

The contributions of this paper are two fold. First, we
present a general definition of correction of cryptographic
primitives and a theorem that allows to reduce the correct-
ness of a composition of two cryptographic schemes to the
correctness of each one. Then, these results are used to
show that assuming that cryptographic schemes satisfy ap-
propriate correctness criteria safety of a cryptographic pro-
tocol in the Dolev-Yao model implies its safety in the com-
putational one. Our main contribution concerning the re-
lationship between Dolev-Yao and the computational model
is that, our result applies to a large class of protocols that
may combine asymmetric as well as symmetric encryption,
signature and hash functions. Finally, we show how equa-
tional theories can be mapped in the computational world
(by modifying a criterion) and apply this to the case of Ci-
pher Block Chaining.

Keyword: Security, Cryptographic Protocols, Formal
Encryption, Probabilistic Encryption, Dolev-Yao Model,
Computational Model.

Introduction

Historically, verification of cryptographic procedures
has been separated in two distinct branches. The first one,
formal verificationof security protocols, originates from the
work of Dolev and Yao and was first described in [14]. The
main hypothesis, called perfect cryptography assumption,is
an idealization of reality: the intruder can gain information
on an encoded message only if he knows the inverse of the
key used to crypt the message. Even with this strong as-
sumption, flaws have been found on protocols that were be-
lieved to be secure (the most famous one has been exposed
by G. Lowe in [19], some of them are listed in [11]). Un-
der this assumption, automatic verification of security pro-
tocols is possible [23, 9, 24, 17, 8] (even if it needs other ab-
stractions when considering an unbounded number of ses-
sions) and has been successfully implemented in tools such

as those proposed in the project EVA [25]. However, the
perfect cryptography assumption needs valid foundations
and this is why recent works tried to weaken this hypoth-
esis, either by adding equational theories [12, 1] or by other
modifications of the Dolev-Yao model, adding guessing at-
tacks for example [20].

In the second branch, encryption schemes are studied
precisely using acomputational modelbased on Turing ma-
chines. In this context, cryptographic functions operate on
strings of bits and their security is defined in terms of high
complexity and weak probability of success [15, 5]. This
computational approach is recognized as more realistic than
the formal approach, however, its complexity makes it very
difficult to design automatic verification tools.

In the last years, attempts have been made to bridge the
gap between these two approaches. The ultimate objective
is to be able to prove security in the formal model, then to
prove properties on the encryption scheme and with that to
deduce security of the protocol in the computational model.
These first works successfully proved this kind of com-
position properties. Very restrictive hypothesis have been
made, however, to deal with the complexity of the compu-
tational model (as for example in the case of [21]). The
first paper in this recent trend [2] proved that a notion of
indistinguishabilityin the formal model is valid in the com-
putational model when making some assumptions on the
encryption scheme. This means that if two messages are
not distinguishable in the formal model, then their compu-
tational equivalents cannot be separated by a Turing ma-
chine in a reasonable (polynomial) time. This work has
been pushed further in [26] and then in [21]. This last paper
proves that if the encryption scheme verifies a certain prop-
erty (called IND-CCA), then security in the formal model
implies security in the computational model. The impor-
tant extension with respect to Abadi and Rogaway’s work is
that it considers active adversaries. However, as this work
contains very restrictive hypothesis, we extended it in [22]
allowing transmission of secret keys and digital signature.
We defined a reduction theorem that only applied for se-
cret keys transmission and we used variants of its proof for
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the combination of asymmetric encryption and digital sig-
nature.

The type of results we are seeking here is the following :

If protocol Π uses the cryptographic schemes
S1, · · · , SN , if each schemaSi is correct with re-
spect to the security notionCi and if some addi-
tional syntactic conditions are satisfied byΠ then
the formal model is a safe abstraction of the com-
putational, that is, correctness of the protocol es-
tablished in the formal model implies its correct-
ness in the computational one.

In this paper, we introduce a security criterion that allowsus
to combine asymmetric and symmetric key cryptography as
well as signature and hashing. To our knowledge, this is the
first time that such combination of cryptographic schemes
is considered. Then, we relate our security criterion to ex-
isting ones, namely IND-CCA and selective forgery against
adaptive chosen message. To do so, we prove a powerful
reduction theorem for security criteria. Typically, this the-
orem allows us to prove results of the form: if the crypto-
graphic schemeS1 (resp.S2) satisfies the criterionC1 (resp.
C2) then their combination satisfies criterionC, whereC is
some combination ofC1 andC2. Using our security crite-
rion and reduction theorem, we establish safety of the for-
mal model for protocols that may combine asymmetric and
symmetric cryptography, message signing and hash func-
tions. Safety here means that a cryptographic protocol that
is proven correct in the formal model is also correct in the
computational one. Similar results have been proven for
protocols that involve asymmetric encryption on one hand
and symmetric encryption both combined with signature.
We are, however, not aware of any result that holds for pro-
tocols that may combine both kinds of encryption signature
and hash functions. It turns out that combining these differ-
ent encryption primitives is a subtle issue. And dealing with
hash functions on their own is challenging. Moreover, we
extend this result for cryptographic schemes that are based
on Cipher Block Chaining or have some algebraic proper-
ties. The practical consequences of these results are obvi-
ous. Automatic verification of security protocols based on
the formal model can be safely applied.

Related work Cortier and Warinschi prove in [13] safety
of the formal model for protocols that use asymmetric en-
cryption and signature under the assumption that secret and
signature keys are not sent. A similar result is proved by
Backes, Pflizmann and Waidner [3]. In the latter, the formal
model is not exactly the Dolev-Yao model, although very
close. In fact, it can be seen as a kind of implementation of
Dolev-Yao’s model. The principal drawback is that it is not
clear whether properties in this model can be checked auto-
matically whereas verification in the Dolev-Yao model can

be achieved efficiently. P. Laud [18] proves safety of the
formal model for symmetric encryption. In particular, he
deals with encryption cycles. To our knowledge the present
paper is the first to consider asymmetric and symmetric en-
cryption as well as signing and hashing.

Paper organization The next section gives the necessary
definitions for using both the computational model and the
formal model. In the following section, we generalize and
simplify the notion of security criterion and apply it to
asymmetric encryption, signature, symmetric encryption,
hashing and a mix of all these primitives. Section 3 for-
mulates the two reduction theorems and their proofs. Then,
this theorem is applied in section 4 to reduce all our criteria.
Section 5 uses these results to show that, under some quite
unrestrictive hypothesis, the formal model is a safe abstrac-
tion of the computational model. The objective of section
6 is to weaken the IND-CCA hypothesis and to show that
the abstraction is still safe if we consider the formal model
with equational theories and the computational model with
a modified IND-CCA criterion. Finally, a quick conclusion
of this paper is drawn.

1 Preliminaries

1.1 Definitions for the Computational Model

An asymmetric encryption schemeAE = (KG, E ,D) is
defined by three algorithms. The key generation algorithm
KG is a randomized function which given a security param-
eterη outputs a pair of keys(pk, sk), wherepk is a public
key andsk the associated secret key. The encryption algo-
rithm E is also a randomized function which given a mes-
sage and a public key outputs the encryption of the message
by the public key. Finally the decryption algorithmD takes
as input a secret key and a cypher-text and outputs the cor-
responding plain-text, i.e.,D(E(m, pk), sk) = m. The exe-
cution time of the three algorithms is assumed polynomially
bounded byη.

A symmetric encryption schemeSE = (KG, E ,D) is de-
fined by three algorithms. The key generation algorithm
KG is a randomized function which given a security pa-
rameterη outputs a keyk. The encryption algorithmE is
also a randomized function which given a message and a
key outputs the encryption of the message by this key. Fi-
nally the decryption algorithmD takes as input a key and
a cypher-text and outputs the corresponding plain-text, i.e.,
D(E(m, k), k) = m. The execution time of the three algo-
rithms is also assumed polynomially bounded byη.

A signature schemeSS = (KG,S,V) is also defined by
three algorithms. The key generation algorithm randomly
generates pairs of keys(sik, vk), wheresik is the signature
key andvk is the verification key. The signature algorithm
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S randomly produces a signature of a given message by a
given signature key. The verification algorithmV is given a
messagem, a signatureσ and a verification keyvk and tests
if σ is a signature ofm with the signature key correspond-
ing to vk. Hence,V(m,S(m, sik), vk) returns true for any
messagem and any pair of keys(sik, vk) generated byKG.
We say thatσ is a valid signature undersik if there exists
m such thatV(m, σ, vk) returns true. We still assume that
the algorithms have a polynomial complexity.

A hashing algorithmis a polynomial deterministic algo-
rithm that computes from a keyk and a bit-stringbs another
bit-string of sizeη. The key generation algorithm is not
important and one can suppose thatk is chosen randomly
among strings of sizeη.

1.2 Randomized Turing Machines with Oracle

An adversary for a given scheme is a Polynomial Ran-
dom Turing Machine (PRTM) which has access to an ora-
cle. In the following, we consider Turing machines which
execution is polynomially bounded in the security param-
eterη, i.e. there exists a polynomialP such that for any
input corresponding to security parameterη, the machine
stops withinP (η) steps.

To model access to the oracle, we slightly modify the
definition of Turing machines. Our Turing machines have
two additional tapes, one for arguments (of function/oracle
calls) and one for the results. Then, letF be a new action.
We define our PRTM as a pair of a Turing machineA that
can use transitionF and another Turing machineF repre-
senting the oracle.F can also be described by a PRTM
(which can also access oracles). The semantics ofA/F are
the standard semantics ofA except that wheneverA fires
the actionF , F is executed with the arguments tape as in-
put and the results tape as output.

It is possible to encode access to multiple oracles using
F (by giving in the arguments tape the name of the cho-
sen oracle). Hence, to simplify notations, we directly write
A/f1, ..., fn wherefi are PRTM and oracles are called us-
ing thefi action when definingA.

A function g : R → R is negligible, if it is ultimately
bounded byx−c, for each positivec ∈

�
, i.e., for allc > 0

there existsNc such that|g(x)| < x−c, for all x > Nc.

1.3 Definitions for the Formal Model

In this section, we give the basic definitions that are used
to introduce the formal1 aspects of protocol checking. For-
mal studies rely on the concept of messages which are first
order terms. To define messages, we first introduce three in-
finite disjoint sets :Nonces, Identity andKeys. Elements

1Formal is not used here in the sense of rigorous but denotes the use of
formal methods.

of Nonces are usually denoted byN and can be thought as
random numbers. Thus, it is impossible for an intruder to
guess the value of a nonce without indications. Elements of
Identity are the possible names of agents involved in the
protocol. Finally, elements ofKeys represent asymmetric
encryption keys. There is a unary function overKeys asso-
ciating each keyk to its inversek−1 such thatk = (k−1)

−1
.

Two binary operators are defined over messages: concate-
nation and encryption. Concatenation of messagesm andn
is written 〈m, n〉. Encryption of messagem with key k is
denoted by{m}k. Finally, one unary operator, hashing, is
defined over messages and is denoted byh.

Next, we recall the definition of theentailmentrelation
E ` m (introduced in [14]) whereE is a finite set of mes-
sages andm a message. Intuitively,E ` m means thatm
can be deduced from the set of messagesE. This relation is
defined as the least binary relation verifying:

• If m ∈ E, thenE ` m.

• If E ` m andE ` n, thenE ` 〈m, n〉.

• If E ` 〈m, n〉, thenE ` m.

• If E ` 〈m, n〉, thenE ` n.

• If E ` m andE ` k, thenE ` {m}k.

• If E ` {m}k andE ` k−1, thenE ` m.

• If E ` m, thenE ` h(m).

Note that symmetric encryption can be represented using
keysk such thatk−1 = k and signature can be represented
by encoding with a private key to sign and decoding with
the related public key to verify the signature.

2 Security Criteria

A security criterion is defined as an experiment involv-
ing an adversary (represented by a PRTM). The experiment
proceeds as follows. First some parametersθ are generated
randomly. The adversary is executed and can use an oracle
F which depends onθ. At the end, the adversary has to
answer a string of bits which is verified by an algorithmV
which also usesθ (e.g.θ includes a bitb and the adversary
has to output the value ofb).

2.1 Security Criterion

A criterionγ is a triple(Θ; F ; V ) where

• Θ is a PRTM that randomly generates some challenge
θ (for example, a bitb and a pair of key(pk, sk)).
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• F is a PRTM that takes as arguments a string of bits
s and a challengeθ and outputs a new string of bits.
F represents the oracles that an adversary can call to
solve its challenge.

• V is a PRTM that takes as arguments a string of bits
s and a challengeθ and outputs either true or false.
It represents the verification made on the result com-
puted by the adversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve)
the challenge.

Note thatΘ can generate an arbitrary number of parameters
andF can represent an arbitrary number of oracles. Thus,
it is possible to define criteria with multiplesΘ andF . As
soon as there is no risk for comprehension, we use the same
notation for the challenge generatorΘ and the generated
challengeθ (both are denoted usingθ).

The advantage of a PRTMA againstγ is

Adv
γ
A(η) = 2.

(

Pr[Exp
γ
A(η) = true]− PrRandγ

)

WhereExp is the Turing machine defined by:

Experiment Exp
γ
A(η):

θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

And PrRandγ is the best probability to solve the chal-
lenge that an adversary can have without using oracleF .
Formally,PrRandγ is the maximum ofPr[Exp′γ

A(η) =
true] whereA ranges over any possible PRTM andExp′

is similar toExp except thatF cannot be used byA.

Experiment Exp′γ
A(η):

θ←Θ(η)
d←A/η
return V (d, θ)

2.2 The N-PAT-IND-CCA Criterion

We introduce a security criterion that turns out to be use-
ful for protocols where secret keys are exchanged. This
definition was first given in [22] where more discussion is
available. In the classicalN -IND-CCA criterion (see [4]
aboutN -IND-CCA and its reduction to IND-CCA), the ad-
versary can only use the left-right oracles with messages
that it can compute. Since it has no information concern-
ing secret keys, it cannot get the encryption of a challenge
secret key under a challenge public key. Therefore, we in-
troduceN -PAT-IND-CCA, which allows the adversary to
obtain the encryption of messages containing challenge se-
cret keys, even if he does not know the value of these secret
keys. For that purpose, the adversary is allowed to give pat-
tern terms to the left-right oracles.

Pattern termsare terms where new atomic constants have
been added: pattern variables. These variables represent the
different challenge secret keys and are denoted by[i] (this
asks the oracle to replace the pattern variable by the value
of ski). Variables can be used as atomic messages (data pat-
tern) or at a key position (key pattern). When a left-right or-
acle is given a pattern term, it replaces patterns by values of
corresponding keys and encodes the so-obtained message.
More formally, patterns are given by the following gram-
mar wherebs is a bit-string andi is an integer.

pat ::= 〈pat, pat〉 | {pat}bs | {pat}[i] | bs | [i] | h(pat)

The computation (valuation) made by the oracle is easily
defined recursively in a contextθ associating bit-string val-
ues to the different keys. Its result is a bit-string and it uses
the encryption algorithmE and the concatenation denoted
by the operator·.

v(bs, θ) = bs

v([i], θ) = ski

v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)

v({p}[i], θ) = E(v(p, θ), pki)

v({p}bs, θ) = E(v(p, θ), bs)

v(h(p), θ) = H(k, v(p))

There is yet a restriction. Keys are ordered and a pattern
[i] can only be encrypted underpkj if i > j. This restriction
is well-known in cryptography and widely accepted. When
a left-right pattern encryption oracle is given two patterns
termspat0 andpat1, it tests that none contains a pattern[j]
with j < i. If this happens, it outputs an error message, else
it produces the encryption of the message corresponding to
patb : v(patb, ...) encoded bypki. To win, the adversary
has to guess the value of secret bitb.

Criterion N -PAT-IND-CCA is denoted byγN =
(Θ; F ; V ), whereΘ generatesN pairs of keys usingKG
and a bitb at random;V verifies that the adversary gave the
right value for bitb; andF gives access to three oracles for
eachi : a left-right encryption oracle that takes as argument
a pair of patterns〈pat0, pat1〉 and outputspatb completed
with the secret keys (v(patb, θ)) and encoded usingpki; a
decryption oracle that decodes any message not produced
by the former encryption oracle; and an oracle that simply
makes the public key available.

An asymmetric encryption schemeAE is said N -
PAT-IND-CCA iff for any adversaryA in PRTM ,
Adv

γN

AE,A(η) is negligible. Note thatN -PAT-IND-CCA
with N = 1 corresponds to IND-CCA.

2.3 The N-UNF Criterion

The N -UNF criterion is an adaptation of Selective
Forgery Against Adaptive Chosen Message Attack (a good
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survey on properties for signature schemes is available
in [16]). It was also already defined in [22]. Here, we
rephrase this definition to put it in the shape of our new
criterion formalization.

The main requirement is that an adversary should not be
able to forge a pair containing a messagem and the signa-
ture of m using the secret signature key. AnN -UNF ad-
versaryA is givenN verification keys and has to produce
a message and its signature under one of the keys. It is
also given the security parameterη andN signature oracles
Ssiki

(.).
Formally, theN -UNF criterion isγN = (Θ, F, V ) where

Θ generatesN signature key pairs using the key generation
algorithm fromSS. F permits the access to two oracles
for each signature key pair: the first one allows to sign any
string of bits; the second one gives the verification key. Ver-
ifier V checks that the output of the adversary is a pair con-
taining a message and its signature. This signature must not
have been produced by the signature oracle.

An adversary wins againstN -UNF when it succeeds in
producing a message and its signature. Formally, signa-
ture schemeSS is saidN -UNF iff for any adversaryA,
AdvN−UNF

SS,A (η) is negligible. WhenN = 1, N -UNF can
be written UNF.

2.4 The N-PAT-SYM-CCA Criterion

In some sense a symmetric encryption scheme includes
both aspects indistinguishability and authentication that are
present in asymmetric encryption and message signature re-
spectively [6]. Therefore, our criterion for symmetric en-
cryption is in a combination of IND-CCA and UNF. In-
deed, a symmetric encryption should be secure in two ways.
The first one is related to IND-CCA, any PRTM should not
be able to guess any information from messages encoded
with an unknown key. The second one is related to UNF;
any PRTM should not be able to forge an encoding with-
out knowing the key. Hence, oracles are similar to those
presented in IND-CCA (except that no oracles output the
public key), but there are two different ways to win the
challenge. The hypothesis of acyclicity regarding keys still
hold: ki can only appear encoded bykj if i > j.

The N -PAT-SYM-CCA criterion isγN = (Θ, F, V )
whereΘ generatesN symmetric keys and a bitb; F gives
access to two oracles for each key: a left-right encryption
oracle that takes as argument a pair of patterns〈pat0, pat1〉
and outputspatb completed with the secret keys (v(patb, θ))
and encoded withki; a decryption oracle that decodes any
message not produced by the former encryption oracle. Fi-
nally,V is composed of two parts:VIND returns true when
the adversary returns bitb; VUNF returns true when the
adversary outputs a message encoded by one of the sym-
metric key and this message has not been produced by an

encryption oracle. ThenV is satisfied ifVIND or VUNF

is satisfied. We require that there is no string that satis-
fies bothVIND andVUNF (this can be done by asking the
name of the challenge together with its solution to the adver-
sary). The criterion related to IND(Θ, F, VIND) (resp. to
UNF (Θ, F, VUNF )) is denoted byN -PAT-SYM-CCA/IND
(resp.N -PAT-SYM-CCA/UNF).

A symmetric encryption schemeSE is said N -
PAT-SYM-CCA iff for any adversaryA in PRTM ,
Adv

γN

SE,A(η) is negligible.
Existence of a SYM-CCA encryption scheme can be

proved under the assumption that there exists an IND-
CCA asymmetric encryption scheme and an UNF signature
scheme. This is detailed in appendix A.

2.5 The HASH Criterion

The HASH criterion is a combination of an IND-CCA
criterion, an UNF criterion and a collision free criterion.
A hashing algorithm needs to verify three properties to be
secure. First an adversary cannot obtain information on a
bit-string bs when looking atH(k, bs). The second prop-
erty is that if an adversary does not know a bit-stringbs, it
cannot produceH(k, bs) even if it knows hashing of mes-
sages similar tobs. Finally, it must be hard for an adversary
to find two different messages which has the same hash for
a given key. More details about criteria related to HASH
can be found in [7].

The HASH criterion isγ = (Θ, F, V ), whereΘ gener-
ates a bitb, a keyk and a random bit-stringNH of sizeη.
OracleF gives access to two oracles: an oracle which gives
the value of keyk and a left-right hashing oracle which
takes as input a pair〈pat0, pat1〉 of hollow patterns (these
patterns can ask for inclusion ofNH and have to ask for it at
one position at least) and outputsH(k, patb[N

H ]). More-
over, each pattern can only be submitted once to this oracle
in order to avoid guessing attacks. VerifierV is the disjunc-
tion of three parts:VIND returns true if the adversary out-
puts the challenge bitb; VUNF returns true if the adversary
outputs a pair〈h, pat〉 such thath = H(k, pat[NH ]) andh
was not produced byF ; VCF returns true if the adversary
outputs a pair〈bs0, bs1〉 such thatH(k, bs0) = H(k, bs1),
and bit-stringsbs0 andbs1 are different.

A hashing algorithm is said HASH iff for any adversary
A in PRTM , Adv

γH

A (η) is negligible.
The criterion related to IND(Θ, F, VIND) (resp. to

UNF (Θ, F, VUNF )) is denoted by HASH/IND (resp.
HASH/UNF). The last criterion related to collision free is
denoted HASH/CF.

Proposition 2.1 If an algorithm H is secure against
HASH/IND and HASH/CF and PrRandCF and
PrRandUNF are negligible, thenH verifies HASH/UNF
and so is secure against HASH.
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Proof: This proof is detailed in appendix B.
It is not clear to us if there exists an algorithm that veri-

fiesHASH .

3 Reductions of Criteria

In this section, we present a generic result allowing to
prove that a security criterionγ1 can be reduced to a cri-
terionγ2. This means that if there exists an adversary that
breaksγ2 then there exists an adversary that breaksγ1. The
proof is constructive in the sense that such an adversary for
γ1 can be effectively computed.

This result can be seen as a tool for proving that a crite-
rion γ is at least as secure as a criterionγ′ but also allows
to decompose and break a criterion into simpler ones.

3.1 Criterion Partition and the Reduction Theo-
rems

Let γ = (θ1, θ2; F1, F2; V2) be a criterion. Letγ1 andγ2

be two criteria such that:

• There exist two PRTMG andH such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2)

OracleG operates on a string of bits, thus it must re-
ceive two challenge informations, a bitb andθ1.

• γ2 = (θ2; F2; V2) and γ1 = (b, θ1; G; verifb)
where b generates a random bit andverifb is the
PRTM verifying that the output of the adversary isb:
verifb(s, b, θ1) = (s⇔ b).

• F2(s, θ1, θ2) andV2(s, θ1, θ2) do not depend onθ1.

Then we say that(γ1, γ2) is a valid simplified partitionof
γ.

Theorem 3.1 (Simplified Reduction Theorem)Let
(γ1, γ2) be a valid simplified partition ofγ. For any PRTM
A, there exist two PRTMAo andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

To extend this result, we consider the case where the ver-
ification algorithmV does not only depend onθ2 (like V2

before) but also usesθ1. Hence, the PRTMV is represented
by V1 ∨ V2 whereV1 (resp.V2) depends only onθ1 (resp.
θ2). V returns true ifV1 or V2 returns true.γ1 andγ2 are
defined as above but a new criterionγ3 = (b, θ1; G; V1) oc-
curs in the partition. Then(γ1, γ2, γ3) is a valid partition of
γ. However, we add the hypothesis that there is no strings
such thatV1 andV2 are both verified ons (intuitively, the
adversary should know which part of the challenge it is try-
ing to win).

Theorem 3.2 (Reduction Theorem)Let (γ1, γ2, γ3) be a
valid partition of γ. For any PRTMA, there exist three
PRTMAo,A1 andB such that

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

3.2 Proof of the Simplified Reduction Theorem

The intuition of the proof relies on the following prin-
ciple: if none of the queries made byA to oracleF1 are
answered correctly, thenA must havea priori less advan-
tage than if its queries are answered correctly.

We construct the adversaryAo against the criterionγ2 =
(θ2, F2, V2) which simulatesA and thus has to answer to
the queries made to oracleF1. SinceAo cannot construct
correctly this oracle (as it does not have access toθ2), it
returns incorrect answers toA. FinallyAo uses the output
of A to answer its own challenge. If the advantage ofAo

is comparable to the advantage ofA, thenγ can easily be
reduced to the criterionγ2.

AdversaryAo:
θ1←Θ1(η)
θ′2←Θ2(η)
s←A/η, λs.F1(s, θ1, θ

′
2), F2

return s

If the advantage ofAo is negligible compared to the advan-
tage ofA, then another adversary,B, has the same advan-
tage asA. The adversaryB is playing against the criterion
γ1 = (b, θ1, G, V erifb). It generates a challenge forA.
Then ifb = 1 the answers to the queries made byA are cor-
rect and ifb = 0 the answers are forged in the same way as
in Ao. WhenA answers its challenge,B verifies it. If it is
correct,B supposes thatb = 1, else it supposes thatb = 0.

Adversary B:
θ2←Θ2(η)
θ′2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ

′
2)), λs.F2(s, θ2)

if V2(s, θ2) return 1
else return0

It is now possible to relate the advantages of our three dif-
ferent PRTM. For that purpose, note that the experiment in-
volving B is successful in two cases: ifb = 1, thenA is
confronted to its real oracle andB outputs1 means thatA
solved its challenge. Ifb = 0, thenA uses oracles as inAo
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andB outputs0 means thatAo failed to solve the challenge.

Adv
γ1

B (η) = 2.
(

Pr[Exp
γ1

B (η) = true]− PrRandγ1
)

= Pr[Exp
γ
A(η) = true]

+Pr[Exp
γ2

Ao(η) = false]− 1

= Pr[Exp
γ
A(η) = true]− PrRandγ

+PrRandγ2 − Pr[Exp
γ2

Ao(η) = true]

=
1

2
Adv

γ
A(η)−

1

2
Adv

γ2

Ao(η)

In this computation, we used thatPrRandγ1 = 1/2 as bit
b is chosen among two possible values. We also used that
PrRandγ = PrRandγ2 which is true becauseγ andγ2

have the same verification oracleV2.
This gives the awaited result:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|

3.3 Proof of the Reduction Theorem

AdversaryA1 represents adversaryA trying to solve its
challenge againstV1.

AdversaryA1:
θ2←Θ2(η)
s←A/η, λs.G(H(s, θ2, θ2)), λs.F2(s, θ2)
return s

PRTM A can gain its advantage by solving challenge
V1 or challengeV2. As we suppose that a string can solve
at most one challenge, the following equality holds where
γ, Vi denotes criterionγ using onlyVi as verifier.

Adv
γ
A(η) = Adv

γ,V1

A (η) + Adv
γ,V2

A (η)

Then, by keeping the same construction as above, the ad-
vantage againstV2 is known. Moreover, the advantage ofA
againstV1 is equal to the advantage ofA1 againstγ3.

Adv
γ
A(η) = Adv

γ3

A1(η) + Adv
γ2

Ao + 2.Adv
γ1

B (η)

This gives the conclusion of the theorem:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

4 Applications of the Reduction Theorems

This section contains application examples of our theo-
rems. These applications are mainly useful for composition
of security criteria.

4.1 From N-PAT-IND-CCA to IND-CCA

In order to reduce theN -PAT-IND-CCA criterion (de-
noted byγN ), we only need the simplified version of the re-
duction theorem. InN -PAT-IND-CCA, encoded messages
can be patterns and there is an order among keys:ski can be
encoded usingpkj iff i > j. The reduction operates from
γN+1 to γN andγ (i.e. IND-CCA) as follows.

• Θ1 generates the key pair(pk1, sk1).

• Θ2 generates the other key pairs(pk2, sk2) to
(pkN+1, skN+1) as long as the challenge bitb.

• F1 (resp.F2) is the oracle for encryption, decryption,
public key related to key pairs inθ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed.

• H is the identity when considering decryption and
public key emission andG is exactlyF1 in that case.

• G is the classical left-right encryption andH(s, θ2, θ
′
2)

is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2

(resp.θ′2).

We first want to verify that(γ, γN ) defines a valid simplified
partition ofγN+1.

• As secret keysk1 cannot occur under any public key,
F2 only depends onθ2.

• Verifier V2 only depends onθ2.

As (γ, γN) is a valid simplified partition ofγN+1, thus it
is possible to apply the simplified version of the reduction
theorem. For any PRTMA, there exist two PRTMB and
Ao such that:

|Adv
γN+1

A (η)| ≤ 2.|Adv
γ
B(η)| + |Adv

γN

Ao (η)|

It is then possible to conclude using a simple recursion.

Proposition 4.1 If an encryption scheme is secure against
IND-CCA, then it is secure againstN -IND-CCA for anyN .

4.2 From N-PAT-SYM-CCA to SYM-CCA/IND
and SYM-CCA/UNF

In order to reduce theN -PAT-SYM-CCA criterion (de-
noted byγN ), we need the full version of the reduction
theorem. As inN -PAT-IND-CCA, encoded messages can
be patterns and there is an order among keys:ki can be
encoded usingkj iff i > j, but there are also two ways
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to win the challenge, either by guessing the value of bitb
(criterion SYM-CCA/IND) or by forging an encoded mes-
sage without using the encryption oracles (criterion SYM-
CCA/UNF).

The reduction operates fromγN+1 to γN , γIND (i.e.
SYM-CCA/IND) andγUNF (i.e. SYM-CCA/UNF) as fol-
lows.

• Θ1 generates keyk1.

• Θ2 generates the other keysk2 to kN+1 as long as the
challenge bitb.

• F1 (resp.F2) is the oracle for encryption and decryp-
tion related to key(s) inθ1 (resp. inθ2).

• V2 verifies that bitb has been correctly guessed or that
the final output is an encoded message by a key from
θ2 that has not been produced by an encryption oracle.

• V1 verifies that the output message is encoded byk1

and has not been produced byF1.

• H is the identity when considering decryption andG
is exactlyF1 in that case.

• G is the classical left-right encryption andH(s, θ2, θ
′
2)

is defined as follows:

H(〈pat0, pat1〉, θ2, θ
′
2) = 〈v(patb′

2
, θ′2), v(patb2 , θ2)〉

Whereb2 (resp.b′2) is the challenge bit contained inθ2

(resp.θ′2).

We first want to verify that(γIND, γN , γUNF ) defines a
valid partition ofγN+1.

• As keyk1 cannot occur under any public key,F2 only
depends onθ2.

• VerifierV2 only depends onθ2 andV1 only depends on
θ1

Partition (γIND, γN , γUNF ) is a valid partition ofγN+1,
thus it is possible to apply the reduction theorem. For any
PRTMA, there exist three PRTMB,Ao andA1 such that:

|Adv
γN+1

A | ≤ 2.|Adv
γIND

B |+ |Adv
γN

Ao |+ |Adv
γUNF

A1 |

It is then possible to conclude using a simple recursion.

Proposition 4.2 If a symmetric encryption scheme is se-
cure against SYM-CCA/IND and SYM-CCA/UNF, then it is
secure againstN -PAT-SYM-CCA for anyN .

4.3 Mixing all Criteria

Let us define theN -PAT-ASYM-SYM-SIGN-HASH-
CCA (N -PASSH-CCA) criterion asγ = (Θ, F, V ) where
Θ is composed of four parts:

• Θa generatesN pairs of asymmetric keys(pk1, sk1)
to (pkN , skN ).

• Θb generatesN symmetric keysk1 to kN .

• Θc generatesN pairs of signature keys(sik1, vk1) to
(sikN , vkN ).

• Θd generates a nonceNH , a keyk as long as a chal-
lenge bitb.

F is also split in four parts:

• Fa corresponds to the oracles usingθa as inN -PAT-
IND-CCA except that patterns can also ask for sym-
metric encryption, symmetric keys, signature of a mes-
sage, signature keys, hashing of a message and nonce
NH . Fa depends onθa, θb, θc andθd.

• Fb corresponds to oracles usingθb as inN -PAT-SYM-
CCA, patterns are also extended but cannot include
asymmetric keys fromθa. Fb depends onθb, θc and
θd.

• Fc corresponds to oracles usingθc as inN -UNF, Fc

depends only onθc.

• Fd corresponds to oracles usingθd as in HASH,Fd

depends only onθc.

Finally V is also a disjunction of five parts:

• VIND answers true if its argument if the bitb in Θd.

• VUNF−SY M answers true if it receives a symmetric
encryption not forged byFb.

• VUNF−SIGN answers true if it receives a signature not
forged byFc.

• VUNF−HASH answers true if it receives a pairh, pat
where h = H(k, v(pat, NH) and h has not been
forged usingFd.

• VCF−HASH answers true if it receives a pair of distinct
bit-stringsbs0, bs1 that have the same hash.

Proposition 4.3 If an asymmetric encryption schemeAE
is IND-CCA, a symmetric encryption schemeSE is SYM-
CCA, a signature schemeSS is UNF and a hashing algo-
rithm H is HASH, then the composition(AE ,SE ,SS,H)
is N -PASSH-CCA.
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For space reason, we only present here the first step
of the proof, the following steps are similar. LetΘ1 be
(Θa, Θb) andΘ2 be (Θc, Θd). In the same way,F1 (resp.
F2) can be used to accessFa andFb (resp.Fc andFd). V1

is VUNF−SY M andV2 is the disjunction ofVUNF−SIGN ,
VUNF−HASH , VCF−HASH and VIND. H is defined as
above for IND-CCA or SIG-CCA andG is also defined as
above for encryption, decryption (asymmetric and symmet-
ric keys) and public key.F1, F2, V1 andV2 depend on the
right parameters hence we define a valid partition ofγ. The
reduction theorem gives that for any PRTMA, there exist
three PRTMB,Ao andA1 such that:

|Adv
γ
A(η)| ≤ 2.|Adv

γ1

B (η)|+ |Adv
γ2

Ao(η)|+ |Adv
γ3

A1(η)|

Criteriaγ1, γ2 andγ3 can easily be partitioned in a similar
way to get the conclusion.

4.4 Unbounded Number of Challenges

We want to consider the case where the number of chal-
lenges is not bounded any more like inN -IND-CCA where
onlyN keys are generated for anyη. For that purpose, crite-
ria are extended to a polynomial number of challenges. For
example, ifP is a polynomial, then theP -IND-CCA crite-
rion usesP (η) keys. The objective here is to generalize the
previous results to this case.

Proposition 4.4 Let P and Q be two polynomials from
�

[X ]. Let D be a PRTM that given an integeri returns
Ci, a PRTM which execution takes less thanQ(η) steps.
If the execution ofD also takes less thanQ(η) steps, then
for any criterionγ, there exists a PRTMC which execution
takes less than2.Q(η) + P (η) steps such that for anyη:

Adv
γ
C(η) =

1

P (η)

P (η)
∑

i=1

Adv
γ
Ci

(η)

AdversaryC randomly chooses which PRTMCi it is going
to use and executes it.

Adversary C:
r←[1..P (η)]
Cr ← D/r
d←Cr/η
return d

This property allows us to consider the case of a poly-
nomial number of challenge (and also the case of an un-
bounded number of challenges as only a finite part of them
can be used). If the advantage of any PRTMA againstγP is
the sum of the advantages ofP (η) PRTM againstγ. Then if
each of the latest PRTM are bounded in time using a same
polynomialQ, the advantage ofA is also equal (modulo a
division by P (η)) to the advantage of a PRTM againstγ.

Hence, if the considered scheme is secure againstγ, it is
also secure againstγP .

This method applies on all the previous applications of
our reduction theorems. Hence, we have:

Proposition 4.5 If an encryption scheme is secure against
IND-CCA, then it is secure againstP -IND-CCA for any
polynomialP .

If a symmetric encryption scheme is secure against SYM-
CCA/IND and SYM-CCA/UNF, then it is secure againstP -
PAT-SYM-CCA for any polynomialP .

If an asymmetric encryption schemeAE is IND-CCA, a
symmetric encryption schemeSE is SYM-CCA, a signature
schemeSS is UNF and a hashing algorithmH is HASH,
then the composition(AE ,SE ,SS,H) is P -PASSH-CCA
for any polynomialP .

5 Dolev-Yao is a Safe Abstraction

In the following, we use the classical definitions recalled
in [22] for protocols (usually denoted byΠ) and the adver-
sary model.

The main result of this section is that under some condi-
tions the computational adversary acts as a formal adversary
with overwhelming probability. This means that the com-
putational adversary, even with all the computing power of
Turing machines, cannot have a behavior not represented by
a formal adversary.

Hypothesis over Cryptographic Schemes

In order to be able to use the former results, the crypto-
graphic schemes used in the implementation of the protocol
should verify the following properties.

• The asymmetric encryption schemeAE used in the
protocol is IND-CCA.

• The symmetric encryption schemeSE is SYM-CCA
andPrRandSY M/UNF is negligible.

• The signature schemeSS is UNF andPrRandUNF

is negligible.

• The hashing algorithm H is HASH and
PrRandHASH/UNF and PrRandHASH/CF are
negligible.

Hypothesis over Protocols

There are also a few restrictions over protocolsΠ consid-
ered. These restrictions are defined in the formal world (as
they are easier to check there with automated tools).

• Π has to be executable.
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• In an asymmetric encoding usingpk, anything can ap-
pear except secret keys generated beforepk (and the
secret key related topk too).

• In a symmetric encoding usingk, forbidden messages
are any secret keys nor any symmetric keys generated
beforek.

• In a signature usingsik and in any hashed message,
there cannot be any secret keys, symmetric keys nor
any signature keys.

• The protocol has to be secure for its secret, symmet-
ric and signature keys: using Dolev-Yao model, these
keys related to an honest agent cannot be revealed to
an intruder (this assumption is reasonable as a proto-
col should not reveal any key).

• Each hash message in a session between honnest
agents contains a nonce that remains secret.

5.1 Non Dolev-Yao Traces

Definition 5.1 (Traces) A trace is a list of tuples
(m1, m2, Ag, s) called transitions wherem1 is a message
sent by the Adversary to agentAg for sessions andm2 is
the answer fromAg. Messagem1 andm2 can be “-” when
no message is received or sent. Assignmenttc←Ac/η, Πc

denotes that the tracetc is obtained by the computational
AdversaryAc confronted toΠc. We assume that only
messages accepted by an agent appear in the trace.

We define a parsing algorithmα that transforms any
computational trace related to a given protocol to a formal
trace. This algorithm is mainly defined as in [22] except that
it is extended for hashing: when a hash message is received,
either its content is known (by the honest participants) and
it can be tested or it will be known later. In the first case, the
formal version of the hash is placed in the trace, else a fresh
variableX takes its place in the trace. When the honest par-
ticipants know all the information present in this hash, it is
tested and the formal version replacesX everywhere in the
formal trace.

To illustrate our parsing algorithm, let us consider the
following example. The objective is to illustrate how some
information learned at the end of the trace can be used to
modify the beginning of the trace. Our simple protocol is
defined by:

A→ B : h(NA)

A→ B : NA

Let us consider the computational trace in which the in-
truder sends the hashing of a nonceN to B and then sends

the nonceN itself to B. The parsing algorithm operates as
follows.

The first received message is a hash message, hence it is
impossible to obtain its content. This first message is added
in the trace as(X,−, B, s). When the second message is
received, the algorithm knows every information present
in the former hash message. Hence, it tests if the hash is
valid and as it is,X is replaced byh(X ′). The trace is
now h(X ′),−, B, s); (X ′,−, B, s). As the computational
trace is finished, the algorithm replaces every variables us-
ing fresh nonces. Hence the final formal trace is:

(

h(NI),−, B, s
)

;
(

NI ,−, B, s
)

Definition 5.2 (Non Dolev-Yao Traces)A formal tracetf
is said Non Dolev-Yao (NDY) if there exists a message
sent by the adversary which cannot be deduced from pre-
vious messages using Dolev-Yao’s deduction, this message
is called a NDY message. A computational tracetc is said
NDY if α(tc) is NDY or if there is a hash message that cor-
responds to hashing of two distinct messages.

5.2 Relating Computational and Formal Traces

In this section, we formulate the main theorem. It states
that if the condition given above are met, then the proba-
bility that a computational trace is NDY is negligible. A
less general version of this theorem was first given in [21]
but only for public key cryptography and protocols with
just one layer of encryption. It was then extended to proto-
cols involving emission of secret keys and signature in [22].
Here we give a more general version of this theorem that
combines the main cryptographic primitives: public key and
symmetric cryptography, digital signature and hashing.

Theorem 5.1 Let Π be a protocol verifying the conditions
given above. Then for any concrete AdversaryAc:

Pr
[

tc←Ac/η, Πc ; tc NDY
]

is negligible

Proof: The proof of this theorem is presented in ap-
pendix C.

Now, it is possible to relate formal and computational
properties LetPc denote a property in the computational
world represented by a predicate over computational traces.
Hence, a protocolΠ verifiesPc (denoted byΠ |=c Pc) iff
for any AdversaryAc,

Pr
[

tc ← Ac/η, Πc ; ¬Pc(tc)
]

is negligible

Let Pf denote a property in the formal world represented
by a predicate over formal traces. Hence, a protocolΠ ver-
ifiesPf (denoted byΠ |=f Pf ) iff any trace produced by a
Dolev-Yao adversary againstΠ verifiesPf .

There is an intuitive relation between formal and com-
putational properties which is expressed in the following
proposition: proving formallyPf allows us to deducePc.
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Proposition 5.1 Let Pf andPc be a formal and a compu-
tational property such that

∀tc, ∀tf ,
(

Pf (tf ) ∧ α(tc) = tf
)

⇒ Pc(tc)

If the conditions given above still hold, then

Π |=f Pf ⇒ Π |=c Pc

This proposition states that if the formal property correctly
under-approximates the computational property then the
formal abstraction is correct. It has been applied to mutual
authentification in [21] in which there is also a longer dis-
cussion about formal/computational properties. We applied
it to secrecy as a trace property in [22]. Another version of
secrecy (given as the probability to get any information on
the secret) appears in [13].

6 Extending the Dolev-Yao Model

The objective of this section is to weaken the perfect
cryptography hypothesis. This is first done in the formal
model by adding a new rule to possible deductions. Then in
the computational model, the classical IND-CCA criterion
has to be modified. Hence, a soundness theorem can show
that the extended Dolev-Yao model is still a safe abstraction
of the computational model if we suppose that the encryp-
tion scheme verifies the modified IND-CCA property.

To enhance the intruder capacity in both models, let us
consider a pair of functions:δf takes a message as argument
and outputs another message andδc uses a string of bits to
produce another string of bits. Furthermore, these two func-
tions have to be related: they must modify their arguments
in the same way.

Definition 6.1 (DY-weakening) A DY-weakening is a pair
of function(δf , δc) such that:

α(δc(s)) = δf (α(s))

Whereα is the parsing algorithm (we suppose that in the
two occurrences of this algorithm, the same names are as-
sociated to the same nonces exactly). We also ask that given
a strings, the setS′ =

{

δn
c (s), n > 0

}

can be computed in
polynomial time.

This last hypothesis is useful when defining the computa-
tional criterion.

To illustrate this definition, we give a classical example:
Cipher Block Chaining. CBC allow the intruder to make
some deduction using a property verified on some block en-
cryption schemes.

Example 6.1 (Cipher Block Chaining) CBC is a DY-
weakening that allows the intruder to deduce from an en-
coding of messagem the encoding of a prefix ofm. More

formally,

δf ({〈m, n〉}pk) = {m}pk

δc(E(s.s
′, pk)) = E(s, pk)

It is easy to verify that(δf , δc) constitutes a correct DY-
weakening. Proof of the existence of aδc-IND-CCA encryp-
tion scheme for CBC is given in appendix D.

6.1 Extended Dolev-Yao Model

In the DY model, the deductibility relationT ` m is
defined by inference rules. We add a new inference that
represents that an intruder can deduce from a message its
image after applyingδf .

T ` m

T ` δf (m)

This defines an Extended Dolev-Yao model denoted by
EDY . Note that usually,δf is defined on a subset of the
set of messages. Ifδf cannot be applied to a messagem,
then our inference add no new deductions starting fromm.

Example 6.2 (Cipher Block Chaining) Usingδf given in
the previous example, we obtain the classical prefix rule:

T ` {〈m, n〉}pk

T ` {m}pk

6.2 Theδc-IND-CCA Criterion

If we consider an IND-CCA encryption scheme, then
EDY is still a safe abstraction of the computational model
as EDY is an extension of DY (formally,T `DY m implies
T `EDY m). However, EDY can still be a safe abstraction
when considering an encryption scheme that is not IND-
CCA. The encryption scheme has to be secure against a new
criterion that usesδc, this criterion is calledδc-IND-CCA.

δc-IND-CCA is defined as a criterion(KG, Epk,Dsk)
similar to IND-CCA. The only difference is that in IND-
CCA the decryption oracle does not apply to strings pro-
duced by the encryption oracle (stored in a set of stringsS),
here it does not apply to strings that are inS′ =

{

δn
c (s), s ∈

S, n > 0
}

. As this set can be computed in polynomial time,
the decryption oracle can be achieved using a PRTM.

It is easy to extendδc-IND-CCA to N − δc-IND-CCA
and a trivial application of the reduction theorem gives the
following property:

Proposition 6.1 Let AE be an asymmetric encryption
scheme. Then for anyN ,AE is N − δc-IND-CCA iffAE is
δc-IND-CCA.
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6.3 Soundness Result

The definition of Non EDY (NEDY) traces is exactly
similar to the definition ofNDY traces as the parsing al-
gorithmα remains the same.

The main result is stated in the following theorem:

Theorem 6.1 Let Π be a protocol. LetAE be the encryp-
tion scheme used inΠc. If AE is δc-IND-CCA then for any
concrete AdversaryAc:
Pr

[

tc←Ac/η, Πc ; tc NEDY
]

is negligible.

The proof is close to the one of the previous soundness
theorem, an adversary against the protocol can be trans-
formed to an adversary against the encryption scheme as
soon as the trace is NEDY.

• Parsing is done as before except that messages inS′

cannot be decoded anymore. For that purpose, mes-
sage inS′ are stored as long as their formal equivalent
to allow their parsing. Hence, it is possible to simulate
the unfolding of the protocol.

• Messages that are NEDY are elements of the following
grammar wherem represents any message:

n ::= N |〈n, m〉|〈m, n〉|{n}pk

If n is a nonce, winning the challenge can be done as
before. If n is a pair, then one of its component is
NEDY. Finally, if n is an encoding{n′}pk then the
decryption oracle can be called to getn′, otherwise
n ∈ S′ but any message inS′ is accessible in the trace
and so is EDY.

Example 6.3 (Cipher Block Chaining) Verification of
protocols with CBC is possible when considering a
bounded number of sessions (but the problem is in general
NP-complete [10]). Thus, it is possible to verify a protocol
with this hypothesis in the formal world, if the protocol is
safe (regarding for example secret), then it is safe in the
computational world.

6.4 Extensions

Here, the weakening functions operate on mes-
sages/strings and produces a message/string. Although this
hypothesis makes the results easier to understand, it is quite
restrictive. This is why, we consider functionsδc andδf

which work on and produce sets of messages/strings. A
similar soundness result can obtained in a straightforward
way.

Example 6.4 (Extended CBC)Let us consider an exten-
sion of CBC where the adversary is able to deduce a prefix

as before but also a suffix. This is encoded in the following
definition:

δf ({〈m, n〉}pk) =
{

{m}pk, {n}pk}

δc(E(s.s
′, pk)) =

{

E(s, pk), E(s′, pk)
}

The EDY is modified with the two following inferences:

T ` {〈m, n〉}pk

T ` {m}pk

T ` {〈m, n〉}pk

T ` {n}pk

Proof of the existence of aδc-IND-CCA encryption
scheme for extended CBC is given in appendix E.

Conclusion

The main contributions of this paper are the following:

• A general definition of correctness of cryptographic
primitives that generalizes known criteria such as IND-
CPA and IND-CCA and allows to combine asymmet-
ric, symmetric, and signature schemes as well as hash
functions.

• A formal definition of a correctness criterion for hash
functions.

• A theorem (Theorem 3.2) that allows to reduce the
proof of correctness of a combination of cryptographic
primitives to the correctness of each primitive individ-
ually.

• Based on this theorem, a proof of correctness of
the Dolev-Yao model for protocols that may combine
asymmetric, symmetric, and signature schemes as well
as hash functions. The proof of our theorem makes
some restrictions on the protocols that are in practice
easily met. To our knowledge, this is the first time that
correctness of Dolev-Yao is proved with such a com-
bination of primitives.

As future work, it would be of interest to investigate
whether correctness of Dolev-Yao can be proved under
weaker assumptions on the cryptographic primitives. More-
over, it would be significant to extend this result to other
security properties.
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A Existence of a N-PAT-SYM-CCA Algo-
rithm

To show that our new criterion makes sens, we prove
the existence of a symmetric encryption scheme that isN -
PAT-SYM-CCA. However, the algorithm built here is very
inefficient as it uses an underlying asymmetric encryption
scheme. LetAE = (KG1, E1,D1) be an asymmetric en-
cryption scheme that is IND-CCA. LetSS = (KG2,S,V)
be a signature scheme secure against UNF. Then the sym-
metric encryption schemeSE = (KG, E ,D) is defined by:
KG generates a pair of asymmetric keys(pk, sk) using
KG1 as long as a pair of signature keys(sik, vk); the en-
cryption algorithm is defined byE(m, (pk, sk, sik, vk)) =
m′.S(m′, sik) wherem′ = E1(m, pk); and the decryption
algorithm verifies that the signature part is valid and de-
codes the signed messagem′.

To prove thatSE is N -PAT-SYM-CCA, it is sufficient
to prove thatSE is PAT-SYM-CCA/IND and PAT-SYM-
CCA/UNF (this is proven by proposition 4.2).

Let A be an adversary against PAT-SYM-CCA/UNF,
then it is easy to construct an adversaryA′ fromA working
against IND-UNF that has the same advantage.

Let A be an adversary against PAT-SYM-CCA/IND,
then we build an adversaryA′ from A working against
IND-CCA such that:A′ is still polynomial;A′ andA have
the same advantage.A′ has to generate a signature key pair
and executesA. It uses IND-CCA oracles to simulate its
encryption oracle. Note that for the decryption oracle, two
cases may occur:m′ has not been produced by the IND-
CCA encryption oracle, thus the IND-CCA decryption or-
acle can be used;m′ has been produced by the IND-CCA
encryption oracle but the signature part is fresh, then the
former adversary (against UNF) can be modified to have
the related advantage.

B HASH/IND and HASH/CF imply HASH

Let H be a hash function that is secure against
HASH/IND and HASH/CF. Let us suppose that there ex-
ists an adversaryA against HASH/UNF which advantage
is not negligible. Then we build the adversaryB against
HASH/IND which runA (A uses directly oracles given to
B).

Adversary B:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
bs′ = Hb(pat, pat′)
if bs = bs′ return 0
elseb′ ← {0, 1}

return b′

The advantage ofB against IND is detailed thereafter.

AdvIND
B = pr(B → 0 in ExpIND

B |b = 0)

−pr(B → 0 in ExpIND
B |b = 1)

= pr(ExpUNF
A = t) +

1

2
.pr(ExpUNF

A = f)

−pr(ExpUNF
A′ = t)−

1

2
.pr(ExpUNF

A′ = f)

WhereA′ is an adversary againstUNF defined by:

AdversaryA′:
pat, bs←A
N ′ ← {0, 1}η

pat′ ← 〈[], N ′〉
return pat′, bs

We obtain

2.Adv
IND
B = Adv

UNF
A −Adv

UNF
A′

Hence, asAdvIND
B is negligible andAdvUNF

A is not,A′

has a non negligible advantage against HASH/UNF.
Finally, we build fromA an adversaryC against collision

free which advantage is related to the advantage ofA′. For
that purpose,C generates a nonceNH in order to simulate
with a functionρ the hash oracle used byA.

Adversary C:
NH ← {0, 1}η

pat, bs←A/k, ρ
N ′ ← {0, 1}η

N ′′ ← {0, 1}η

pat′ ← 〈[], N ′〉
pat′′ ← 〈[], N ′′〉
return pat′[NH ], pat′′[NH ]

Then, asPrRandCF is negligible, the probability thatC
finds a collision is negligible. Moreover, this probabilityis
greater than the probability thatC finds a collision and the
hash ofpat′[NH ] is equal to thebs produced byA. In the
following, events likeH(pat′[NH ]) = bs means: after the
random execution ofExpUNF

A′ , we obtainpat′, NH andbs
such that this equality holds. To deduce the second inequal-
ity, we use lemma B.1 that is given later in this appendix.

pr(ExpNC
C = t) ≥ pr

(

H(pat′[NH ]) = bs = H(pat′′[NH ])
)

≥ pr(H(pat′[NH ]) = bs)

.pr(H(pat′′[NH ]) = bs)

≥
(

pr(ExpUNF
A′ = t)

)2

There is a contradiction asA′ has a non negligible ad-
vantage andPrRandUNF is negligible. HenceH verifies
HASH/UNF.
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Lemma B.1 Let X , Y andY ′ be three random variables.
X is chosen randomly in a finite setSX , Y andY ′ are cho-
sen randomly in the finite setSY . LetE be a predicate over
SX × SY , then

pr
(

E(X, Y ) ∧ E(X, Y ′
)

≥
[

pr
(

E(X, Y )
)]2

To prove this lemma, letp be the left probability. Hence,

p = pr
(

E(X, Y ) ∧ E(X, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y ) ∧E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
(

E(x, Y )
)

.pr
(

E(x, Y ′)
)

=
1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]2

Then, using lemma B.2, we get:

p ≥
1

|SX |2

∑

x,x′∈SX

pr
[(

E(x, Y )
)]

.pr
[(

E(x′, Y )
)]

≥
( 1

|SX |

∑

x∈SX

pr
[(

E(x, Y )
)]

)2

≥
(

pr
[(

E(X, Y )
)]

)2

Lemma B.2 Let (ai)1≤i≤n ben real numbers. Then

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

By developing(ai − aj)
2 ≥ 0, we obtain

a2
i + a2

j ≥ 2.ai.aj

∑

1≤i,j≤n

a2
i + a2

j ≥ 2.
∑

1≤i,j≤n

ai.aj

2.n.
∑

1≤i≤n

a2
i ≥ 2.

∑

1≤i,j≤n

ai.aj

∑

1≤i≤n

a2
i ≥

1

n

∑

1≤i,j≤n

ai.aj

C Proof of Theorem 5.1

The intuition is that if an adversaryAc can produce a
NDY trace, then it is able to break one of the cryptographic
schemes. LetQ be the polynomial bounding the execution
of Ac. We build aQ-PASSH-CCA (criterion denoted byγ)
adversaryB such that ifp is the probability:

p = Pr
[

tc←Ac/η, Πc ; tc NDY
]

We have the following majoration ofp.

p ≤
(

2.Q(η) + 7
)

.Adv
γ
B(η) + f(η) (1)

Wheref is a negligible function. Using proposition 4.3, it
is possible to deduce that the probability forAc to produce
a non Dolev-Yao trace is negligible.

Our Q-PASSH-CCA adversaryB usesAc as a subrou-
tine and deduces a string solving its challenge (for example
the challenge bitb or a new signature) as soon asAc/η, Πc

produces a NDY trace. Using its own oracles,B simu-
lates the protocol oracleΠc (used byAc) and produces the
pseudo formal trace in order to find a NDY message.

During its initialization, the adversaryB randomly
chooses an integeri between0 andQ(η). If i 6= 0, then
the ith nonce generated byB (denoted byN ) is trapped.
In order to answer queries fromAc, B randomly gener-
ates identities for honest agents, nonces created by honest
agents exceptN . B uses its challenge keys for their differ-
ent keys. For nonceN , B generates two noncesN0 andN1,
B uses its oracles in such a way that messages involvingN
usesN0.N

H (resp.N1.N
H ) when the challenge bitb is 0

(resp.1). NH is the challenge nonce related to hashing in
PASSH-CCA (asB does not know ifN0 or N1 is used, this
is required in order to compute the hashing of a message
involving N using an oracle).

WhenAc waits for a messagem, B has to forgem =
〈m1, ..., mn〉 where messagesmi are not pairs of messages.
ThenB generates eachmi using its oracles (e.g. ifmi is an
encoding usingpk, B uses the left-right encryption oracle
related topk). If N appears ”under” a left-right oracle, then
N0.[N

H ] (resp.N1.[N
H ]) is used for the left (resp. right)

argument of the oracle. IfN appears anywhere else it is im-
possible forB to continue the protocol simulation. HenceB
aborts its execution. Note thatB cannot be asked to reveal a
secret key, a signature key or a symmetric key in a message
mi (such keys have to be protected by an encryption layer
and so a left-right oracle is used with a pattern asking for
the key).

WhenAc emits a messagem, m is parsed according
to the protocol specification (as described previously for
pseudo formal trace). During parsing, ifB has to decrypt a
message then either this message has been produced using
a left-right encryption oracle and there is no new informa-
tion inside orB can use its decryption oracles (B only has
to decrypt messages encrypted using keys which inverse is
known by an honest agent). To achieve parsing,B has to be
able to test whether a string is a secret/signature/symmetric
key, this can easily be achieved using oracles.

Eventually,Ac stops. ThenAc checks that there are no
collisions between two messages parsed as hash. If this is
not the case,B wins against HASH/CF, this event is denoted
by E0. Else if the trace is NDY thenB knows the first NDY
messagem and a recursive procedure is applied onm in

15



order to win the challenge.

1. If m is N0.N
H or N1.N

H , B deduces the challenge
bit b.

2. If m is another nonce,B aborts.

3. If m is a secret key or a symmetric,B also deducesb.

4. If m is a signature key,B can forge a new signature
and thus wins its challenge.

5. If m is a pair〈m1, m2〉, thenm1 or m2 is NDY and
this procedure is applied recursively.

6. If m is an asymmetric encryption{m′}pk, as m is
NDY it has not been produced by an oracle (otherwise,
m would have circulated not protected). Hence using
the decryption oracle,B obtainsm′ which is also NDY.

7. If m is a signature or a symmetric encoding,m is NDY
thus it has not been produced by an oracle andB has
forged a new signature or a new symmetric encoding.

8. If m is a hashingh(m′), thenm′ has to be known (to
testm during the protocol execution). Ifm′ contains
N , thenB can deduce a hollow patternpat such that
H(k, v(pat, NH)) = h. HenceB wins. Else,B aborts.

9. If m is a hashingh(m′) andm′ does not containN ,
thenB aborts.

WheneverB decides to abort, it answers a random bit for
the challenge bitb.

If Ac produces a NDY trace, then we consider the differ-
ent answers that the former procedure can have produced.
Ei denotes the event where the procedure stopped in theith

case of the list. Hence,

p =

9
∑

i=0

Pr(Ei)

As nonceN is chosen randomly,Pr(E2) andPr(E9) are
lower than respectivelyQ(η).P r(E1) and Q(η).P r(E8).
Moreover, eventsEi for i different from2, 5 and9 imply
thatB wins its challenge without aborting. Let us callB
(resp.¬B) the event whereB does not abort (resp. aborts).
Hence,

p ≤
(

2.Q(η) + 7
)

.P r(B)

As PrRand is negligible for criteria related to UNF, there
exists a negligible functiong such that:

Adv
γ
B(η) = 2.P r(Bwins)− 1− g(η)

= 2.P r(B) + Pr(¬B) − 1− g(η)

= Pr(B) − g(η)

Hence, it is easy to obtain formula 1 and the awaited result.

Nonces are Probably Different

We consider that anytime a computational adversary picks
up some nonces, they are different one from another. The
adversary can only get a numberm of nonces that is poly-
nomial inη and we suppose that the numbern of possible
nonces is exponential inη (som < n). Let P be the proba-
bility that the adversary gets two times the same nonces.

1− P =
n

n

n− 1

n
...

n− (m− 1)

n

Thus, we have the following inequalities:

0 ≤ P ≤ 1−
(

1−
m− 1

n

)m

Proposition C.1 For anyx ∈ [0, 1[ anda ≥ 1,

(

1− x
)a
≥ 1− x.a

Proof: Consider the functionf(x) =
(

1 − x
)a
− 1 + x.a.

Derive it twice to get the result.
Applying the proposition, we get:

0 ≤ P ≤
m.(m− 1)

n

As m is polynomial andn is exponential inη, P is negli-
gible in η. When considering an adversary that has a non-
negligible advantage against something, it still has its ad-
vantage if we consider only executions where nonces are
distinct.

D Existence of a CBC-IND-CCA encryption
scheme

Let bs be a positive integer representing a block size.
Let us consider an IND-CCA encryption schemeAE =
(KG, E ,D) and a SYM-CCA encryption schemeAE ′ =
(KG′, E ′,D′). Then, AE ′′ is the encryption scheme
(KG, E ′′,D′′) whereE ′′(s, pk) is defined as:

E ′′(s, pk) = E(s1 ·k1, pk) · E ′(s2 ·k2, k1) · ... · E(sn, kn−1)

whens is composed by blockss1 to sn of sizebs andki are
freshly generated symmetric keys. The decoding algorithm
allows to retrieve the original message by applying a similar
modification.

This encryption scheme is not IND-CCA but isδc-IND-
CCA. To prove that, let us assume that it is not the case.
Then there exists an adversaryA against this criterion. We
useA to breakQ-PAT-SYM-IND-CCA: for that purpose,A
is executed and its call to oracles are simulated using IND-
CCA oracles. Then, ifA asks for the encryption ofs1 · ... ·
sn, the new adversary asks for encryption ofs1, creation
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of a fresh challenge symmetric key SYM-CCA and so on.
WhenA calls its decryption oracle, the argumentm is not
the prefix of any output of the new encryption oracle. Let
us suppose thatm = m1 · ... ·mn. Then ifm1 has not been
produced by the left-right asymmetric encryption oracle, it
is possible to decrypt the whole message. Otherwise, leti
be the minimal index such thatmi has not been produced by
an encryption oracle. Then eithermi allows to win SYM-
CCA/UNF or them was not a correct encryption. Finally,
if any mi has been produced by an encryption oracle, then
m is a prefix of the output of the new encryption oracle.

E Existence of an eCBC-IND-CCA encryp-
tion scheme

Let bs be a positive integer representing a block
size. Let us consider an IND-CCA encryption scheme
AE = (KG, E ,D). Then,AE ′ is the encryption scheme
(KG, E ′,D′) whereE ′(s, pk) is defined as:

E ′(s, pk) = E(s1, pk) · E(s2, pk) · ... · E(sn, pk)

when s is composed by blockss1 to sn of size bs. The
decoding algorithm allows to retrieve the original message
by applying a similar modification.

Then,AE ′ is not an IND-CCA encryption scheme but is
a δc-IND-CCA encryption scheme. It is not IND-CCA as
an adversary can submit message02.bs and message12.bs

to the encryption oracle. The oracle outputs{b2.bs}pk =
{bbs}pk.{bbs}pk and so the adversary submitsbbs to the de-
cryption oracles (this is possible as this message has not
been produced by the encryption oracle) and obtains the
value of bitb. The restriction made on the decryption or-
acle aims at forbidding such attacks.

If AE ′ is not aδc-IND-CCA encryption scheme, then
there exists an adversaryA against the criterion withδc.
As usual, this adversary can be used to create an adversary
against IND-CCA for algorithmAE : oracles related toA
are simulated usingAE (this is trivial for encryption and
possible for decryption because of the form ofδc).
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