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Abstract

By walsh transform, autocorrelation function, decomposition, deriva-
tion and modification of truth table, some new invariants are obtained.
Based on invariant theory, we get two results: first a general algorithm
which can be used to judge if two boolean functions are affinely equivalent
and to obtain the affine equivalence relationship if they are equivalent. For
example, all 8-variable homogenous bent functions of degree 3 are clas-
sified into 2 classes; second, the classification of the Reed-Muller code
R(4, 6)/R(1, 6), R(3, 7)/R(1, 7), which can be used to almost enumeration
of 8-variable bent functions.
Keywords: boolean functions, affine equivalent, affine general group

1 Introduction

Boolean functions are used widely in science and engineering, like in circuit
design, cryptography and error-correction coding. The linearly classification of
boolean functions is meaningful for the following two reasons: first, equivalent
functions have similar properties (like Hamming weight distribution in error-
correction coding, same nonlinearity in cryptography). second, the number of
representatives is much less than the number of boolean functions. Out of the
need of circuit design, the classification of boolean functions under affine linear
group was discussed much often in 60s in 20th century[1, 2, 3]. Recently the
analysis of linearly equivalence of boolean functions was discussed in several
papers[4, 5, 6, 7, 8]. Fuller-Millan disclosed the linear equivalence between the
output functions of the AES s-box by getting the linear equivalence relationship,
but the method is not efficient in the case of bent function. Method in paper[8]
are not efficient too in bent functions case though it improve the efficiency of
Fuller-Millan algorithm. In eurocrypt’03, a toolbox is developed to analyze
linear equivalence between bijective s-box or s-box with small n − m, where
n,m are number of inputs and outputs respectively, and thus the toolbox cant
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deal with boolean functions, where m = 1. In attacking HFE problem(hidden
fields equation), Geiseleman gave an collum-wise method, but the method is not
efficient in boolean function with uneven truth table. Other papers on classify
boolean functions can be found in papers[9, 10, 11]. To authors’ knowledge, to
judge if two functions are equivalent and how to get the equivalent relationship
if they are equivalent is not known in general case.

In this paper, an algorithm is given which can efficiently solve the two above
problems in general case. The basic tools we use is Walsh transform, autocor-
relation function, derivation function, decomposition, and modification of truth
table.

2 Preliminary

For each subset s ⊆ {1, 2, · · · , n}, there exists a corresponding vector (s1, s2, · · · , sn)
of dimension n by letting si = 1 if element i is in s else letting si = 0. And
the vector (s1, s2, · · · , sn), si ∈ {0, 1} for i = 1, 2, · · · , n can be denoted by an
integer s whose 2-adic expansion is just the vector (s1, s2, · · · , sn). Obviously,
the set, the vector and the integer are isomorphic. In this paper, if confusion is
not caused, we will use the three notations for description convenience. Denote
by F2 the Galois field with two elements {0, 1} and denote by Fn

2 the vector
space over F2. Denote by pn = F2[x1, x2, · · · , xn]/(x2

1 − x1, · · · , x2
n − xn) the

algebra of all functions Fn
2 → F2. For each subset s ⊆ {1, 2, · · · , n}, denote∏

i∈s xi ∈ pn by xs. The algebraic normal form of a Boolean function Fn
2 → F2

can be written as f(x) =
∑2n−1

s=0 asx
s, where as ∈ F2. The degree of f(x) is

defined by
max

s∈{0,1,···,2n−1},as 6=0
H(s),

where H(s) is the Hamming weight of vector s. The set of functions whose
degree less than or equal to 1 is called affine functions. The set {f(x)|deg(f) ≤
r} is denoted by R(r, n). Denote by R(r, n)/R(s, n) the set {f(x) + R(s, n)|s <
deg(f) ≤ r}.

Denote by GL(n, 2) the set of all nonsingular matrix of order n, i.e. the
general linear group. Denote by AGL(n, 2) the group {(A, b)|A ∈ GL(n, 2), b ∈
Fn

2 }. The group operation is defined by

(A, u)(B,w) = (AB,A(w) + u)

(A, u)−1 = (A−1, A−1(u),

where (A, u), (B,w) ∈ AGL(n, 2).
The action of group AGL(n, 2) on Boolean functions is defined by:

c : pn → pn

by : f(x) → f(xA + b) ,

where c = (A, b) ∈ AGL(n, 2).
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Two functions f(x), g(x) ∈ R(r, n)/R(s, n) are called equivalent if there
exists (A, b) ∈ AGL(n, 2) such that f(x) = g(xA + b)modR(s, n). An invariant
of R(r, n)/R(s, n) is a mapping M from R(r, n)/R(s, n) to a set such that for
any two equivalent functions f(x), g(x) ∈ R(r, n)/R(s, n), M(f) = M(g) holds.

If s = 1, we get f(x) = g(xA + b) + lx, in this paper we will mainly discuss
how to get (A, b) and l when the two functions are given.

3 Basic Transforms

3.1 Walsh Transform and Autocorrelation Function

Definition 1: Define

s(f)(w) =
∑

x∈F n
2

(−1)f(x)(−1)w·x

be the Walsh spectrum of f(x) at vector w, where f(x) ∈ pn, w ∈ Fn
2 .

The transform is called the Walsh transform.
Definition 2: Define the functions cf (s) =

∑2n−1
x=0 (−1)f(x)(−1)f(x+s) be

the autocorrelation function of f(x), where f(x) ∈ pn, s ∈ Fn
2 .

The following two propositions are well known. And the fact that the dis-
tributions of absolute Walsh spectra and autocorrelation function are invariant
is due to Preneel’s work[12].

Proposition 1: Let f(x), g(x) ∈ pn be two functions such that g(x) =
f(xA+b)+ lx, then for any w ∈ Fn

2 , s(g)(w) = (−1)(l+w)·bA(−1)
s(f)((l+w)A−1T

Corollary 1: The Walsh spectrum of f(x) at i is equal to the Walsh spec-
trum of g(x) at j, where j = l + iAT . Therefore the deficiency of the rank of
vectors with same spectrum between two equivalent functions is at most 1. The
distribution of absolute value of Walsh spectra of f(x) is same to that of g(x).

Proposition 2: Let f(x), g(x) ∈ pn be two functions such that g(x) =
f(xA + b) + lx, then for any given s ∈ Fn

2 , cg(s) = (−1)l·scf (sA).
Corollary 2: The autocorrelation function of f(x) at j is equal to the

autocorrelation function of g(x) at i, where j = iA. Therefore the ranks of
vectors with same absolute autocorrelation function value are same between
two equivalent functions. The distribution of absolute value of autocorrelation
function of f(x) is same to that of g(x).

3.2 Derivation

For any boolean function f(x) ∈ R(r, n), define its derivation function as
Da(f) = f(x) + f(x + a). Similarly we can define two-order derivative func-
tion as Da,b(f) = f(x) + f(x + a) + f(x + b) + f(x + a + b). By definition, it is
easy to get following properties:

Property 1: Da,b(f) = Da(f) + Db(f) + Da+b(f).
Property 2: Da(f ◦ B) = DaA(f) ◦ B, where B ∈ AGL(n, 2). similarly,

Da,b(f ◦B) = DaA,bA(f) ◦B, where B ∈ AGL(n, 2).
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Proposition 3: If f(x) ∈ R(r, n)/R(s, n), then Da(f ◦ B) = (DaA(f)) ◦ B
mod R(s− 1, n), where B = (A, b) ∈ AGL(n, 2). If M is an invariant of R(r −
1, n)/R(s−1, n), then M(Da(f ◦B)) = M((DaA(f))◦B), so {M(Da(f)|a ∈ Fn

2 }
is an invariant of R(r, n)/R(s, n).

Remark: The derivation function is used by hou [10] in classification of
R(3, 7)/R(2, 7) and by brier[13] in classification of R(3, 9)/R(2, 9). Proposition
5 is an extension of their result.

3.3 Decomposition

Proposition 4: Let f(x), g(x) ∈ R(r, n) be two functions such that g(x) =
f(xA+b) mod R(s, n). If f(x) = (x1+1)f0(x′)+x1f1(x′), where x′ = (x2, · · · , xn),
then g(x) = (x · r1 + b1 + 1)f0(x′′) + (x · r1 + b1)f1(x′′), where r1, r2, · · · , rn is
the row of the matrix A, and x′′ = (x · r2 + b2, · · · , x · rn + bn). Obviously,
f0(x′), f1(x′) are linearly equivalent to f0(x′′), f1(x′′) respectively. Similar re-
sult hods for two-vector based decomposition.

By proposition 4, if f(x) is decomposed into two subfunctions at vector b
(like b = (1, 0, · · · , 0)), then g(x) can be decomposed into two subfunctions at
vector a = bA(like the a = bA = r1)such that the two subfunctions of f(x) are
equivalent to those of g(x).

Proposition 5: If M is an invariant of R(r, n− 1)/R(s, n− 1), then the set
{{M(fax=0),M(fax=1)}|a ∈ Fn

2 } is an invariant of R(r, n)/R(s, n).
Remarks: The basic idea of the decomposition of a function can be found

early in Maiorana’s paper[9], which made the classification of R(6,6)/R(1,6)
possible early in 90s in 20th century. And recently it is used by Brier[13] to
classify R(3,9)/R(2,9).

3.4 The Modification of Truth Table

Definition 3[14]: For a function f(x), define its 1-local connection functions
as

{fi(x)|fi(x) = { f(x) x 6= i
f(x) + 1 x = i

, i = 0, 1, · · · , 2n − 1}.

similarly 2-local connection functions can be defined.
Proposition 6[7]: Let f(x), g(x) ∈ R(r, n) be such that g(x) = f(xA+b)+

lx, then gj(x) = fi(xA+ b)+ lx, where jA = (i+ b), i = 0, 1, · · · , 2n− 1. Similar
result holds for two-local connection functions.

Proposition 7: If M is an invariant of R(n, n)/R(1, n), then {M(fi(x)|i ∈
Fn

2 } is an invariant of R(r, n)/R(1, n).
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4 The Analysis of affinely Equivalent Boolean
Functions

4.1 Algorithm

input: two functions f(x), g(x) ∈ R(n, n),
output: A, b, and l, if g(x) = f(xA + b) + lx else output they are not

equivalent.
1. Calculate the Walsh spectra and autocorrelation function of f(x), g(x)

respectively. Compare the distribution of absolute value of Walsh spectra and
absolute autocorrelation function of f(x) with those of g(x) respectively. If the
two functions have two same distributions, then goto step 2 else they are not
linearly equivalent, exit.

2. Denote the autocorrelation value of g(x) at unit vector ei by cg(ei). By
proposition 2, there exists at least one element v ∈ {v|abs(cf (v)) = abs(cg(ei))}
such that v = eiA holds. Let i = 1, 2, · · · , n, there are n equations.

3. Decompose f(x) at unit vector ei, and calculate the invariant of the two
subfunctions, denote it by deei

(f). by proposition 4, there exists at least one
element v ∈ {v|dev(g) = deei

(f)} such that v = eiA holds. Let i = 1, 2, · · · , n,
we get another n equations. These n equations should be consistent to the n
equations obtained in step 2, else the two functions are not equivalent.

4. Calculate the invariant of the derivation function of g(x) at unit vector
ei, and denote it by dei

(g). By proposition 3, there exists at least one element
v ∈ {v|dv(f) = dei

(g)} such that v = eiA holds. Let i = 1, 2, · · · , n, we get
another n equations. These n equations should be consistent to the n equations
obtained in step 2 and 3, else the two functions are not equivalent.

5. Denote by gei(x) the local connection function of g(x) at unit vector ei,
and denote its invariant by lvei

(g). By proposition 6, there exists at least one
element v ∈ {v|lvv(f) = lvei

(g)} such that v = eiA+b holds. Let i = 1, 2, · · · , n,
we get another n equations.

6. Denote by s(f)(ei) the absolute value of Walsh spectrum of f(x) at unit
vector ei. By corollary 1, there exists at least one element v ∈ {v|abs(s(g)(v)) =
s(f)(ei)} such that v = eiA

T + l holds. Let i = 1, 2, · · · , n, we get n equations.
7. By step 2 ∼ 4, we get matrix A. By step 5, we can obtain b. By step

6, we can get l. With all these parameters(usually there are many choice for
some parameters), we can use the method in [5] to filter some impossible choice.
Finally we can verify them by checking if the equation g(x) = f(xA + b) + lx
holds.

4.2 Analysis of the Algorithm

Walsh transform, autocorrelation function ,derivation, decomposition and mod-
ification of truth table are the basic transforms to a boolean functions. Walsh
transform and autocorrelation functions can be done by fast Hadamard trans-
form. Derivation transform lows the degree of the two functions, and decom-
position transform lows the number of variables. Thus these two transforms
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low the complexity of our problem. Modification of truth table gives us more
equations with same affine equivalence and thus it is more possible to obtain the
affine equivalence. By the step 5 and 6, it is unnecessary to enumerate param-
eters b, l. By above analysis, we say our algorithm is more efficient. However it
is not easy to analyze the computation complexity.

By step 3 and 4, it is easy to address the bent functions case, and by step
2,3 and 4, we can deal with functions with uneven truth table. Therefore we
say our algorithm is more general.

4.3 application

In paper [15], all 293760 homogeneous bent functions in 8-variable of degree 3
are classified into 14 classes under the action of permutation group(see [15]).
However there exists no efficient algorithm for further classification under the
action of AGL(8, 2). By above algorithm, they are classified into two classes.
Functions 1, 10,14 are equivalent to each other, and functions 2, 3, 4, 5, 6, 7, 8,
9, 11, 12, 13 are equivalent to each other. Here we give some relations. f1(x) =
f10(xA), A = (18, 27, 188, 17, 124, 51, 248, 252), where the integers are the row
vectors of the matrix. f1(x) = f14(xA), A = (206, 209, 94, 241, 76, 79, 245, 249).
f2(x) = f3(xA), A = (103, 165, 219, 37, 222, 47, 202, 250). f2(x) = f4(xA), A =
(179, 221, 35, 222, 55, 43, 156, 252).

5 Classification of Reed-Muller Code

Invariant is a good tool to classify set. If we know N, the number of equiva-
lent classes under some equivalent relationship, and an invariant just takes N
different values, then the set is already classified.

5.1 Classification of R(4,6)/R(1,6)

The number of orbits of R(4,6)/R(1,6) under the action of AGL(6, 2) is 2499
by hou’s work[11]. The classification of R(4,6)/R(1,6) can be done as follows:

1. It is easy to get the four oribits of R(2,6)/R(1,6). By hou’s work[10], their
complementary functions are the four orbits of R(4,6)/R(3,6), denoted by fi +
R(3, 6), i = 0, 1, 2, 3, where f0(x) = 0, f1(x) = x3x4x5x6, f2(x) = x1x2x5x6 +
x3x4x5x6, f3(x) = x1x2x3x4 + x1x2x5x6 + x3x4x5x6.

2. By proposition 3, classify the four cosets fi + R(3, 6), i = 0, · · · , 3 into
6,10,12,6 cosets of form gj +R(2, 6), 2 < deg(gj(x) ≤ 4 respectively. The invari-
ant of R(3,6)/R(1,6) used in proposition 3 is the distribution of absolute Walsh
spectra. The basic time complexity of this step is O(4× 220).

3. By proposition 5 and 7,classify the 34 cosets gi + R(2, 6), i = 0, 1, · · · , 33
into 2499 cosets of form hi(x) + R(1, 6), 1 < deg(hi(x)) ≤ 4, i = 0, 1, · · · , 2498.
The invariant of R(4,5)/R(1,5) used in proposition 5 is the distribution of ab-
solute Walsh spectra and absolute autocorrelation function. The invariant of
R(6,6)/R(1,6) used in proposition 7 is the distribution of absolute Walsh spectra
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and absolute autocorrelation function. For any combination of invariants given
in this paper except the invariant in proposition 9, we can’t get 2499 orbits.
The basic complexity is O(34× 215).

5.2 Classification of R(3,7)/R(1,7)

The number of orbits of R(3,7)/R(1,7) under the action of AGL(7, 2) is 179 by
Hou’s work[11]. All these 179 orbits can be obtained as follows:

1. By Hou’s work[10], we can get 12 representatives of R(3,7)/R(2,7):fi(x)+
R(2, 7).

2. By proposition 5 the coset fi(x)+R(2, 7), i = 0, 1, · · · , 11 can be classifed
into 4,8,19,10,20,6,7,29,12,39,10,15 cosets of form gi(x) + R(1, 7) respectively.
these are all 179 representatives. The invariant of R(3,6)/R(1,6) used in proposi-
tion 5 is the distribution of absolute Walsh spectra and absolute autocorrelation
function.

By above two examples, it is very efficient to classify Reed-muller code for
some parameters by invariant theory.

6 Conclusion

Based on some basic transforms, we give an algorithm which can be used to judge
if two functions are equivalent and to get the equivalent relationship if they are
equivalent in general case. This result also can be used for IP(isomorphism
of polynomials) problem with one secret over F2; second, R(4, 6)/R(1, 6) and
R(3, 7)/R(1, 7) is classified efficiently by invariant theory. The direct application
of this classification is the semi-enumeration of 8-variable bent functions[16].

Except transforms in this paper, finding other transforms is a useful work.
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