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Abstract. At Eurocrypt ’03, Goh and Jarecki showed that, contrary to other signature
schemes in the discrete-log setting, the EDL signature scheme has a tight security reduction,
namely to the Computational Diffie-Hellman (CDH) problem, in the Random Oracle (RO)
model. They also remarked that EDL can be turned into an off-line/on-line signature scheme
using the technique of Shamir and Tauman, based on chameleon hash functions.

In this paper, we propose a new signature scheme that also has a tight security reduction
to CDH but whose resulting signatures are smaller than EDL signatures. Further, similarly
to the Schnorr signature scheme (but contrary to EDL), our signature is naturally efficient
on-line: no additional trick is needed for the off-line phase and the verification process is
unchanged.

For example, in elliptic curve groups, our scheme results in a 25% improvement on the
state-of-the-art discrete-log based schemes, with the same security level. This represents to
date the most efficient scheme of any signature scheme with a tight security reduction in
the discrete-log setting.

Keywords: Public-key cryptography, signature schemes, discrete logarithm problem, Diffie-
Hellman problem, EDL.

1 Introduction

In a signature scheme, a party, called signer, generates a signature using his own private key so
that any other party, called verifier, can check the validity of the signature using the corresponding
signer’s public-key. Following the IEEE P1363 standard [P1363], there are two main settings com-
monly used to build signature schemes: the integer factorization setting and the discrete logarithm
setting.

A signature scheme should protect against impersonation of parties and alteration of messages.
Informally, the security is assessed by showing that if an adversary can violate one of the two
previous properties then the same adversary can also break the underlying cryptographic problem
— for example, the integer factorization problem, the RSA problem [RSA78], the discrete logarithm
problem or the Diffie-Hellman problem [DH76]. As the cryptographic problem is supposed to be
intractable, no such adversary exists. This methodology for assessing the security is called security
reduction. The “quality” of the reduction is given by the success probability of the adversary
against a signature scheme to break the underlying intractable problem. A security reduction is
said tight when this success probability is close to 1; otherwise it is said close or loose [MR02].
This notion of tightness is very important, and allows to distinguish between asymptotic security



and exact security, the first one meaning that a scheme is secure for sufficiently large parameters,
while the second one means that the underlying cryptographic problem is almost as hard to solve
as the scheme to break.

The first efficient signature scheme tightly related to the RSA problem is due to Bellare and
Rogaway [BR96]. The security stands in the Random Oracle (RO) model [BR93] where hash
functions are idealized as random oracles. Their scheme, called RSA-PSS, appears in most recent
cryptographic standards. Other RSA-based signature schemes shown to be secure in the standard
model include [GHR99] and [CS00].

Amongst the signature schemes based on the discrete logarithm problem (or on the Diffie-
Hellman problem), we quote the ElGamal scheme [ElG85], the Schnorr scheme [Sch91], and the
Girault-Poupard-Stern scheme [Gir91,PS98]. The security of these schemes is assessed (in the RO
model) thanks to the forking lemma by Pointcheval and Stern [PS96]. Basically, the idea consists
in running the adversary twice with different hash oracles so that it eventually gets two distinct
valid forgeries on the same message. The disadvantage of the forking lemma technique is that the
so-obtained security reductions are loose.

Even if the security reductions are loose, those signature schemes present the nice feature that
there are very efficient on-line [FS87] compared to RSA-based signature schemes. In the off-line
phase, the signer precomputes a quantity (independent of the message) called a coupon that will
be used in the on-line phase to produce very quickly a signature on an arbitrary message.

To date, the only signature scheme whose security is tightly related to the discrete logarithm
problem or to the Diffie-Hellman problem (in the RO model) is EDL, a scheme independently
considered in [CP92] and [JS99]. Indeed, at Eurocrypt ’03, Goh and Jarecki [GJ03] showed
that the security of EDL can be reduced in a tight way to the Computational Diffie-Hellman
(CDH) problem. Its on-line version as suggested in [GJ03] requires the recent technique by Shamir
and Tauman [ST01] based on chameleon hash functions [KR00] and so is not as efficient as the
aforementioned signature schemes: the resulting signatures are longer and the verification is slower.

It is to note that EDL was recently modified by Katz and Wang [KW03] into a scheme with
shorter signatures and a tight security reduction but on a stronger assumption, namely the De-
cisional Diffie-Hellman (DDH) assumption. In the same paper, Katz and Wang also proposed an
improvement to EDL, that uses a single bit instead of a long random, and which has a tight
reduction to the CDH problem. The cost of this nice improvement is simply a decrease of the
security parameter of one bit.

To finalize the related work part, we stress that the shortest signature scheme that is known
today is a scheme of Boneh, Lynn and Shacham [BLS04]. This scheme is loosely related to the
CDH problem, but gives very short signatures, as it consists in only one single group element.
However, this scheme is limited to certain elliptic and hyper-elliptic curve groups, and so less
general than EDL. The on-line version of the Boneh-Lynn-Shacham signature scheme requires the
technique by Shamir and Tauman, doubles the size of the signature, and hence is less interesting.

Our contribution. In this paper, we firstly review the proof of EDL by Goh and Jarecki and
correct slight mistakes in it (but our correction does not imply that the parameters suggested
in [GJ03] are wrong). Secondly, we propose a new signature scheme which, similarly to EDL,
features a tight security reduction relatively to the CDH problem but whose resulting signatures
are smaller than EDL signatures. Furthermore, contrary to EDL, no additional trick is needed to
turn our signature scheme in an off-line/on-line version.

Notably, in elliptic curve settings, our scheme supersedes other discrete logarithm based schemes
with same security level, as it uses signatures that are 25% smaller.

Organization of the paper. The rest of this paper is organized as follows. In the next section,
we give some background on signature schemes and provide a brief introduction to “provable”
security. Then, in Section 3, we review the EDL signature scheme and its proof by Goh and
Jarecki. Section 4 is the core of our paper. We describe our signature scheme, prove that its
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security is tightly related to CDH in the RO model and show how it outperforms EDL. Finally,
we conclude in Section 5.

2 Definitions

In this section, we remind some background on signature schemes and on their security. We also
define the Diffie-Hellman and the discrete logarithm problems. We then provide a brief introduction
to provable security. Finally, we review the concept of on-the-fly signatures.

2.1 Signature Schemes

A signature scheme Sig = (GenKey,Sign,Verify) is defined by the three following algorithms:

– The key generation algorithm GenKey. On input 1k, algorithm GenKey produces a pair
(pk, sk) of matching public (verification) and private (signing) keys.

– The signing algorithm Sign. Given a message m in a set of messagesM and a pair of matching
public and private keys (pk, sk), Sign produces a signature σ. The signing algorithm can be
probabilistic.

– The verification algorithm Verify. Given a signature σ, a message m ∈ M and a public
key pk, Verify tests whether σ is a valid signature of m with respect to pk.

Several security notions have been defined about signature schemes, mainly based on the
seminal work of Goldwasser, Micali and Rivest [GMR84,GMR88]. It is now customary to ask
for the impossibility of existential forgeries, even against adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated by the adversary.
The corresponding security notion is called existential unforgeability (EUF).

– The verification key is public, including to the adversary. But more information may also be
available. The strongest kind of information is definitely formalized by the adaptive chosen-
message attacks (CMA), where the attacker can ask the signer to sign any message of its choice,
in an adaptive way.

As a consequence, we say that a signature scheme is secure if it prevents existential forgeries, even
under adaptive chosen-message attacks (EUF-CMA). This is measured by the following success
probability, which should be negligibly small, for any adversaryA which outputs a valid signature σ
on a message m that was never submitted to the signature oracle,3 within a “reasonable” bounded
running-time and with at most qs signature queries to the signature oracle:

Succeuf−cma
Sig (A, qs) = Pr

[
(pk, sk)← GenKey(1k), (m,σ)← ASign(sk;·)(pk) :

Verify(pk;m,σ) = True

]
.

In the random oracle model [BR93], adversary A has also access to a hash oracle: A is allowed
to make at most qh queries to the hash oracle.

2.2 The Diffie-Hellman and the Discrete Logarithm Problems

The security of signature schemes relies on problems that are supposed intractable, such as the
Diffie-Hellman problem [DH76] or the discrete logarithm problem.

Let G be a (multiplicatively written) abelian group. Given an element g ∈ G of prime order q,
we let Gg,q ⊆ G denote the cyclic group generated by g, i.e., Gg,q = {gi, i ∈ Zq}.
3 When the signature generation is not deterministic, several signatures may correspond to the same

message. In this case, we do not consider the attacker successful when it outputs a second signature
on a message already submitted to the signature oracle. Being given a message-signature pair (m, σ),
providing a second signature σ′ on the same message m is captured by the adversarial goal of malleabil-
ity [SPM+02].
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Let x be a random number in Zq. Define y = gx. Being given (g, y), the discrete logarithm
problem in Gg,q is defined as finding the value of x. In this paper, the discrete logarithm of y w.r.t.
g will be denoted as DLg(y) = x. On the other hand, being given (g, y, ga), for an unknown random
number a in Zq, the (computational) Diffie-Hellman problem is defined as returning gax = ya.

For cryptographic applications, group Gg,q is chosen so that the problems are (supposed)
hard. A classical example is to choose Gg,q ⊆ Fp

∗, where q divides (p − 1). They are plenty such
signature schemes, including the schemes by ElGamal [ElG85], Fiat-Shamir and Feige-Fiat-Shamir
[FS87,FFS88], Girault-Poupard-Stern [Gir91,PS98], Schnorr [Sch91], Poupard-Stern [PS99], and
particulary the one we are interested in this paper, the EDL scheme [CP92,JS99,GJ03].

2.3 Security Reduction and Provable Security

Today, schemes are “proved” secure, using what is called a reduction. For this reason, some authors
prefer to use the term of reductionist security (e.g., [KM04]) instead of provable security.

Basically, the idea is to prove that a scheme is secure by exhibiting a machine (the so-called
reduction) that uses a chosen-message attacker on a given signature scheme, in order to solve a
hard cryptographic problem. In the standard model, the attacker is used by simulating signature
queries on qs chosen-messages. In addition, in the random oracle mode, the simulator also simulates
hash queries on qh chosen data.

Two classes of provably secure signature schemes can be distinguished. The first class of prov-
able signature schemes proposes reductions that are said loose, as they can turn an attacker into a
machine to solve the cryptographic problem asymptotically. The second class of provable signature
schemes features so-called tight reductions, using the attacker to solve the problem with almost
the same probability.

Of course, tightly secure schemes are the preferred ones, but they are just few of them. Notably,
RSA-PSS and its derivatives are tightly related to the RSA problem [RSA78,BR96,Cor02], and
Rabin-PSS is equivalent to the factorisation problem [Rab79]. For a long time, no tightly secure
schemes were known, based on the Diffie-Hellman or discrete logarithm problems, but only loosely
secure schemes, as their security was shown thanks to the forking lemma technique by Pointcheval
and Stern [PS96]. Proved recently at Eurocrypt ’03, the EDL scheme is the first tight secure
scheme, based on the computational Diffie-Hellman problem.

2.4 Signature with Coupons

Some signature schemes have the nice feature that one can precompute (off-line) some quantities,
independent from the messages, called coupons, and use them in a very fast way to generate
signatures once the message is received [FS87]. Such signature schemes are also known as on-the-
fly signature schemes.

This coupon technique is very useful, especially in constrained environments such as smart
cards and finds numerous applications. Most signature schemes based on discrete logarithm or
Diffie-Hellman problems allow the use of coupons. However, as previously explained, they do not
offer a tight security reduction. To our knowledge, the only exception is the EDL signature scheme
using a technique proposed by Shamir and Tauman, based on chameleon hashes by Krawczyk and
Rabin [ST01,KR00]. However, this use of chameleon hashes is at the price of a slower verification,
as the verifier must compute chameleon hashes (which are multi-exponentiations) before verifying
the signature.

3 The EDL Signature

3.1 The Scheme

The EDL signature scheme, independently proposed in [CP92,JS99], is defined as follows.
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Global set-up: Let `p, `q, and `r denote security parameters.4 Let also a cyclic group Gg,q ⊆ Fp
∗,

generated by g, for a `p-bit prime p and a `q-bit prime divisor q of (p − 1). Finally, let two
hash functions, H :M×{0, 1}`r → Gg,q and G : (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The corresponding public key is
y = gx.

Signature: To sign a message m ∈ M, one first randomly chooses r ∈ {0, 1}`r , and computes
h = H(m, r) and z = hx. Follows a proof of logarithm equality that DLh(z) = DLg(y):
for a random number k ∈ Zq, one computes u = gk, v = hk, c = G(g, h, y, z, u, v) and
s = k + cx mod q. The signature on m is σ = (z, r, s, c).

Verification: To verify a signature σ = (z, r, s, c) ∈ Gg,q×{0, 1}`r × (Zq)2 on a message m ∈M,
one computes h′ = H(m, r), u′ = gs y−c and v′ = h′

s
z−c. The signature σ is accepted iff

c = G(g, h′, y, z, u′, v′).

In EDL, the only quantity that can be precomputed in off-line signature phase is u. The on-line
part is so two hash function evaluations plus two modular exponentiations.

3.2 On the Proof of EDL

In [GJ03], Goh and Jarecki prove that the scheme is tightly secure, based on the Diffie-Hellman
intractability assumption. Furthermore, they give parameters `q and `r so that the EDL scheme
has targeted security level. In what follows, we show an attacker that succeeds with a probability
remaining negligible yet exhibiting that there is a slight error in the success probability computa-
tion in the original proof. Fortunately, this does not impact the security parameters proposed by
Goh and Jarecki.

Consider an attacker A playing the following game:

1. A generates qs different messages mi and qh message-random pairs (m̂j , r̂j);
2. A makes qs signature queries for messages mi, receives the corresponding answers and stores

them in a list L1 = {(mi, zi, ri, si, ci, hi)}1≤i≤qs — hi’s are the hash values defined in the
signature or verification phases;

3. A makes qh hash queries for pairs (m̂j , r̂j), receives the corresponding answers and stores them
in a list L2 = {(m̂j , r̂j , ĥj)}1≤j≤qh

;
4. A tries to find a collision on lists, i.e., a pair (i, j) such that (mi, zi, ri, si, ci, hi) ∈ L1,

(m̂j , r̂j , ĥj) ∈ L2 and hi = ĥj ;
5. If it succeeds then (zi, r̂j , si, ci) is a valid signature forgery on message m̂j .

[Observe that the forgery is obtained on a message m̂j that belongs to a list of messages chosen
by the attacker; in other words, the forgery is selective on a chosen subset of messages.]

It remains now to get an evaluation of the success probability of our attacker. Noting that the
values returned by H are defined in Gg,q, there are q such possible values. In L1, we can see easily
that there are on average (qs −∆qs

) different values hi, with ∆qs
� qs, as long as 1 � qs � q.

Hence, the probability that all elements ĥj in L2 are different from elements hi in L1 is about
1− (qs−∆qs )·qh

q .
Therefore, as long as 1 � qs � q, the success probability of our attacker is about qs·qh

q .
Surprisingly, the size of random number r, `r, is not an important parameter for our attacker.
However, we stress that, as `q must be longer than 160 bits to have a hard discrete logarithm
problem, our attacker has a negligible success probability.

4 For normal use-cases, `r ≤ `q.
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3.3 Security of EDL

In this section, we reduce the security of EDL to the security of the computational Diffie-Hellman
problem. The proof basically follows the one originally presented in [GJ03] by showing that the
EDL scheme is a proof that DLh(z) = DLg(y) = x. It however corrects certain missing details.

Theorem 1. Let A be an adversary which can produce, with success probability ε, an ex-
istential forgery under a chosen-message attack within time τ , after qh queries to the hash
oracles and qs queries to the signing oracle, in the random oracle model. Then the com-
putational Diffie-Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− qs

(
qs + qh

q ·min(2`r , q)
+

qs + qh

2`r

)
− (qs + 1) · qh

q

and
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use an attacker A
against the EDL signature scheme to solve this challenge, i.e., to find gax. Our attacker A, after
qH (resp. qG) hash queries to H (resp. G) oracle and qs signature queries, is able to produce a
signature forgery with probability ε within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters (g, p, q,Gg,q).
Answering new G(g, h, y, z, u, v) query: The simulator returns a random number in Zq.
Answering new H(m, r) query: The simulator generates a random number d ∈ Zq, and re-

turns (ga)d.
Answering signature query on m ∈ M: The simulator generates a random number r ∈ {0, 1}`r .

If H(m, r) is already set, the simulator fails and stops (Event 1). Else, the simulator generates
a random number κ ∈ Zq, sets h = H(m, r) = gκ and computes z = (gx)κ — remark that
DLh(z) = DLg(y) (= x). Then, the simulator randomly picks (s, c) ∈ Zq × Zq and com-
putes u = gs y−c and v = hs z−c. If G(g, h, y, z, u, v) is already set, the simulator fails and
stops (Event 2). Else, the simulator sets G(g, h, y, z, u, v) = c and returns the valid signature
(z, r, s, c).

As we can see, the simulation is valid and indistinguishable from an actual signer, except for
some events:

– Event 1: As r is a random number in {0, 1}`r , the probability that the H(m, r) is already set
is less than qH+qs

2`r
, for one signature query. For qs signature queries, the failure probability is

thus upper bounded by qs·(qH+qs)
2`r

.
– Event 2: From the simulation, the input tuples to the G oracle are of the form (g, h, y, z, u, v) =

(g, gκ, y, yκ, gk, gκk) with (k, κ) ∈ Zq × Zq. However, as h = gκ = H(m, r), a smart attacker
could input a tuple with min(2`r , q) choices for h and q choices for u. Hence, the probability
that G(g, h, y, z, u, v) is already set is less than qG+qs

min(2`r ,q)·q . For qs signature queries, the failure

probability is thus upper bounded by qs·(qG+qs)
min(2`r ,q)·q .

Solving the CDH challenge (g, gx, ga): Except when these two rare events occur, attacker A
returns, with probability ε, a valid signature forgery σ = (z, r, s, c) on a message m that was not
submitted to the signature oracle, with h = H(m, r) = (ga)d for some d known to the simulator.
If d = 0, the reduction fails and stops (Event 3). Else, provided that DLh(z) = DLg(y) = x,
the solution to the CDH challenge is z1/d: indeed, if z = hx then z1/d = gax.
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Now, we calculate the probability that the attacker outputs a valid forgery but with DLh(z) 6=
DLg(y) = x. Letting u = gk, v = hk′ and z = hx′ (⇔ x′ = DLh(z) 6= x), it follows, as the forgery
is valid, that k = s− cx mod q and k′ = s− cx′ mod q. Hence, we get c = G(g, h, y, hx′ , gk, hk′) =
k−k′

x′−x mod q. In [GJ03], as entries (g, h, y, hx′ , gk, hk′) are defined before the query to G oracle,
the authors conclude that the relation c = G(g, h, y, hx′ , gk, hk′) = k−k′

x′−x mod q is never satisfied,
except with probability qG

q . In fact, it is true only if entries were not used during signature queries;
namely, if G(g, h, y, hx′ , gk, hk′) was not set by the simulator during a signature query. Indeed,
for these entries, the relation is always verified, by construction of G. By the way, the attacker
described in Section 3.2 proved that it is possible to use entries (g, h, y, hx′ , gk, hk′) that are defined
during signature queries to produce a signature forgery. The probability of collision between values
returned by a direct H query and values of H created during a signature query is less than qH·qs

q .
Finally, the probability that d is zero (Event 3) is less than qH

q .

Putting all together, we can conclude that the EDL signature scheme is tightly as secure as
the Diffie-Hellman problem: the success probability ε′ of our reduction satisfies

ε′ ≥ ε− qs

(
qs + qh

q ·min(2`r , q)
+

qs + qh

2`r

)
−qh

q
− qs · qh

q

i.e.,

ε′ & ε− qs · qh

2`r
− qs · qh

q
,

and the running time τ ′ satisfies
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time required for an exponentiation. ut

Note 1. On some points, we did not give exactly the same estimation of error probabilities for the
simulation as in the original proof of [GJ03]. Notably, the probability of Event 2 was evaluated
in [GJ03] as qs·(qs+qG)

q2 ≤ qs·(qs+qG)
q·min(2`r ,q)

. We believe that a smart attacker would not, as proposed
in [GJ03], use h as a random number in Gg,q when 2`r < q, but rather a quantity with `r bits of
randomness: one has in fact to suppose that the attacker is possibly able to compute H(m, r)x,
and so can choose z better than randomly in Gg,q. Finally, we did add Event 3, which can occur
because H may return 1.

Note 2. Our proof shows that the EDL scheme is tightly secure (ε ' ε′) and that parameters
given by Goh and Jarecki in [GJ03] are sufficient to get the targeted security level of 280. Indeed,
these parameters are suggested in order to make qs·qh

2`r
enough small and, since 2`r ≤ q in their

analysis, it follows that qs·qh

q will be enough small as well. Anyway, there was a little gap that was
forgotten in the original proof, that fortunately appears to have no impact.

3.4 Features of the EDL Signature

The EDL signature scheme is proven secure relatively to the computational Diffie-Hellman prob-
lem, with a tight reduction. Hence, its security is a strong point.

The scheme yields signatures of (`p + 2`q + `r) bits. This may appear somewhat long but
actually it is not, given such a strong security.5

In its classical use, the scheme cannot be used with coupons, but, as noted by Goh and Jarecki,
one can use the technique of [ST01] based on chameleon hash functions [KR00] to transform this
signature into a signature with coupons, what we will call EDL-CH in the sequel. Producing
a EDL-CH signature forgery is equivalent to produce a signature forgery in the regular EDL

5 In [GJ03], the authors estimate that if the discrete logarithm problem is supposed to be infeasible for
1000-bit primes, the forking lemma’s technique tells that Schnorr signatures are secure in a field modulo
a 8000-bit prime.
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signature scheme, or to find a collision in the chameleon hash function. Hence, the natural way
to get a signature with coupons and with a tight security reduction to the computational Diffie-
Hellman problem is to use a chameleon hash function whose collision-resistance is also based on
discrete logarithm or Diffie-Hellman problem (e.g., H(m, r) = H0(gm yr), where H0 : Gg,q → Gg,q

is a hash function). But the cost of this way to create coupons is a slower verification. Further,
using the chameleon hash H(m, r) = H0(gm yr) implies that one needs to define random number
r ∈ Zq (and not in {0, 1}`r ). This makes the EDL-CH signatures slightly longer: (`p + 3`q) bits.

3.5 Katz-Wang Signature Scheme

In [KW03], Katz and Wang proposed two modifications of EDL, one which consists in a scheme
with short signatures tightly based on the DDH assumption, and one another that uses signature
shorter than EDL but keeps tightly related to the CDH problem. In this section, we briefly remind
the second scheme.

The idea of Katz and Wang is to remove the randomness of r, and to replace it by unpre-
dictability. Namely, r is replaced by a bit b that can only be computed by the signer (e.g., b is the
result of a MAC):6 the signatures are then (z, s, c, b), and so are shorter than EDL signatures by
110 bits. The proof of EDL is then slightly modified to prove the security of Katz-Wang scheme.
For H(m, b) queries, the simulator computes the bit value corresponding to m, then:

– if this value is b, the returned value is of the form gκ, which allows to compute corresponding
z very simply: z = (gx)κ;

– if this value is not b, the returned value is of the form (ga)d.

Consequently, it is simple for the simulator to reply to signature queries, as it knows the right
value b for each message m. On the contrary, as b cannot be guessed by the forger better than
randomly for any new message m, its forge will be with the wrong b with a probability 1

2 , and
with this probability, the CDH problem will be solved by the simulator.

Hence, this modification gives a signature scheme with a signature length of (`p + 2`q + 1)
bits, and which is just one bit less secure than EDL when taking same parameters. Unfortunately,
in this scheme, only u can be computed off-line, and so the on-line part of the signature is two
modular exponentiations in Gg,q.

4 Our Signature Scheme

Looking at the description of EDL, we can see that basically two random values are used: k is
used to generate a proof of knowledge of the discrete logarithm while r is used to ensure that the
attacker cannot predict the value of h, that will be used during simulations.

More precisely, in EDL, h is taken equal to H(m, r), with sufficiently large random number r.
As RSA-PSS does in a certain sense, the goal is to avoid, with overwhelming probability, that the
attacker requests the value of H(m, r) with a random number r that will afterwards appear during
signature queries on m. Indeed, we want to build the H(m, r)’s involved in signature simulation
in a certain form and the H(m, r)’s returned to direct queries (and susceptible to be used in the
final forgery) in another form (see Section 3.3 for more detail).

Our first idea is the following: Why not trying to put the randomness of k inside H(m, ·)
instead of using another random number r that increases the size of the signature? Evidently, one
cannot use H(m, k) directly, but H(m,u) looks promising (and appears to be secure, as proven in
Appendix B). As a result, the size of the so-constructed signature is reduced.

Our second idea is the following: Would it be possible to put m inside G(·) rather than in H(·),
as done in [Sch91] or in [KW03]? The goal here is to allow as many precomputations as possible.
This trick does not apply to EDL, but when combined with the previously suggested technique,
the answer appears to be positive.
6 In other words, in EDL, signing few times the same message would result in different random numbers

r, while doing the same with Katz-Wang scheme would give always the same bit b.
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Intuitively, using z = H(r)x and putting m in G(·) in EDL is insecure because an attacker
could easily use a z returned by the signer, and so a simulator would not solve a CDH problem.
On the contrary, in our construction, we will show that using z = H(u)x remains secure, as an
attacker could not use an H(u)x returned by the signer, unless the discrete logarithm is revealed:
indeed, u satisfies a certain relation (u = gs y−c) that cannot be given for two different c’s for the
same u without revealing the discrete logarithm.

In this section, we describe more formally our scheme and prove strictly the intuition that we
have just given.

4.1 Description

Our scheme goes as follows:

Global set-up: Let `p and `q denote security parameters. Let also a cyclic group Gg,q ⊆ Fp
∗,

generated by g, for a `p-bit prime p and a `q-bit prime divisor q of (p − 1). Finally, let two
hash functions, H : Gg,q → Gg,q and G :M× (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The corresponding public key is
y = gx.

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and computes u = gk,
h = H(u), z = hx and v = hk. Next, one computes c = G(m, g, h, y, z, u, v) and s = k +
cx mod q. The signature on m is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message m ∈ M, one
computes u′ = gs y−c, h′ = H(u′), and v′ = h′

s
z−c. The signature σ is accepted iff c =

G(m, g, h′, y, z, u′, v′).

As an advantage, our signatures are smaller than the EDL’s ones: they are only (`p + 2`q)-bit
long. We still have to prove that the scheme is tightly related to the computational Diffie-Hellman
problem, which is done in the next section — but assuming this for the moment, we can see that,
using the numerical values of [GJ03], our scheme leads to a gain of `r = 111 bits per signature.

4.2 Security of the Proposed Scheme

In this section, we reduce the security of the proposed scheme to the security of the computational
Diffie-Hellman problem. The proof consists in showing that the proposed scheme is a proof that
DLh(z) = DLg(y) = x.

Theorem 2. Let A be an adversary which can produce, with success probability ε, an ex-
istential forgery under a chosen-message attack within time τ , after qh queries to the hash
oracles and qs queries to the signing oracle, in the random oracle model. Then the com-
putational Diffie-Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− 2qs

(
qs + qh

q

)
and

τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use an attacker A
against our signature scheme to solve this challenge, i.e., to find gax. Our attacker A, after qH
(resp. qG) hash queries to H (resp. G) oracle and qs signature queries, is able to produce a signature
forgery with probability ε within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:
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Initialization: A is initialized with public key y = gx and public parameters (g, p, q,Gg,q).

Answering new G(m, g, h, y, z, u, v) query: The simulator returns a random number in Zq.

Answering new H(u) query: The simulator generates a random number d ∈ Zq, and returns
(ga)d. All queries u are stored in a list called U-List.

Answering signatures query on m ∈ M: The simulator generates randomly (κ, s, c) ∈ (Zq)3.
Then, it computes u = gs y−c. If H(u) is already set, the simulator stops (Event 1). Else, the
simulator sets h = H(u) = gκ and computes z = (gx)κ — remark that DLh(z) = DLg(y)(= x).
Finally, the simulator computes v = hs z−c. If G(m, g, h, y, z, u, v) is already set, the simulator
stops and fails (Event 2). Else, the simulator sets G(m, g, h, y, z, u, v) = c, and returns the valid
signature (z, s, c). All u’s computed during signature queries are stored in a list called Υ -List

As we can see, this simulator is valid and indistinguishable from an actual signer, except for
some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u) is already set is less
than qs+qH

q , for one signature query. For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qH)
q .

– Event 2: From the simulation, the input tuples to the G oracle are of the form (m, g, h, y, z, u, v) =
(m, g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is determined by relationH(gk) = gκ. Then, the
probability that G(m, g, h, y, z, u, v) is already set is less than qs+qG

q . For qs signature queries,

the failure probability is thus upper bounded by qs·(qs+qG)
q .

As a conclusion, except with a probability smaller than δsim = qs

(
qh+2qs

q

)
, the simulation is

successful.
In other words, with a probability εsim ≥ ε − δsim, the attacker A is able to return a valid

signature forgery (ẑ, ŝ, ĉ) on a message m̂ ∈M that was never submitted to the signature oracle.
The simulator deduces from this forgery the corresponding tuple (û, v̂, ĥ), by the following compu-
tations: û = gŝ y−ĉ, ĥ = H(û), and v̂ = ĥŝ ẑ−ĉ. Notably, if H(û) has not been queried to H oracle
by the attacker or set by the signature oracle, the simulator queries it to H oracle itself. Hence, û
is a member of U-List or a member of Υ -List.

Solving the CDH challenge (g, gx, ga). At this step, once the forgery is returned by the
attacker, there are two cases, contrary to the proof of EDL.

In the first case, û is a member of U-List. This is the case that corresponds to the only case
of the proof of EDL. As in EDL, we write û = gk, v̂ = ĥk′ and ẑ = ĥx′ , and we get, as the
signature is valid, k = ŝ − ĉx mod q and k′ = ŝ − ĉx′ mod q. Then, if x 6= x′, we have ĉ =
G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) = k−k′

x′−x mod q. As the message m̂ is new, G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) was
not set during a signature query (one has to remember the problem that we mentioned in the
proof of Section 3.3), and so we know that DLĥ(ẑ) = DLg(y)(= x), except with a probability qG

q .

Apart this error, the simulator receives from the attacker a signature with ẑ = ĥx, and it knows
d such that ĥ = H(û) = (ga)d. If d = 0, the simulator fails and stops. Else, if d is not zero, the
simulator can return the solution to the CDH challenge, which is ẑ1/d mod q: indeed, if ẑ = ĥx then
ẑ1/d = gax. One is sure that d is not zero if never during H queries, random number d was zero:
this is false with a probability smaller than qH

q . In this first case, the forgery is successfully used
to solve the CDH challenge, except with a probability smaller than δ1 = qh

q .

In the second case, û is not a member of U-List, and so is a member of Υ -List. This case can
happen, contrary to the EDL signature scheme, as there is no message in the input of H, and so
we can imagine that the attacker reuse a u that corresponds to a u of a signature given by the
signature oracle. Then, the simulator can recover from its log files all quantities that correspond
to this u = û, and notably s, c and m.
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At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It is exactly the kind of hy-
pothesis that is used by the forking lemma to prove a (loose) security. But here, this equality is not
obtained by restarting the attacker (as it is done in the forking lemma), but just by construction.
More precisely, we can recover easily the private key x, as far as ĉ 6= c.

As the message m̂ is new, c 6= ĉ or a collision on G function happened, between a G returned the
signature simulation and a G returned by a direct G query, which occurs with a probability smaller
than qs·qG

q . Hence, except an error with a probability smaller than δ2 = qs·qG
q , we have ĉ 6= c, and

so we can recover the private key x: equation s− xc = ŝ− xĉ mod q gives x = s−ŝ
c−ĉ mod q. We can

see that this second case gives not only the solution to the CDH challenge, but also the solution
to the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform the forgery given
by the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥ ε − δsim −
max(δ1, δ2), which gives, using qH + qG = qh,

ε′ ≥ ε− qs

(
2qs + qh

q

)
−qs · qh

q

i.e.,

ε′ & ε− 2qs · qh

q

and the running time τ ′ satisfies
τ ′ . τ + (6qs + qh)τ0 .

As we can see, our scheme is tight, as far as qs·qh

q ≤ ε
4 . ut

4.3 Our Proposed Scheme with Coupons

Interestingly, our scheme allows what we call a cost-free use of coupons. By this, we mean that the
signer is free to choose to use coupons or not: this choice of the signer does not affect the verifier
as the verification step remains unchanged.

This is done in a very natural way: the signature step (cf. Section 4.1) is simply splitted into
two steps.

Off-line signature: To create a new coupon, one randomly chooses k ∈ Zq and computes u = gk,
h = H(u), z = hx and v = hk. The coupon is the tuple (u, v, h, z, k).

On-line signature: To sign a message m ∈ M, one uses a fresh coupon (u, v, h, z, k) and just
computes c = G(m, g, h, y, z, u, v) and s = k + cx mod q. The signature on m is σ = (z, s, c).

The verification step remains the same. This property is very useful as it allows the signer to
precompute coupons and to sign on-line very quickly, namely, by just performing one hash function
evaluation followed by one modular multiplication.7

As previously described, our scheme features a coupon size of (4`p + `q) bits. This size can be
reduced to (3`p+`q) bits by not storing the value of h, i.e., a coupon is defined as (u, v, z, k). Then,
h = H(u) is evaluated in the on-line step. This option turns out useful for memory constrained
devices like smart cards.

An even more sophisticated solution that minimizes the size of the coupon is described in
Appendix A.

7 This is comparable to the fastest off-line/on-line signature schemes of Schnorr, Girault-Poupard-Stern
or Poupard-Stern [Sch91,Gir91,PS98,PS99]. One would remark that Girault-Poupard-Stern scheme does
not require a reduction modulo the group order, but gives to longer signatures: this elegant technique
can also be used in our scheme, to get an even faster on-line signature scheme at the price of longer
signatures.

11



4.4 Size of Parameters

In this section, we show how to set the values of `q and `p to attain a security level of 2κ.
Our analysis basically follows the Goh and Jarecki’s one’s for EDL. Assuming we take the best
(qh, qs, τ, ε)-attacker against our scheme, it can find a forgery in a average time of τ

ε . Letting
τ = 2n and ε = 2−e, we get log2(

τ
ε ) = n + e = κ, by definition of the security level of our scheme.

Furthermore, we can use this attacker, as shown in the proof of Section 4.2, to solve the CDH
problem in a time of τ ′

ε′ . We let 2κ′ denote the security level of CDH in the subgroup Gg,q. By
definition, we have κ′ ≤ log2(

τ ′

ε′ ). Because of the O(
√

q) security for the discrete logarithm in Gg,q,
we have `q ≥ 2κ′.

We use the cost of the evaluation of a hash function as the unit of time. Hence, qh ≤ 2n. We
suppose that τ0 (the time for an exponentiation in Gg,q) is 100 times the time of a hash function
evaluation. So, we obtain that τ ′ ' 2n+7 and ε′ ' ε− 2qs·qh

q . As long as qs ≤ 2`q−e−2−n = 2`q−κ−2

(e.g., κ = 80, qs ≤ 280, qh ≤ 280 and `q ≥ 176), we have ε′ & 2−e−1. Then, log2(
τ ′

ε′ ) . n+7+e+1 =
κ + 8. We finally obtain κ ≥ κ′ − 8.

For example, if the targeted security level is κ = 80, it is sufficient to use κ′ = 88 (and hence
`q ≥ 176). It proves that our scheme is very efficient in term of signature size, as we can use the
same subgroup Gg,q as the one used by Goh and Jarecki for EDL and have the same security.
One can remark that our scheme remains secure even if we limit qs to 280, while in EDL, qs was
limited to 230, or the random number r was made appropriately longer.

4.5 Detailed Comparison with EDL, the Katz-Wang Scheme and Other Schemes

In this paragraph, we sum up the advantages of our scheme. Compared to EDL, our scheme
features

1. faster signatures with a cost-free use of coupons: the on-line part only requires one hash
function evaluation followed by one modular multiplication in Zq, while in EDL, this phase
consists of two hash function evaluations and two modular exponentiations in Gg,q;

2. same verification step efficiency;
3. shorter signatures of `r ≥ 111 bits: taking `p = 1024 and `q = 176 this represents an improve-

ment of 7%. In the elliptic curve setting, the gain is even more sensible, as z can be represented
with a length around `q = 176 resulting in an improvement of 17%.

Compared to the Katz-Wang scheme, our scheme features

1. faster signatures with a cost-free use of coupons: the on-line part only requires one hash func-
tion evaluation followed by one modular multiplication in Zq, while in Katz-Wang signature
scheme, this phase consists of two hash function evaluations and two modular exponentiations
in Gg,q;

2. same verification step efficiency;
3. less significantly, shorter signatures of 1 bit and a security parameter greater of 1 bit;
4. smaller key size, as computing b by a MAC or in another way requires an additional key, that

should preferably not be related to the private key x.

Furthermore, as noticed by Jarecki in [KW03], the computation of an hash H : Gg,q → Gg,q

can be very long, namely it costs an exponentiation of (`p − `q) bits, which is much longer than
the two exponentiations in Gg,q. In our scheme, this hash computation is done off-line, as opposed
to EDL and Katz-Wang scheme.

Compared to the off-line/on-line version of EDL, EDL-CH, the off-line/on-line version of our
scheme presents

1. faster and unchanged verification step (remember that EDL-CH relies on chameleon hashes,
which requires additional exponentiations);
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2. shorter signatures, i.e., `q ≥ 176 bits less than EDL-CH ; again taking `p = 1024 and `q = 176
represents an improvement of 11% and of 25% in the elliptic curve setting.

Finally, owing to its security tightness, our scheme fulfills or even improves most of the advan-
tages of EDL that were presented by Goh and Jarecki, by comparison with other discrete-logarithm
schemes, such as Schnorr signature, with same security level.

On the one hand, using our scheme in Gg,q ⊆ Fp
∗, we can use a field 8 times smaller and a

subgroup of order twice smaller than in other discrete-logarithm schemes (as in EDL). Notably, it
means that public keys are smaller by a factor of 8, private keys are smaller by a factor of 2. In
this case, our signatures are about twice longer than other discrete-logarithm schemes.

On the other hand, in the elliptic curve setting, our public and private keys are smaller by a
factor of 2 and our signatures are 25% smaller than in previously known schemes.

This clearly shows the advantages of the proposed scheme.

5 Conclusion

At Eurocrypt ’03, Goh and Jarecki gave a proof that the security of EDL is tightly related to
the CDH problem, in the random oracle model. They also proposed to use the technique of Shamir
and Tauman, based on chameleon hash functions, to get a version of EDL scheme with coupons:
EDL-CH.

In this paper, we have proposed a new signature scheme which, similarly to EDL, features a
tight security reduction relatively to the CDH problem but whose resulting signatures are smaller:
if coupons are not used, we gain `r bits compared to EDL signatures; in the off-line/on-line version,
we gain `q bits compared to EDL-CH signatures. Furthermore, contrary to EDL, no additional
trick is needed to turn our signature scheme in an off-line/on-line version.

Our scheme represents to date the most efficient scheme of any signature scheme with a tight
security reduction in the discrete-log setting.
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A An Efficient CDH-based Signature Scheme with Smaller Coupons

In this appendix, we propose some modifications to the proposed scheme (Section 4) in order to
obtain smaller coupons with the same security.

A.1 An Efficient Coupon-based Variant

We modify our scheme in the following way:

Global set-up: Let `p, `q and `t denote security parameters. Let also a cyclic group Gg,q ⊆ Fp
∗,

generated by g, for a `p-bit prime p and a `q-bit prime divisor q of (p − 1). Finally, let three
hash functions, H : Gg,q → Gg,q, G :M×{0, 1}`t → Zq and I : (Gg,q)6 → {0, 1}`t .

Key generation: The private key is a random number x ∈ Zq. The corresponding public key is
y = gx.

Off-line signature: To create a new coupon, one randomly chooses k ∈ Zq and computes u = gk,
h = H(u), z = hx and v = hk. Finally, one computes t = I(g, h, y, z, u, v). The coupon is the
tuple (k, z, t).

On-line signature: To sign a message m ∈M, one uses a fresh coupon (k, z, t) and just computes
c = G(m, t) and s = k + cx mod q. The signature on m is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message m ∈ M, one
computes u′ = gs y−c, h′ = H(u′), v′ = h′

s
z−c, and t′ = I(g, h′, y, z, u′, v′). The signature σ

is accepted iff c = G(m, t′).

This version of our scheme allows small coupons (i.e., `p + `q + `t bits instead of 3`p + `q),
which allows, even in a constrained device like a smart card, to precompute and store a large
number of coupons beforehand.

Remarkably, this version keeps the efficiency in the on-line phase. Moreover, this coupon tech-
nique has no cost for the verifier: contrary to EDL-CH, the verifier needs not to compute any
chameleon hashes. Last but not least, the resulting signatures are still smaller than the EDL or
EDL-CH ’s ones: only (`p + 2`q)-bit long.

We show that our variant is still tightly related to the computational Diffie-Hellman problem
in the next section.

A.2 Security of this Variant of our Scheme

About the security of our variant with small coupons, the following theorem stands:

Theorem 3. Let A be an adversary which can produce, with success probability ε, an ex-
istential forgery under a chosen-message attack within time τ , after qh queries to the hash
oracles and qs queries to the signing oracle, in the random oracle model. Then the com-
putational Diffie-Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− qs

(
2qs + qh

q
+

qs + qh

2`t

)
−qs · qh

q

and
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use an attacker A
against this variant of our signature scheme to solve this challenge, i.e., to find gax. Our attacker
A, after qH (resp. qG , qI) hash queries to H (resp. G, I) oracle and qs signature queries, is able to
produce a signature forgery with probability ε within time τ . We let qh = qH + qG + qI .

Attacker A is run with the following simulation:
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Initialization: A is initialized with public key y = gx and public parameters (g, p, q,Gg,q).
Answering new G(m, t) query: The simulator returns a random number in Zq.
Answering new H(u) query: The simulator generates a random number d ∈ Zq, and returns

(ga)d. All queries u are stored in a list called U-List.
Answering new I(g, h, y, z, u, v) query: The simulator returns a random number of `t bits.
Answering signatures query on m ∈ M: The simulator generates randomly (κ, s, c) ∈ (Zq)3.

Then, it computes u = gs y−c. If H(u) is already set, the simulator stops (Event 1). Else, the
simulator sets h = H(u) = gκ and computes z = (ga)κ — remark that DLh(z) = DLg(y)(= x).
Finally, the simulator computes v = hs z−c. If I(g, h, y, z, u, v) is already set, the simu-
lator stops (Event 2). Else, the simulator takes a random number t of `t bits, and sets
I(g, h, y, z, u, v) = t. If G(m, t) is already set, the simulator stops and fails (Event 3). Else, the
simulator sets G(m, t) = c, and returns the valid signature (z, s, c). All u’s computed during
signature queries are stored in a list called Υ -List

As we can see, this simulator is valid and indistinguishable from an actual signer, except for
some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u) is already set is less
than qH+qs

q , for one signature query. For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qH)
q .

– Event 2: From the simulation, the input tuples to the I oracle are of the form (g, h, y, z, u, v) =
(g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is determined by relation H(gk) = gκ. Then, the
probability that I(g, h, y, z, u, v) is already set is less than qs+qI

q . For qs signature queries, the

failure probability is thus upper bounded by qs·(qs+qI)
q .

– Event 3: As t is a random number, the probability that G(m, t) is already set is less than
qs+qG

2`t
. For qs signature queries, the failure probability is thus upper bounded by qs·(qs+qG)

2`t
.

As a conclusion, except with a probability of δsim ≤ qs

(
qH+qI+2qs

q + qs+qG
2`t

)
, the simulation is

successful.
In other words, with a probability εsim ≥ ε − δsim, the attacker A is able to return a valid

signature (ẑ, ŝ, ĉ) on a message m̂ ∈ M that was never submitted to the signature oracle. The
simulator deduces from this forgery the corresponding tuple (û, v̂, ĥ, t̂), by the following computa-
tions: û = gŝ y−ĉ, ĥ = H(û), v̂ = ĥŝ ẑ−ĉ and t̂ = I(g, ĥ, y, ẑ, û, v̂). Notably, if H(û) has not been
queried to H oracle by the attacker or set by the signature oracle, the simulator queries it to H
oracle itself. Hence, û is a member of U-List or a member of Υ -List.

Solving the CDH challenge (g, gx, ga). At this step, once the forgery is returned by the
attacker, there are two cases, contrary to the proof of EDL.

In the first case, û is member of U-List. This is the case that corresponds to the only case
of the proof of the EDL scheme. As in EDL, we write û = gk, v̂ = ĥk′ and ẑ = ĥx′ , and we
get, as the signature is valid, k = ŝ − ĉx mod q and k′ = ŝ − ĉx′ mod q. Then, if x 6= x′, we
have t̂ = I(g, ĥ, y, ĥx′ , gk, ĥk′), and ĉ = G(m̂, t̂) = k−k′

x′−x mod q. As the forgery is a forgery on a
new message, which means that G(m̂, t̂) was not set during a signature query, this shows that
DLĥ(ẑ) = DLg(y)(= x), except with a probability qG

q .

Apart this error, the simulator receives from the attacker a signature with ẑ = ĥx, and it knows
d such that ĥ = H(û) = (ga)d. If d = 0, the simulator fails and stops. Else, if d is not zero, the
simulator can return the solution to the CDH challenge, which is ẑ1/d mod q: indeed, if ẑ = ĥx then
ẑ1/d = gax. One is sure that d is not zero if never during H queries, random number d was zero:
this is false with a probability smaller than qH

q . In this first case, the forgery is successfully used
to solve the CDH challenge, except with a probability smaller than δ1 = qh

q .
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In the second case, û is not a member of U-List, and so is a member of Υ -List. This case can
happen, contrary to the EDL signature scheme, as there is no message in the input of H, and so
we can imagine that the attacker reuse a u that corresponds to a u of a signature given by the
signature oracle. Then, the simulator can recover from its log files all quantities that correspond
to this u = û, and notably s, t, c and m.

At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It is exactly the kind of hy-
pothesis that is used by the forking lemma to prove a (loose) security. But here, this equality is not
obtained by restarting the attacker (as it is done in the forking lemma), but just by construction.
More precisely, we can recover easily the private key x, as far as ĉ 6= c.

As m 6= m̂ (the forgery is a forgery on a new message), c 6= ĉ, or a collision collision on
G function happened, between a G returned the signature simulation and a G returned by a
direct G query, which occurs with a probability smaller than qs·qG

q . Hence, except an error with
a probability smaller than δ2 = qs·qG

q , we have ĉ 6= c, and so we can recover the private key x:
equation s− xc = ŝ− xĉ mod q gives x = s−ŝ

c−ĉ mod q. One can see that this second case gives not
only the solution to CDH challenge, but also the solution to the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform a forgery given by
the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥ ε − δsim −
max(δ1, δ2), which gives, using qH + qG + qI = qh,

ε′ ≥ ε− qs

(
2qs + qh

q
+

qs + qh

2`t

)
−qs · qh

q

i.e., supposing that `t � `q,

ε′ & ε− qs · qh

2`t
− 2qs · qh

q

Furthermore, the running time τ ′ of this simulation is such that

τ ′ . τ + (6qs + qh)τ0.

As we can see, our scheme is tight, as far as 2qs·qh

2`t
+ qs·qh

q ≤ ε
2 ut

B First Step of Our Idea: Smaller Signatures Tightly Based on CDH

In a pedagogical purpose, we propose hereafter the first improvement that we thought about,
in order to reduce the size of EDL’s signature. Anyway, we remind that there is no objective reason
to prefer this version to our scheme that we described in Section 4.1.

B.1 Our Construction

The resulting scheme proceeds as follows (the global set-up and key generation are unchanged; cf.
Section 3.1):

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and computes u = gk,
h = H(m,u), z = hx, v = hk, c = G(g, h, y, z, u, v) and s = k + cx mod q. The signature on m
is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message m ∈ M, one
computes u′ = gs y−c, h′ = H(m,u′) and v′ = h′

s
z−c. The signature is accepted iff c =

G(g, h′, y, z, u′, v′).

This modification to EDL gives a better bandwidth (signatures are `r bits smaller than regular
EDL signatures). The security reduction is similar to the one of Section 3.3 and is given in the
following.
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B.2 Security of This Construction

About the security of this scheme, the following theorem stands:

Theorem 4. Let A be an adversary which can produce, with success probability ε, an ex-
istential forgery under a chosen-message attack within time τ , after qh queries to the hash
oracles and qs queries to the signing oracle, in the random oracle model. Then the com-
putational Diffie-Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− qs

(
2qs + qh

q

)
− (qs + 1) · qh

q

and
τ ′ . τ + (6qs + qh)τ0

where τ0 the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use an attacker A
against our variant of the EDL signature scheme to solve this challenge, i.e., to find gax. Our
attacker A, after qH (resp. qG) hash queries to H (resp. G) oracle and qs signature queries, is able
to produce a signature forgery with probability ε within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters (g, p, q,Gg,q).
Answering new G(g, h, y, z, u, v) query: The simulator returns a random number in Zq.
Answering new H(m, u) query: The simulator generates a random number d ∈ Zq, and re-

turns (ga)d.
Answering signatures query of m ∈ M: The simulator generates random (κ, s, c) ∈ (Zq)3.

It computes u = gs y−c. If H(m,u) is already set, the simulator stops and fails (Event 1).
Else, the simulator sets h = H(m,u) = gκ and computes z = (gx)κ — remark that DLh(z) =
DLg(y)(= x). Finally, the simulator computes v = hs z−c. If G(g, h, y, z, u, v) is already set, the
simulator fails and stops (Event 2). Else, the simulator sets G(g, h, y, z, u, v) = c and returns
the valid signature (z, s, c).

As we can see, the simulation is valid and indistinguishable from an actual signer, except for
some events:

– Event 1: As (s, c) are random in Zq × Zq, and as u = gs y−c, u is a random number in Gg,q

and so the probability that H(m,u) is already set is less than qH+qs

q , for one signature query.

For qs signature queries, the failure probability is thus upper bounded by qs·(qH+qs)
q .

– Event 2: From the simulation, the input tuples to the G oracle are of the form (g, h, y, z, u, v) =
(g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is determined by relation H(gk) = gκ. Then, the
probability that G(g, h, y, z, u, v) is already set is less than qs+qG

q . For qs signature queries, the

failure probability is thus upper bounded by qs·(qs+qG)
q .

Solving the CDH challenge (g, gx, ga): Except when these two rare events occur, attacker A
returns, with probability ε, a valid signature forgery σ = (z, s, c) on a message m that was not
submitted to the signature oracle, with h = H(m,u) = (ga)d for some d known to the simulator.
If d = 0, the reduction fails and stops (Event 3). Else, provided that DLh(z) = DLg(y) = x,
the solution to the CDH challenge is z1/d: indeed, if z = hx then z1/d = gax.

As for EDL signature scheme, DLh(z) = DLg(y) = x, except with a probability qG
q , if entries

were not used during signature queries. Indeed, for these entries, the equation is always true, by
construction of G. As in proof of Section 3.3, it introduces an extra failure probability of qH·qs

q .
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We get hence the conclusion that our variant of EDL signature scheme is tightly as secure as
the Diffie-Hellman problem. The success probability ε′ of our reduction satisfies

ε′ ≥ ε− qs

(
2qs + qh

q

)
−qh

q
− qh · qs

q

i.e.,

ε′ & ε− 2qs · qh

q
.

Furthermore, the running time τ ′ of this simulation satisfies

t′ . τ + (6qs + qh)τ0

where τ0 is the time required for an exponentiation. ut
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