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Abstract

This paper considers the Diffie-Hellman problem (DHP) over the matrix group GLn

over finite fields and shows that for matrices A and exponents k, l satisfying certain
conditions called the modulus conditions, the problem can be solved without solving
the discrete logarithm problem (DLP) involving only polynomial number of operations
in n. A specialization of this result to DHP on F∗pm shows that there exists a class of
session triples of a DH scheme for which the DHP can be solved in time polynomial in
m by operations over Fp without solving the DLP. The private keys of such triples are
termed weak. A sample of weak keys is computed and it is observed that their number
is not too insignificant to be ignored. Next a specialization of the analysis is carried out
for pairing based DH schemes on supersingular elliptic curves and it is shown that for
an analogous class of session triples, the DHP can be solved without solving the DLP in
polynomial number of operations in the embedding degree. A list of weak parameters
of the DH scheme is developed on the basis of this analysis.

Key Words : Discrete logarithms, General linear group, Extension fields, Elliptic curves,
Diffie Hellman scheme.

1 Introduction

A key exchange scheme over public channels based on discrete logarithms over finite cyclic
groups was proposed by Diffie and Hellman in [1]. Known as the Diffie Hellman (DH)
scheme, this scheme was a major advance in cryptography since it resolved both, the problem
of key agreement by two users over a public channel and that of authentication. For the
DH scheme to be secure the complexity of computation of the discrete logarithms over
the group concerned should necessarily be high. On nonzero elements of finite fields F∗pm

best known algorithms for computation of the discrete logarithm are of sub-exponential
time complexity while on a generic class of cyclic subgroups of order n of elliptic curves
these are of the order O(

√
πn/2) group operations [14]. Apart from the case of discrete

logarithms over supersingular elliptic curves no sub-exponential time algorithm is known
for their computations on general elliptic curves. Elliptic curves with cyclic subgroups of
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very large orders can be constructed on finite fields by well known methods. These groups
are thus found useful for practical implementation of the DH scheme.

There is however the (as yet unfalsified) DH conjecture (or the DH assumption) which
is also of equal importance in providing security to the DH scheme. According to this
conjecture, the shared key in the DH scheme can be computed by a passive adversary only
by solving the (hard) discrete logarithm problem (or a problem of equivalent complexity).
Such should be the case for a generic class of parameters of the DH session over the concerned
group for the scheme to be secure. Although the conjecture remains unresolved, it is widely
believed to be true. It is nevertheless important to identify exceptions to the DH conjecture
in order to make the DH scheme truly secure.

The purpose of this paper is to show existence of special cases of session parameters
which are exceptions to the Diffie Hellman assumption and thus should be excluded from
the DH schemes over groups such as the GLn over finite fields, F∗pm and the supersingular
elliptic curves. We show that in these special cases of session parameters, the shared key
can be computed in polynomial time proportional to the matrix size (n in case of the matrix
group GLn or m in the case of F∗pm) and further this computation can be performed without
solving the discrete logarithms. For this reason we call private keys associated with such
parameters, weak keys of the DH scheme over the respective groups. A generalization of
such weak keys is then proposed for the DH scheme over elliptic curves E over Fp and it
is shown that the image of the shared key in an extension field Fpm provided by a paring
on the curve can be computed in time polynomial in m given the public data in Fpm . Such
weak keys are of significance to some of the paring based schemes on supersingular elliptic
curves [15, 16, 18]. Currently a complete characterization of these weak keys is not known.
However a sample of computations shown in this paper reveals that the density of such
weak keys depends on several parameters and can be sometimes significant among the set
of all permissible keys. This signifies the cryptographic relevance of this class of weak keys
in practical DH schemes wherein more constraints need to be specified in the selection of
private keys in order to exclude the weak keys.

1.1 The Diffie Hellman problem

Consider a finite group G and let < a >⊂ G be a cyclic subgroup. In the DH scheme two
users select positive integers k, l called private keys modulo the order n of a independently.
Then declaring the public keys b = ak, c = al results in their sharing the element s =
bl = ck = akl called the shared key. The Diffie Hellman Problem (DHP) is to determine
the shared key s from the knowledge of the triple (a, b, c) called the public data of the DH
session. We call the triple (a, k, l) the session triple. The problem of computing k (or l)
given b (or c) is the Discrete Logarithm Problem (DLP). This describes in brief our notation
for the DH key exchange scheme and the two problems DHP and the DLP.

1.2 The Diffie Hellman conjecture

The DH conjecture (or the DH assumption on the key exchange scheme) is often found
stated independent of computational complexities. It is by and large well known that the
DHP is at least as difficult to solve as the DLP [9, 13]. We consider below a statement
using above terminology
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Conjecture 1 (Diffie Hellman conjecture). Let (a, k, l) be a session triple of a DH key
exchange scheme with public data (a, b, c). Then the DHP cannot be solved (or the shared
key s cannot be computed) without solving the DLP (or computing one of k or l).

From a computational point of view the DH conjecture amounts to stating that the DHP
cannot be solved in time complexity lower than that required for solving the associated
DLP. In this paper we establish existence of a special class of session triples (a, k, l) and
consequently the private keys k, l called weak keys for which the DHP can be solved in
polynomial time without solving the DLP in the groups GLn and F∗pm . We then show that
these results also lead to a polynomial time computation of the shared key of a DH session
over certain elliptic curves in a suitable extension of the field of definition. Hence such weak
keys can be considered as exceptions to the DH conjecture and must be avoided in practice.

There are other well known statements of the DH conjecture and results regarding the
relationship between the two problems DHP and the DLP. For instance, it is shown in [2]
that whenever the DHP is solvable in sub-exponential time complexity so is the DLP. This
supports the equivalence of the two problems. It is however not established whether the
same implication is true with respect to the polynomial time complexity. That the two
problem DLP and DHP are computationally equivalent for finite fields and finite groups
satisfying certain conditions is also well known [3, 4].

1.3 Importance of solving the DHP over rings

One striking feature of the solution of the DHP in special cases over GLn(K) presented
in this paper is that although the powers Ak of A involved are in the group GLn(K),
the algorithm used for solving the DHP makes use of the embedding GLn(K) ⊂ Mn(K)
where Mn(K) is the algebra of n × n matrices over K. The DLP and DHP are originally
posed without such an identification of the cyclic subgroup of G into a cyclic subgroup
of GLn(K) for some K. Hence it is worthwhile to determine solutions of these problems
over rings and examine whether there exist special cases defying the DH assumption after
utilizing the additional structure of an algebra. In other words, these problems should
be analyzed over cyclic subgroups of the group of units of a ring. This suggests that
the the cryptanalysis of the DH scheme over different groups need be carried out using
representations of these groups. Similar ideas have been proposed as “isomorphism attacks”
on elliptic curve cryptography [14].

The generalization of the DLP over matrices was proposed in [8]. In [6, 7] it was shown
that no extra security was gained in the matrix case since the DLP for matrices could be
translated in polynomial time to a DLP over an extension field of K. In this paper we
show that the DH exchange is fatally insecure for a special class of pairs of exponents owing
to the fact that the DHP in these special cases can be solved in time polynomial in the
matrix size. We then adapt the solution technique of the matrix case to finite fields Fpm

and derive analogous special cases leading to weak keys. We again show how for these weak
keys the DHP gets resolved in polynomial time. For the DH schemes based on pairings over
supersingular elliptic curves E/Fp we show that this method allows computation of the
image of the shared key in an extension field Fpm in time polynomial in m for an analogous
class of session triples. Such an image of the shared key of a DH scheme on elliptic curves
is utilized in multiparty and identity based key exchange schemes [15, 16, 18]. Hence the
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security of these schemes is compromised if the session triples fall into this class of special
triples since the associated DHP has an inexpensive solution. Further analysis of these
schemes and computation of weak keys of the triparty DH scheme shall be a topic of future
research.

2 Modulus conditions and solution of the DHP in matrix
case

In this section we develop some of the preliminary results over the matrix case. We shall
denote the general linear group and the algebra of n × n matrices over a finite field K as
GLn(K) and Mn(K) or simply as GLn and Mn respectively, whenever the field is known
from the context. The minimal polynomial of a matrix A shall be denoted as h(A, x). This
is a monic polynomial f(x) in K[x] of least degree such that f(A) = 0. For completeness
we pose the DHP below in the notation of the DH scheme introduced in the beginning.

Problem 1 (DHP over GLn). A matrix A in GLn and matrices B = Ak and C = Al are
given for some unknown positive integers k, l < ordA. Determine the matrix Akl = Bl =
Ck. The matrix Akl is the shared key of the DH key exchange session. The triple (A, k, l)
is called the session triple while (A,B, C) the public data of the DHP

The DLP is that of solving for k from B (or that of l from C) and is analyzed in
[7]. Clearly, solution of the DLP leads to the solution of the DHP above. We propose a
special class of session triples (A, k, l) for which the DHP can be solved by an inexpensive
computation and without solving the logarithms. Denote

hc(x) = lcm (h(A, x), h(C, x))
hb(x) = lcm (h(A, x), h(B, x))

Proposition 1. There exist polynomials f(x), g(x) with deg f < deg hc, deg g < deg hb

such that

B = f(A) (1)
Ck = f(C) (2)

and

C = g(A) (3)
Bl = g(B) (4)

Conversely if any polynomials f , g satisfy above conditions then f(x) = xk mod hc(x) and
g(x) = xl mod hb(x).

Proof. Let f(x) = xk mod hc(x) and g(x) = xl mod hb(x). Then these polynomials satisfy
the above properties. Conversely, if B = f(A) and Ck = f(C) (respectively C = g(A)
and Bl = g(B)) then xk − f(x) (resp. xl − g(x)) is an annihilating polynomial of both
A and C and hence is divisible by hc(x). Clearly, since deg f < deg hc it follows that
f(x) = xk mod hc(x). Case for g can be proved similarly.
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Remark 1. Above proposition gives existence of polynomials f , g in K[x] which can express
the shared key S = Bl = Ck in terms of the public data of any session triple (A, k, l).

An adversary of a DH key exchange session does not have the private keys k, l and
hence cannot compute f , g above as residues of xk, xl. However the adversary can compute
f , g from the equations (1), (3) respectively. These are linear equations in coefficients of
f , g whose solutions are not necessarily unique. A special class of session triples (A, k, l)
for which these solutions are unique facilitate solution of the DHP directly. These special
triples are defined by

Definition 1 (The modulus conditions). A session triple (A, k, l) with A in GLn(K)
and is said to satisfy the modulus condition C1 if

xk mod h(A, x) = xk mod hc(x)

while it is said satisfy modulus condition C2 if

xl mod h(A, x) = xl mod hb(x)

Theorem 1. The following statements hold

1. There exists a polynomial f(x) with deg f(x) < deg h(A, x) which satisfies (1) and
(2) iff (A, k, l) satisfies the modulus condition C1. Such a polynomial is unique.

2. There exists a polynomial g(x) with deg g(x) < deg h(A, x) which satisfies (3) and (4)
iff (A, k, l) satisfies the modulus condition C2. Such a polynomial is unique.

Proof. Only the first item is proved as the second item follows by similar reasoning. Let
(A, k, l) satisfy condition C1 and choose f(x) = xk mod h(A, x) = xk mod hc(x). Then f
satisfies the required conditions. This proves sufficiency.

Conversely, let f be a polynomial of deg f < deg h(A, x) which satisfies B = f(A) and
Ck = f(C). Then xk − f(x) is annihilating for both A and C, hence divisible by their
minimal polynomials. Hence xk − f(x) is also divisible by hc(x). Hence f is the unique
polynomial which equals xk mod h(A, x) = xk mod hc(x) since deg f(x) < deg h(A, x) ≤
deg hc(x). This proves the necessity.

Remark 2. Note that the equation B = f(A) (resp. C = g(A)) always has a unique
solution f (resp. g) of degree less than that of h(A, x) given any public data (A,B, C) of
a DH session. These equations are linear systems over the field K and have fixed size n2

equations in d unknowns where d is the degree of h(A, x) for any k (resp. l). The shared
key Ck (resp. Bl) is then obtained as f(C) (resp. g(B)) for triples (A, k, l) satisfying the
modulus condition C1 (resp. C2) .

The modulus conditions also hold under following restricted conditions which is stated
for completeness.

Proposition 2. 1. The triple (A, k, l) satisfies the modulus condition C1 if xk mod
h(A, x) = xk mod h(C, x)
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2. The triple (A, k, l) satisfies the modulus condition C2 if xl mod h(A, x) = xl mod
h(B, x)

Proof. If (A, k, l) satisfies condition of the first item then there exist polynomials q(A, x),
q(C, x) such that for f = xk mod h(A, x), xk − f = q(A, x)h(A, x) = q(C, x)h(C, x). Hence
xk− f is a multiple of both h(A, x) and h(C, x) hence there exists a polynomial q such that
xk−f = qhc. Since deg f < deg h(A, x) ≤ deg hc it follows that f = xk mod hc. The second
condition can be proved similarly.

It can be shown that the above conditions are equivalent to C1, C2 respectively when
the field K has zero characteristics while in finite fields they are in general strictly sufficient.
We omit further discussion of this fact.

2.1 Solution of the DHP without solving the DLP

We now show that for triples (A, k, l) satisfying the modulus conditions C1 or C2 the
computation of the shared key Akl by computing either f or g does not yield k or l. In the
following we present the analysis only with respect to the modulus condition C1. The other
case relating to condition C2 can be analyzed on identical lines.

Theorem 2. Let the triple (A, k, l) satisfy condition C1 and k ≥ deg h(A, x). Then com-
putation of f(x) from the equation B = f(A) such that deg f(x) < deg h(A, x), solves the
DHP with the shared key S = f(C) but does not yield either of k or l.

Proof. Clearly the equation B = f(A) does not involve l. Hence its solution is independent
of l. Next, since (A, k, l) satisfies C1, it follows from theorem 1 that S = Ck = f(C)
(thereby solving the DHP) and that there exist a unique polynomial q(x) such that

xk = q(x)h(A, x) + f(x)

Since q(x) is the quotient and f the reminder when xk is divided by h(A, x), it follows
that given the reminder f and divisor h(A, x), both the dividend xk and the quotient q(x)
are known simultaneously i.e. knowledge of k yields that of q(x) and conversely. Since
k ≥ deg h(A, x), f(x) 6= xk. Now as h(A, x) is the minimal polynomial of A, h(A,A) = 0.
The equation B = f(A) is thus identical to

Ak = q(A)h(A,A) + f(A)

Hence q(A) cannot be known from the knowledge of f as h(A,A) = 0. This implies solution
of f from the equation B = f(A) does not yield k.

In general there is no unique k for a given reminder f in the above equation. For, if k
and k′ > k both give same reminder f for quotients q, q′ then, xk′ − xk is divisible by h.
Hence assuming f nonzero, xk′−k − 1 is divisible by h. This shows that k′ = k + m ordh,
where ordh is the order of the polynomial h in K[x]. The following example shows two
such exponents. Consider the finite field F3. h(x) = x3 + x2 + 2x + 1, this polynomial has
order 26 equal to that of its companion matrix in GL3(F3). let f(x) = 2x2. Then for both
k = 15 and k = 41, xk − f(x) can be shown to be divisible by h(x).

This theorem shows that for triples (A, k, l) satisfying the modulus condition and with
k sufficiently large, it is possible to compute the shared key Akl without computing k or l.
In the next section we discuss such a computation in more detail.
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2.2 Polynomial time solution of the DHP

For session triples satisfying either of the modulus conditions C1, C2 it is shown above
that the DHP is solved by computing the polynomials f(x), g(x) respectively. Following
algorithm can be used to compute the shared key.

Algorithm 1. Input: Public data (A,B, C) of a DH session and the degree m of the
minimal polynomial h(A, x).

1. Compute f(x) with deg f < m from the equation B = f(A).

2. Compute g(x) with deg g < m from the equation C = g(A).

3. Compute S1 = f(C).

4. Compute S2 = g(B).

5. Output: Shared key S = S1 if (A, k, l) satisfies C1.

6. Output: Shared key S = S2 if (A, k, l) satisfies C2.

Note that computation of hc(x) respectively hb(x) is not required for computing S1, S2.
Computation of the degree m of h(A, x) is a one time operation in the task of solving the
DHP for the scheme in which the generator A is fixed. Moreover it is well known that
the degree of the minimal polynomial of a matrix over a field K can be computed in time
polynomial in the matrix size. (This is equivalent to checking linear independence of the
the matrices I, A, . . ., Aq−1 for q ≤ n over K in the algebra Kn×n where n is the matrix
size). It is also useful for users to have an algorithm for verifying whether the keys chosen
satisfy the modulus conditions. Such an algorithm is presented in the next section in the
case of fields.

Theorem 3. If the session triple (A, k, l) satisfies any one of the modulus conditions C1 or
C2, then given m = deg h(A, x) the DHP can be solved in number of operations in the field
K of entries of A which grows at most as a polynomial in n. However it is not clear how
much complex it is to solve the DLP for such triples.

Proof. Above algorithm shows that computation of polynomials f and g solves the DHP
when the triple (A, k, l) satisfies any one of the conditions C1, C2. Hence the theorem is
proved if it is shown that solutions of these polynomials can be computed in time polynomial
in n. The coefficients of polynomial f and g are the unique solutions of the linear systems
of equations B = f(A) and C = g(A) over the field K. These systems have fixed size, n2

equations in m unknowns. Since m ≤ n the number of operations required for solving these
equations in K by the Gaussian algorithm is at most 2n3.

Remark 3. Note that the theorem does not give an indication of how complex it is to solve
the DLP in the special cases of triples (A, k, l) satisfying the modulus conditions.

In view of the above result we shall state briefly that, for session triples satisfying any
one of the modulus conditions C1, C2, “the DHP is solvable in polynomial time”.
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2.3 Conjugate class session triples

Consider the public data (A,B, C) of the DH scheme. The problem to be addressed now
is to decide whether or not the triple (A, k, l) satisfies the modulus condition, purely from
the public data. This is possible in a special class of triples defined below.

Definition 2. A triple (A, k, l) is said to belong to the conjugate class relative to k if
h(A, x) = h(B, x) and relative to l if h(A, x) = h(C, x).

Theorem 4. For session triples (A, k, l) belonging to the conjugate classes relative to any
one of k or l the DHP is solvable from the public data in polynomial time without solving
the DLP.

Proof. Consider the public data (A,B,C) of the DHP. If the triple (A, k, l) belongs to
the conjugate class relative to l, then it clearly satisfies the modulus condition C1. The
knowledge that this is so is obtained only from A and C which belong to the public data.
The polynomial f is now solved from the equation (1) and the shared key equals Ck =
f(C). Hence the shared key is computed purely from the public data. The computation
of f moreover does not imply computation of k or l due to theorem 2. Thus the DHP is
solvable without solving the DLP for these special class of triples. The statement about
solvability in polynomial time is proved above. The case of conjugate class relative to k
follows similarly.

In view of the above theorem it follows that the session triples belonging to the conju-
gate classes relative to either k or l must be excluded from the DH conjecture as obvious
exceptions. However since for the triples satisfying the modulus conditions the DHP is
solvable in polynomial time, these triples are weak cases of the DH scheme. Finally, there
is also the question of existence of weak triples (A, k, l) which remains to be answered for
matrices A in GLn. While such existence can be easily shown, we shall skip this question
in the interest of brevity and also owing to the importance of the field case treated in the
next section where we establish the existence of weak triples in detail. We conclude this
section however with illustrative examples.

2.4 Examples

In this section we present examples which illustrate the above theory for solving the DHP
for matrices. The parameters used in these problems are of very small sizes and by no
means realistic.

Example 1. Consider the field be F53 and A in GL2 given by

A =
[

1 51
1 1

]

Let k = 3, l = 53 then

A3 = B =
[

48 51
1 48

]
C = A53 =

[
1 2
52 1

]
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The shared key is

A53×3 =
[

48 2
52 48

]

The minimal polynomials are h(A, x) = h(C, x) = x2 + 51x + 3. Now the polynomial
Solution of the linear system B = f(A) gives f(x) = x + 47. It is easy to see that A53×3 =
f(C). In this example the exponent l = 53 is of the form pj for j = 1. Where p is the field
characteristic.

Example 2. In this example h(A, x) = h(C, x) is satisfied for exponents k, l which are not
of the form pj . Let the field be F13. The matrices A, B and C are given respectively as

A =
[

2 0
0 7

]
B = A3 =

[
8 0
0 5

]
C = A11 =

[
7 0
0 2

]

The shared key Akl is given by

A3×11 =
[

5 0
0 8

]

Now solving the linear system B = f(A) gives the polynomial f(x) = 2x + 4. Then it
can be seen that f(C) = Akl.

Example 3. This example shows that modulus condition is satisfied even if h(A, x) 6=
h(C, x). Let the field be F7. The matrix A is chosen as

A =
[

0 5
1 0

]

Let k = 7 and l = 3. Then

B =
[

0 2
6 0

]
C =

[
0 4
5 0

]

The shared key Akl is

A7×3 =
[

0 3
2 0

]

Solving the linear system B = f(A) gives f(x) = 6x. Then the shared key can be
computed as A21 = 6C. Here h(A, x) = x2 + 2 and h(C, x) = x2 + 1. Since k = 7, we get
6x = x7 mod h(A, x) = x7 mod h(C, x).

In the next section we show ways to extend results of this section to other groups such
as F∗pm and groups of elliptic curves over Fp which lead to the solution of the DHP for
an analogous class of triples such as those satisfying the modulus condition and for the
conjugate class above.
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3 Weak keys of the DH scheme over finite fields

The groups such as the nonzero elements of finite fields F∗pm are among the common examples
of groups over which the DH scheme has been implemented. These form special cases of
the matrix case of the DH scheme discussed above. This is because elements of F∗pm under
multiplication act as linear operators in the field Fpm which is an m dimensional vector space
over Fp. Hence under a fixed basis of Fpm the group F∗pm is identified with a commutative
subgroup of GLm(Fp). We now develop the special cases of session triples of the DH scheme
over F∗pm for which the DHP can be solved in polynomial time without solving the associated
DLP.

3.1 Modulus conditions and conjugate classes

In the present field case a matrix representation of elements is in fact not necessary. We
shall thus write analogous definitions in this case following those of the matrix case above.
Consider a session triple (a, k, l) being used by two users where a is an element of K∗ of
order n. The private keys k, l are in Zn. Let (a, b, c) = (a, ak, al) denote the public data
of the session and s = akl denote the shared key. For any a in Fpm denote by h(a, x)
the minimal polynomial of a over Fp[x]. Let hc(x) = lcm (h(a, x), h(c, x)) and hb(x) =
lcm (h(a, x), h(b, x)).

Definition 3 (Modulus conditions). The triple (a, k, l) is said to satisfy the modulus
condition C1 if

xk mod h(a, x) = xk mod hc(x) (5)

while the triple (a, k, l) is said to satisfy modulus condition C2 if

xl mod h(a, x) = xl mod hb(x) (6)

Next we define the conjugate class of session triples.

Definition 4 (Conjugate class). The triple (a, k, l) is said to belong to the conjugate
class relative to k (respectively l) if h(a, x) = h(b, x) (respectively if h(a, x) = h(c, x)).

In order to exhibit the weak private keys k, l of the DH scheme which are associated
with weak session triples (a, k, l) we make following definitions.

Definition 5. Let a in Fpm be fixed of order n. Define

1. Conjugate class

C(n) = {t ∈ Zn|t = pr mod n, for some 0 ≤ r ∈ Z}

2. Keys satisfying modulus condition C1. Given l ∈ Zn

W1(a, l) = {k ∈ Zn|xk mod h(a, x) = xk mod hc(x)}

3. Keys satisfying modulus condition C2. Given l ∈ Zn

W2(a, l) = {k ∈ Zn|xl mod h(a, x) = xl mod hb(x)}
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We show in what follows that the above sets are weak keys since the DHP can be solved
in polynomial time for session triples (a, k, l) whenever either k or l lie in any one of the
above sets. In short we shall show that the set W (a, l) denoting W1(a, l) ∪W2(a, l) is a set
of weak keys. By definition the sets W1, W2 depend on a and l. Hence W (a, l) also depends
on a and l.

3.2 Conditions for solving the DHP

The following theorems give necessary and sufficient conditions under which the DHP can
be solved in a special way in that the shared key can be computed from the public data
uniquely and can be expressed as a polynomial in the public data. These conditions are
also useful for individual users of a DH scheme to determine whether or not their private
keys are weak by looking at the public keys of the other user.

Theorem 5. The following statements hold

1. There exists a polynomial f in Fp[x] such that

(a) deg f < deg h(a, x)

(b) The following equations hold

b = f(a)
s = f(c)

(7)

iff k belongs to W1(a, l).

Moreover, f is the unique such polynomial satisfying the above two conditions

2. There exists a polynomial g in Fp[x] such that

(a) deg g < deg h(a, x)

(b) The following equations hold

c = g(a)
s = g(b)

(8)

iff k belongs to W2(a, l).

Moreover, g is the unique such polynomial satisfying the above two conditions.

Proof. Let f in Fp[x] exists satisfying the conditions (a), (b) above. Then F (x) = xk−f(x)
belongs to Fp[x] and has roots a and c. Hence F (x) is divisible by the minimal polynomials
h(a, x) and h(c, x) hence also by hc(x) their lcm. Since deg h(a, x) ≤ deg hc(x), deg f is
less than the degrees of both of these polynomials. It follows that f(x) = xk mod h(a, x) =
xk mod hc(x). Further, f is the unique such polynomial of required degree which must then
satisfy (a),(b). This proves necessity of item 1 and uniqueness of f .

Conversely let f(x) = xk mod h(a, x) = xk mod hc(x). Then (a) and (b) hold. This
proves sufficiency of item 1. Item 2 can be proved on similar lines.
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Remark 4. Computation of polynomial f (respectively g) in the above theorem from public
data is a problem of solving linear systems b = f(a) (respectively c = g(a)) for coefficients
of f (resp. g) which are polynomials in Fp[x] of degree less than degree of h(a, x). Further,
if k belongs to one of the sets claimed then the shared key s can be computed as either f(c)
or g(b).

Above theorem is essentially identical to theorem 1. As an analogous counterpart of the
above theorem the following theorem gives conditions of weakness for the private key l.

Theorem 6. The following statements hold

1. There exists a polynomial f in Fp[x] such that

(a) deg f < deg h(a, x)

(b) The following equations hold

c = f(a)
s = f(b)

(9)

iff l belongs to W1(a, k).

Moreover, f is the unique such polynomial satisfying the above two conditions

2. There exists a polynomial g in Fp[x] such that

(a) deg g < deg h(a, x)

(b) The following equations hold

b = g(a)
s = g(c)

(10)

iff l belongs to W2(a, k).

Moreover, g is the unique such polynomial satisfying the above two conditions.

We omit the proof as it follows on similar lines as that of the proof of the earlier theorem.
One obvious class of keys k (respectively l) which is contained in W2(a, l) for any l

(respectively contained in W2(a, k) for any k) are those for which the minimal polynomials
satisfy h(a, x) = h(b, x) (respectively h(a, x) = h(c, x)). Following theorem shows that this
is precisely the conjugate class.

Theorem 7. h(a, x) = h(ak, x) iff k belongs to C(n). Moreover C(n) ⊂ W2(a, k) for any k
in Zn.

Proof. Elements a and ak have the same minimal polynomial over Fp iff ak is a root of the
irreducible polynomial h(a, x). By the well known characterization of roots of irreducible
polynomials [17], ak = apr

for r = 0, 1, 2, . . . , (d− 1) where d = deg h(a, x) ≤ m. However,
in the splitting field Fpd of h(a, x) we have apd

= a. Hence ak = apr
for any r > 0. Hence

k = pr mod n. Thus without loss of generality we can assume m = d. Other statement is
obvious.

12



An important relationship between the conjugate class keys C(n) and the set W1 defined
above is given by

Corollary 1. W1(a, r) = Zn iff r ∈ C(n)

Proof. Let r be in C(n). Then h(a, x) = h(ar, x). Hence any t in Zn belongs to W1(a, r).
This proves sufficiency.

Conversely, let for some r, W1(a, r) = Zn. Since ord ar ≤ ord a and hence also t =
deg h(ar, x) ≤ h(a, x) = d ≤ n. Let h(a, x) = xd + φ(x) and h(ar, x) = xt + ψ(x). If
t = d = n then both polynomials must be equal to xn − 1. Hence assume t ≤ d < n. If
t < d then xt mod h(a, x) = xt while xt mod h(ar, x) is polynomial of degree less or equal to
t− 1 which would give a contradiction. Hence t = d. On the hand, φ(x) = −xd mod h(a, x)
while ψ(x) = −xd mod h(ar, x). Hence φ(x) = ψ(x). This proves necessity.

In view of the above properties we call the set C(n) the set of fatally weak keys. Further
we have

Corollary 2. C(n) is a multiplicative subgroup of Z∗n.

The proof follows from the fact that C(n) =< p > (cyclic multiplicative monoide) in Zn

but since n is the order of a, n is coprime to p hence p has inverse in Zn. Note that the set
C(n) may not be small. For instance when p is a primitive root of the multiplicative group
Zn then every k in Zn is of the form pr mod n. We provide instances of this situation in
examples.

3.3 The scalar case

We now discuss the case of DH session where the generator a is chosen from Fp. Thus
m = 1 and h(a, x) = (x− a). In this case we have

Corollary 3. 1. C(n) = {1}.
2. W1(a, l) = {k|k(l − 1) mod n = 0}.
3. W2(a, l) = {k|l(k − 1) mod n = 0}.

Proof. In this case t is in C(n) iff (x− a) = (x− at) i.e. a = at. Since t is by definition in
Zn, t = 1. Next, the modulus condition C1 holds for k given a fixed l iff xk mod (x− a) =
xk mod (x − c) which is equivalent to ak = ck = akl. Hence k(l − 1) mod n = 0. Similarly
k is in W2(a, l) iff al = akl from which the claim follows.

Finally, consider a to be the generator of F∗p i.e. a primitive element. Then the order
of a equals p − 1. Hence we get W1(a, l) = {k|k(l − 1) mod (p − 1) = 0}. Similarly
W2(a, l) = {k|l(k − 1) mod (p − 1) = 0} and also C(n) = {1}. Alternatively this implies
that weak keys k satisfy one of the equations ck = c or bl = b. Since the shared key is
s = ck = bl, k is weak iff s = c = b. This is the classical setting for DH key exchange
with a large prime p. In this setting the conjugate class is smallest. This description also
shows that the field Fp is safest for DH key exchange with a primitive since weak keys are
completely characterized by the above formulae.
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3.4 Solving the DHP without solving DLP

We now investigate the problem of solving the DHP over F∗pm when either of the keys k, l are
weak. The results of the matrix case above when specialized by considering the generator
a in the present case as an element of GLm(Fp), are also applicable for the present case.
Hence it follows that when either of the private keys are weak, the DHP can be solved in
time complexity polynomial in m without solving the DLP. We shall however establish this
result without resorting to the matrix case.

Theorem 5 above gives criteria in terms of equations (7), (8) for the private key k to
belong to sets W1(a, l), W2(a, l) respectively. Equations (7) and (8) are linear in coefficients
of polynomials f and g whose solutions give the shared key s as either f(c) or g(b) whenever
k or l are members of these sets. In such situations an adversary can compute f(c) and
g(b) from public data and succeeds in attacking the DH scheme.

Theorem 8. Consider a session triple (a, k, l) in which either k belongs to W1(a, l)∪W2(a, l)
or l belongs to W1(a, k) ∪W2(a, k). Then the DHP can be solved in number of operations
which grows at most as a polynomial in m over the field Fp. The shared key computed is
either f(c) or g(b). Moreover for k, l ≥ m this computation does not yield any of k, l.

Proof. Since b and c both belong to the field Fp(a) we can assume without loss of generality
that the degree of h(a, x) is equal to m and that Fpm = Fp(a). The equation (7) then is
an expression of b in the basis 1, a, a2, . . . , am−1. The coefficients in this expression are the
coefficients of the polynomial f . Hence computation of f is equivalent to change of basis
expression for b in Fpm . This involves number of operations in Fp which is a polynomial in
m. Similar conclusion holds for computation of g from the equation (8). Next the shared
key s equals one or both of f(c) or g(b) by theorems 5, 6. This computation involves linear
combination of the basis elements of Fpm over Fp and is equivalent to a multiplication of an
m×m matrix over Fp by an m-tuple. This proves the claim on number of operations.

Next we show that computation of polynomials f or g above does not yield k or l. Since
f is computed from the equation b = f(a) the data is independent of l. Also for k ≥ m,
f(x) 6= xk being a reminder of division by h(a, x). Let q(x) be the quotient. Then

xk = q(x)h(a, x) + f(x)

The equation b = f(a) is thus identical to

b = q(a)h(a, a) + f(a)

However h(a, a) = 0. Hence solution of f from b = f(a) gives no information on q(x). Since
k and q(x) are known simultaneously, this computation does not yield k. Similar reasoning
shows that computation of g also does not yield l. That the shared key s equals f(c) or
g(b) is proved above.

Remark 5. The above theorem shows that the DHP is solvable in polynomial time when-
ever the session triples satisfy one of the modulus conditions. However the theorem gives
no idea of the complexity of solving the DLP for these special class of triples. This shall be
left as an open problem for future work.
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Given the generator a of a DH session the computation of f and g above depends on
the knowledge of m the degree of the minimal polynomial h(a, x) in Fp[x]. However this
one time computation can also be carried out in polynomial number of operations in m
as in the matrix case. Due to the above theorem we call the session triples (a, k, l) weak
whenever any one of the modulus conditions are satisfied.

3.4.1 Weak keys, weak session triples and a computational check

We close this section with an algorithm which provides a computational check on session
triple (a, k, l) to verify the conditions of the above theorem. For convenience we denote the
sets W1(a, l) ∪W2(a, l) simply as W (a, l). Thus by this notation, a session triple (a, k, l) is
weak (i.e. satisfies any one of the modulus conditions C1 or C2) iff either k ∈ W (a, l) or
l ∈ W (a, k). This algorithm builds from the criteria of theorem 5 in terms of equations (7),
(8) for the private key k to belong to sets W1(a, l), W2(a, l) respectively. Consider a DH
session in which the generator a and the public key c of the second user is known i.e. the
private key l is already chosen.

Algorithm 2. (This algorithm checks whether a choice of k belongs to W1(a, l) ∪W2(a, l)
for a given l).

Input Generator a a primitive element in the field Fpm , order n of a and the public key
c.

1. Choose k in Zn randomly.

2. Compute b = ak.

3. Compute polynomials f(x), g(x) in Fp[x] of degrees less than m such that

b = f(a)
c = g(a)

(Alternatively, compute the coefficients in the expressions of b and c in terms of the
basis 1, a, a2, . . . , a(m−1) of Fpm . These are precisely coefficients of f and g.)

4. Compute s = ck.

5. Set boolean variable X = 1 if (s− f(c))(s− g(b)) = 0 else X = 0.

Output k, X. (Key k is weak if X = 1).

Note that the above algorithm can be executed in polynomial time (in m) as already
shown in the proof of the above theorem.

3.5 Existence and examples of weak keys

From the above development we can legitimately call the sets W (a, r) as the sets of weak
keys for given private keys r and a. The algorithm of the last section gives a computational
check for these sets in terms of a and the public key of one user. In fact we call the set C(n)
as fatally weak. Such weak keys must necessarily be avoided in a DH scheme. There now
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remains the question of existence and cardinalities of the sets W1(a, l) ∪ W2(a, l) of weak
keys as functions of a and l (respectively k). Existence of weak keys in Fpm is immediate
since the set of conjugate class keys C(n) =< p > as shown above, where < p > is the
multiplicative group of units of Zn and further C(n) ⊂ Wa,r for any r in Zn. Although
C(n) itself is not large for primitive elements, if the generator chosen has a prime order n
such that p is a primitive element of Z∗n then all the keys are weak. Hence such generators
must be avoided at all costs as fatally weak parameters. A complete characterization of the
sets W (a, r) has not yet been found. However we provide a collection of samples of these
sets in different fields Fpm computed numerically. The number of weak keys as functions
of parameters p, m, n does not appear to be negligible in general. At the same time it is
difficult from these examples to quantify in general the number of weak cases with respect
to the field parameters.

In the following examples, the percentages of weak k’s for each of the l in the range
d ≤ l < ord (a)− 1 are plotted for different finite fields of approximately same orders. Let
L denote the ratio N1/N2 where N1 = number of l for which there are approximately 10%
or higher number of weak k, and N2 = ord a− (d+1). Percentage of weak keys of the order
of 10% appears to be practically noteworthy while the number L denotes the percentage of
weak cases for choice of the second private key.

Example 4. Weak keys in the field Fpm for p = 2, m = 7. Generator polynomial h(x) =
x7 + x + 1. ord a = 127. L = 17/119. See figure 1.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Weak keys in F_(2^7)

values of l

% of weak k

Figure 1: Weak keys for the field F27
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Example 5. Weak keys in the field Fpm for p = 5, m = 3. Generator polynomial h(x) =
x3 + 3x + 2. ord a = 124. L = 39/120. See figure 2.
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Figure 2: Weak keys for the field F53

Example 6. Weak keys in the field Fpm for p = 11, m = 2. Generator polynomial h(x) =
x2 + 4x + 7. ord a = 120. L = 31/117. See figure 3. This plot also shows higher average of
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Figure 3: Weak keys for the field F112

weak keys.
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Example 7. Weak keys in the field Fpm for p = 13, m = 2. Generator polynomial h(x) =
x2 + x + 2. ord a = 168. L = 34/165. See figure 4.
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Figure 4: Weak keys for the field F132

Example 8. Weak keys in the field Fpm for p = 11, m = 2, ord a = 120. Generator
polynomial h1(x) = x2 + 3x + 6 with L = 28/117 and h2(x) = x2 + 3x + 8. L = 31/117.
See figure 5.

4 DHP over elliptic curves

In this section we consider the DHP defined over an elliptic curve E over a finite field Fp for
some prime p. Use of elliptic curves for DH scheme was proposed in [10, 11] and has since
then become among the most important of algorithms. The reader is referred to [14, 15]
for modern developments of cryptography based on elliptic curves. Of principal interest in
this paper is the well known reduction of [5] known as the MOV attack based on the Weil
pairing which provides an isomorphism of a cyclic subgroup < P > in E of order n with
that of the group µn of nth roots of unity in an extension field of Fp. The notations of this
construction are quite well known and may be referred from the above references.

Let e : E[n]×E[n] → K̄ denote the Weil paring on the group E[n] of n-torsion points of
E(K̄) where K̄ is the algebraic closure of Fp. For the point P of order n (relatively prime
to p) there exists a point Q̃ in E[n] such that α = e(P, Q̃) is an element of Fpm for some m.
A smallest of such integers m is chosen. Then e([k]P, Q̃) = αk gives the isomorphism of the
two groups < P > and µn.

4.1 Associated DHP in the extension field and weak keys

Consider the DH scheme with session triple (P, k, l), k, l in Zn and public data (P, Q,R)
where Q = [k]P and R = [l]P . There is thus an associated DHP over Fpm with session
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Figure 5: Weak keys for the field F112 with different polynomials

triple (α, k, l) and public data (α, β, γ) where β = αk and γ = αl. Let S be the shared
key of the DH session in E. Then from the properties of the Weil pairing it follows that
ψ

def= e(S, Q̃) = αkl is the shared key of the DH session in Fpm . We call ψ the image in
Fpm of the shared key S of the DH session over E. Conversely if ψ is the shared key of the
DH session in Fpm with (α, k, l) as the session triple then due to the above isomorphism
there exists a unique point S in E which is the shared key of the DH session over E such
that ψ = e(S, Q̃). Let T be any point in < P > and θ = e(T, Q̃). We call the minimal
polynomial h(θ, x) of θ over Fp[x] as the minimal polynomial of T over Fp and denote this
as h(T, x). Let hq(x) = lcm (h(P, x), h(Q, x)) while hr(x) = lcm (h(P, x), h(R, x)). Define
the analogous modulus conditions relative to the public data (P,Q, R) as follows.

Definition 6 (Modulus conditions). The triple (P, k, l) is said to satisfy the modulus
condition C1 if

xk mod h(P, x) = xk mod hr(x) (11)

while the triple (P, k, l) is said to satisfy modulus condition C2 if

xl mod h(P, x) = xl mod hq(x) (12)

Also define the analogous conjugate class of session triples as
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Definition 7 (Conjugate class). The triple (P, k, l) is said to belong to the conjugate
class relative to k (respectively l) if h(P, x) = h(Q, x) (respectively if h(a, x) = h(R, x)).

Lemma 1. A session triple (P, k, l) satisfies modulus condition C1 (respectively C2) iff the
triple (α, k, l) satisfies modulus condition C1 (respectively C2). The triple (P, k, l) is in the
conjugate class relative to k (respectively l) iff (α, k, l) is in the conjugate class relative to
k (respectively l).

The proof is obvious from the above definitions. From the case of DHP over finite fields
developed in the last section it now follows that the image ψ of the shared key S of the
DHP on E can be solved in Fp operations which grow at most as a polynomial in d the
degree of the minimal polynomial of P . We state this as the next theorem.

Theorem 9. Let the session triple (P, k, l) satisfy modulus condition C1 or C2 and k, l ≥ d.
Let S be the shared key of the DH session. Given the data (α, β, γ) of the associated DHP
in Fpm , the image of the shared key ψ = e(S, Q̃) can be computed in number of operations
in Fp which grow at most as a polynomial in d. There exist unique polynomials f , g in Fp

of degrees at most d−1 such that ψ equals one of ψ1 = f(e(R, Q̃)) or ψ2 = g(e(Q, Q̃)). The
computation of f , g moreover does not yield k or l.

Proof. From the lemma above the triple (α, k, l) satisfies modulus condition C1 or C2 re-
spectively where α = e(P, Q̃) and has minimal polynomial of degree d in Fp[x]. Hence from
theorems 5, 6 there exist unique polynomials f , g for the DHP with public data (α, β, γ)
which express the shared key ψ as either ψ1 = f(γ) or ψ2 = g(β). From theorem 8 it
follows that computation of f or g can be accomplished in number of Fp operations which
grow at most as a polynomial in d. Finally from the properties of the Weil pairing we have
ψ1 = f(e(R, Q̃), ψ2 = g(e(Q, Q̃) and ψ = e(S, Q̃) where S is the shared key of the DH ses-
sion on E with public data (P,Q, R). Also from theorem 8 it follows that this computation
does not yield k or l.

Above theorem shows that for session triples (P, k, l) satisfying either of the modulus
conditions, the DHP can in principle be solved without solving the DLP on E. While this
fact makes such session triples exceptions to be excluded from the DH conjecture from a
theoretical standpoint, it by itself is not cryptographically significant unless the rest of the
computations involved in computing the Weil pairings and inverse mapping from ψ to S
also depend polynomially on the data. In the next section we discuss a possibility in which
the image ψ of the shared key can be computed in polynomial time.

4.2 Application to pairing based key exchange

In this section we highlight key exchange schemes for which the above theorem is of crypto-
graphic significance. These schemes are defined over elliptic curves which are supersingular
on which the computation of pairings such as e(Q, Q̃) can be carried out in polynomial
time in the embedding degree m. Hence the computation of the pairing can be achieved
inexpensively. However the prime p is large enough so that the DLP in Fpm is intractable
being of sub exponential order. Pairing based schemes proposed by [16] and [18] on super-
singular elliptic curves involve m ≤ 6 and are important for triparty and identity based key
exchange.
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The importance of the above theorem for the paring based schemes referred above is as
follows. In these schemes the shared key actually utilized for various cryptographic tasks
is the shared key ψ of the DHP in Fpm . This key is the image of S, the shared key of the
DHP with session triple (P, k, l) on E and is computed from the pairing as ψ = e(S, Q̃).
Thus whenever E is supersingular, the computation of the public data of the DHP in Fpm

is possible in polynomial time. Above theorem shows that when (P, k, l) satisfies one of
the modulus conditions, ψ can be computed as a solution of the DHP in Fpm with public
data (α, β, γ) in Fp operations depending polynomially on d. The degree d of the minimal
polynomial of P (same as that of α) is itself computable in at most polynomial number of
operations in m. Hence for the pairing based schemes on supersingular curves the DHP can
be solved in Fp operations which grow at most as a polynomial in m when the session triple
(P, k, l) satisfies one of the modulus conditions.

4.3 Weak parameters of pairing based schemes

We shall formally call a DH scheme on an elliptic curve E to be paring based if there is a
paring ω : E[n] × E[n] → Fpm and that the shared key used for encryption is a result of a
DH scheme on Fpm . Multiparty DH scheme and the identity based scheme on elliptic curves
referred above are examples of such schemes. As discussed above, when m is sufficiently
small the polynomial time computation of the shared key ψ in Fpm should turn out to be a
powerful attack whenever the session triples satisfy modulus conditions. For instance when
m = 6 the solution of the DHP in these special cases requires computation in Fp of at
most a fixed order however nothing can be said about the DLP for these special cases. We
shall leave this as an open question to be investigated in future. Similar conclusions can be
drawn with respect to other well known pairing based problems such as the Bilinear DHP
and the Decisional DHP. Detailed study of DHPs of these types is beyond the scope of this
paper and shall be pursued in a separate article.

While the actual bounds on computation can be worked out for specific curves we
mention that it would be important to avoid the following list of weak parameters on super-
singular E over Fp for which the DHP can be solved in polynomial time in the embedding
degree m.

1. Points P of order n such that < p >= Z∗n.

2. Given l, private keys k which belong to W1(α, l) ∪W2(α, l). Similarly for l when k is
given.

3. If l is the private key of the session chosen first, then those l for which number of
weak k is larger than a certain fraction of n− 2 since 1 < l ≤ (n− 1).

Thus the nature of weak keys k, l in the case of DH schemes on supersingular curves is
the same as that in the field case Fpm for an appropriate generator. Hence the existence of
such weak keys follows from the existence of such keys in the field case treated above. The
first item in the above list identifies generators for which α are not primitive elements of
Fpm but for which all numbers in Zn are conjugate class keys. Such generators are fatally
weak. This shows that increasing the order of P by itself does not make the session secure
in pairing based schemes. Computational algorithms for identifying weak parameters over
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supersingular curves of realistic orders shall be necessary for future implementations of these
schemes. These developments shall be reported separately.

5 Conclusions

Special cases of session triples of the DH scheme exist for which the DHP can be solved
in polynomial time without solving the DLP. Hence such special cases must be excluded
from use in the DH scheme. The method of analysis first identifies these special cases in
the matrix group and then develops special cases by analogy over finite fields Fpm as well
as supersingular elliptic curves for pairing based schemes. These schemes on supersingular
elliptic curves are of significance for identity based and triparty key exchange schemes. The
analysis and examples over fields show that the number of weak keys is not insignificant to
be ignored. A simple computational algorithm is proposed to determine the weak triples.
Their characterization as well as algorithms for avoiding them in practical implementations
is desirable. Orders of generators of DH sessions are also identified for which all private
keys are weak making such sessions fatally weak. Such generators must therefore be strictly
avoided. Avoiding these weak keys in practice should be desirable to make the DH key
exchange secure from the simple algebraic attack proposed in this paper. Finally the ques-
tion of complexity of solving the DLP for these special class of session triples remained
unresolved. It should be worthwhile to know whether the DLP for these session triples can
also be solved in polynomial time.
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