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Abstract. In the society increasingly concerned with the erosion of privacy, privacy-preserving techniques are
becoming very important. Secret handshakes offer anonymous and unobservable authentication and serve as an
important tool in the arsenal of privacy-preserving techniques. Relevant prior research focused on 2-party secret
handshakes with one-time credentials, whereby two parties establish a secure, anonymous and unobservable
communication channel only if they are members of the same group.

This paper breaks new ground on two accounts: (1) it shows how to obtain secure and efficient secret handshakes
with reusable credentials, and (2) it provides the first treatment of multi-party secret handshakes, whereby
m ≥ 2 parties establish a secure, anonymous and unobservable communication channel if they all belong to
the same group. An interesting new issue encountered in multi-party secret handshakes is the need to ensure
that all parties are indeed distinct. (This is a real challenge since the parties cannot expose their identities.)
We tackle this and other challenging issues in constructing GCD – a flexible secret handshake framework.
GCD can be viewed as a “compiler” that transforms three main building blocks (a Group signature scheme,
a Centralized group key distribution scheme, and a Distributed group key agreement scheme) into a secure
multi-party secret handshake scheme.

The proposed framework lends itself to multiple practical instantiations, and offers several novel and appealing
features such as self-distinction and strong anonymity with reusable credentials. In addition to describing
the motivation and step-by-step construction of the framework, this paper provides a security analysis and
illustrates several concrete framework instantiations.
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1 Introduction

Much of today’s communication is conducted over public networks which naturally prompts a number of
concerns about security and privacy. Communication security has been studied extensively and a number
of effective and efficient security tools and techniques are available.

Unfortunately, privacy concerns have not been addressed to the same extent. Yet, it is quite obvious
to anyone who keeps up with the news that our society is very concerned with privacy. At the same time,
privacy is being eroded by (often legitimate) concerns about crime, terrorism and other malfeasances.
Furthermore, the proliferation of wireless communication (among laptops, cell phones, PDAs, sensors and
RFIDs) drastically lowers the bar for eavesdropping and tracking of both people and their devices.

Popular techniques to provide communication privacy include email MIX-es, anonymizing routers and
proxy web servers as well as purely cryptographic tools, such as private information retrieval. Despite
important advances, the privacy continuum has not been fully explored. One particular issue that has
not been widely recognized is the need for unobservable, untraceable and anonymous authentication,
i.e., privacy-preserving authentication. Such a notion might seem counter-intuitive at first, since
authentication traditionally goes hand-in-hand with identification. However, in the context of groups or
roles, authentication identifies not a distinct entity but a collection thereof. To this end, some advanced
cryptographic techniques has been developed, such as group signatures [2] and privacy-preserving trust
negotiation [50, 37].

We focus on interactive privacy-preserving mutual authentication; more specifically, on secret hand-
shakes. A secret handshake scheme (SHS) allows two or more group members to authenticate each other
in an anonymous, unlinkable and unobservable manner such that one’s membership is not revealed unless
every other party’s membership is also ensured.1

In more detail, a secure handshake allows members of the same group to identify each other secretly,
such that each party reveals its affiliation to others if only if the latter are also group members. For
example, in a 2-party setting, an FBI agent (Alice) wants to authenticate to Bob only if Bob is also an
FBI agent. Moreover, if Bob is not an FBI agent, he should be unable to determine whether Alice is
one (and vice versa). This property can be further extended to ensure that group members’ affiliations
are revealed only to members who hold specific roles in the group. For example, Alice might want to
authenticate herself as an agent with a certain clearance level only if Bob is also an agent with at least
the same clearance level.

In a more general sense, secret handshakes offer a means for privacy-preserving mutual authentication
with many possible applications, especially, in hostile environments.
Goals: We set out to develop techniques for supporting efficient multi-party secret handshakes while
avoiding certain drawbacks present in some or all of the previous 2-party secret handshake solutions.
These drawbacks include: (1) use of one-time credentials or pseudonyms, (2) ability of the group authority
to cheat users, (3) requirement to maintain information about many irrelevant groups (groups that one is
not member of), and (4) lack of support for handshakes of three or more parties. Some of these drawbacks
are self-explanatory, while others are clarified later in the paper.

1.1 Overview and Summary of Contributions

We are interested in multi-party secret handshakes, whereby m ≥ 2 parties establish a secure, anonymous
and unobservable communication channel provided that they are members of the same group. We achieve
this by constructing a secret handshake framework called GCD. This framework is essentially a compiler
that transforms three main ingredients – a Group signature scheme, a Centralized group key distribution
scheme, and a Distributed group key agreement scheme – into a secure secret handshake scheme. We
formally specify this framework based on desired functionality and security properties.

From the functionality perspective, existing solutions are only able to support 2-party secret hand-
shakes [4], [20, 49]. Our framework represnts the first result that supports truly multi-party secret hand-

1 This informal definition broadens the prior version [4] which limited secret handshakes to two parties.
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shakes. Moreover, our work is also the first to address the problem of partially-successful secret handshakes;
this occurs if not all parties engaged in a handshake protocol are members of the same group.2

From the security perspective, our framework has two novel features. First, it can be resolved into
concrete schemes that provide the novel and important self-distinction property which ensures the
uniqueness of each handshake participant. In other words, it guarantees that the protocol is a multi-party
computation with the exact number of players that claim to be participating. Without self-distinction,
a malicious insider may arbitrarily impersonate any number of group members by simultaneously playing
multiple roles in a handshake protocol.3

Second, in contrast with prior work [4, 20] which relies on one-time credentials to achieve unlinkability
– which ensures that multiple handshake sessions involving the same participant(s) cannot be linked by
an adversary – our approach provides unlinkability with multi-show (or reusable) credentials. This
greatly enhances its usability. Moreover, our approach does not require users to be aware of other groups,
in contrast with [49].

In addition, our framework has some interesting flexibility features. In particular, it is model-agnostic:
if the underlying building blocks operate in the standard cryptographic model – rather than in the Random
Oracle Model (ROM) – so does the resulting secret handshake scheme. Similarly, if the building blocks
operate in the asynchronous communication model (with guaranteed delivery), so does the resulting secret
handshake scheme. Also, it supports a set of selectable properties that can be tailored to application needs
and semantics. Finally, it lends itself to many practical instantiations: we present three concrete examples
where a handshake participant computes only O(m) modular exponentiations and sends/receives O(m)
messages, where m is the number of handshake participants.
Organization: Section 2 presents our system model and definitions of secret handshake schemes. Then
we proceed to discuss the design space and lay the foundation for the framework in Section 3 The models
and definitions for the three building blocks are discussed in Sections 4, 5, and 6. Next, Section 7 presents
the actual GCD framework and the analysis of its properties, followed by three concrete instantiations
in Section 8. Related work is overviewed in Section 9.
Appendix: Due to space restrictions, some material has been placed in the Appendix. Sections A, B, C
and D describe the formal security properties of, respectively: (1) secret handshake schemes, (2) group
signature schemes, (3) group key distribution schemes, and (4) distributed group key agreement schemes.
Sections E and F provide the proofs of security for the framework and one of its instantiations. Section
G overviews a specific group signature scheme used for one of the instantiations and Section H discusses
certain practical issues.

2 Secret Handshakes: Model and Definition

Let κ be a security parameter and U be a set of all users: U = {Ui | 0 < i < n} where n is bounded by
poly(κ). Let ` be an integer, and G be a set of all groups G = {G1, . . . , G`} where each group4 G ∈ G
is a set of members managed by a group authority GA, which is responsible for admitting members,
revoking their membership and updating system state information. For simplicity’s sake we assume that
each user is a member of exactly one group. (Of course, all results can be easily generalized to the case
that users are allowed to join multiple groups.) An adversary A is allowed to corrupt various participants.
All participants (including A) are modeled as probabilistic polynomial-time algorithms.

We assume the existence of anonymous channels between all the legitimates participants, where the
term “anonymous” means that an outside attacker cannot determine identities of the GA, group members,
as well as the dynamics and size of a group, and that a malicious insider cannot determine the identities of
other honest group members as well as the the dynamics and size of the group. This assumption is necessary

2 For example, if 5 parties initiate a 5-way secret handshake protocol and 2 of them are members of group A, while the
rest are members of group B, the desired outcome is for both the former and the latter to complete the secret handshake
protocol and determine that their respective handshakes were performed with 2 and 3 members, respectively.

3 This is reminiscent of the well-known Sybil attack [26].
4 We use “group” to refer to a set of users, unless explicitly stated otherwise.
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in any privacy-preserving authentication scheme (otherwise, anonymity is trivially compromised); we
discuss practical issues in Appendix H.

A secret handshake scheme (SHS) consists of the algorithms and protocols shown in Figure 1:

Fig. 1. Definition of Multi-Party Secret Handshake Schemes

SHS.CreateGroup: executed by GA to establish a group G. It takes as input appropriate security parameters, and outputs
a cryptographic context specific to this group. The context may include a certificate/membership revocation list,
CRL, which is originally empty. The cryptographic context is made public, while the CRL is made known only to
current group members.

SHS.AdmitMember: executed by GA to admit a user to the group under its jurisdiction. We assume that GA admits
members according to a certain admission policy. Specification and enforcement of such policy is out the scope of
this paper. After executing the algorithm, group state information has been appropriately updated, the new member
holds some secret(s) as well as a membership certificate(s), and existing members obtain updated system information
from GA via the aforementioned authenticated anonymous channel.

SHS.RemoveUser: executed by GA. It takes as input the current CRL and a user identity Ui such that Ui ∈ U and
Ui ∈ G. The output includes an updated CRL which includes the newly revoked certificate for Ui. The state update
information is sent to the existing group members through the authenticated anonymous channel.

SHS.Update: executed by each current group member upon receiving, via the authenticated anonymous channel, system
state update information from GA. It is used to update each member’s system state information.

SHS.Handshake(∆): executed by a set ∆ of m users purporting to be members of a group G, where ∆ = {U1, . . . , Um}
and m ≥ 2. The input to this protocol includes the secrets of all users in ∆, and possibly some public information
regarding the current state of the systems. At the end of a protocol execution, it is ensured that each Ui ∈ ∆
determines that ∆ \ {Ui} ⊆ G if and only if each Uj ∈ ∆ (j 6= i) discovers ∆ \ {Uj} ⊆ G.

SHS.TraceUser: executed by GA. On input of a transcript of a successful secret handshake protocol SHS.Handshake(∆),
GA outputs the identities of all m participants involved in the handshake, i.e., U1, ..., Um.

We note that the above definition says nothing about the participants establishing a common key
following (or during) a successful handshake. It is indeed straightforward to establish such a key if a
secret handshake succeeds. However, allowing further communication based on a newly established key
would require concealing the outcome of the handshake. (See also Appendix H for further discussion).

The above definition also does not ensure any form of “agreement” in the sense of [28], since the
adversary is assumed to have complete control over all communication, and can allow corrupt parties.

Desired security properties are informally specified in Figure 2. Due to space limitations, the formal
treatment is deferred to Appendix A.

Fig. 2. Informal Security for Multi-Party Secret Handshake Schemes

* Correctness: If all handshake participants {U1, . . . , Um} belong to the same group, the protocol returns “1”; other-
wise, the protocol returns “0”.

* Resistance to impersonation: a passive adversary A /∈ G who does not corrupt any members of G has only a
negligible probability in convincing an honest user U ∈ G that A ∈ G.

* Resistance to detection: no adversary A /∈ G can distinguish between an interaction with an honest user U ∈ G
and an interaction with a simulator.

* Unlinkability: no adversary A is able to associate two handshakes involving a same honest user U ∈ G, even if
A ∈ G and A participated in both executions.

* Indistinguishability to eavesdroppers: no adversary A who does not participate in a handshake protocol can
distinguish between a successful handshake between {U1, . . . , Um} ⊆ G and an unsuccessful one, even if A ∈ G.

* Traceability: GA can trace all users involved in a given handshake session, as long as at least one of them is honest.
* No-misattribution: no coalition of malicious parties (including any number of group members and the GA) is able

to frame an honest member as being involved in a secret handshake.
* Forward-repudiability: Suppose at some time t1, a set of honest users in ∆ = {U1, . . . , Um} engage in a handshake.

At time t2 > t1, it is impossible for any Ui ∈ ∆ to prove to a third party that any U ∈ ∆ \ {Ui} participated in the
handshake session at time t1, even if Ui reveals its own secrets.

* Self-distinction: each participant is ensured that all the participants are distinct.
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3 Design Space

As mentioned earlier, the SHS framework is essentially a compiler that outputs a multi-party secret
handshake scheme satisfying all definitions in Section 2. Its input includes:

– A group signature scheme (GSIG): a scheme that allows any group member to produce signatures on
behalf of the group in an anonymous and unlinkable manner; only a special entity (called a group
manager) is able to revoke anonymity and “open” a group signature thereby revealing the signer’s
identity. (See Section 4.)

– A centralized group key distribution scheme (CGKD): a key management scheme for large one-to-many
groups that handles key changes due to dynamic group membership and facilitates secure broadcast
encryprion. (See Section 5.)

– A distributed group key agreement scheme (DGKA): a scheme that allows a group of peer entities to
dynamically (on-the-fly) agree on a common secret key to be used for subsequent secure communication
within that group. (See Section 6.)

We now discuss the choices made in designing GCD.
As a first try, one might be tempted to construct a secret handshake scheme directly upon a CGKD

that enables secure multicast. It is easy to see that m ≥ 2 members can conduct efficient secret handshakes
based on a group key k. However, this approach would have some significant drawbacks:

(1) No indistinguishability-to-eavesdroppers. A passive malicious (honest-but-curious) group member can
detect, by simply eavesdropping, whenever other members are conducting a secret handshake.

(2) No traceability. A dishonest member who takes part in a handshake (or is otherwise malicious) can
not be traced and held accountable.

(3) No self-distinction. For handshakes of more than two parties, self-distinction is not attained since a
rogue member can play multiple roles in a handshake.

Alternatively, one could employ a GSIG scheme as a basis for a secret handshake scheme. This would
avoid the above drawback (2), however, drawback (1) remains. Also, resistance to detection attacks would
be sacrificed, since (as noted in [4]), group signatures are verifiable by anyone in possession of the group
public key.

A natural next step is to combine a CGKD with a GSIG. This way, the GSIG group public key is kept
secret among all current group members (along with the CGKD group-wide secret key k), and – during
the handshake – group signatures would be encrypted under the group-wide key k. Although traceability
would be re-gained, unfortunately, drawbacks (1) and (3) would remain.

In order to avoid (1), we need the third component, an interactive distributed key agreement protocol.
With it, any member who wants to determine if other parties are members (or are conducting a secret
handshake) is forced to participate in a secret handshake protocol. As a result, the group signatures are
encrypted with a key derived from both: (a) the group-wide key and (b) the freshly established key.
Moreover, we can thus ensure that, as long as a group signature is presented by a corrupt member, the
traceability feature enables the group authority to hold that member accountable.5

As pertains to drawback (3) above (no self-distinction), we defer the discussion to later in the paper.
Suffice it to say, that group signature schemes do not provide self-distinction by design, since doing so
would undermine their version of unlinkability, which is different from the unlinkability in our context.
To remedy the situation, we need some additional tools, as described in Section 8 below.

Since our approach involves combining a group signature scheme with a centralized group key distri-
bution scheme, it is natural to examine potentially redundant components. In particular, both GSIG and
CGKD schemes include a revocation mechanism. Furthermore, revocation in the former is quite expensive,
usually based on dynamic accumulators [16]. Thus, it might seem worthwhile to drop the revocation of
component of GSIG altogether in favor of the more efficient revocation in CGKD. This way, a revoked
5 If the adversary is always the last to send its encrypted group signature, the traceability feature is lost. However, the

achieved traceability is still valuable, for example, for investigating activities of members before they become corrupt.
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member would simply not receive the new group-wide key in CGKD but would remain un-revoked as far
as the underlying GSIG is concerned. To illustrate the problem with this optimization, consider an attack
whereby a malicious but unrevoked member reveals the CGKD group-wide key to a revoked member.
The latter can then take part in secret handshakes and successfully fool legitimate members. Whereas,
if both revocation components are in place, the attack fails since the revoked member’s group signature
(exchanged as part of the handshake) would not be accepted as valid.

4 Building Block I: Group Signature Schemes

Let U be the universe of user identities. In a group signature scheme, there is an authority called a
group manager (GM) responsible for admitting users and identifying the actual signer of a given group
signature6. There is also a set of users who can sign on behalf of the group. In addition, there is a set of
entities called verifiers. All participants are modeled as probabilistic polynomial-time algorithms.

A group signature scheme, denoted by GSIG, is specified in Figure 4.

Fig. 3. Definition of Dynamic Group Signature Schemes

Setup: a probabilistic polynomial-time algorithm that, on input of a security parameter κ, outputs the specification of
a cryptographic context including the group manager’s public key pkGM and secret key skGM. This procedure may
be denoted by (pkGM, skGM)← Setup(1κ).

Join: a protocol between GM and a user (conducted over a private and authenticated channel) that results in the user be-
coming a group member U . Their common output includes the user’s unique membership public key pkU , and perhaps
some updated information that indicates the current state of the system. The user’s output includes a membership
secret key skU . This procedure may be denoted by (pkU, skU, certificateU; pkU, certificateU) ← Join[U ↔ GM],
where Join[U↔ GM] denotes an interactive protocol between U and GM, pkU, skU, certificateU is the output of U,
and pkU, certificateU is the output of GM. Besides, there may be some system state information that is made public
to all participants.

Revoke: an algorithm that, on input of a group member’s identity (and perhaps her public key pkU ), outputs updated
information that indicates the current state of the system after revoking the membership of a given group member.

Update: a deterministic algorithm that may be triggered by any Join or Revoke operation. It is run by each group member
after obtaining system state information from the group manager.

Sign: a probabilistic algorithm that, on input of: key pkGM, (skU , pkU ) and a message m, outputs a group signature σ
of m. This procedure may be denoted by σ ← Sign(pkGM, pkU, skU, m).

Verify: an algorithm that, on input of: pkGM, an alleged group signature σ and a message m, outputs a binary value
true/false indicating whether σ is a valid group signature (under pkGM) of m. This procedure may be denoted by
true/false← Verify(pkGM, m, σ).

Open: an algorithm executed by the group manager GM. It takes as input of a message m, a group signature σ, pkGM

and skGM. It first executes Verify on the first three inputs and, if the output of Verify is TRUE, outputs some
incontestable evidence (e.g., a membership public key pkU and a proof) that allows anyone to identify the actual
signer. This procedure may be denoted, without loss of generality, by U ← Open(pkGM, skGM, m, σ) if true ←
Verify(pkGM, m, σ).

Informally, we require a group signature scheme to be correct, i.e., any signature produced by an
honest group member using Sign is always accepted by Verify.

Following notable prior work [5, 10, 34], we say a group signature scheme is secure if it satisfies the
following three properties (see Appendix B for a formal definition): (1) full-traceability – any valid
group signature can be traced back to its actual signer, (2) full-anonymity – no adversary can identify
the actual signer of a group signature, even if the actual signer’s secret has been compromised, and (3)
no-misattribution – no malicious group manager can misattribute a group signature to an honest group
member.

6 Sometimes, the two functionalities are assigned to two separate entities.
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5 Building Block II: Centralized Group Key Distribution Scheme

Let κ be a security parameter, and ID be the set of possible group members (i.e., principals) such that
|ID| is polynomially-bounded. There is a special entity called a key server or Group Controller (GC) such
that GC /∈ ID.

To simplify the presentation, we assume that during system initialization (i.e., Setup below) GC can
communicate with each legitimate member U through a private (i.e. untappable) channel, that GC can
establish a common secret, if needed, with a joining user, and that, after the system initialization, GC can
communicate with any U ∈ ID through an authenticated channel. By the term “authenticated” we mean
that only GC can insert information into this channel. (We discuss these (and other) issues in Appendix
H.) In line with notable prior work ([7, 9, 19, 6]), a centralized group key distribution scheme (CGKD) is
defined in Figure 4.

Fig. 4. Definition of Centralized Group Key Distribution Schemes

Setup: The group controller GC generates a set of keys KGC, and distributes them to the current group members, ∆ ⊆ ID,
through the authenticated private channels. Each member Ui ∈ ∆ holds a set of keys denoted by KUi ⊂ KGC, and
there is a key, k (called group key or sometimes session key) that is common to all the current members, namely
k ∈ KGC ∩KU1 ∩ . . . ∩KU|∆| .

Since GC can execute the following Join and Leave protocols multiple times, we denote an instance i of GC as Πi
GC,

where i ∈ N is (for example) a counter maintained by GC itself. Moreover, each instance Πi
GC is associated with

variables sidi
GC and ski

GC. Initially, sk0
GC ← k and ∀ i ∈ N, sidi

GC ← undefined, ski
GC ← undefined.

Similarly, we denote an instance i of U ∈ ID as Πi
U , where i ∈ N could be a counter maintained by U itself.

Each instance Πi
U is associated with variables acci

U , sidi
U and ski

U . Initially, (1) ∀ U ∈ ID, i ∈ N, acci
U ← false,

sidi
U ← undefined, ski

U ← undefined, (2) ∀ U ∈ ∆, sk0
U ← k, and (3) ∀ U ∈ ID \∆, sk0

U ← undefined.
Join: This algorithm is executed by group controller GC (we abstract away the out-of-band authentication and establish-

ment of an individual key for each of the new members). It takes as input: (1) identities of current group members,
∆, (2) identities of newly admitted group members, ∆′ ⊆ ID \∆, (3) keys held by the group controller, KGC, and
(4) keys held by group members, {KUi}Ui∈∆ = {KUi : Ui ∈ ∆}.
It outputs updated system state information, including: (1) identities of new group members, ∆new ← ∆ ∪∆′, (2)
new keys for GC itself, Knew

GC , (3) new keys for new group members, {Knew
Ui
}Ui∈∆new , which are somehow sent to the

legitimate users through the authenticated channels, (4) session id, sidi
GC, of instance Πi

GC, i.e., a protocol-specific
function of all communications sent by Πi

GC (e.g., set sidi
GC as the concatenation, or ordered set, of all messages sent

by Πi
GC during the course of its execution), and (5) new group key ski

GC ← k, where k ∈ Knew
GC .

Formally, denote it by (∆new, Knew
GC , {Knew

Ui
}Ui∈∆new , sidi

GC, sk
i
GC)← Join(∆, ∆′, KGC, {KUi}Ui∈∆).

Leave: This algorithm is executed by the group controller GC. It takes as input: (1) identities of current group members,
∆, (2) identities of leaving group members, ∆′ ⊆ ∆, (3) keys held by the controller, KGC, and (4) keys held by group
members, {KUi}Ui∈∆.
It outputs updated system state information, including: (1) identities of new group members, ∆new ← ∆ \∆′, (2)
new keys for GC, Knew

GC , (3) new keys for new group members, {Knew
Ui
}Ui∈∆new , which are somehow sent to the

legitimate users through the authenticated channels, (4) session id, sidi
GC, of instance Πi

GC, i.e., a protocol-specified
function of all communications sent by Πi

GC (e.g., set sidi
GC as the concatenation, or ordered set, of all messages sent

by Πi
GC during the course of its execution), and (5) new group key ski

GC ← k, where k ∈ Knew
GC .

Formally, denote it by (∆new, Knew
GC , {Knew

Ui
}Ui∈∆new , sidi

GC, sk
i
GC)← Leave(∆, ∆′, KGC, {KUi}Ui∈∆).

Rekey: This algorithm is executed by the new group members, i.e., instances Πj
Ui

for Ui ∈ ∆new, which is one of the
outputs of the corresponding Join or Leave event. In other words, Ui ∈ ∆new runs this algorithm upon receiving
the message from GC over the authenticated channel. The algorithm takes as input the received message and Ui’s
secrets, and is supposed to output the updated keys for the group member. If the execution of the algorithm
is successful, Πj

Ui
sets: (1) accj

Ui
← true, (2) sidj

Ui
as the session id of instance Πj

Ui
, i.e., a protocol-specified

function of all communication received by Πj
Ui

(e.g., set sidj
Ui

as the concatenation, or ordered set, of all messages

received by Πj
Ui

during the course of the execution), (3) Knew
Ui

, and (4) skj
Ui
← k as the new group key, where

k ∈ Knew
GC ∩Knew

U1 ∩ . . . ∩Knew
U|∆new |.

If the rekey is caused by a join event, every U ∈ ∆new erases KU and any temporary storage after obtaining Knew
U .

If the rekey event is incurred by a leave event, every U ∈ ∆new erases KU and any temporary storage after obtaining
Knew

U , and every honest leaving group member U ∈ ∆′ erases KU (although a corrupt one does not have to follow
this protocol).

We require for a CGKD scheme to be correct, meaning that after each rekey process, all the group
members share a common key with the group controller, and secure, meaning that no adversary (who
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does not compromise any legitimate group members) learns any information about the new group key
(see Appendix C for a formal definition).

6 Building Block III: Distributed Group Key Agreement

Let κ be a security parameter. We assume a polynomial-size set ID of potential players. Any subset of ID
may decide at any point to invoke distributed group key agreement. A distributed group key agreement
scheme, DGKA, is specified in Figure 5 in accordance with the results in [6], [14, 12, 13] and [32].

Fig. 5. Definition of Distributed Key Agreement Schemes

Setup: a probabilistic polynomial-time algorithm that, on input of the security parameter κ, outputs the specification
of a cryptographic context wherein the key agreement protocol operates, and a group-wide long-lived key LLK that
is sent to all participants via an authenticated private channel. Note that LLK could be a symmetric key, or a set
of public keys, such that, for each public key in the set, the corresponding private key is held by exactly one of the
participants.
Since each principal can execute Setup multiple times, we denote an instance i of U ∈ ID as Πi

U . Each instance Πi
U

is associated with variables acci
U , sidi

U , pidi
U , ski

U . Initially, ∀ U ∈ ID and i ∈ N, acci
U ← false and sidi

U , pidi
U , ski

U ←
undefined.

AuthKeyAgreement: a protocol that performs distributed group agreement between a subset of principals. After exe-
cuting the protocol, each party outputs an indication of the protocol outcome (success or failure), and some secret
information, in case of success. In more detail, the protocol is executed by m instances, Πi1

U1
, . . . , Πim

Um
, where

{U1, . . . , Um} ⊆ ID. If the execution of Π
ij

Uj
is successful, it sets (1) acc

ij

Uj
← true, (2) sid

ij

Uj
as the session id of

instance Π
ij

Uj
, namely a protocol-specified function of all communication sent and received by Π

ij

Uj
(e.g., we can

simply set sid
ij

Uj
as the concatenation of all messages sent and received by Π

ij

Uj
in the course of its execution), (3)

pid
ij

Uj
as the session id of instance Π

ij

Uj
, namely the identities of the principals in the group with whom Π

ij

Uj
intends

to establish a session key (including Uj itself), and (4) sk
ij

Uj
as the newly established session key.

To achieve more flexibility, we also specify a “raw” or un-authenticated group key agreement component.

RawKeyAgreement: same as AuthKeyAgreement except that there is no authentication in protocol, even if there is a long-
term key LLK. This is a straight-forward extension to the traditional un-authenticated Diffie-Hellman, e.g., [45]. Of
course, we are aware of the dangers posed by man-in-the-middle attacks, but those can be remedied at a later phase,
through the use of CGKD.

Informally speaking (see Appendix D for a formal definition), we require for a scheme to have correct-
ness and security. Correctness means that the participants must obtain a new session secret (key) that
can be used as a session key and security means that an adversary – who does not compromise any
principals during the execution – does not learn any information about the new group session key.

7 GCD Secret Handshake Framework

The GCD framework has the following components:

GCD.CreateGroup: The group authority (GA) plays the roles of both group manager in GSIG and group
controller in CGKD.
– GA executes GSIG.Setup. This initializes a group signature scheme.
– GA executes CGKD.Setup. Thie initializes a centralized group key distribution scheme.
– GA generates a pair of public/private keys (pkT , skT ) with respect to an IND-CCA2 secure public

key cryptosystem. This pair of keys enables GA to identify handshake participants in any handshake
transcript.

– With regard to DGKA.Setup, we assume that there is a set of system-wide cryptographic parameters
specified for the DGKA schemes; at least the honest users must insist on these parameters.
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GCD.AdmitMember: GA executes CGKD.Join and GSIG.Join, except: (1) the updated system state infor-
mation corresponding to GSIG is encrypted under the new group session key, and distributed as part
of CGKD’s state information updating message, and (2) the updating messages are published via an
authenticated anonymous channel, e.g., a public bulletin board.

GCD.RemoveUser: GA executes CGKD.Leave and GSIG.Revoke, except: (1) the updated system state
information corresponding to GSIG is encrypted under CGKD’s new group session key, and distributed
as part of CGKD’s state information updating message, and (2) the updating messages are distributed
via an authenticated anonymous channel.

GCD.Update: All non-revoked members execute GSIG.Update and CGKD.Rekey, except: (1) the updated
system state information is obtained from an authenticated anonymous channel, and (2) if CGKD.Rekey
succeeds, the update information corresponding to GSIG is decrypted using CGKD’s new group key.

GCD.Handshake: Suppose m (≥ 2) users want to determine if they belong to the same group. We denote
their group keys with respect to the CGKD as: k1, . . . , km, respectively. Note that, if they belong to
the same group, then k1 = . . . = km.
Phase I: Preparation: All m parties jointly execute the DGKA.RawKeyAgreement protocol. We denote

the resulting keys as: k∗1, . . . , k
∗
m, respectively. If the execution is successful, then k∗1 = . . . = k∗m,

and each party computes k′i = k∗i ⊕ ki.
Phase II: Preliminary Handshake: Each party publishes a tag MAC(k′i, s) corresponding to a message

authentication code MAC (e.g., HMAC-SHA1), where s is a string unique to the party (e.g., the
message it sent in the DGKA.RawKeyAgreement execution).7

Phase III: Full Handshake: There are two cases:
CASE 1: If all message authentication tags are valid (i.e., they belong to the same group), each
party executes the following:
1. Encrypt k′i to obtain ciphertext δi under the group authority’s tracing public key pkT ;

δi ← ENC(pkT , k′i).
2. Generate a group signature σi on the concatenation of δi via GSIG.Sign.
3. Encrypt σi using a symmetric key encryption algorithm and key k′i to obtain a ciphertext

θi; θi ← SENC(k′i, σi).
4. Publish (θi, δi).
5. Upon receiving (θi, δi), execute the following:

– Obtain the group signature by performing symmetric key decryption algorithm using k′i;
σi ← SDEC(k′i, θi).
– Run GSIG.Verify to check if σi is a valid group signature. If all group signatures are
deemed valid, the party concludes that the corresponding parties all belong to the same
group and stores the transcript including {(θi, δi)}1≤i≤m.

CASE 2: If at least one message authentication tag is invalid, each of party picks a pair (θi, δi)
randomly selected from the ciphertext spaces corresponding to the symmetric key and public
key cryptosystems, respectively.

GCD.TraceUser: Given a transcript of a secret handshake instance: {(θi, δi)}1≤i≤m, the group authority
GA decrypts all δi’s to obtain the corresponding session keys: k′1, . . . , k

′
m. In the worst case, the

authority needs to try to search the right session key and decrypt all θi’s to obtain the cleartext group
signatures. Then, it executes GSIG.Open to identify the handshake parties.

Remark: In order to enable modular construction, we specify the handshake protocol as a three-phase
protocol. Thus, the resulting framework is flexible, i.e., tailorable to application semantics. For example,
if traceability is not required, a handshake may only involve Phase I and Phase II. Further, Phase II can
be merged with Phase I; indeed this is the case for one of our concrete constructions below.

The following theorem is proved in Appendix E.

Theorem 1. Assumming that GSIG, DGKA, CGKD are secure with respect to their corresponding defi-
nitions in Sections 4-6, the GCD framework is secure with respect to definitions in Section 2, except
self-distinction.
7 If a broadcast channel is available, the tag is sent on it; else, it is sent point-to-point.
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8 Three Instantiations

We now present three concrete secret handshake schemes. The first scheme employs “raw” (unauthen-
ticated) contributory group key agreement, whereas, the second scheme uses authenticated contributory
group key agreement, and the third scheme ensures that all handshake participants are distinct. These
examples illustrate the flexibility of the GCD framework.

8.1 Example Scheme 1

This is a straight-forward instantiation of the GCD framework. We simply use an unauthenticated DGKA
similar to [15, 45, 32], CGKD based on [48, 39], and GSIG based on [2, 16]. Theorem 1 immediately implies
that this instantiation satisfies all properties specified in Section 2, except self-distinction.

The computational complexity for each party is the sum of the respective complexities incurred in
each of the three building blocks. We remark that each party only needs to compute O(m) modular
exponentiations in total. Moreover, the total communication complexity is O(m) (per-user) in terms of
messages, where m is the number of protocol parties.

8.2 Example Scheme 2: Fast Handshakes

The next scheme has an attractive feature of authenticating membership as early as possible, by merging
Phase I and Phase II of the handshake protocol. Since all protocols, except for the actual handshake, are
the same as in the framework, we only focus on the handshake protocol illustrated in Figure 6.

Fig. 6. Example Scheme 2: Fast Handshakes

GCD.Handshake: Suppose m (≥ 2) users are the protocol participants and let their group keys with respect to CGKD
be denoted as: k1, . . . , km. As before, if they all belong to the same group, then k1 = . . . = km.
Phase I & II: Preparation. All m parties jointly execute an instance of the DGKA.AuthKeyAgreement protocol, with

authentication based on the group key (i.e., those parties with invalid message authentication tags are not taken
into consideration). We denote the resulting keys as: k′1, . . . , k

′
m. After a successful protocol run: k′1 = . . . = k′m.

Phase III: Full Handshake. execute the following:
– encrypt k′i to obtain ciphertext δi under the group authority’s tracing public key pkT

– generate a group signature σi on the concatenation of δi using GSIG.Sign
– encrypt σi using a symmetric key encryption algorithm and key k′i to obtain a ciphertext θi ← SENC(k′i , σi),

and
– publish (θi, δi).
– upon receiving (θi, δi), execute the following:

– obtain σi ← SDEC(k′i , θi)
– invoke GSIG.Ver to check whether each σi is a valid group signature (if all signatures are valid, it concludes
that they all belong to the same group and records the protocol transcript).

The proof of the following theorem is similar to the proof of Theorem 1.

Theorem 2. If the underlying components: GSIG, DGKA, CGKD are secure (with respect to their corre-
sponding definitions in Sections 4-6), then the above scheme satisfies all definitions in Section 2, except
self-distinction.

The computational and communication complexities of this scheme are essentially the same as in the
previous example scheme, except for lower communication complexity.

8.3 Example Scheme 3: Self-Distinction

Neither previous instantiation guarantees that all handshake parties are distinct, i.e., all or some of the m
handshake parties could in fact be “played” by the same party. We now sketch out a scheme based on a
variant of a group signature scheme in [33] (see Appendix G). We only illustrate the handshake protocol
(in Figure 7) since it is the only distinctive feature of this scheme.

A proof sketch of the following theorem can be found in Appendix F.
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Fig. 7. Example Scheme 3: Self-Distinction

GCD.Handshake: Suppose m (≥ 2) users are taking part in the protocol. We denote their group keys with respect to
the CGKD by k1, . . . , km, respectively. As before, if they belong to the same group, k1 = . . . = km.
Phase I: Preparation: m parties jointly execute the DGKA.RawKeyAgreement protocol. Let the resulting keys be

denoted as: k∗1 , . . . , k∗m, respectively. (After a successful run k∗1 = . . . = k∗m.) Then, each party computes k′i =
k∗i ⊕ ki

Phase II: Preliminary Handshake: Each party publishes a pair MAC(k′i, s), where s is the concatenation of
all messages in executing DGKA.RawKeyAgreement. (Note that these two phases can be merged via
DGKA.AuthKeyAgreement.)

Phase III: Full Handshake: We consider two cases:
Case 1: If all message authentication tags are valid (i.e., they belong to the same group), each party executes
as follows:
1. Encrypts k′i under the public key pkT to obtain ciphertext δi

2. Generates a variant group signature σi on δi on s via GSIG.Sign, where the group signature is the same
as what is called a traceable signature in [33], except the following:

The value T7 = gk′ is jointly computed by all parties. (For example, by running a Pedersen-style
[41] commitment protocol and then de-committing the values. Alternatively, k′ can be obtained
by running an instance of DGKA.AuthKeyAgreement.) As a result, the number of distinct T6 values
corresponds to the number of distinct parties.

3. Encrypt σi using a symmetric key encryption algorithm and key k′i to obtain ciphertext θi ←
SENC(k′i, σi).

4. Publish (θi, δi).
5. Upon receiving (θi, δi), execute as follows:

(a) Obtain σi ← SDEC(k′i, θi)
(b) Run GSIG.Verify to check if each σi is a valid group signature (if all group signatures are valid, it

concludes that they all belong to the same group and records the transcript).
Case 2: If at least one message authentication tag is invalid, each party picks a pair of (θi, δi) randomly
selected from the ciphertext spaces corresponding to the symmetric key and public key cryptosystems,
respectively.

Theorem 3. If the underlying components: GSIG, DGKA, CGKD are secure (with respect to their corre-
sponding definitions in Sections 4-6) and T7 is uniformly distributed, then the above scheme satisfies all
definitions in Section 2

The computational complexity in terms of modular exponentiations (per-user) remains O(m) and the
communication complexity (per-user) is no more than double the complexity of the first instantiation
above, where m is the number of handshake participants.

9 Related Work

The first secret handshake scheme [4] is based on the protocol of Sakai et al. [44], which targets the key
exchange problem. Indeed, a secret handshake can be appropriately turned into an authenticated key
exchange, but an authenticated key exchange does not necessarily imply a secret handshake, e.g., the
two-party Diffie-Hellman key agreement scheme [25] does not lend itself to solving the secret handshake
problem; see [4]. The scheme in [4] is based on bilinear maps in the setting of elliptic curves and its security
is based on the associated assumptions. This scheme uses one-time pseudonyms to achieve unlinkability
and does not offer the No-misattribution property.

A more recent follow-on result is due to Castelluccia, et al. [20]. This work constructs several handshake
schemes in more standard cryptographic settings (avoiding bilinear maps) and provides some extensions
for satisfying No-misattribution. However, it still relies on one-time pseudonyms to satisfy unlinkability.
Another recent results by [49] requires each player to be aware of the information of other groups and
offers weaker anonymity (referred to as k-anonymity).
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A Security Properties of Secret Handshake Schemes

Consider a probabilistic polynomial-time adversary A that is allowed access to the following oracles:

– OCG(·): activate a new GA to create a group via SHS.CreateGroup. The identity, GA, may be given by A as input. We
assume that a GA is not under A’s control before the group is established. However, GA may be corrupted immediately
after its establishment, i.e., before any users are admitted into the group.

– OAM (·, ·): input includes the identity of a GA and, optionally, the identity U of a user under A’s control. In case of
OAM (GA, U), GA may admit the corrupt user U by executing SHS.AdmitMember; in case of OAM (GA), GA executes
SHS.AdmitMember to admit an honest user and assign it a unique pseudonym U , if needed.

– ORU (·, ·): input includes the identity of a GA and a pseudonym U . The oracle activates SHS.RemoveUser to place U onto
the corresponding CRL. The system state information is appropriately updated.

– OUpdate(): whenever OAM (·, ·) or ORU (·, ·) is called, this oracle is also called so that the corresponding non-revoked group
members can update their system state information.

– OHS(·, . . . , ·): activate SHS.Handshake between members U1, . . . , Um, where none or some (but not all) are under A’s
control. The honest members execute according to the protocol.

– OTU (·): on input of a successful handshake transcript, GA identifies the participating members.
– OCorrupt(·, ·): takes as input the identity of GA and, optionally, a pseudonym in U ∪{⊥,>}. In case of OCorrupt(GA, U ∈
U), the oracle returns U ’s current internal state information (including all secrets) to A; in case of OCorrupt(GA,⊥),
the oracle returns GA’s current internal state information for admitting members to A; in case of OCorrupt(GA,>), the
oracle returns GA’s current internal state information for tracing members to A. Once GA or U is corrupt, it executes
according to A’s wishes until the corruption is detected by some outside mechanism (e.g., intrusion detection systems).
When the corruption of user U is detected, it is excluded from the group via SHS.RemoveUser; when the corruption of
GA is detected, the corresponding group is simply excluded from the system.

We now specify the desired security properties for a secret handshake scheme. We note that they form a superset of
security properties found in prior work [4, 49, 20].

Correctness: Suppose a set of participants, ∆ = {U1, . . . , Um}, are conducting the secret handshake protocol. If all the Ui’s
belong to the same group, then Handshake(∆) always returns “1”; otherwise, it always returns “0”.

Resistance to impersonation: no passive adversary A /∈ G who does not corrupt any members of G has only a negligible
probability in convincing an honest user U ∈ G that A ∈ G. Formally, consider the following game or experiment.

Experiment RIASHS,A(1κ):

(GA, ∆′ = {U ′
i}i∈I, b)← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(1κ)

Return “1” if the following holds and “0” otherwise:
(1) ∀ i ∈ I: U ′

i belongs to the group managed by GA
(2) there is no OCorrupt(GA) query
(3) ∀ i ∈ I: there is no ORU (GA, U ′

i) query
(4) if there is an OAM (GA, X ∈ U) query, then there is also an ORU (GA, X) query
(5) if there is an OCorrupt(GA, X ∈ U) query, then there is also an ORU (GA, X) query
(6) |∆′| = m− 1 and ∆ = {A} ∪∆′ = {U1, . . . , Ub−1,A, Ub+1, . . . , Um}
(7) SHS.Handshake(∆) returns “1”

Let AdvRIASHS,A(1κ) = Pr[RIASHS,A(1κ) returns “1”], which is the probability that the experiment RIASHS,A(1κ) returns “1”,
where the probability is taken over the coins used for selecting the cryptographic parameters, the coins used by the oracles,
and the coins used by the adversary. A secret handshake scheme SHS is “resistant to impersonation attacks” if for ∀A,
AdvRIASHS,A(1κ) is negligible in κ.

Resistance to detection: no adversary A /∈ G can tell it is interacting with an honest user U ∈ G or a simulator. Formally,
consider the following game or experiment.

Experiment RDASHS,A(1κ):
bit ∈R {0, 1}
(GA, ∆′ = {U ′

i}i∈I, b, stateinfo)← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(1κ)
where |∆′| = m− 1 and ∆′ ⊆ G for G managed by GA

set ∆ = ∆′ ∪ {A} = {U1, . . . , Ub−1,A, Ub+1, . . . , Um}
if bit == 0 execute SHS.Handshake(U1, . . . , Ub−1,A, Ub+1, . . . , Um)

else execute SHS.Handshake(SIM, . . . , SIM,A, SIM, . . . , SIM) where SIM is a simulator

bit′ ← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(stateinfo)
Return “1” if the following hold and “0” otherwise

(1) bit == bit’
(2) there is no OCorrupt(GA) query
(3) ∀ i ∈ I: there is no ORU (GA, U ′

i) query
(4) if there is an OAM (GA, X ∈ U) query, then there is also an ORU (GA, X) query
(5) if there is an OCorrupt(GA, X ∈ U) query, then there is also an ORU (GA, X) query
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Let AdvRDASHS,A(κ) = |Pr[RDASHS,A(κ) returns “1”|bit = 1] − Pr[RDASHS,A(κ) returns “1”|bit = 0|. A scheme SHS is
“resistant to detection” if for ∀A, AdvRDASHS(A) is negligible in κ.

Unlinkability: no adversary A is able to associate two handshakes involving a same honest user U ∈ G, even if A ∈ G and
A participated in both executions. Formally, consider the following experiment.

Experiment UnlinkSHS,A(1κ):
bit ∈R {0, 1}
(∆0 = {U1, . . . , Um0}, stateinfo0)← AOCG(·),OAM (·,·),OHS(·,·),ORU (·,·),OCorrupt(·,·)(1κ)

(∆1 = {U ′
1, . . . , U

′
m1}, stateinfo1)← AOCG(·),OAM (·,·),OHS(·,·),ORU (·,·),OCorrupt(·,·)(stateinfo0)

if bit == 0 then execute
Handshake({U1, . . . , Ui−1, Ui, Ui+1, Um0}) and
Handshake({U ′

1, . . . , U
′
j−1, U

′
j , U

′
j+1, . . . , U

′
m1})

else execute
Handshake({U1, . . . , Ui−1, SIM, Ui+1, Um0}) and
Handshake({U ′

1, . . . , U
′
j−1, SIM, U ′

j+1, . . . , U
′
m1})

Return “1” if the following hold and “0” otherwise:

(1) bit′ ← AOCG(·),OAM (·,·),OHS(·,·),ORU (·,·),OCorrupt(·,·)(stateinfo0, stateinfo1)
(2) ∀U ∈ ∆0: there is no ORU (GA, U) query

where GA is the group authority of the group to which U belongs
(3) ∀U ′ ∈ ∆1: there is no ORU (GA′, U ′) query

where GA′ is the group authority of the group to which U ′ belongs
(4) Ui = U ′

j

(5) there is no OAM (GA, Ui) query
(6) there is no OCorrupt(GA, Ui) query
(7) bit == bit′

Let AdvUnlinkSHS,A(1κ) = |Pr[UnlinkSHS,A(1κ) returns “1”|bit = 1] − Pr[UnlinkSHS,A(1κ) returns “1”|bit = 0]|, where the
probability is taken over all tossed coins. A scheme SHS is “unlinkable” if for ∀A, AdvUnlinkSHS,A(1κ) is negligible in κ.

Indistinguishability to eavesdroppers: no adversary A who does not participate in a handshake protocol can tell a
successful handshake between {U1, . . . , Um} from an unsuccessful one, even if A ∈ G. Formally, consider the following
experiment.

Experiment INDeavSHS,A(1κ):
bit ∈R {0, 1}
(GA, ∆ = {U1, . . . , Um}, stateInfo)← AOCG(·),OAM (·,·),OHS(·,·),ORU (·,·),OCorrupt(·,·)(1κ)
if bit == 0 then execute SHS.Handshake(U1, . . . , Um)

else execute SHS.Handshake(SIM, . . . , SIM) where SIM is a simulator

bit′ ← AOCG(·),OAM (·,·),OHS(·,·),ORU (·,·),OCorrupt(·,·)(stateinfo)
Return “1” if the following hold and “0” otherwise:

(1) bit == bit′

(2) ∀U ∈ ∆, there is no ORU (GA, U) query
(3) there is no OCorrupt(GA,>) query
(4) if there is an OAM (GA, X) query, then X /∈ ∆ query

Let AdvINDeavSHS,A = |Pr[INDeavSHS,A(1κ) returns “1”]−1/2|, where the probability is taken over all flipped coins. A scheme
SHS is “indistinguishable to eavesdroppers” if for ∀A, AdvINDeavSHS(A) is negligible in κ.

Traceability: GA can trace all users involved in a given handshake session, as long as one of them is honest. Formally,
consider the following experiment.

Experiment TraceUserSHS,A(1κ):

(GA, ∆ = {U1, . . . , Um}, stateInfo)← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(1κ)
where ∆ ⊆ G for G managed by GA

execute Handshake(U1, . . . , Um) to obtain a transcript τ
Return “1” if the following hold and “0” otherwise

(1) there is no OCorrupt(GA,>) query
(2) there exists U ∈ ∆ such that 6 ∃OCorrupt(GA, U) or 6 ∃OAM (GA, U)
(3) ∆′ ← TraceUser(τ)
(4) ∆′ \∆ 6= ∅

Let AdvTraceUserSHS,A = |Pr[TraceUserSHS,A(1κ) returns “1”|, where the probability is taken over the choice of the crypto-
graphic context, and the coins used in the experiment. A scheme SHS achieves “traceability” if for ∀A, AdvTraceUserSHS,A
is negligible in κ.

No-misattribution: no participant, no coalition of malicious parties (including any number of group members and the GA)
is able to frame an honest member as being involved in a secret database. Formally, consider the following experiment.
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Experiment MisattributionSHS,A(1κ):

(GA, ∆ = {U1, . . . , Um})← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(1κ)
where ∆ ⊆ G for G managed by GA

execute Handshake(U1, . . . , Um) to obtain a transcript τ
Return “1” if the following hold and “0” otherwise

(1) ∆′ ← TraceUser(τ)
(2) U ∈ ∆′ \∆
(3) there is no OCorrupt(U) or OAM (GA, U) query

Let AdvMisattributionSHS,A = |Pr[MisattributionSHS,A(1κ) returns “1”|, where the probability is taken over the choice of the
cryptographic context, and the coins used in the experiment. A scheme SHS achieves “No-misattribution” if for ∀A,
MisattributionSHS,A is negligible in κ.

Forward-repudiability: Suppose at some time t1, a set of honest users in ∆ = {U1, . . . , Um} engage in a handshake. At
time t2 > t1, it should not be possible for any Ui ∈ ∆ to prove to a third party that any U ∈ ∆ \ {Ui} participated in the
handshake session at time t1, even if Ui reveals its own secrets. Formally, we require that for any successful handshake session
Handshake(∆ = {U1, . . . , Um}) with transcript τ , there exists a polynomial-time algorithm that is able to simulate τ .

Self-distinction: if more than 2 parties are involved in a handshake, each participant is ensured that all other participants
are different. Formally, consider the following experiment.

Experiment SelfDistSHS,A(1κ):

(GA, ∆ = {U1, . . . , Um})← AOCG(·),OAM (·,·),ORU (·,·),OUpdate(),OHS(·,·),OT U (·),OCorrupt(·,·)(1κ)
where ∆ ⊆ G for G managed by GA

execute Handshake(U1, . . . , Um) to obtain a transcript τ
∆′ ← TraceUser(τ)
Return “1” if the following holds and “0” otherwise

(1) there is no OCorrupt(GA,>) query
(2) ∃U ∈ ∆ s.t. there is no OCorrupt(GA, U) query
(3) |∆′| < |∆|

Let AdvSelfDistSHS,A(1κ) = |Pr[SelfDistSHS,A(1κ) returns “1”|, where the probability is taken over the choice of the crypto-
graphic context, and the coins used in the experiment. A scheme SHS achieves “self-distinction” if for ∀A, AdvSelfDistSHS,A(1κ)
is negligible in κ.

B Security Properties of Group Signature Schemes

In this paper, we follow the definitions presented in [5, 10, 34] which include three properties: full-traceability, full-anonymity,
and no-misattribution. In order to meaningfully specify the security properties, we first consider the oracles an adversary
is allowed to have access to.

– OSetup(1κ): activate GM to execute GSIG.Setup on security parameter 1κ.
– OJoin(U): result in a user U becoming a member of the group.
– ORevoke(U): result in the membership of U being revoked.
– OUpdate(): result in the non-revoked members updating their system state information.
– OSign(M): activate a group member U to sign a message M by executing the Sign algorithm.
– OOpen(σ): activate the group manager GM to execute the Open algorithm on signature σ.
– OCorrupt(U): return U ’s private information.
– OCorrupt(GM,⊥): return GM’s private information used to admit group members (i.e., the secrets used to issue mem-

bership certificates).
– OCorrupt(GM,>): return GM’s private information used to Open group signatures (i.e., the secrets used to revoke

anonymity).

Remark. First, a user or (part of) a group manager may be corrupted before becoming part of a group signature scheme.
This is captured by allowing an adversary to immediately corrupt an entity after its initialization such as being admitted as
a group member. Second, we differentiate the case that an adversary corrupts a group manager’s capability for admitting
members from the case that an adversary corrupts a group manager’s capability for opening group signatures. This reflects the
good practice that one server is responsible for admitting members, and another is responsible for opening group signatures.

Full-traceability: any group signature can be traced back to its actual signer. Formally, consider the following game or
experiment.

Experiment FullTraceGSIG,A(1κ)
(pkGM, skGM)← Setup(1κ)

(M, σ)← AOJoin(·),OSign(·,·),OOpen(·),OCorrupt(·),OCorrupt(GM,>)()

15



Return “1” if
(1) Verify(M, σ) returns true
(2) ∆ = {U ′ ∈ ID | ∃ OCorrupt(U

′)}
(3) U ← Open(pkGM, skGM, M, σ)
(4) U /∈ ∆

A group signature scheme fulfills full-traceability if ∀A, Pr[FullTraceGSIG,A(1κ) returns “1”] is negligible in κ.

Full-anonymity: no adversary can identify the actual signer of a group signature, even if the actual signer’s secret has been
compromised. Formally, consider the following game or experiment.

Experiment FullAnonGSIG,A(1κ)
(pkGM, skGM)← Setup(1κ)
b ∈R {0, 1}
(U0 ∈ ID, U1 ∈ ID, M, stateinfo)← AOJoin(·),OSign(·,·),OOpen(·),OCorrupt(·),OCorrupt(GM,⊥)(1κ)
Return “1” if

(1) σ ← Sign(pkGM, pkUb , skUb , M)

(2) b′ ← AOJoin(·),OSign(·,·),OOpen(·),OCorrupt(·),OCorrupt(GM,⊥)(stateinfo),
(3) there is no OOpen(σ) query
(4) b′ = b

A group signature scheme fulfills full-anonymity if |Pr [FullAnonGSIG,A(1κ) returns “1”]− 1/2| is negligible in κ.

No-misattribution: a compromised group manager cannot misattribute a group signature to an honest group member.
Formally, consider the following game or experiment.

Experiment NoMisAttriGSIG,A(1κ)
(pkGM, skGM)← Setup(1κ)

(M, U ∈ ID, σ)← AOJoin(·),OSign(·,·),OOpen(·),OCorrupt(·),OCorrupt(GM,⊥),OCorrupt(GM,>)(1κ)
Return “1” if

(1) σ is returned by OSign(U, M)
(2) there is no OCorrupt(U) query
(3) U ← Open(pkGM, skGM, M, σ)

A group signature scheme fulfills no-misattribution if Pr[NoMisAttriGSIG,A(1κ) returns “1”] is negligible in κ.

C Security Properties of Centralized Key Distribution Schemes

We consider an adversary that has complete control over all the communications in the network. To simplify the definition,
we assume that the group controller is never compromised; this is not necessarily a restriction because an adversary could
have compromised all the group members (and thus have obtained the secrets the group controller holds). An adversary’s
interaction with principals in the network (more specifically, with the various instances) is modeled by allowing it to have
access to the following oracles:

– OSend(U, i, M, action): Send a message M to instance Πi
U and outputs the reply generated by the instance, where

U ∈ {GC}∪ID, action ∈ {Setup, Join, Leave, Rekey} meaning that the instance will execute according to the corresponding
protocol, and M specifies the needed information for executing the protocol.

– OReveal(U, i): Output session key ski
U , where U ∈ ID.

– OCorrupt(U): Output KU of player U , where U ∈ ID. Note that the session key always belongs to KU . Moreover, this
oracle access accommodates the case that some users were corrupted before the system setup.

– OTest(U, i): This oracle may be queried only once, at any time during the adversary’s execution. A random bit b is
generated: if b = 1 the adversary is given ski

U where U ∈ ID∪ {GC}, and if b = 0 the adversary is given a random session
key.

Correctness. We require that any group communication scheme satisfy the following correctness: ∀ U ∈ ∆new ⊆ ID, i, j ∈ N,
if sidi

U ⊆ sidj
GC and acci

U = true, then ski
U = skj

GC and Knew
U ⊂ Knew

GC .

Security. Intuitively, it means that an adversary who does not compromise any legitimate group member learns no infor-
mation about the new group key. Formally, consider the following event Succ:

(1) The adversary queries the OTest(U, i) oracle with respect to instance Πi
U (with acci

U = true if U ∈ ID) and correctly
guesses the bit b used by the OTest(U, i) oracle in answering this query.

(2) There is no OReveal(V, `) query for V ∈ ∆new, where ∆new is the legitimate group members corresponding to the
instance Πi

U such that sid`
V ⊆ sidj

GC ⊇ sidi
U .

(3) Before the OSend(GC, j, ∗, Join) or OSend(GC, j, ∗, Leave) query such that sidj
GC ⊇ sidi

U , if there was any OCorrupt(V )
query, then there must have been an OSend(GC, ∗, V, Leave) query.
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(4) After the OSend(GC, j, ∗, Join) or OSend(GC, j, ∗, Leave) query such that sidj
GC ⊇ sidi

U , there is no OCorrupt(V ) query.

The advantage of the adversary A in attacking the group communication scheme is defined as AdvA(κ) = |2 · Pr[Succ]− 1|,
where Pr[Succ] is the probability that the event Succ occurs, and the probability is taken over the coins used by GC and by
A. We say a scheme is a secure if for all probabilistic polynomial-time adversary A, AdvA(κ) is negligible in κ.

Instantiations: We note that the authenticated private channels can be implemented using standard cryptographic tech-
niques – this has been achieved in many specific schemes such as [48, 39] – except for the following: an adversary observing the
communication channels may still be able to identify the membership of the non-compromised members. This can be resolved
by letting the group controller publish information over a broadcast channel, or post it on a bulletin board to which all the
group members can have anonymous access (e.g., via the standard MIX channels [21]). We stress that any centralized group
key distribution scheme satisfying the above functionality and security requirements, such as [48, 47, 39], can be integrated
into our secret handshake framework.

There is one other issue that needs to be addressed: we may need to ensure that the system update information published
by the group controller does does not allow a passive adversary to discover the group identity, or even group dynamics.
Although this may not be a real concern for many secret handshake applications (since a compromised group member has to
know the identity of the group controller) we note that enhancement techniques suggested in [46] can be utilized to conceal
the group dynamics of many popular centralized key distribution schemes, including [48, 47, 39].

D Security Properties of Distributed Group Key Agreement Schemes

We allow an adversary to have complete control over all the communications in the network. An adversary’s interaction with
the principals in the network (more specifically, with the various instances) is modeled by allowing it to have access to the
following oracles:

– OSend(U, i, M): Send message M to instance Πi
U , and outputs the reply generated by this instance. Moreover, we even

allow the adversary to prompt the unused instances Πi
U to initiate the protocol with partners U2, . . . , Um by calling

OSend(U, i, 〈U2, . . . , Um〉).
– OExecute(U1, . . . , Um): Execute the protocol between unused instances of players U1, . . . , Um ∈ ID and outputs the

transcript of the execution. The number of participants and their identities are chosen by the adversary.
– OReveal(U, i): Output session key ski

U , where U ∈ ID.
– OCorrupt(U): Output the long-term secret LLKU of principal U ∈ ID.
– OTest(U, i): This query is only allowed once, at any time during the adversary’s execution. A random bit b is generated;

if b = 1 the adversary is given ski
U , and if b = 0 the adversary is given a random session key.

Correctness. We require that for all U, U ′, i, j such that:

sidi
U = sidi

U′ , pidi
U = pidj

U′andacci
U = accj

U′ = true

to be the case that: ski
U = skj

U′ 6= null.

Security. Intuitively, an adversary that does not compromise any principals during the execution does not learn any infor-
mation about the new group session key. Formally, consider the following event Succ:

(1) The adversary queries OTest(U, i) on instance Πi
U for which acci

U = true and correctly guesses the bit b used by the
oracle in answering this query.

(2) For any Πi′

U′ such that pidi
U = pidi′

U′ and sidi
U = sidi′

U′ , there is no OReveal(U, i) or OReveal(U
′, i′) query.

(3) No query OCorrupt(U
′) (with U ′ ∈ pidi

U ) was asked before a query of the form OSend(U ′, i′, ∗). Note that, while (3) is
not necessary in general, it is required in some specific schemes.

The advantage of the adversary A attacking the scheme DGKA is defined as: AdvDGKA,A(1κ) = |2 · Pr[Succ] − 1|, where
Pr[Succ] is the probability that the event Succ occurs. We say a distributed key agreement scheme DGKA is secure if, for any
probabilistic polynomial-time adversary A, AdvDGKA,A(1κ) is negligible in κ.

Instantiations: Any distributed group key agreement scheme satisfying the above requirements can be integrated into
our framework. Popular schemes include [15, 45] and [13]. In particular, the scheme by Burmester and Desmedt [15] and
its later variant [32] are efficient in computation, i.e., each participant needs to compute a constant number of modular
exponentiations.

E Proof Sketch for Theorem 1

Proof. (SKETCH) Correctness. When all m parties belong to the same group, the handshake always succeeds; otherwise,
the handshake succeeds only with a negligible probability (see resistance to impersonation below).
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Resistance to impersonation. We observe that

Pr[RIASHS,A(1κ) returns “1”] = Pr[A provides a valid MAC tag ∧ A provides a valid group signature]

≤ Pr[A provides a valid MAC tag]

≤ Pr[A knows the MAC key] +

Pr[A provides a valid MAC tag|A doesn’t know the MAC key].

Suppose A breaks the resistance to impersonation property. This means that Pr[SHS.Handshake(∆) returns “1”] is non-
negligible, and thus that either Pr[A knows the MAC key] or Pr[A provides a valid MAC tag|A doesn’t know the MAC key]
is non-negligible.

If Pr[A knows the MAC key] is non-negligible, then we can construct a polynomial-time algorithm B to break the CGKD
scheme. Algorithm B operates as follows: It establish a simulated SHS environment as in the real-life system, except that the
challenge CGKD environment is associated with a group G that is chosen uniformly at random, and B maintains the DGKA
and GSIG with respect to G by itself. The simulated SHS environment operates exactly the same as in the real life system,
except the following: Whenever A makes a query to the SHS environment with respect to group G, if the query cannot be
answered by B based on its information regarding the DGKA and GSIG with respect to G, B makes the same queries to the
challenge CGKD environment. Clearly, the simulated SHS environment is perfectly the same as in a real-life system. Since
A has a non-negligible probability in learning a MAC key corresponding to group G, so is B because B also participates in
DGKA.RawKeyAgreement. The fact that A does not corrupt any member when the MAC key is valid implies that B does
not corrupt any member. Conditioned on the fact that there are polynomial many groups, we conclude that B breaks the
challenge CGKD environment with a non-negligible probability.

If Pr[A provides a valid MAC tag|A doesn’t know the MAC key] is non-negligible, then we can construct a polynomial-
time algorithm B to break the MAC scheme. Algorithm B operates as follows: It establish a simulated SHS environment as
in the real-life system, except that the challenge MAC scheme and an oracle scheme CGKD are associated with a group G
that is chosen uniformly at random, and B maintains the DGKA and GSIG with respect to G by itself. The simulated SHS
environment operates exactly the same as in the real life system, except the following: Whenever A makes a query to the
SHS environment with respect to group G, if the query cannot be answered by B based on its information regarding the
DGKA and GSIG with respect to G, B makes the same queries to the challenge MAC scheme or the oracle CGKD environment.
Clearly, the simulated SHS environment is perfectly the same as in a real-life system. Since A has a non-negligible probability
in forging, perhaps after seeing valid tags via B by having oracle access to the MAC scheme, a MAC tag corresponding to a
key that is unknown to A (and thus unknown to B), the forgery is also a successful attack by B. Conditioned on the fact that
there are polynomial many groups and there are polynomial many instances of SHS.Handshake, we conclude that B breaks
the challenge MAC scheme with a non-negligible probability.

Resistance to detection. We notice that we already proved that Pr[RDASHS,A(1κ) returns “1”|bit = 0] is negligible. There-
fore, if AdvRDASHS,A is non-negligible, then Pr[RDASHS,A(1κ) returns “1”|bit = 1] is non-negligible. If this probability is
non-negligible, then we can construct a simulator B to break the MAC scheme. Algorithm B operates as follows: It establish a
simulated SHS environment as in the real-life system. Note that B has access to a challenge MAC environment. The simulated
SHS environment operates exactly the same as in the real life system, except the following: When A incurs the RDASHS,A, B
chooses a party U ′ ∈ ∆′ uniformly at random and provides its MAC tag via oracle query to the challenge MAC environment;
for any other U ∈ ∆′ \ {U ′}, B chooses a MAC key uniformly at random. If A outputs a valid MAC tag with respect to the
MAC tag of U ′, then this is also a successful forgery of B against the challenge MAC scheme; otherwise, B fails. Conditioned
on the fact that |∆′| is polynomially bounded, B breaks the challenge MAC scheme with a non-negligible probability.

Unlinkability. Suppose an adversary can link two handshake sessions involving a same honest party. Without loss of
generality, we assume that and both involve the same malicious party. There are two cases:

– CASE 1: Both sessions are successful handshakes. First, recall that no information in the transcript, except θi, contains
any information specific to the identity of the honest party. If the adversary can assert that the same party is involved
in the two instances, then we claim that full-anonymity of GSIG is violated. This is so because the adversary’s decision
can only be based upon the two group signatures produced by the same party.

Specifically, we can construct a polynomial-time algorithm B, which simulates the SHS environment as in the real life,
except that B only has oracle access to a challenge group signature scheme GSIG. Whenever A makes a query to the
SHS environment, if the query cannot be answered by B based on its information regarding the CGKD and DGKA B
makes the same queries to the challenge GSIG scheme. Clearly, the simulated SHS environment is perfectly the same
as in a real-life system. Finally, when A outputs the two handshake sessions involving the same person, B decrypt the
corresponding θ’s and output the pair of group signatures.

– CASE 2: At least one of them is an unsuccessful handshake. This is impossible since, in Phase III of the unsuccessful
session, the honest party’s output is wholely based on random simulations (i.e., independent of the honest party’s secrets).

Indistinguishability to eavesdroppers. The only difference in the adversary’s view is whether {(θi, δi)}1≤i≤m are “real”
or random, where δi is the symmetric encryption of group signature σi under the key k′i = k∗i ⊕ ki and θi is the encryption
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of k′i under GA’s public key pkT . (Note that this is indeed the so-called hybrid encryption). We observe that

Pr[AdvINDeavSHS,A(1κ) returns “1”]

= Pr[A knows k′i ∨ A can distinguish encryption of group signature]

≤ Pr[A knows k′i] + Pr[A can distinguish encryption of group signature]

We claim that Pr[A knows k′i] is negligible; otherwise, such an adversary can immediately break the above proved resistance

to detection. If Pr[AdvINDeavSHS,A(1κ) returns “1”] is negligible, so is Pr[A can distinguish encryption of group signature],
which is the probability that A can tell the encryption of a valid group signature (A knows the group public key in the worst
case) from the encryption of a random string, even if A does not have any information about skT or k′i. This immediately
reduce to the security of the hybrid encryption scheme, namely that we can construct another polynomial-time algorithm
to break either a challenge public key cryptosystem (with respect to T ) or a challenge symmetric key cryptosystem (with
respect to k′i).

Traceability. As long as the transcript includes the encryption of a valid session key k′ under the GA’s public key pkT ,
GA can always recover k′. As a result, given any pair (θi, δi), GA is also able to recover the encrypted group signature, and
therefore the identify of the actual signer. If there is a valid group signature that cannot be opened, then full-traceability

with respect to GSIG is broken.

Specifically, we construct an algorithm B that simulates the SHS environment by having oracle access to a challenge
group signature scheme GSIG. The execution of SHS is exactly the same as in a real-life system, except that whenever A
presents a query against the GSIG, the query is forwarded by B to the challenge GSIG environment. Clearly, AdvTraceUserSHS,A
is non-negligible means that A can provide a group signature in the TraceUserSHS,A experiment such that the signer is an
innocent legitimate member. This is B’s successful attack against the challenge GSIG environment.

No-misattribution. If an adversary can frame an honest member (link to a handshake instance) we claim that no-misattribution
of group signature scheme is violated. Specifically, we construct an algorithm B which simulates a SHS environment by having
oracle access to a challenge GSIG scheme. The simulated SHS environment executes exactly as in a real system, except that
an oracle query provided by A (which cannot be directly answered by B) is answered after B forwards the same query to the
challenge GSIG environment. In particular, the group manager in the challenge GSIG environment can be corrupted. Clearly,
if AdvMisattributionSHS,A is non-negligible, then B violates no-misattribution of the challenge GSIG environment with the
same probability.

Forward-repudiability. We claim that, if this property does not hold, neither the full-anonymity of the underlying GSIG.
Specifically, we construct an algorithm B, which simulates a SHS environment by having oracle access to a challenge GSIG
scheme. The simulated SHS environment execute exactly the same as in a real-life system, except that an oracle query
provided by A, which cannot be directly answered by B, is answered after B forwards the same query to the challenge
GSIG environment. Note that the group manager in the challenge GSIG environment is never corrupted. Therefore, if A can
convince an honest verifier that a group signature involved in a handshake session is produced by an honest member, then
B breaks the full-anonymity of the challenge GSIG environment.

F Proof Sketch for Theorem 3

We now sketch the proof of self-distinction, as the proof of the other properties are similar to the proof of Theorem 1.

We observe that T7 is the base common to all the participating parties and T6 = T x′
7 , where x′ is a member’s secret.

Suppose AdvSelfDistSHS,A is non-negligible, then A must be able to provide two group signatures with different x′’s. Without

loss of generality, suppose A knows (A, e, x, x′) such that Ae = a0a
xbx′ . Denote by X the event that A holds (A, e, x, x′) and

(AA, e, xA, x′A) such that Ae = a0a
xbx′ = (AA)e = a0a

xAbx′A . Note that

Pr[SelfDistSHS,A(1κ) returns “1”]

= Pr[SelfDistSHS,A(1κ) returns “1”|X] · Pr[X] + Pr[SelfDistSHS,A(1κ) returns “1”|¬X] · Pr[¬X]

≤ Pr[X] + Pr[SelfDistSHS,A(1κ) returns “1”|¬X]

Since Pr[SelfDistSHS,A(1κ) returns “1”] is non-negligible, so is Pr[X] or Pr[SelfDistSHS,A(1κ) returns “1”|¬X]. We claim that
the full-traceability of the GSIG scheme is broken.

Specifically, we construct an algorithm B, which simulates a SHS environment by having oracle access to a challenge
GSIG scheme. The simulated SHS environment execute exactly the same as in a real-life system, except that an oracle query
provided by A, which cannot be directly answered by B, is answered after B forwards the same query to the challenge
GSIG environment. Note that the group manager in the challenge GSIG environment is never corrupted. Therefore, if A can
provides two group signatures with Ae = a0a

xbx′ = (AA)e = a0a
xAbx′A , B breaks the full-traceability of the challenge

GSIG environment.
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G Overview of the [33] Signature Scheme

For completeness, we now briefly overview the signature scheme of [33], which is an extension of the [2] group signature
scheme. We summarize the parameters as:

– Two primes p′, q′ with p = 2p′ + 1, q = 2q′ + 1 also primes. The modulus is set to n = pq.
– The group manager selects a, a0, b, g, h ∈R QR(n).
– The group manager secret key is set to p, q, θ ∈R Zp′q′ .
– The system public key is n, a, a0, b, y, g, h, where y = gθ mod n.
– A member’s private key is (A, e, x, x′) such that Ae = a0a

xbx′ mod n, where e is an appropriate prime number, x is
an appropriate random number known also to the member, and x′ is an appropriate random number known only to the
member.

In order to sign a message, a group member computes:

T1 = Ayr, T2 = gr, T3 = gehr, T4 = gxk, T5 = gk, T6 = gx′k′ , T7 = gk′

where r, k, k′ are randomly selected from an appropriate interval. The signature is derived from the following proof of
knowledge of appropriate x, x′, e, r, h′:

T2 = gr, T3 = gehr, T e
2 = gh′ , T x

5 = T4, T x′
7 = T6, a0a

xbx′yh′ = T e
1 .

Notice that (T1, T2) allows the group manager to open a group signature because of A, (T4, T5) allows one who knows x
to trace the member’s signatures, and (T6, T7) allows one to claim its signatures.

H Discussion

There are several practical issues that need to be addressed. First, if there is only a single group that uses a secret handshake
scheme, an adversary can simply figure out that the handshake peers belong to that group. In fact, if a secret handshake
scheme is implemented as a TLS or IKE cipher suite, then the parties will exchange a cipher suite designator that clearly
shows that they wish to engage in a secret handshake. Second, in any secret handshake scheme, utilizing one-time or reusable
credentials alike, it is assumed that there is no easy way to identify the party who sent or received a certain message;
otherwise, it is easy for an adversary to discover who is interacting with whom. This assumption is also true in privacy-
preserving authentication mechanisms [36, 1, 11, 22, 23, 43, 38]. Third, if an adversary observes that handshake participants
continue communicating after finishing the handshake protocol, it can deduce that they belong to the same group. (This
applies to any secret handshake scheme utilizing one-time or reusable credentials.)

The above issues can be mitigated by various means. First, it is reasonable to assume that there are many groups, as
long as it is not illegal to conduct secret handshakes. Second, there may be settings where the identity (for the purpose of
authentication) of a party is not directly derivable from the address that must appear in the clear in protocol messages. A
common example is the case of mobile devices wishing to prevent an attacker from correlating their (changing) locations
with the device’s logical identity [36]. Furthermore, some form of anonymous communication could make it hard to decide
exactly who is engaging in a secret handshake. Third, protection against traffic analysis (e.g., an adversary simply observing
continued communication after a handshake) can be achieved by utilizing mechanisms such as steganographic techniques, or
anonymous communication channels.

In summary, if all assumptions are satisfied, then our secret handshake schemes (as well as [4, 36, 1, 11]) can provide prov-
able privacy-preserving authentication, whereby two (or in our case, more) participants authenticate each other’s membership
simultaneously. Otherwise, all schemes implement heuristic best-effort anonymity.
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