
Concurrent General Composition of Secure Protocols

in the Timing Model∗

Yael Tauman Kalai†

M.I.T
yael@csail.mit.edu

Yehuda Lindell†

Dept. of Computer Science
Bar-Ilan University, Israel
lindell@cs.biu.ac.il

Manoj Prabhakaran†

Princeton University and UCLA
mp@cs.princeton.edu

February 13, 2005

Abstract

In the setting of secure multiparty computation, a set of parties wish to to jointly compute
some function of their input (i.e., they wish to securely carry out some distributed task). The
joint computation should be such that even if some of the parties maliciously collude and attack
the other parties, certain security properties like privacy and correctness are preserved. Recently,
broad impossibility results have been proven that show that unless an honest majority or trusted
setup phase are assumed, it is impossible to obtain protocols that remain secure under concurrent
composition (where many protocol executions take place simultaneously). These results hold
both for the case of general composition (where a secure protocol is run many times concurrently
with arbitrary other protocols) and self composition (where a single secure protocol is run many
times concurrently). One approach for bypassing these impossibility results is to consider more
limited settings of concurrency that still realistically model real-world networks. In this paper,
we investigate the feasibility of obtaining secure multiparty protocols in a network where certain
time bounds are assumed. Specifically, the security of our protocols rely on the very reasonable
assumption that local clocks do not “drift” too much (i.e., it is assumed that they proceed at
approximately the same rate). We show that under this mild timing assumption, it is possible to
securely compute any multi-party functionality under concurrent general composition (as long
as messages from the arbitrary other protocols are delayed for a specified amount of time).

Keywords: theory of cryptography, secure multi-party computation, concurrent composition,
timing assumptions.

∗An extended abstract of this paper will appear in the 37th STOC, 2005.
†Much of this work was carried out while the authors were all at IBM T.J.Watson Research, New York.

1 Introduction

In the setting of secure multiparty computation, a set of parties with private inputs wish to jointly
compute some function of their inputs. Loosely speaking, the security requirements of such a
computation are that nothing is learned from the protocol other than the output (privacy), and
that the output is distributed according to the prescribed functionality (correctness). More exactly,
the result of an execution of a secure protocol must be like an “ideal execution” with an incorruptible
trusted party who (honestly) computes the function for the parties. These security requirements
must hold in the face of a malicious adversary who controls some subset of the parties and can
arbitrarily deviate from the protocol instructions. Powerful feasibility results have been shown for
this problem, demonstrating that any multiparty probabilistic polynomial-time functionality can
be securely computed for any number of corrupted parties, assuming the existence of enhanced
trapdoor permutations [42, 25].

Security under concurrent composition. The above-described feasibility results relate only
to the stand-alone setting, where a single pair of parties run a single execution. However, in
modern network settings, protocols must remain secure even when many protocol executions take
place concurrently. Unfortunately, the security of a protocol in the stand-alone setting does not
necessarily imply its security under concurrent composition. Therefore, an important research
goal is to re-establish the feasibility results of the stand-alone setting for the setting of concurrent
composition.

Recently it has been shown that in the case of no honest majority and no trusted setup, large
classes of functions cannot be securely computed under concurrent composition [10, 9, 11, 32,
33]. These results hold for both concurrent general composition (where a secure protocol is run
concurrently with arbitrary other protocols) and concurrent self composition (where a single secure
protocol is run many times concurrently). In fact, these two types of composition have been shown
to be (almost) equivalent [33]. Therefore, in the natural setting of no honest majority and no trusted
setup, it is impossible to construct protocols that remain secure in the setting of full concurrency
(where the adversary has arbitrary control over the scheduling of messages).

There are a number of possible ways to overcome these impossibility results. One direction is
to weaken the security requirements; this approach was taken by [36, 40] (see the “related work”
for more discussion on these results). Another direction, and the one taken in this paper, is to
introduce realistic assumptions on the adversary or network behavior, while providing the same
strong security guarantees as for the stand-alone setting. Needless to say, it is best to not assume
any restriction whatsoever. However, as we have mentioned, this is not possible. We therefore
consider a very reasonable network restriction that holds in real networks today.

Timing assumptions. The network restriction that we consider is a timing assumption on
the network. Timing assumptions were first used in the context of secure protocol composition
by [16] who used them to achieve (efficient) zero-knowledge protocols that remain secure under
concurrent self composition. An equivalent formulation of these assumptions was used by [24] and
our presentation is more according to this latter formulation. This formulation involves two specific
assumptions:
• Assumption 1 – clock drift: It is assumed that the parties’ local clocks proceed at approximately

the same rate. Specifically, there exists a global bound ε ≥ 1 such that when one local clock
advances t time units, every other local clock advances t′ time units where t/ε ≤ t′ ≤ tε. We
stress that there is no assumption regarding the distance of the parties’ local clocks from each
other; such an assumption would be far more problematic.

1

• Assumption 2 – maximum latency: It is also assumed that an upper bound ∆ is known on the
time it takes for a message to be computed, sent and delivered from one party to another. In
other words, ∆ is the maximum latency over the network (plus the time it takes to carry out
the local computation for generating the message that is sent). For simplicity, we will assume
that all local computation is instantaneous, and that ∆ measures the latency only (or, in other
words, the time that it takes for the adversary to deliver messages).

The second of these two assumptions is far more problematic than the first. This is due to the
fact that in real settings, the variance of network latency can be very large. Thus, a global upper
bound would have to be very large. As we will see, taking such a high upper bound would greatly
hinder performance. In addition, any reasonable bound is unlikely to always hold, thus potentially
compromising the security of the protocol. (We note that attacks that significantly slow down a
network are actually very easy to carry out.) In contrast, local clocks are usually very accurate,
at least with respect to the drift. The only policy that needs to be enforced is one that prevents a
machine’s local clock from being modified by some external instruction, that may then be issued
maliciously by an adversary.

Motivated by this above observation, we relate to these assumptions differently.1 More specif-
ically, our definition of security for the timing model relies only on the first assumption regarding
clock drift. Therefore, security holds as long as the clock drifts of the clocks are not too far apart,
and irrespective of the network latency. In contrast, the latency assumption is only used to ensure
liveness (or non-triviality of protocols). Namely, we require only that if a protocol execution does
not come under attack and the latency is indeed lower than ∆, then the protocol concludes success-
fully. Finally, we require that if a protocol does not come under attack and fails to conclude only
because of the network latency, then the protocol can be re-executed without harming security.2

We guarantee this by defining a class of functionalities with the property that if the parties halt
the execution due to a “time-out,” then this occurs independently of the output, and in particular,
before the adversary receives its own output. We argue that this property is essential for any real-
istic use of protocols in the timing model. In particular, given this property it is possible to choose
a reasonable ∆ that is not too large; if a time-out occurs due to a higher-than-average latence, then
no damage is caused and the parties can just restart the protocol and try again.

The use of timing assumptions. As in other works, the timing assumptions are used for
introducing time-out and delay operations in the protocol instructions. A time-out command is of
the form: “if more than f(∆, ε) time units have passed since message x was sent (or received), and
message y has not yet been received, then abort the execution” (where f is a function specified by
the protocol). A delay command is of the form: “before sending message y, wait until g(∆, ε) time
units have passed since receiving message x”. Typically, the use of these operations is to limit the
interleaving of different protocol executions. Specifically, delay and time-out commands are used to
ensure that if part A of execution i begins after part B of execution j, then part B of execution
j concludes before part A of execution i. (This is achieved by timing-out if B takes too long and
delaying to makes sure that A takes long enough, as depicted in Figure 1. The differences in the
lengths of part A and part B in the executions shown in the figure are due to the control that the

1We remark that this distinction also appears in [16], who discuss the ramifications of the timing assumptions on
completeness for zero-knowledge proofs.

2This property is non-trivial and does not generally hold for secure protocols. That is, if a protocol is aborted due
to malicious behavior, then re-executing the protocol from scratch can result in a breach of security. For example, if
the parties run a coin-tossing protocol, then the first party to receive output can cause an abort if the first bit of the
output is not 0. By re-executing upon abort, this party can bias the outcome so that the resulting string always has
the first bit set to 0.

2

adversary has over message delivery.) We stress that the time-out and delay instructions depend
on the parties’ local clocks only, and so do not rely on any global synchronization.

Execution j Execution i

Part A

Part B

Part A

Part B timeout if
too long

delay if
too short

Figure 1: limiting the interleaving (notice that part A must take longer than part B).

Our results. We show that under timing assumptions, for every functionality F there is a
multiparty protocol ρ that securely computes F , such that ρ remains secure under concurrent
general composition (with the additional requirement that delay instructions are introduced into
the arbitrary protocols that run concurrently to ρ). In order to state our result in more detail, we
introduce the following notation. Let π be an arbitrary protocol (representing arbitrary protocol
activity in the network where our secure protocol is run), and let delay(π) denote a modification
in which each message of π is delayed by a specified amount. Then, we show that for every
functionality F there exists a protocol ρ for securely computing F , such that for every π, protocol
ρ remains secure when run many times concurrently with delay(π) in the timing model. We call
such a protocol secure under concurrent general composition with delays. We stress that the contents
of the messages specified by π are untouched; therefore, any protocol in π that was secure (without
timing) will remain secure in delay(π). We now informally state our main result:

Theorem 1.1 Assume that there exist enhanced trapdoor permutations.3 Then, any multiparty
functionality F can be securely computed under concurrent general composition with delays, in the
timing model and in the presence of static adversaries.

The proof of Theorem 1.1 gives the first construction of a protocol that achieves security (in the
standard sense) under the most general setting of composition, without relying on a trusted setup
phase or an assumed honest majority.

We prove Theorem 1.1 by constructing a protocol that securely realizes the common random
string functionality under concurrent general composition with delays. This functionality simply
hands each party a uniformly distributed string, and as such is essentially a multiparty coin-
tossing functionality. We then rely on the fact that any efficient functionality can be securely
computed in the common random string model [12]. Combining these together, we obtain that
any efficient functionality can be securely computed under concurrent general composition with
delays. Of course, since we obtain concurrent general composition, we can also combine different
secure protocols, obtaining that any set of functionalities can be securely realized concurrently in
a “delayed network”.

3See [23, Appendix C.1].

3

Inherent drawbacks. As we have mentioned, the timing assumptions are used for introducing
time-out and delay instructions in the protocol. Our use of delays is extensive, since we delay
all messages of the arbitrary protocol π. This is clearly a drawback of our result. However, in
Section 5 we show that some sort of modification of π is essential for achieving security. Informally
speaking, we say that a protocol π is timing-free if it contains no time-based instructions. We prove
the following theorem (again, informally stated here):

Theorem 1.2 There exist large classes of efficient functionalities that cannot be securely computed
under concurrent general composition with timing-free protocols, even in the timing model, unless
an honest majority or a trusted setup phase are assumed.

We conclude that some timing-based modification must be introduced into π. The question of how
many delays must be introduced into π (and of what length) is left open by this work. We view our
result as an initial feasibility result that demonstrates the usefulness of timing assumptions even in
the very difficult setting of concurrent general composition.

We note an important feature of our protocol relating to efficiency. As we have mentioned, the
assumption regarding the maximum latency ∆ is used only for obtaining non-trivial termination.
Furthermore, if the latency exceeds ∆ in any given execution, then the protocol can be restarted
with no danger to security. Therefore, it is not necessary to set ∆ to be an upper-bound on the
latency. Rather, a more optimistic estimate on the latency for ∆ can be taken with the price
being that some, but not too many, time-outs will be incurred. (There is a tradeoff here between
choosing a large ∆ that slows down all protocol executions and choosing a small ∆ that results in
more timed-out protocols that must be restarted.)

Related work. Secure computation was first studied in the stand-alone model, where it was shown
that any multi-party functionality can be securely computed [42, 25, 5, 13]. The study of concurrent
composition of protocols was initiated by [20] in the context of witness indistinguishability, and
was next considered by [15] in the context of non-malleability. Until recently, the majority of
work on concurrent composition was in the context of concurrent zero-knowledge [16, 41]. The
concurrent composition of protocols for general secure computation was only considered much
later. Specifically, the first definition and composition theorem for security under concurrent general
composition was presented by [39] for the case that a secure protocol is executed once in an arbitrary
network.4 The general case, where many secure protocol executions may take place (again, in an
arbitrary network) was then considered in the definition (and composition theorem) of universal
composability [9]. It was also shown that any functionality can be securely realized in this setting
assuming an honest majority [9], or assuming a trusted setup phase in the form of a common random
string [12]. However, in the case of no honest majority or trusted setup, broad impossibility results
have been demonstrated for universal composability, concurrent general composition and concurrent
self composition [11, 32, 33].

These impossibility results justify and provide motivation for considering restricted network
settings and weaker notions of security. One type of restriction that has been considered for
concurrent self composition is that of m-bounded concurrency, where an upper bound m on the
global number of concurrent executions is assumed [1]. In this model, both positive results [31, 38,
37] and lower bounds [31, 33] have been demonstrated. In our opinion, the timing model is a far
more realistic assumption than that of bounded concurrency.

A different way of bypassing the aforementioned impossibility results (and one not taken in
this paper) is to consider weaker notions of security. This approach was taken by [36] and [40]

4An earlier reference to this problem with general ideas about how to define security appeared in [7, Appendix A].

4

who both provide “additional power” to the “ ideal adversary”. In [36], the simulator (or ideal
adversary) is allowed to run in quasi-polynomial time, even though the real adversary is still limited
to polynomial-time. Thus, the resulting security guarantee is that “whatever can be obtained
in polynomial-time in a real execution could be obtained in quasi-polynomial-time in an ideal
execution”. This definition was used by [36] to construct zero-knowledge protocols that remain
secure under different settings of concurrent composition. In a similarly motivated definition,
[40] allow the ideal adversary to run in exponential-time and simulate for a polynomial-time real
adversary. In this setting, and under somewhat non-standard assumptions, [40] show how to
construct protocols that are secure (for their new notion of security) under concurrent general
composition. Thus, this latter result achieves security for the broadest setting of composition.
However, it does this at the price of obtaining a weaker security guarantee. (In particular, it is
not clear what effect a protocol that is secure by the definition of [40] will have on other protocols
running in the arbitrary network.)

As we have mentioned, timing assumptions were introduced in the cryptographic context by [16].
Subsequently, they have been used in a number or works, including [18, 17, 29, 24]. However, all of
these works considered specific cryptographic tasks (namely, zero-knowledge and authentication-
type protocols). Furthermore, they all considered security under concurrent self composition. This
paper is the first to use timing assumptions in order to construct general secure protocols that
remain secure under concurrent general composition.

2 Definitions and Tools

2.1 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible in n (or just negligible) if for
every polynomial p(·) there exists a value N such that for all n > N it holds that µ(n) < 1/p(n).
Let X = {X(n, a)}n∈N,a∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we

say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for every probabilistic

polynomial-time distinguisher D there exists a function µ(·) that is negligible in n, such that for
every a ∈ {0, 1}∗,

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n)

Typically, the distributions X and Y will denote the output vectors of the parties in real and ideal
executions, respectively. In this case, a denotes the parties’ inputs.

A machine is said to run in polynomial-time if its number of steps is polynomial in the security
parameter, irrespective of the length of its input. (Formally, each machine has a security-parameter
tape upon which 1n is written. The machine is then polynomial in the contents of this tape.)5

2.2 Security Under General Composition

In this section, we present the definitions of the network model, and security under concurrent
general composition. In order to simplify the exposition as much as possible, we do not attempt to
present the most general model. Rather, we focus on a model that suffices for our specific result.
As we have described in the Introduction, we show how the common random string functionality
Fcrs can be securely computed under concurrent general composition in the timing model. More

5We note that modelling polynomial-time like this somewhat restricts generality. For example, encryption of
arbitrarily long plaintexts by honest parties cannot be modelled in this way. Nevertheless, this is simpler and suffices
for this work.

5

specifically, we show that it is possible to construct a protocol ρ such that an execution of π with ρ
in a real world with clocks (and limitations on their drift) can be simulated in a hybrid world with
π and ideal access to the common random string functionality Fcrs (and without any clocks). Since
timing is needed only in the real model (and not in the resulting Fcrs-hybrid world), we introduce
it only into the definition of the real model.

We now define what it means for a protocol to be secure under concurrent general composition.
Informally speaking, concurrent general composition considers the case that a protocol ρ for securely
computing some ideal functionality F , is run concurrently (many times) with arbitrary protocols
running in the network. This arbitrary network is modelled as a “calling protocol” π with respect
to the functionality F . That is, π is a protocol that contains, among other things, “ideal calls” to a
trusted party that computes the functionality F . This means that in addition to standard messages
sent between the parties, protocol π’s specification contains instructions of the type “send the value
x to the trusted party and receive back output y”. Then, the real-world scenario is obtained by
replacing the ideal calls to F in protocol π with real executions of protocol ρ. (When we say that
an ideal call to F is replaced by an execution of ρ, this means that the parties run ρ upon the
same inputs that π instructs them to send to the trusted party computing F .) The composed
protocol is denoted πρ and it takes place without any trusted help. We note that in this composed
protocol, messages of π may be sent concurrently to the executions of ρ (even though π “calls” ρ).
In addition, the inputs are determined by π and may therefore be influenced by previous ρ-outputs
and the party’s overall view in the arbitrary network. Security is defined by requiring that for every
protocol π that contains ideal calls to F , an adversary interacting with the composed real protocol
πρ (where there is no trusted help) can do no more harm than in an execution of π where a trusted
party computes all the calls to F . This therefore means that ρ behaves just like an ideal call to F ,
even when it is run concurrently with any arbitrary protocol π.

Multi-party computation. A multi-party computation problem for a set of parties P1, . . . , Pm is
cast by specifying a (probabilistic polynomial-time) multi-party ideal functionality machine F that
receives inputs from parties and provides outputs. The aim of the computation is for the parties
to jointly compute the functionality F . According to the standard ideal/real model paradigm [26,
3, 34, 8], a real protocol execution is compared to an ideal execution where a trusted third party
computes F for the parties. Instead of explicitly considering such a trusted party, this intuition is
formalized by having the parties (and adversary) communicate directly with the ideal functionality.
Thus, sending a message to the ideal functionality means that a Turing machine computing F
receives this message on its incoming communication tape. The output generated by this machine
is written on its outgoing communication tape to be sent to the party for whom it is designated.
(This is equivalent to the trusted party formulation but makes for a less verbose presentation.)

Adversarial behavior. In this work we consider malicious, static adversaries. That is, the
adversary controls an a priori fixed subset of the parties who are said to be corrupted. The corrupted
parties follow the instructions of the adversary in their interaction with the honest parties, and
may arbitrarily deviate from the protocol specification. The adversary also receives the view of
the corrupted parties at every stage of the computation. In our model, the adversary also has
full control over the scheduling of the delivery of all messages. Thus, the network is asynchronous.
Finally, in the real model with clocks, the adversary has (some) control over the clocks of the honest
parties; this will be described below.

The F-hybrid model. Let π be an arbitrary protocol that utilizes ideal interaction with a
trusted party computing the multi-party functionality F (recall that π actually models arbitrary
network activity). This means that π contains two types of messages: standard messages and ideal

6

messages. A standard message is one that is sent between two parties that are participating in
the execution of π, using the point-to-point network (or broadcast channel, if assumed). An ideal
message is one that is sent by a participating party (or the adversary) to an ideal functionality F ,
or from an ideal functionality to a participating party (or the adversary). Note that there may be
many copies of one functionality, and so these copies are differentiated by unique session identifiers.
Notice that the computation of π is a “hybrid” between the ideal model (where a trusted party
carries out the entire computation) and the real model (where the parties interact with each other
only). Specifically, the messages of π are sent directly between the parties, and the trusted party
is only used in the ideal calls to F .

As we have mentioned, the adversary controls the scheduling of all messages, including both
standard and ideal messages. As usual, we assume that the parties are connected via authenticated
channels. Therefore, the adversary can read all standard messages, and may use this knowledge to
decide when, if ever, to deliver a message. (We remark that the adversary cannot, however, modify
messages or insert messages of its own.) In contrast, the channels connecting the participating
parties and the trusted third party are both authenticated and private. More precisely, ideal
messages are comprised of a public header and a private body. The contents of a message that
belong in the header or body is part of the functionality definition. In general, the public header
contains information like the name and session identifier of the functionality for which the message
is intended. We stress that although the adversary delivers the entire message, it can only read the
public header, and cannot read the private body. However, we adopt the convention that the length
of this private body is given to the adversary. (This models the fact that the lengths of inputs and
outputs cannot be fully hidden from the adversary.)6

Computation in the F-hybrid model proceeds as follows. The computation begins with the
adversary receiving the inputs and random tapes of the corrupted parties. Throughout the exe-
cution, the adversary controls these parties and can instruct them to send any standard and ideal
messages that it wishes. In addition to controlling the corrupted parties, the adversary delivers all
the standard and ideal messages by copying them from outgoing communication tapes to incoming
communication tapes. The series of activations is sequential. That is, the adversary is activated
first, at which time it can carry out any arbitrary computation. It concludes its activation by
writing a message to the incoming communication tape of either a party or an ideal functionality.
A party (or an ideal functionality) that receives a message on its incoming communication tape is
immediately activated. When it halts, the adversary is activated once again.7 Upon being acti-
vated, the honest parties always follow the specification of protocol π. Specifically, upon receiving a
message (delivered by the adversary), the party reads the message, carries out a local computation
as instructed by π, and writes standard and/or ideal messages to its outgoing communication tape,
as instructed by π. Likewise, the ideal functionality follows its prescribed instructions (and is never
corrupted). At the end of the computation, the honest parties write the output value prescribed by
π on their output tapes, the corrupted parties output a special corrupted symbol and the adversary
outputs an arbitrary function of its view. Let n be the security parameter, let S be an adversary
for the F-hybrid model with auxiliary input z ∈ {0, 1}∗, let I ⊆ [m] be the set of corrupted parties,
and let x = (x1, . . . , xm) ∈ ({0, 1}∗)m be the vector of the parties’ inputs to π. Then, the hybrid
execution of π with ideal functionality F , denoted hybridFπ,S,I(n, x, z), is defined as the output vector
of all parties and S from the above hybrid execution.

6In this work, the ideal functionality that we consider generates a public common random string. Therefore, all
communication between the parties and functionality can be made part of the public header.

7The adversary can activate parties at the beginning of the execution, before there are messages to deliver, by
sending them a special “begin computation” message.

7

The real model – without clocks. Let ρ be a multi-party protocol. Intuitively, the composition
of protocol π with ρ is such that a real execution of protocol ρ takes the place of an ideal call to
F . Formally, each party holds the code of a separate probabilistic interactive Turing machine
(ITM) that works according to the specification of the protocol ρ.8 When π instructs a party to
send an ideal message α to the ideal functionality F with session identifier sid, the party creates
a new instantiation of the ITM for ρ, associates the identifier sid with this machine, and invokes
it with input α. Any message that it later receives that is marked for ρ with identifier sid, it
forwards to this ITM. All other messages (that are not earmarked for ρ) are answered according
to π. Finally, when the execution of ρ with identifier sid concludes and a value β is written on the
output tape of the ITM, the party copies β to the incoming communication tape for π, as if β is
an ideal message (i.e., output) received from the copy of the ideal functionality F with identifier
sid. This composition of π with ρ is denoted πρ and takes place without any trusted help. Thus,
the computation proceeds in the same way as in the hybrid model, except that all messages are
standard. (Note that like in the hybrid model, the adversary controls message delivery and can
also read messages sent, but cannot modify or insert messages.) Let n be the security parameter,
let A be an adversary for the real model with auxiliary input z, let I ⊆ [m] be the set of corrupted
parties, and let x be the vector of the parties’ inputs to π. Then, the real execution of π with ρ,
denoted realπρ,A,I(n, x, z), is defined as the output vector of all the parties and A from the above
real execution.

The real model – with clocks. Until now, we have defined the standard (timing-free) real and
hybrid models for concurrent general composition. However, in this work, we consider the timing
model where the parties have clocks. We only introduce timing in the real model, since it suffices
for our results. We note that timing can be introduced in the F-hybrid model in a straightforward
way if desired.

In order to model parties with clocks, we add a clock tape to the interactive Turing machines
that model the parties in the network; we call such a modified machine an ITMC (interactive Turing
machine with clock). As we will see below, the adversary is the only machine to update the clock
tapes of the parties. The leeway given to the adversary in its control over these tapes determines
the model being considered. For example, if the adversary has full control and can write any values
that it wishes, then this is equivalent to an un-timed, fully asynchronous model. On the other
extreme, if the adversary initializes all clocks to 0 and adds 1 to each clock at the same time, then
this is equivalent to the fully synchronous model.9 In the timing model, as introduced by [16], the
adversary is somewhat limited in its power over the clock tapes. Specifically, the adversary can
initialize the values of the clock tapes to any values that it wishes (this initialization takes place
at the onset of the computation and models the fact that we do not require synchronized clocks).
Following this initialization step, the adversary may update the clock of any party that it wishes,
under the constraint that a bound on the clock drift is preserved. Loosely speaking, this restriction
states that the clocks of all machines proceed at approximately the same rate (give or take ε).

More formally, let M1, . . . ,M` be the ITMC’s in the network and let a1, a2, . . . be the series
of global states of all machines in the network, where aj denotes the global state after the jth

8Note that each party receives the same machine and thus the same set of instructions for ρ. This means that
separate, fixed roles are not defined for the different parties. Rather, the assignment of different roles (if they exist,
like for example in zero-knowledge where there are separate prover and verifier roles) is assumed to be part of the
functionality definition and protocol execution.

9Of course, just updating the clocks together does not necessarily force the adversary to activate all the parties
in parallel (or essentially in parallel, by activating the parties sequentially in a round robin fashion). However, a
protocol can force this by having a party abort if it does not receive its round i messages when its clock reads i.

8

activation of a machine by the real-model adversary. (Note that we do not include activations
of the adversary, but just of the participating parties.) Denote the contents of the clock tape of
machine Mi in activation aj by clocki(aj), and let clocki(a0) be the initial value of its clock tape.
Then, adversarial control over the clocks is modelled by modifying the real model in the following
way:

1. Before the computation begins, the real adversary A is allowed to write any values that it
wishes to the parties’ clock tapes (if a value is not written, then the default is 0). These are
the initial clock values.

2. Every time that the adversary is activated, it is given write access to the clock tapes of all of
the parties. This write access is limited in a natural way in that A is only allowed to increase
the current value. We stress that writing to a party’s clock tape does not activate it (in this
way, it is different to writing to a party’s incoming communication tape).

The above describes how the adversary updates the clock tapes; it does not specify any limitations
over these updates. In the timing model, it is assumed that the clocks all proceed within ε units of
each other. That is, let ε ≥ 1 be a constant. We say that an adversary A is ε-drift preserving if for
every pair of parties Pi and Pj and for every k = 1, 2, . . .,

1
ε
· (clockj(ak)− clockj(ak−1)) ≤ clocki(ak)− clocki(ak−1) ≤ ε · (clockj(ak)− clockj(ak−1)) (1)

In other words, whenever a party’s clock is increased by some value δ, then all other clocks must
be increased by some value between δ/ε and δε. An equivalent and more explicit way of stating
this requirement is as follows.

Let ε ≥ 1 be a constant. Then, we say that an adversary A is ε-drift preserving if there exist a
series of values δ1, δ2, . . . so that for every i and every k = 1, 2, . . .

δk ≤ clocki(ak)− clocki(ak−1) ≤ δk · ε
This means that between activation ak−1 and activation ak, the clocks of all parties have increased
by a value which is between δk and δkε.10

Intuitively, one can think of δk as being the objective real time (although there may be a number
of values δk that fulfill this condition, and in real life clocks can also be slower than the real time, so
this is not really the case). The rest of the execution is the same as in the (untimed) real execution
described above. Let n be the security parameter, let A be an ε-drift preserving adversary for the
real model with auxiliary input z, let I ⊆ [m] be the set of corrupted parties, and let x be the
vector of the parties’ inputs to π. Then, the real execution of π with ρ, denoted realε

πρ,A,I(n, x, z),
is defined as the output vector of all the parties and A from the above real execution.

Security as emulation of a real execution in the hybrid model. Having defined the
hybrid and real models, we can now define security of protocols. Loosely speaking, the definition
asserts that for any context, or calling protocol π, the real execution of πρ emulates the hybrid
execution of π which utilizes ideal calls to F . This is formulated by saying that for every real-
model adversary there exists a hybrid model adversary for which the output distributions are
computationally indistinguishable. The fact that the above emulation must hold for every protocol
π that utilizes ideal calls to F , means that general composition is being considered (recall that π
represents arbitrary network activity).

10Notice that taking δk = minj{clockj(ak)− clockj(ak−1)}, Eq. (1) implies that maxj{clockj(ak)− clockj(ak−1)} ≤
δkε, which in turn implies that for every i, δk ≤ clocki(ak)− clocki(ak−1) ≤ δkε.

9

In addition to considering the notion of general composition where every possible protocol π
is considered, we also consider the case where π comes from some class of protocols Π. This
formalization will be used later when we show security with respect to a generic transformation of
any protocol π to be within some class Π; security is then preserved with respect to the transformed
protocol in Π. (Jumping ahead, this transformation is just the introduction of delays of a specified
length into the protocol representing the arbitrary network activity.)

Definition 1 (security under concurrent general composition in the timing model): Let ρ be a
polynomial-time protocol and let F be an ideal functionality. Then, ρ securely realizes F under
concurrent general composition in the timing model with ε if for every polynomial-time protocol π in
the F-hybrid model and every ε-drift preserving non-uniform polynomial-time real-model adversary
A for πρ, there exists a probabilistic non-uniform polynomial-time hybrid-model adversary S such
that for every I ⊆ [m]:

{
hybridFπ,S,I(n, x, z)

}
n∈N;x∈({0,1}∗)m;z∈{0,1}∗

c≡
{

realε
πρ,A,I(n, x, z)

}
n∈N;x∈({0,1}∗)m;z∈{0,1}∗

If the above holds for a specified subset of protocols Π, then we say that ρ securely realizes F under
concurrent composition with Π in the timing model with ε.

As we have discussed in the Introduction, the timing model relies on two assumptions: the clock-
drift ε and the maximum network latency ∆. However, the security of a protocol should rely solely
on the more realistic assumption regarding clock drift. Therefore, our above definition refers to the
clock drift, but makes no mention of the network latency. Rather, the latency assumption is only
used in order to guarantee non-triviality.

Non-trivial protocols in the timing model. Loosely speaking, a protocol is non-trivial if
output is generated in executions where the adversary is “well-behaved”. More specifically, and in
the context of the timing model, a protocol is non-trivial for ∆ and ε if in each execution in which
the adversary is ε-drift preserving, delivers all messages in time at most ∆, and does not corrupt
any party, none of the parties output time-out.

Definition 2 (non-triviality): We say that a protocol ρ is non-trivial under timing assumptions (∆, ε)
if in any execution of ρ where:

1. The real adversary A has not corrupted any of the participating parties, and

2. The real adversary A is ε-drift preserving and delivers all the messages of ρ within ∆ time
units (according to the clocks of all the parties),

it holds that all parties receive output that does not equal time-out.

Notice that item (2) in Definition 2 refers to delivery within ∆ time units according to the clocks
of all parties. This means that ∆ is an upper bound on the latency with respect to all local clocks
(and not with respect to some specific clock).

Modelling delays and time-outs. As we have discussed in the Introduction, our protocol (for
the real model with clocks) utilizes the clocks by introducing delay and time-out instructions. Such
instructions are formally modelled as follows:

10

1. Delay instructions: If a party Pi is instructed to delay sending a message x by c time units,
then it chooses a random identifier delay-id and writes (x, delay-id, c, time) on its work tape,
where time is the current contents of its clock tape. It then writes (delay,delay-id,c) on its out-
going communication tape concluding the activation. Upon receiving a message (send,delay-
id) from the adversary in a future activation, party Pi first checks that c units have passed on
its clock (i.e., that the current contents of its clock is at least time + c where c and time are
the values in the tuple indexed by delay-id). If not, then it halts this activation. If yes, then it
writes the delayed message x on its outgoing communication tape, concluding the activation.
(We note that our decision to write the length c of the delay on the outgoing communication
tape is arbitrary and makes no difference to our result.)

2. Time-out instructions: If a party Pi (or an ITM that it runs as a subprotocol) is instructed to
time-out if it doesn’t receive a specific message within c time units, then Pi writes the current
contents of its clock tape on its work tape. Then, when it receives the specific message,
it simply times out if the current contents of its clock tape is greater than the previously
recorded value plus c.

Discussion – local computation time. In our definitions, we have included a local clock on
machines and use this to measure the time that it takes for messages to be sent and received over
the network. A more general model would also include issues such as the time that it takes for
local computation. The focus of this paper is a secure protocol that utilizes timing assumptions,
and not the issue of modelling time in its most general fashion. Our model therefore assumes
that local computation is immediate (this can be seen because the adversary is not activated while
local computations take place and so cannot update the clocks). One approach for generalizing the
model is to have the adversary be activated after every single step of the transition function of an
ITMC. We leave these questions of modelling for future work.

2.3 The Class of Timed Functionalities

As we have discussed above, in the timing model parties may output a special time-out message,
indicating that some message was not received within a specified time. Thus, protocols that are
secure in the timing model may sometimes conclude with the parties outputting time-out rather
than their correct output. This possibility must therefore be included into the definition of the
ideal functionality (because a real execution is supposed to look just like an interaction with an
ideal functionality in the ideal world). In addition, as we discussed in the Introduction, we require
that the parties only output time-out before the functionality generates output. This enables the
parties to restart a protocol that timed-out, without any security risk. (This is important because
it enables us to take an average rather than worst-case bound on ∆, and thereby balance the cost
of delays with the cost of restarting timed-out protocols.)

The above leads us to define a class of functionalities that captures the above properties of
functionalities designed for the timing model. Our definition of this class is actually a transforma-
tion, meaning that every functionality F has an analogous functionality F timed in the class. The
only difference between F and F timed is that F timed waits to receive either a time-out or compute
message from the adversary before carrying out any computation. If time-out is received, then
F timed just sends time-out to all the parties and halts. Otherwise, if compute is received, F timed

invokes the original F . (In this case, any messages that F timed received before the adversary sent
a compute message are also forwarded by F timed to the original F .) We therefore have that unless

11

a time-out is issued, the functionality F timed is exactly the same as F . Furthermore, if a time-out
is issued, then it is guaranteed that F timed did not generate any output, as desired.

The class of “timed” functionalities. Let F be a functionality. Then, the timed functionality
F timed consists of an external procedure called the shell, and a main subroutine called the core.
The core is the probabilistic polynomial-time algorithm computing F , while the shell is a simple
procedure that deals with time-out and compute messages from the adversary. The shell has an
external interface and receives messages from the parties and the adversary. Until a time-out or
compute message is received, the shell simply stores all messages received in a buffer. Then, if
time-out is received, the shell announces time-out to all the parties and halts the execution of
F timed. In contrast, if compute is received, the shell hands all the messages received so far to the
core (essentially, to the initial F). Furthermore, any later time-out message is ignored, and all other
messages are forwarded between the core and the external parties. That is, from the time that
compute is received, the shell just acts as a channel sending messages between F and the external
parties. A formal description of F timed appears in Figure 2.

Functionality F timed

Let n be the security parameter, let P1, . . . , Pk be the set of participating parties, and let S be the
adversary. The functionality F timed is constructed from F and proceeds as follows:
Compute: Upon receiving a message (sid, compute) from S, invoke the functionality F and hand it

all the previously stored messages (see the “F messages” item below for how and when these are
stored). Furthermore, write any output generated by F on the outgoing communication tape.

Time-out messages: Upon receiving a message (sid, time-out) from S, if a compute message has
already been received, then do nothing. Otherwise, send the message (sid, time-out) to all parties
P1, . . . , Pk and halt.

F messages: Upon receiving any other message (i.e., any message that is not of the type compute
or time-out), if compute has not yet been received, then store the message. Otherwise, forward it
directly to F , and write any output generated by F on the outgoing communication tape. Finally,
halt whenever F halts.

Figure 2: Formal description of the ideal timed functionality F timed

2.4 Tools

Our protocol uses a number of different tools and primitives. In this section, we briefly describe
these tools and provide references to full definitions.

Witness indistinguishable and witness hiding proofs [20]. We consider the interaction of a
probabilistic polynomial-time verifier with a probabilistic polynomial-time prover who is given an
auxiliary input (typically, an NP-witness) in order to carry out the proof. Such an interactive proof
is witness indistinguishable if interactions in which the prover uses different “legitimate” auxiliary-
inputs are computationally indistinguishable from each other [20]. Recall that any zero-knowledge
proof system is also witness indistinguishable. Furthermore, witness indistinguishable proofs remain
witness indistinguishable under concurrent composition. Witness hiding proofs have the property
that a verifier cannot obtain a witness from its interaction with the prover. For example, if a
prover proves that it knows the preimage of some one-way function using a witness-hiding proof,
then the interaction will not help any probabilistic polynomial-time verifier to compute a preimage.

12

Witness hiding proofs can be constructed from witness indistinguishable proofs by considering
“double statements” of the form “I know the preimage of one of v1 and v2” [20]. See [22, Section
4.6] for a full treatment of witness indistinguishable and witness hiding proofs.

Strong proofs of knowledge [22]. A proof of knowledge [28, 4] is an interactive proof which
convinces a verifier that the prover “knows” a witness to a certain statement. This is in contrast
to a regular interactive proof, where the verifier is just convinced of the validity of the statement.
The concept of “knowledge” for machines is formalized by saying that if a prover can convince the
verifier, then there exists an efficient procedure that can “extract” a witness from this prover (thus
the prover knows a witness because it can run the extraction procedure on itself). More formally,
a proof of knowledge has the property that for every machine P ∗ there exists a knowledge extractor
K, such that if P ∗ convinces V with probability p, then K “extracts” a valid witness from the
prover P ∗ with probability that is negligibly close to p. A strong proof of knowledge, as defined
by Goldreich [22, Sec. 4.7.6], is a proof of knowledge where the knowledge extractor runs in strict
polynomial-time and fulfills the following more stringent requirement: There exists a negligible
function µ(n) such that if a given prover convinces the honest verifier to accept with probability
greater than µ(n), then the knowledge extractor succeeds in obtaining a witness with probability
at least 1− µ(n). See [22, Sec. 4.7.6] for a full treatment.

We remark that there exist witness indistinguishable strong proofs of knowledge with any super-
constant number of rounds. (The construction of [22] uses a super-logarithmic number of sequential
executions of the 3-round zero-knowledge proof for Hamiltonicity [6]. However, using the same
ideas, it can be shown that by running log n parallel executions of the proof of Hamiltonicity, any
super-constant number of sequential repetitions is actually enough. We can therefore reduce this
to any super-constant number of rounds α(n) = ω(1).) We also remark that it has been shown
that under exponential hardness assumptions, there do not exist witness indistinguishable strong
proofs of knowledge with a constant number of rounds, even using non-black-box techniques [2].

3 Secure Multiparty Protocols in the Timing Model

In this section, we prove our main result, informally stated in Theorem 1.1. We begin by formally
restating Theorem 1.1. Recall that this theorem claims that there exist protocols that remain
secure under concurrent general composition with delays. In order to formalize this notion of a
“delayed network”, we define the following class of “delayed protocols”:

Definition 3 (delayed protocols): Let π be any protocol (in the real model or in the F-hybrid model
for some F), and let δ be a constant. Then, πδ is the protocol obtained from π by having every
honest party delay sending every message by δ local time units. We define the class of functionalities
Πδ to be the set of all protocols πδ as above.

We are now ready to state our main result (the limitations on ε and δ mentioned in the theorem
are needed later in the proof):

Theorem 4 (Theorem 1.1 – restated): Assume that there exist enhanced trapdoor permutations.
Let F be any probabilistic polynomial-time multiparty functionality, let ∆ and ε be constants where
1 ≤ ε ≤ 3

√
1.5, and let δ = ω(1)·∆·ε. Then, there exists a protocol ρ such that ρ securely realizes

the functionality F timed under concurrent general composition with Πδ in the timing model with
ε, and in the presence of static malicious adversaries. Furthermore, ρ is non-trivial under timing
assumptions (∆, ε).

13

The majority of the proof of Theorem 4 involves showing how to securely realize the timed “common
random string” (or coin-tossing) functionality. We begin in Section 3.1 by formally justifying this
fact.

3.1 Reducing the Problem to Realizing the Timed CRS Functionality

In the common random string model, all parties are given the same uniformly distributed string.
This is formalized by giving all parties access to a common random string (CRS) functionality,
which is actually just a multiparty coin-tossing functionality. This functionality is denoted Fcrs.
In our proof of Theorem 4, we rely heavily on the result of [12] that states that any multiparty
functionality can be securely realized under concurrent general composition in the Fcrs-hybrid
model.11 In the case of static malicious adversaries (as we consider here), this result relies on the
existence of enhanced trapdoor permutations.

From the above, it follows that if the Fcrs functionality can be securely realized under concurrent
general composition, then any functionality F can be securely realized under concurrent general
composition. However, we cannot securely realize the Fcrs functionality under concurrent general
composition. Rather, we securely realize the timed functionality F timed

crs under concurrent general
composition with delays (i.e., with the class of protocols Πδ for some δ). This suffices due to the
following two claims (note that the first claim refers to a model without time):

Claim 3.1 Let F be a functionality and let ρ be a protocol that securely realizes F under concurrent
general composition in the Fcrs-hybrid model. Then, there exists a protocol ρ′ that securely realizes
F timed under concurrent general composition in the F timed

crs -hybrid model.

Proof Sketch: First, recall that the transformation of a functionality F to F timed is such that
either time-out is received before any computation is carried out by F , or F timed behaves in exactly
the same way as F . This leads us to the following way of securely realizing F timed. Let ρ be a
protocol that securely realizes F under concurrent general composition in the Fcrs-hybrid model.
Then, define ρ′ to be the protocol that begins by invoking F timed

crs . Next, if the output of F timed
crs is

not time-out, ρ′ proceeds exactly like ρ, except that the output of F timed
crs is used any time that ρ

would call Fcrs. (If the output of F timed
crs is time-out, the the output of ρ′ is also time-out.) Since

F timed
crs is invoked first, we have the following two cases:

1. Case 1 – F timed
crs is not timed-out: In this case, once a compute message is sent to F timed

crs , we
have that F timed

crs behaves exactly like Fcrs. Therefore, ρ′ will behave exactly like ρ does in
the Fcrs-hybrid model. In particular, the simulator for ρ′ sends a compute message to F timed

and then proceeds just like the simulator for ρ.

2. Case 2 – F timed
crs is timed-out: In this case the simulator for ρ′ simply sends time-out to F timed.

(Note that since the simulator has not sent a compute message to F timed, the functionality
will send time-out to all parties after receiving this message.)

This completes the proof sketch.

So far, we have demonstrated that ρ′ securely realizes F timed in the F timed
crs -hybrid model. It still

remains to show that we can replace F timed
crs with a real protocol that securely realizes F timed

crs under
concurrent general composition with Πδ, in the timing model.

11Actually, in [12] a class of “well-formed” functionalities is defined. However, in the case of static adversaries, this
only limits the functionalities to those that are “unaware” of which parties are corrupted and which are honest. Since
in our definition of the computational model the ideal functionality is not given this information, it follows that all
efficient functionalities can be securely realized.

14

Claim 3.2 Let ρ′ be a protocol that securely realizes a functionality F timed under concurrent general
composition in the F timed

crs -hybrid model (in a model without time), and let σ be a real protocol that
securely realizes F timed

crs under concurrent general composition with Πδ, in the timing model. Then
the protocol (ρ′δ)

σ securely realizes F timed under concurrent general composition with Πδ, in the
timing model.12

Proof Sketch: Let σ be a protocol that securely realizes F timed
crs under concurrent general compo-

sition with Πδ in the timing model, and let πρ′ be any protocol (i.e., π is an arbitrary protocol that
may contain subroutine calls to ρ′). Then, by Definition 1 it follows that for every real adversary
running ((πρ′)δ)σ in the timing model, there exists an adversary running πρ′ in the F timed

crs -hybrid
model (without any time), such that the output distributions are computationally indistinguish-
able.13 Applying the security of ρ′ under concurrent general composition (without timing and in
the F timed

crs -hybrid model), we have that there exists an adversary running π in the F timed-hybrid
model such that the output is computationally indistinguishable from πρ′ in the F timed

crs -hybrid
model, and so also from ((πρ′)δ)σ in the real model with timing. We conclude that (ρ′δ)

σ securely
realizes F timed under concurrent general composition with Πδ, in the timing model.

Combining the result of [12] with Claim 3.1, we have that for every efficient functionality F , there
exists a protocol ρ′ that securely realizes F timed in the F timed

crs -hybrid model under concurrent
general composition. The proof of Theorem 4 is therefore derived from Claim 3.2 and a proof of
the existence of a protocol σ that securely realizes F timed

crs under concurrent general composition
with Πδ in the timing model. The rest of this section is devoted to this task of realizing F timed

crs .

3.2 The Common Random String Functionality

We now formally define the common random string functionality, denoted Fcrs. Intuitively, the
functionality simply chooses a random string and sends it to all parties. Any party can send the
functionality a crs request. Once the functionality receives such a request, it generates a random
string Rcrs and sends it to the adversary and all the parties. Recall that the adversary controls the
delivery of messages between Fcrs and the parties; therefore, the fact that Fcrs sends the output
does not mean that the parties receive it immediately (or even that they will ever receive it). A
formal description of Fcrs appears in Figure 3.

Functionality Fcrs

Let n be the security parameter and let p(·) be a fixed polynomial.14 Let P1, . . . , Pm be the set of all
parties, and let S be the adversary. The functionality Fcrs proceeds as follows:

Upon receiving a message (crs, sid, {Pi1 , . . . , Pik
}), choose a uniformly distributed string

Rcrs ∈R {0, 1}p(n), send (crs, sid, {Pi1 , . . . , Pik
}, Rcrs) to S and to all parties Pi1 , . . . , Pik

,
and halt.

Figure 3: The ideal multi-party common random string functionality

12Recall that ρ′δ is obtained from ρ′ by just delaying all messages by δ time units.
13The protocol ((πρ′)δ)

σ is obtained by delaying all messages of πρ′ by δ time units, and then replacing calls to
F timed

crs by executions of σ.
14Fcrs is parameterized by a polynomial p(·) that determines the length of the common random string generated.

If desired, this can be included as input with almost no difference to the protocol (the only necessary addition is for
the parties to negotiate the value of p(·) at the onset).

15

We note that the Fcrs functionality sends only uniformly distributed strings (in contrast to some
prior definitions which allowed any efficiently samplable distribution). This is crucial for our im-
plementation since we use a coin-tossing protocol.

From here on, we will refer only to the timed functionality F timed
crs . As we have discussed, this

is identical to Fcrs except that first either a time-out or compute message is received. If time-out is
received, then F timed

crs concludes by sending time-out to all specified parties. Otherwise, if compute
is received, then F timed

crs proceeds exactly as Fcrs (i.e., by sending a random Rcrs to all specified
parties).

3.3 Overview of the Protocol for F timed
crs and its Security Analysis

Before proceeding to describe the actual protocol for securely realizing the F timed
crs functionality, we

provide a high-level overview of the construction. The basic structure of the protocol is an extension
of the two-party coin-tossing protocol of [30] (which is in turn an extension of Blum’s protocol [6]).
In this protocol, each party first commits to a randomly chosen value and provides a zero-knowledge
proof of knowledge of the committed value. In the next phase of the protocol, each party reveals
its committed value, without actually decommitting, and provides a zero-knowledge proof that the
revealed value is indeed the one that was committed to. The idea behind this construction is that
due to the soundness of the proofs, a corrupted party has no choice but to reveal the value that it
committed to in the first phase. In contrast, the simulator may extract all of the committed values
(via the proofs of knowledge of the first phase) and then have one of the “honest” parties reveal
any value that it wishes in the second phase. Of course, this revealed value would then not be the
one really committed to. However, the simulator can run the zero-knowledge simulator (and so is
not bound to the actually committed values). The effect of this is that the simulator can force the
output to be any value; in particular, it can force it to equal the string that it received from the
F timed

crs functionality, as required.
A crucial point in the above security argument is that the proofs of knowledge must be run

independently of each other (in order to ensure that the adversary does not “copy” a proof from an
honest party). The same holds also for the zero-knowledge proofs of consistency in phase 2. (Here
the reason is slightly different. During simulation, the simulator actually “cheats” by proving an
incorrect theorem. We need to ensure that the adversary cannot use the cheating of the simulator
in order to cheat itself.) In the stand-alone case, this independence is achieved by simply running
the proofs sequentially. Technically, this enables the rewinding of the proofs of knowledge provided
by the adversary (for extraction in the first phase) and the rewinding of the zero-knowledge proofs
verified by the adversary (for simulation in the second phase) without overlapping and therefore
without interfering with any of the other proofs. In our case, however, we must achieve security
under concurrent composition. Therefore, it is not possible to enforce any specific scheduling that
will ensure independence between the proofs (or that they don’t overlap during rewinding).

As a first step towards solving this problem (and as a solution to another problem), we limit the
rewinding stages to be “early” on in the protocol. In particular, rewinding takes place only before
the decommitment values are revealed and so before the common reference string can be learned by
the adversary. This is a crucial step because time-out instructions are crucial for enabling “proper
rewinding,” and as we have discussed above (Subsection 2.3), a time-out must only occur before
the adversary can learn the output. We achieve this by using the specific zero-knowledge proofs
of knowledge of Feige and Shamir [19]. Loosely speaking, the Feige-Shamir proof system consists
of two witness-indistinguishable proofs of knowledge (WIPOKs, for short); first the verifier proves
that it knows one of two independent secrets; next, the prover proves either that it knows one

16

of the verifier’s secrets or that it knows the real witness. The soundness of this protocol follows
from the fact that a WIPOK for statements with multiple independent witnesses is witness hiding.
Therefore, the prover could not have obtained the secret from the first WIPOK and must use
the real witness in the second WIPOK. The zero-knowledge property is demonstrated by first
extracting a secret from the verifier in the first stage, and then proving the second WIPOK using
knowledge of this secret. Note that the second stage of the simulation requires no rewinding.

More precisely, our protocol consists of three phases. In Phase 1, each player runs a WIPOK
that it knows one of two independent secrets (this is the the first WIPOK of the Feige-Shamir proof
system). Then, in Phase 2, each player commits to a random value, and runs a single WIPOK that
it either knows the value that it committed to or that it knows one of the secrets of the verifier
(completing the Feige-Shamir proof that was initiated in Phase 1). Thus, by the end of Phase 2,
each player has committed to some value and has proved in zero-knowledge to each of the other
players that it knows the value that it committed to. Notice that phases 1 and 2 correspond to
the first part of the coin-tossing protocol of [30]. The coin-tossing protocol is then completed in
Phase 3 where each player reveals the value that it committed to in Phase 2, and proves that
it is the correct value. This proof is a single WIPOK that it either knows the decommitment
information that corresponds to this value or that it knows one of the secrets of the verifier. Once
again, combining this WIPOK with that of phase 1, we obtain a Feige-Shamir proof. Thus, both
the proofs of Phase 2 and of Phase 3 (which consist of only a single WIPOK) are actually zero-
knowledge, as required by the coin-tossing protocol. An important property of this protocol is
that the only rewinding needed is (a) to extract the secrets from the first Feige-Shamir WIPOK in
Phase 1 (enabling simulation later), and (b) to extract the committed value from the adversary in
Phase 2. This implies that all rewinding takes place before Phase 3, which is where the committed
values are revealed. Furthermore, all rewinding is actually for the purpose of extraction only.15

Until now, we have focused on how we limit the rewinding to the early stage of the protocol, and
to witness extraction only. However, a far more crucial issue is how we carry out this extraction
(i.e., rewinding) in the concurrent setting. It is here that that we use the timing assumptions,
via time-out and delay instructions, in an inherent way. Informally speaking, there are two issues
that must be dealt with when considering concurrent composition here: (a) the WIPOK protocols
must self-compose (i.e., we should be able to extract and enforce independence when many WIPOK
executions take place concurrently), and (b) the WIPOK executions should remain secure (again,
enabling extraction and independence) when run concurrently with an arbitrary (delayed) protocol
π. We separately explain, at an intuitive level, the security of the WIPOKs under these two types
of composition.16

Composition with arbitrary (delayed) protocols. The main problem that arises when
running a secure protocol ρ concurrently to an arbitrary other protocol π, is that the adversary
may be able to generate some dependence between π and the secure protocol ρ. (For example, π
messages may have the same format as ρ messages and so an adversary can just forward messages
from one protocol to another). On a more technical level, the proof of security works by constructing
a hybrid-model simulator who runs π externally, while internally simulating ρ. Now, if the simulator
needs to rewind ρ, it cannot proceed with π because the π-messages are sent to external parties and
so cannot be retracted. Thus, it is crucial that while rewinding the WIPOKs in order to extract,
the simulator does not need to send any π-messages externally. This is achieved by delaying the
messages of the external protocol π by the amount of time that it takes to complete a WIPOK.

15This strategy simplifies the proof of security, because it turns out to be “much easier” to extract than simulate.
This is especially true because we use strong proofs of knowledge, rather than ordinary ones, see below.

16We caution the reader that the formal proof of security does not separate out in this fashion.

17

Since the rewinding spans only over this amount of time, this implies that new π messages need
not be dealt with during rewinding.

Concurrent self-composition. The main concern that arises here is that of independence. That
is, when many WIPOK executions are run concurrently, the adversary can carry out a man-in-the-
middle (or mauling) attack, in which it takes messages received in one execution and forwards (or
modifies) them in another execution. Such a strategy enables it to “copy” a proof provided by an
honest party, and contradicts the requirement of independence.

In order to prevent such an attack, it suffices to ensure that no (relevant) WIPOK in one
session occurs concurrently with any (relevant) WIPOK in another session. However, in a setting
where we cannot coordinate between multiple sessions of the protocol, this is impossible. We
therefore have the parties prove many WIPOKs in every session, according to a carefully designed
scheduling strategy. Our scheduling is based on the Chor-Rabin scheduling [14], with modifications
necessary due to the fact that we work in the concurrent setting with timing. Our scheduling has
the property that for every two sessions, there exists at least one WIPOK in the first session that
does not overlap with any of the WIPOKs of the second session. We call a scheduling that has
this property a pairwise-disjoint scheduling, and discuss it further in Sections 3.4 and 4.17 We note
that we make essential use of the timing assumptions in order to construct this scheduling.

Use of strong proofs of knowledge. We actually use strong proofs of knowledge in our protocol,
rather than ordinary ones. (Recall that such a proof has the property that if the prover convinces
the verifier with non-negligible probability, then the extractor obtains a witness with overwhelming
probability. Furthermore, the running-time of the extractor is independent of the probability that
the prover convinces the verifier.) We do not know if this is essential, but we also do not know how to
prove the security of our protocol otherwise.18 Loosely speaking, we use strong proofs of knowledge
in order to obtain the following effect. Our simulation strategy works by running in a “straight-line
simulation mode” until a WIPOK is reached. When the beginning of such a proof is reached, we
leave this mode and enter an “extraction mode,” where rewinding takes place. We then run the
extractor, while internally simulating the future messages (that is, the strategy is actually one of
look-ahead, rather than rewinding back). Now, if a strong proof of knowledge is used, then after the
extractor terminates, we are guaranteed that the following holds: either the extractor succeeded in
obtaining a witness, or if it did not, we know that the prover will only succeed in convincing the
verifier with negligible probability (in which case, we will not need the witness because the session
will be aborted). Thus, there is no uncertainty (of course, beyond the negligible probability that
the above will not hold). In contrast, in a regular proof of knowledge, such a look-ahead would
fail because even if the extractor did not obtain a witness, it may still happen that the prover will
convince the verifier. Thus, we would need to use a “rewind back” strategy where after the prover
convinces the verifier, we would go back and obtain the witness. This type of strategy seems to
be more difficult when dealing with the external π-messages (although, as mentioned above, we do
not know whether or not the difficulties are inherent).

17We remark that the Chor-Rabin scheduling was also used by [15] in a concurrent-type setting in order to achieve
non-malleable commitments (without timing assumptions). Our setting differs in that we have many executions (and
in this way it is “harder”), but we also utilize timing assumptions (and in this way it is “easier”).

18This is the first work that we are aware of that utilizes strong proofs of knowledge in an essential way, rather
than just in order to simplify the construction and proof.

18

3.4 Scheduling

Our goal is to construct a protocol that securely realizes the F timed
crs functionality in the timing

model, in a general multi-party network where sessions are being executed concurrently. One of the
major risks in this concurrent setting is related to the notion of malleability. Loosely speaking, this
refers to an adversary who interleaves different executions of the protocol, and chooses its messages
in one execution based on messages that it receives in the other executions. Consider, for example,
many interleaved executions of a (regular, stand-alone) zero-knowledge proof of knowledge. In this
setting, even if an adversary succeeds in convincing a verifier that it knows some secret s, it does
not necessarily mean that the adversary actually knows s. Rather, it may be the case that there
is some other party that is concurrently proving to the adversary that it knows the same secret s,
and the adversary is simply relaying the messages between these two executions. Such a strategy
is known as a “man-in-the-middle” attack. In order to construct secure protocols, it is necessary
to prevent such attacks.

Our idea for preventing such mauling attacks is based on [14], who introduce a method for con-
currently alternating and interleaving protocol executions while preserving independence. Loosely
speaking, [14] construct an O(log n)-round n-party protocol, in which each party (concurrently)
carries out several zero-knowledge proofs sequentially, so that at least one of its proofs is “indepen-
dent” from the proofs of the other parties.

More specifically, [14] associate with each party Pi a unique identifier idi ∈ {0, 1}2m that contains
exactly m ones and m zeros (since the number of parties is polynomial in n, the value m can be set
to be O(log n)). The protocol consists of 2m phases, where in each phase some of the parties play
the role of prover (and all parties verify). A party plays the prover in a zero knowledge proof in
phase k if and only if the kth bit of its identifier is 1 (i.e., party Pi will play the prover in phase k
if and only if (idi)k = 1). In total, every party plays the prover role during half of the phases, and
for every two parties Pi and Pj , there is at least one phase in which Pi acts as a prover while Pj

acts only as a verifier. This follows from the fact that for every i 6= j, idi and idj are distinct and
they both have the same number of ones and zeros. Therefore, there exist two distinct indices k
and k′ such that: (a) (idi)k = 1 and (idj)k = 0, and (b) (idi)k′ = 0 and (idj)k′ = 1. Thus, in phase
k party Pi proves and party Pj only verifies, and in phase k′ party Pj proves and party Pi only
verifies. Intuitively, this prevents Pi from using Pj as an oracle for supplying his proofs. While this
method seems to guarantee only pairwise independence, it actually achieves mutual independence.
We note that the construction of [14] was for the stand-alone and synchronous setting. We show
that a similar idea can be used to achieve “independence” in a concurrent setting, in the timing
model.

To this end we define the notion of a pairwise disjoint scheduling, and show that such a schedul-
ing can be achieved in the timing model. Then, in Section 3.5, we show how such a scheduling
can be used to design a protocol that securely realizes the F timed

crs functionality under concurrent
general composition with delays, in the timing model. In Section 4 we show how to construct a
pairwise disjoint scheduling in the timing model.

Pairwise-disjoint scheduling. Consider one pre-specified protocol σ, which needs to be executed
concurrently in many different sessions, where each session has a unique identifier. The aim of a
pairwise-disjoint scheduling is to ensure that different concurrent executions of σ are somewhat
“independent”. Intuitively, the idea is to achieve independence by requiring the parties to act as
follows: Instead of running a single execution of Protocol σ in a given session, the parties execute
σ several times in that session according to some pre-specified “pairwise-disjoint” scheduling S.
Loosely speaking, this scheduling ensures that when looking at any two distinct sessions (each

19

containing at least one honest party), there exists at least one execution in each of the sessions
that does not intersect (i.e., overlap) with any execution in the other session.

We define the notion of a pairwise-disjoint scheduling algorithm S that receives for input a pro-
tocol σ, a unique session identifier sid, and the network timing assumptions ∆ and ε. The algorithm
S(σ, sid,∆, ε) then outputs a schedule consisting of many executions of σ with the property that
for every two distinct sessions sid and sid′ there exists at least one execution in S(σ, sid,∆, ε) that
does not overlap with any of the executions of S(σ, sid′,∆, ε,) and vice versa. We stress a crucial
point here. When considering many different sessions, it may be the case that every execution of
σ in a session sid overlaps with other executions of σ. However, it is guaranteed that for every
session sid′, there exists at least one execution of σ in session sid that does not overlap with any
of the executions sid′. This type of pairwise disjointness suffices since in our proof the simulator
simulates all the provers except for one chosen prover which will be an “external prover”. It is only
this “external prover” that cannot be rewound. Thus, it suffices to ensure that for each session
there exists one execution which does not overlap with the proofs of the “external prover”. This is
exactly what a pairwise disjoint scheduling ensures.

We begin by formally defining the syntax of a scheduling algorithm. We are only interested
in schedules which are polynomial-time (i.e., the number of executions is polynomial-time in the
security parameter n, and the delays are polynomial in ∆, ε and n), and in schedules which are
non-trivial (where the parties output time-out only if the network delay is too long). We therefore
incorporate these requirements directly into the definition.

Definition 5 (non-trivial scheduling algorithm): A non-trivial scheduling algorithm is an algorithm
S that receives for input a protocol σ, a session identifier sid, and a pair (∆, ε), and outputs a
polynomial-time schedule Σ consisting of many executions of σ together with delay and time-out
instructions that is non-trivial (as defined in Definition 2).

Convention. For simplicity, we assume (without loss of generality) that for every protocol σ
there exists one party that sends an initial “start” message and a concluding “end” message to all
participating parties.

Before proceeding further, we define what it means for an execution of a protocol σ to overlap
with another execution. Let σ1 and σ2 be two executions of Protocol σ, and let P1 and P2 be any
two honest participants in σ1 and σ2 respectively. Then, σ1 overlaps σ2 according to P1 and P2 if
P1 sends a σ1 message after P2 has received its first σ2 message, but before P2 receives its last σ2

message. Notice that the notion of overlapping is defined with respect to a pair of parties. This
is due to the fact that parties do not necessarily begin and conclude executions at the same time
in an asynchronous network (and so σ1 and σ2 may not overlap according to some pairs, and may
overlap according to others). We therefore always refer to overlapping according to a specified pair
of parties.

We are now ready to define what it means for a schedule to be pairwise-disjoint.

Definition 6 (non-trivial pairwise-disjoint scheduling): A non-trivial scheduling algorithm S is
said to be pairwise-disjoint if on input (σ, sid, ∆, ε) it outputs a schedule with the following property.
Let sid1 6= sid2 be any identifiers of the same length and assume that Σ1 = S(σ, sid1,∆, ε) and
Σ2 = S(σ, sid2,∆, ε) are run in a network with an ε-drift preserving adversary, such that both sid1

and sid2 have at least one honest participant each. Then for any two honest parties P1 and P2 in
sessions sid1 and sid2 respectively, there exists an execution σ` in Σ2 such that no execution of σ
in Σ1 overlaps with σ` according to P1 and P2.

20

Note that if P2 times-out session sid2 before some execution σi in S(σ, sid1,∆, ε) was initiated,
then in particular σi does not overlap with any execution in S(σ, sid2, ∆, ε), according to P1 and
P2. This fact will be used in the proof of Theorem 10 in Section 4.

In Section 4, we prove the following theorem which will be used in order to construct our
protocol for securely realizing the F timed

crs functionality.

Theorem 7 There exists a non-trivial pairwise-disjoint scheduling algorithm for any protocol σ,
any network delay ∆, any clock-drift ε such that 1 ≤ ε ≤ 3

√
1.5, and any set of identifiers sid ∈

{0, 1}poly(n).

Before proceeding, we explain in more detail why pairwise disjointness suffices. In our protocol,
we use a pairwise disjoint scheduling of WIPOK proofs. Then, at some stage in our proof of
the protocol, we focus on a single session sid and argue that the simulation (i.e., extraction from
WIPOK proofs) in all sessions sid′ 6= sid can be carried out without rewinding during any WIPOK
of session sid. This can be achieved because the pairwise disjointness property of the schedule
guarantees that for every pair of sessions sid and sid′, there exists at least one WIPOK in sid′

that does not overlap with any WIPOK in sid. We can therefore extract from the non-overlapping
WIPOK in sid′ without rewinding any of the WIPOK proofs in sid. Since this is true for all sessions
sid′ 6= sid, we are able to simulate without rewinding any WIPOK proof in sid, as required.

3.5 The Protocol for F timed
crs

The protocol below refers to a one-way function f and a commitment scheme C. We denote by
C(r; s) a commitment to r using random coins s. For simplicity, the description of the protocol
assumes that the commitment scheme is non-interactive. Such schemes are known to exist assuming
the existence of 1–1 one-way functions. However, it is also possible to use the commitment scheme
of [35] where the receiver first sends a single (random) message and then the committer sends its
commitment. Importantly, the scheme of [35] assumes only the existence of one-way functions.
Our protocol also uses a broadcast primitive. However, as shown in [27], in the case that output
delivery is not guaranteed (as in our model here), broadcast that is secure under concurrent general
composition can be easily implemented in a standard point-to-point network.

As was mentioned in Subsection 3.3, the protocol is based on a natural extension of the coin-
tossing protocol of [30] to the multi-party setting, with the following high-level differences. First,
instead of using just any zero-knowledge proof of knowledge, we use the zero-knowledge proof of
knowledge of [19] that is constructed from two witness-indistinguishable proofs of knowledge.19 Sec-
ond, we use strong proofs of knowledge, rather than “ordinary” ones, so that if the prover convinces
an honest verifier with non-negligible probability, a witness can be extracted with overwhelming
probability in polynomial time.

Recall, that in order to extract a witness from these proofs of knowledge we need to be able
to rewind, a task which is problematic in a concurrent network. To enable these extractions, we
use pairwise disjoint scheduling and delay messages in the protocol π that is running concurrently
to our protocol. The motivation for the pairwise disjoint scheduling is to ensure some level of
independence between the proofs of knowledge. As our proof will show, essentially we need to
ensure that in every session there exists one honest party P (previously referred to as the “external

19We note that looking at our protocol it is not clear that we use the zero-knowledge proof of knowledge of [19],
since the two witness-indistinguishable proofs of knowledge appear in different phases of the protocol, and moreover,
we use the first witness-indistinguishable proof of knowledge for two different zero-knowledge proofs. Thus, our
protocol does not exactly follow the syntax of [19] though the concept is similar.

21

party”) whose proofs of knowledge are “independent” of the proofs of knowledge of the corrupted
parties in all sessions. This property follows from the fact that pairwise disjoint scheduling is used.
The motivation for the delaying of messages in the protocol π is to ensure that external π-messages
need not be dealt with while rewinding takes place. Specifically, the delay placed upon π messages
is longer than the time needed to rewind (this is enforced via time-out instructions in the proofs of
knowledge, which do not allow an execution, and thus the rewinding, to take too long). Therefore,
if a new π-message is received while rewinding, it can be delayed until after this rewinding part of
the simulation is finished.

We now present the protocol.

Protocol ρ (protocol for realizing the F timed
crs functionality in a general multi-party network,

assuming time bounds ∆ and ε):

• Participating Parties: P1, . . . , Pk (some subset of the parties in the entire network).

• Common Input: the security parameter n, a session identifier sid ∈ {0, 1}m, and global
constants ∆ and ε.

• The Protocol: The protocol proceeds in three phases.
• Phase One:

1. Each party Pi chooses a pair of values wi
1, w

i
2 ∈R {0, 1}n, and computes vi

1 = f(wi
1), v

i
2 =

f(wi
2).

2. Each party Pi proves independently to all other parties that it knows either f−1(vi
1) or

f−1(vi
2). Formally, Pi proves that it knows a witness for the relation

Ri
1

def= {((vi
1, v

i
2), w) | vi

1 = f(w) or vi
2 = f(w)}.

The proofs are given according to some arbitrary order; say the party with the smallest
ID proves first, then the party with the second to smallest ID, and so on.20 Each Pi

carries out a proof that has the following properties:
(a) The proof is an α(n)-round witness-indistinguishable strong proof of knowledge, for

some pre-specified super-constant function α(·).21 (Henceforth, we denote this proof
by WISPOK, for short).

(b) The proof is carried out in a parallel manner. That is, Pi sends the first message of
the proof to all other parties. It then waits for the responses from all the parties,
and only then sends the second message to all the parties, and so on.

(c) The first and the last messages of the proof are sent by the verifier. (This is needed
for technical reasons.)

We let σ denote such a proof system. Each party Pi repeats this proof σ several times,
according to a non-trivial pairwise-disjoint scheduling S(σ, sid,∆, ε) (the existence of
such a scheduling is guaranteed in Theorem 7).
If a party Pi receives a time-out message in an execution of σ, then it broadcasts time-out
to all the parties, outputs (sid, time-out) and halts. Any party receiving such a time-out
message also outputs (sid, time-out) and halts.

• Phase Two: Each party Pi operates as follows.
20Note that by requiring the proofs to be given sequentially we automatically obtain “independence” between

proofs that belong to the same session.
21Recall that such proofs are known to exist for any super-constant function α(·).

22

1. Party Pi chooses ri ∈R {0, 1}p(n) and broadcasts a commitment ci = C(ri; si) to all the
parties, where C is a perfectly binding commitment scheme and si is a random string.
Pi waits for the commitments from all other parties to arrive before proceeding.

2. Party Pi proves in parallel to every other party Pj that it knows either f−1(vj
1) or f−1(vj

2)
or a pair (ri, si) such that ci = C(ri; si), using an α(n)-round witness-indistinguishable
strong proof of knowledge. Formally, Pi proves that it knows a witness for the relation

Ri,j
2

def= {((vj
1, v

j
2, ci), (w, r, s)) | vj

1 = f(w) or vj
2 = f(w) or ci = C(r; s)}.

Time-Out Mechanism: For every proof that party Pi participated in (either as a

prover or as a verifier), it checks that no more than τ
def= α(n)· ∆ local time units have

passed from the time that the proof began until the time that it ended. If more time
passed, then Pi broadcasts time-out to all the parties, outputs (sid, time-out) and halts
the execution. Any party receiving such a time-out message also outputs (sid, time-out)
and halts the execution.

3. Once Party Pi finished its proof and verified the proofs of all other parties, it broadcasts
a Phase2over message to all other parties. It then waits for the same message to arrive
from all other parties before proceeding. After this it will never output (sid, time-out).

• Delay Mechanism: Before continuing to Phase 3, each party Pi waits τε local time units.

• Phase Three: Party Pi broadcasts ri to all other parties (without decommitting) and,
using a 3-round witness indistinguishable proof of knowledge, proves in parallel to every
other party Pj that it either knows a preimage for one of vj

1, v
j
2 or that it knows s such that

ci = C(ri; s). Formally, Pi proves in parallel that it knows a witness for the relation

Ri,j
3

def= {((vj
1, v

j
2, ci, ri), (w, s)) | vj

1 = f(w) or vj
2 = f(w) or ci = C(ri; s)}.

• Each party Pi defines R = r1⊕ r2⊕ . . .⊕ rk, where rj is the string it received in the previous
step from party Pj , and ri is the string that it broadcasted to all other parties.22

• Output: Each party outputs (sid,R).

This completes the description of the protocol.

Conventions. If an honest party receives a message that does not have a valid format or if it
rejects a proof that it verifies, then the party broadcasts an abort message to all other parties and
halts the execution.23 Any party receiving such an abort message also halts the execution. We
also assume that all messages are sent together with the session identifier sid, which is part of the
common input. This enables the correct assignment of messages to their intended sessions. We
stress that the security of the protocol does not rely on this assignment being correct. Rather, this
mechanism just ensures successful termination when honest parties interact.

3.6 Proof of Security

We now show that Protocol ρ securely realizes the F timed
crs functionality in the timing model, even

when run many times concurrently with an arbitrary other protocol π, as long as all the messages
22Note that since all the ri’s were broadcasts it must be the case that all the honest parties have the same R.
23Recall that when a party times-out it behaves differently. Namely, it does not send an abort message, but rather

sends a time-out message.

23

in π are delayed by τε local time units, where τ = α(n) ·∆.24 In other words, Protocol ρ securely
realizes F timed

crs under concurrent general composition with Πτε in the timing model with ε. As we
have seen in Section 3.1, this (along with the non-triviality condition) suffices for proving Theorem 4.

Theorem 8 Let ∆ and ε be fixed constants, such that 1 ≤ ε < 3
√

1.5, and let τ = α(n) ·∆. Then,
assuming the existence of one-way functions, Protocol ρ securely realizes the F timed

crs functionality
under concurrent composition with Πτε in the timing model with ε, and in the presence of static
malicious adversaries. Furthermore, Protocol ρ is non-trivial under timing assumptions (∆, ε).

Proof: Let ∆ and ε be any fixed constants such that 1 ≤ ε < 3
√

1.5. Let π be an arbitrary multi-
party protocol that may contain ideal calls to the F timed

crs functionality, and let πτε be the protocol
obtained by delaying all messages in π by τε local time units. Let A be any static non-uniform
probabilistic polynomial-time ε-drift preserving adversary that runs protocol πρ

τε in the timing
model. We begin by describing the hybrid-model simulator S that runs π in the F timed

crs -hybrid
model without timing.

The simulator S simulates the real-world adversary A internally. The aim of S is to force the
output of the coin tossing protocol ρ in any given session to equal the common random string
obtained from the F timed

crs functionality. In order to do this, S deals with each session of the
coin-tossing, one at a time.

In order for S to force a coin-tossing session to output some given random string Rcrs it will
do the following: for every corrupted party Pj , it will extract from A both a value wj such that
f(wj) = vj

1 or f(wj) = vj
2, and a value rj , which is the decommitment of cj (sent by Pj in the

beginning of Phase 2). These values will be extracted before entering Phase 3 of this session. Then,
Phase 3 will be simulated in a “straight-line” manner: S will simulate each honest party Pi sending
a random ri such that Rcrs = ⊕k

l=1rl, and proving to each party Pj that ri was committed to (even
though it was not) using the previously extracted witness wj .

Thus, the simulation by S consists of an extraction mode and a straight-line simulation mode.
The “rewinding” takes place only when S is in the extraction mode (the rest of the simulation is
“straight-line”). In the extraction mode S rewinds A internally, without rewinding the simulated
protocol. That is, S pauses the simulation, and internally creates a copy of its simulated world.
Then S rewinds the copy of A. This rewinding is actually carried out in a look-a-head manner.
That is, S (forward) simulates the messages that the honest parties in ρ will send to A after the
paused point, and then rewinds this simulated protocol. The timing restraints ensure that messages
from π (that are sent externally by S) never have to be sent while S is in the extraction mode,
where rewinding takes place. We now formally describe S.

The simulator S: S is a “hybrid-world” adversary, that interacts with the parties running
protocol π in the F timed

crs -hybrid model. The aim of S is to create the same effect in the F timed
crs -

hybrid model, as the real-world adversary A does in a real execution of πρ
τε.

As was previously mentioned, S’s operations consist of two modes of operation: straight-line
simulation mode and extraction mode. S starts and ends in the straight-line simulation mode, but
frequently leaves it and enters the extraction mode. In the straight-line mode, S interacts with
the honest parties (in the F timed

crs -hybrid model), while updating internally simulated states of the
adversary A and of the honest parties running the program for the protocol ρ. In the extraction-
mode, these simulated states are frozen, while S applies an extraction subroutine. The output of
the extraction subroutine will be needed for continuing the straight-line mode.

24Recall that α(n) is the number of rounds in the WISPOKs of Protocol ρ.

24

We shall denote by Psid
i the simulated ρ program of an honest party Pi for a session sid, which

S uses in the straight-line simulation mode. The simulation enters the extraction mode every time
that Psid

i is about to take part as a verifier in one of the WISPOKs given by a corrupted player in
the protocol. In this extraction mode S calls the extraction subroutine. This subroutine will try
to find the witness used by the corrupted prover in that WISPOK. The straight-line simulation
continues when the extraction subroutine returns.

We proceed to define the simulator by first describing the straight-line simulation mode and
then describing the extraction subroutine.

Straight-line mode: S internally runs A, and for each honest party, S simulates the various
tapes that A expects to have access to (namely, the communication tapes and the clock-tape). It
also maintains simulated states (i.e., the work-tape) of the ρ programs of the honest parties. As was
mentioned above, we denote by Psid

i the program simulated by S, corresponding to the ρ program
of an honest party Pi in session sid. The simulated programs Psid

i communicate directly with A.
In addition, S needs to let the π program of the external honest parties communicate with A

(here we mean the real parties with whom S interacts in the hybrid model). For π messages from
A to a party Pi, this is done simply by sending the messages out to Pi (i.e., they are copied onto
Pi’s incoming message tape). However, upon receiving a π message from an external honest party
Pi, simulator S needs to simulate the delay of Pi before forwarding it to A (because in the hybrid
world π messages are sent out without any delay, in contrast to the real world). Therefore, S waits
τε time units according to Pi’s simulated local clock before sending the received π-message to A.
Finally, S generates the same input-output as A. More formally:

• Whenever a session sid with parties Pi1 , . . . , Pik is begun, S sends (crs, sid, {Pi1 , . . . , Pik})
to the F timed

crs functionality.25 We assume that at least one party in {Pi1 , . . . , Pik} is honest,
since the case that all parties are corrupted is trivial.

• S initiates the program Psid
i corresponding to each honest participant Pi.

• If at any point Psid
i outputs (sid, time-out), S sends (sid, time-out) to the F timed

crs functionality
and delivers the message (sid, time-out) from F timed

crs to Pi.

• Whenever A sends a π message to some party Pi in session sid, S sends the π message
externally to party Pi in session sid.

• Whenever S (externally) receives a π message from some honest party Pi, it stores the message
in an internal delay buffer. Then, after τε time units according to Psid

i ’s internally simulated
local clock, it forwards the π message to A.

• For all except one honest party, Psid
i runs exactly the program specified by the protocol ρ.

We denote the index of this one chosen honest party by a(sid); when sid is clear from the
context we shall write a instead of a(sid).26 The program Psid

a(sid) is identical to ρ in Phases
1 and 2, and differs from ρ only in Phase 3. We shall describe the differences shortly.

• In Phases 1 and 2, when Psid
a receives the first message of a WISPOK in which it plays verifier

and a corrupted party plays prover, S applies the extraction subroutine (to be defined later)
25Actually, this crs message to the functionality may have been sent by one of the honest parties participating in

session sid. This is inconsequential.
26This honest party can be arbitrarily chosen – say, the one with the “smallest” identity among all honest partici-

pants.

25

to that WISPOK. The output of the extraction subroutine is recorded for later reference.
(Note that extraction is only carried out when Psid

a plays the verifier.)

• At the point that Psid
a enters Phase 3 of the protocol, S carries out the following two checks:

1. S checks the output of the extraction subroutine applied to each of the Phase 1 and
Phase 2 WISPOKs given to Psid

a by a corrupted party. If in any of them, the extraction
subroutine failed to extract a valid witness for the statement of that WISPOK, then S
outputs fail1 and halts.

2. Let (va
1 , va

2) be the first message that Psid
a sends in session sid. Recall that w such that

f(w) ∈ {va
1 , va

2} is a valid witness in all of the Phase 2 WISPOKs that Psid
a verifies. If

the extraction subroutine, applied to any of the Phase 2 WISPOKs given to Psid
a by a

corrupted party outputs such a w as a witness, then S outputs fail2 and halts.

Note that if S did not output fail1 then for every corrupted party Pj , the extraction subroutine
applied to each of the Phase 1 WISPOKs given by Pj must have returned wj such that
f(wj) ∈ {vj

1, v
j
2}. Furthermore, for every honest party Pi, S can look up such a wi from Psid

i

(because S runs the code of Pi internally).

Similarly, if S also did not output fail2 then for every corrupt party Pj , the extraction subrou-
tine, applied to each of the Phase 2 WISPOKs given by Pj , must have produced the witness
(rj , sj) such that cj = C(rj ; sj), where cj is the commitment text sent by Pj in Phase 2 of
session sid (recall that the only valid witnesses for this WISPOK are either the above men-
tioned witness (rj , sj) or w such that f(w) ∈ {va

1 , va
2}, where extraction of the latter witness

results with fail2). In addition, for every honest party Pi, S can look up ri from Psid
i (again,

because S runs Psid
i).

Thus, if the above two checks passed (namely, S did not output fail1 or fail2) then S has
obtained values wi and ri, for all participants Pi. (As we will see, for all i 6= a, the values wi

and ri will be needed by S to continue the simulation.)

• If the above two checks passed then S acts as follows:

1. S sends (sid, compute) to F timed
crs , and receives (crs, sid, {Pi1 , . . . , Pik}, Rcrs) in response.27

Then using the ri values as given above, S computes

r = Rcrs ⊕

⊕

i 6=a

ri

 . (2)

2. S hands r (from Eq. (2)) and {wi}i 6=a to Psid
a .

• Psid
a proceeds with the simulation of Phase 3. (Notice that its instructions here differ from

the program specified by ρ for the honest parties.)

1. In the beginning of Phase 3, Psid
a does not send the value ra that it committed to in

Phase 2, as instructed by protocol ρ. Rather, it sends the value r given to it by S.
27At this point of the protocol it is guaranteed that no honest party has or will output (sid, time-out), because

they must all have sent Phase2over messages (since Psid
a entered Phase 3). Hence it is possible for S to send a

(sid, compute) message to F timed
crs , thereby receiving back (sid, Rcrs).

26

2. After sending r, Psid
a proves to each party Pj (in the WIPOK of Phase 3) that this “fake”

value r is the value that it committed to in Phase 2. This is done using the alternative
witness wj given to it by S.28

• If there exists a (corrupted) party Pj that broadcasted r′j 6= rj in the beginning of Phase 3
and Psid

a accepts its Phase 3 WIPOK, then S outputs fail3.

• For every honest party Pi, if Psid
i outputs (sid,R) then S delivers the message (sid,Rcrs)

from F timed
crs to Pi.29

This completes the description of the simulator except for the extraction subroutine.

The extraction subroutine: Recall that in Phases 1 and 2, when Psid
a receives the first message

of a WISPOK in which it plays verifier and a corrupted party Pj plays prover, S calls the extraction
subroutine. (We shall denote such a WISPOK by wispoksid

j .) The extraction subroutine will try
to extract a witness for the statement of wispoksid

j by constructing a stand-alone prover Qsid
j from

A, and then applying the strong proof of knowledge extractor to Qsid
j . The stand-alone prover Qsid

j

is defined as follows.
Qsid

j is a stand-alone (cheating) prover who proves a single strong proof of knowledge to an
external verifier. Qsid

j works exactly like S, continuing from the point after the extraction subroutine
is invoked, except for the following differences:

• In S, the program Psid
a plays the verifier of the WISPOK: i.e., it receives the WISPOK

messages from a prover Pj , and responds to them as a verifier. Instead, in Qsid
j , the program

Psid
a relays out the incoming WISPOK messages from Pj to an external verifier. When it

receives a response from the external verifier, it forwards it internally to Pj as its own response.

• Since Qsid
j is a stand-alone prover, unlike S, it cannot interact with the honest parties running

the protocol π in the hybrid world. So all messages generated by S for these parties are
ignored. Furthermore, there are no incoming messages from the π protocol. However the
messages that arrived earlier and were stored internally in the delaying buffers of S will be
used just like S did originally. (As we will see later, this suffices and no “new” π messages
are needed.)

Note also that sinceQsid
j is a stand-alone prover, it cannot interact with the different instances

of F timed
crs . However, these can all be perfectly simulated internally by Qsid

j .

• Qsid
j does not invoke the extraction subroutine that S invokes. Instead, when the extraction

subroutine needs to be called, it is just assumed to return ⊥ (this ensures that Qsid
j is well-

defined).

28It’s ability to use the “fake” value r = Rcrs ⊕
�L

i6=a ri

�
, rather than the value that it committed to, is exactly

what allows the output of this session to equal Rcrs. Note that in order to use this “fake” value r it must know all
the alternative witnesses {wi}i6=a, which is why S must apply the extraction subroutine to the WISPOKs of Phase 1.
The reason S must apply the extraction subroutine to the WISPOKs of Phase 2 is in order to obtain all the values

{ri}i6=a, which are needed in order to determine the “fake” value r = Rcrs ⊕
�L

i6=a ri

�
.

29Notice that if Psid
i produced an output (sid, R) then it must be the case that R = Rcrs. If R 6= Rcrs then there

exists a j such that rj 6= r′j (follows from the fact that R = r′1⊕, . . . , r′k and Rcrs = r1⊕, . . . , rk). In this case, either
S outputs fail3 or Psid

a does not accept the Phase 3 WIPOK of Pj and thus will halt the execution. In both cases
Psid

i would not produce an output.

27

• Qsid
j halts as soon as it receives an accept or reject message from the outside verifier. Also,

if Psid
a ’s local clock reaches a time where the original Psid

a would have timed-out, then Qsid
j

halts.

The key point to notice is that Qsid
j is a stand-alone adversary who proves a single strong

proof of knowledge to an external verifier. The extraction subroutine applies the strong knowledge
extractor K to the prover Qsid

j (recall that if Qsid
j convinces an honest verifier V in the proof

with probability greater than µ(n) for some negligible function µ, then K obtains a witness with
probability at least 1− µ(n)).

This completes the description of the extraction subroutine. Note that the extraction subroutine
is invoked on all the Phase 1 and Phase 2 WISPOKs given to Psid

a by any corrupted party Pj in
any session sid (with at least one honest player). This ensures that if the WISPOKs convince
Psid

a with non-negligible probability, then the simulator will obtain the corresponding witnesses
with overwhelming probability, by applying the extraction subroutine. (Of course, this is the
case assuming that Qsid

j convinces the verifier with essentially the same probability that Psid
a is

convinced. This will be proven below.)

Proof of the simulation. First note that S runs in strict polynomial-time if A runs in strict
polynomial-time (because the knowledge extractor of a strong proof of knowledge runs in strict
polynomial-time, and the only rewinding carried out by S is in applying the knowledge extrac-
tor). We now prove that the output distribution of S and the honest parties running π in the
F timed

crs -hybrid model is computationally indistinguishable from the output distribution of an ε-drift
preserving adversary A and the honest parties in a real execution of Protocol πρ

τε in the timing
model. In order to prove this, we first show that S outputs a fail message with negligible proba-
bility. Given this, we then introduce hybrid experiments which bridge the difference between the
F timed

crs -hybrid execution and the real execution, to prove the claimed indistinguishability.
We now prove that S outputs a fail message with at most negligible probability. Recall that there

are three types of failures: fail1, fail2 and fail3. Intuitively, fail1 occurs if there exists a WISPOK
for which the extractor fails to output a corresponding witness, and yet Psid

a accepts the WISPOK.
fail2 occurs if the extractor, applied to any of the Phase 2 WISPOKs, outputs the “wrong witness;”
i.e., instead of extracting the committed value rj together with the corresponding randomness sj

(such that cj = C(rj , sj)), it somehow extracts a witness w such that f(w) ∈ {va
1 , va

2}. fail3 occurs
if there exists a (corrupted) party Pj that in the beginning of Phase 3, sends a value r′j which is
different from the value rj extracted in the extraction subroutine, and yet Psid

a accepts the WIPOK
in Phase 3.

We show that each of these failures occurs with negligible probability.

S outputs fail1 with negligible probability: Recall that S outputs fail1 if there exists a ses-
sion sid such that Psid

a enters Phase 3, and there exists a corrupted party Pj such that for one of
its (Phase 1 or Phase 2) WISPOKs given to Psid

a in this session, the extractor failed to extract
a witness. Note that it must be the case that Psid

a has accepted this WISPOK, since otherwise
it would have never reached Phase 3. Thus, the occurrence of fail1 implies that there exists a
session sid and a corrupted party Pj such that the extractor failed to extract a witness, and yet
Psid

a accepted the WISPOK. In other words, the strong knowledge extractor K failed to obtain a
witness from the stand-alone prover Qsid

j , yet later in the simulation, S accepts that proof from
A. Intuitively, this should not happen because K is such that if a prover convinces the honest
verifier with non-negligible probability, then it successfully extracts with overwhelming probability.
However, this is not immediate because K attempts to extract from the stand-alone adversary Qsid

j ,

28

whereas Psid
a verifies the proof from the original adversary A. Thus, the essence here is to show

that Qsid
j convinces an honest verifier with the same probability that A convinces Psid

a .

Claim 9 For any corrupted party Pj participating in session sid, let wispoksid,`
j denote the `-th

WISPOK of Pj in this session. Then, the stand-alone prover Qsid
j , constructed by the extractor at

the beginning of wispoksid,`
j , convinces an honest verifier with exactly the same probability as Psid

a

accepts wispoksid,`
j in the straight-line simulation by S.

Proof: The main observation involved is that after wispoksid,`
j begins, the fact that no further

extraction procedures are run and no new π-messages are received, makes no difference in the
straight-line mode, until after the WISPOK is finished. This is ensured by the time-out for the
WISPOK, by the fact that the output of the extractors in a session are not used until the session
enters Phase 3, and by the delay introduced to π messages. We elaborate below.

First, we construct a simulator S ′ which is the same as S except that it does not invoke the
extraction subroutine after the point at which wispoksid,`

j has begun. Thus, if a WISPOK, denoted

wispoksid′,`′
j′ , of Phase 1 or Phase 2 in a session sid′ starts after the point at which wispoksid,`

j has

begun, the simulator S ′ will not run the extraction subroutine for wispoksid′,`′
j′ , whereas S would.

Now, recall that S does not use the output that this extraction subroutine returns until the session
sid′ enters Phase 3. We claim that the delay between Phase 2 and Phase 3 in the protocol ensures
that S will enter Phase 3 in session sid′ only after wispoksid,`

j has already concluded. This follows
from the following facts:

1. When wispoksid,`
j began, session sid′ did not yet finish Phase 2 (because session sid′ must

still at least run wispoksid′,`′
j′).

2. wispoksid,`
j is timed-out by Psid

a if it does not conclude within τ local time units. By the
assumption on the bounded clock drifts, this is at most τε local time units according to Psid′

a ’s
clock.

3. Psid′
a waits at least τε local time units between Phase 2 and Phase 3.

Thus S and S ′ identically simulate the interaction between Psid
a and A, until wispoksid,`

j con-

cludes. Therefore, the probability that wispoksid,`
j is accepted by Psid

a is equal in both cases.
Next we modify S ′ to obtain a stand-alone machine S ′′ which ignores all communication with

the honest parties (in the π protocol) after the point at which wispoksid,`
j has begun. Note that if

S ′ receives a π-message from a party Pi, it will be delivered to A only after a delay of τε time units
according to Pi’s local clock. The restriction on the drifts of the clocks ensures that this delay is
at least τ time units according to Pa’s local clock. So, if S ′ received this message after wispoksid,`

j

has begun, it will not be used until Psid
a concludes wispoksid,`

j . This is because Psid
a will conclude

the WISPOK (by timing-out if necessary) within τ local time units after wispoksid,`
j has begun

(which is at most τε on Pi’s local clock). Hence the probability that Psid
a accepts wispoksid,`

j in
S ′′ is equal to that in S ′.

Finally, we note that the system consisting of the stand-alone prover Qsid
j interacting with

an external honest verifier, is the same system as emulated by the stand-alone machine S ′′. The
role of the external verifier is played honestly by Psid

a in S ′′. Thus the probability that Qsid
j can

29

convince an honest verifier is exactly equal to the probability that Psid
a will accept wispoksid,`

j in
the execution of S ′′ or S.

Now, let µ(n) be the negligible error function of the strong proof of knowledge. That is, if a
prover convinces an honest verifier with probability greater than µ(n), then K successfully extracts
with probability greater than 1 − µ(n). We define three events: “K-fail” if K fails to extract a
witness from Qsid

j , “S-pass” if Psid
a accepts wispoksid,`

j , and “good-proof” if the probability that
an honest verifier accepts the proof given by the stand-alone prover Qsid

j is at least µ(n). Then,
the probability that S outputs fail1 corresponding to wispoksid,`

j is bounded by

Pr [K-fail ∧ S-pass] = Pr [K-fail ∧ S-pass ∧ good-proof] + Pr [K-fail ∧ S-pass ∧ ¬good-proof]
≤ Pr [K-fail|good-proof] Pr [good-proof] + Pr [S-pass|¬good-proof] Pr [¬good-proof]
≤ µ(n)Pr [good-proof] + µ(n)Pr [¬good-proof]
= µ(n). (3)

S outputs fail2 or fail3 with negligible probability: Recall that S outputs fail2 if the ex-
traction subroutine applied to a Phase 2 WISPOK of some session sid outputs w such that
f(w) ∈ {va(sid)

1 , v
a(sid)
2 }. It outputs fail3 if in Phase 3 of some session sid there exists a corrupted

party Pj that does the following: (a) it sends a value r′j different from the value rj extracted from
the extraction subroutine (applied to the Phase 2 WISPOK given by Pj in session sid), and (b) it
succeeds in proving that it either knows w such that f(w) ∈ {va(sid)

1 , v
a(sid)
2 } or that r′j is indeed

the value it committed to in Phase 2. However, since the second half of (b) is false, the soundness
of the WIPOK would require that the first half of (b) be true, namely that it knows w.

Thus the cause for either of these failures (fail2 or fail3) is essentially that the adversary knows
w such that f(w) ∈ {va(sid)

1 , v
a(sid)
2 }. (Note that these (va(sid)

1 , v
a(sid)
2) values are chosen by an

honest party.) Our proof that fail2 or fail3 is unlikely will use the argument that it is unlikely
that the adversary can obtain such a w. Intuitively, this is due to the fact that w is only used in
proving witness-indistinguishable proofs, which are also witness hiding. However, the actual proof
is more complicated due to the fact that the adversary does not have to explicitly guess such a w,
but merely succeed in giving a proof of knowledge of w, when concurrently interacting with the
honest parties in multiple sessions. In order to prove that this is not feasible, we shall show how
to construct a stand-alone machine M which interacts with an external machine E . The machine
E sends a pair (v1, v2), like in Phase 1 of our protocol, followed by many WISPOKs to M , to
prove that it knows w such that f(w) ∈ {v1, v2}. Our construction of M will be such that if S
outputs fail2 or fail3 with non-negligible probability, then M can also output w at the end of this
interaction with non-negligible probability. Since f is a one-way function and the proofs are witness
indistinguishable (and hence witness hiding), this will lead to a contradiction. We note that the
formal proof relies heavily on the fact that the scheduling is pairwise disjoint.

M is constructed in two steps. First we describe a modified simulator T , and then, depending
on whether it is fail2 or fail3 that occurs with non-negligible probability, we show how to build M
from T .

The main feature of T is that, in a randomly chosen session sid∗, it interacts with the above
mentioned external prover E (instead of with the internally simulated honest protocol program
Psid∗

a). We shall ensure that if S outputs fail2 or fail3 with non-negligible probability, then so does
T .

Overview of T : T emulates part of the hybrid system consisting of F timed
crs and S, but with the

emulated S modified as follows: for a randomly chosen session sid∗, the simulated program Psid∗
a

30

is not entirely run internally; instead part of the Phase 1 protocol is carried out by an external
program E , with which T interacts. The extractors in S are modified in such a way that they do
not use the internal state of E (and in particular they do not “rewind” E). These modifications will
be such that T outputs fail2 or fail3 with non-negligible probability if S did so in the original hybrid
system. The proof of this fact crucially depends on the way Phase 1 WISPOKs are scheduled; we
will use the fact that the scheduling is pairwise disjoint to argue that even without rewinding E ,
the extraction procedure can still be carried out in T .

Overview of M : M will run T described above, as well as the rest of the hybrid system (namely,
the honest parties running the protocol π). M does not include E mentioned above. Instead, it
interacts with E . Furthermore, M attempts to extract the witness w from E , as mentioned earlier.
If T outputs fail2, the witness should have been extracted by the extractor in T . Thus, M can
output this witness. If T outputs fail3, then M will construct a stand-alone prover for the Phase 3
WIPOK (corresponding to which T outputs fail3) and use an extractor on this prover to obtain w
(because, as mentioned earlier, in this case w will be the only valid witness for the WIPOK). In
either case M will be able to output w with non-negligible probability.

Contradiction given M : Notice that M , which interacts with E as above, can output w with
at most negligible probability. This is due to the following two observations:

1. Given the pair (v1, v2) which is computed by E (by choosing w1, w2 at random and setting
vi = f(wi)), it is infeasible for M to find w such that f(w) ∈ {v1, v2} (this follows from the
fact that f is a one-way function).

2. The WISPOKs that E provides to M are witness hiding [20] (this follows from the fact that the
proofs are witness indistinguishable with independent witnesses; see [22] for further details),
and thus do not give M any non-negligible advantage in guessing w.

Thus, in order to prove that S has negligible probability of outputting fail2 or fail3, it suffices to
show that if S outputs fail2 or fail3 with non-negligible probability, then M , which interacts with E
as above, outputs w with non-negligible probability.

It remains only to construct M as claimed, which in turn is built from T .

Construction of T : First we present the details of the construction of T , as well as the proof
that it outputs fail2 or fail3 with non-negligible probability if S does so. The construction is carried
out through a series of modifications to S. The goal is to bring the simulator to a state where it
does not need to rewind the Phase 1 WISPOKs of Psid∗

a (step 6). This will enable us to safely
replace this part of Psid∗

a by the external machine E (step 7). In order to eliminate the rewinding of
the Phase 1 WISPOKs of Psid∗

a , we modify S so that rather than running the extractor on all Phase
2 WISPOKs, it runs the extractor only on the Phase 2 WISPOKs of session sid∗ (step 5). Then
we further modify S so that, rather than running the extractor on all the Phase 1 WISPOKs, it
runs the extractor on a single Phase 1 WISPOK in each session; namely, the one which is pairwise
disjoint to (i.e., does not overlap with) any of the Phase 1 WISPOKs of Psid∗

a . (This point of the
proof is exactly where the pairwise disjointness comes in.)

Formally, the construction of T is carried out through a series of seven modifications to S. After
each modification we show that if the probability of outputting fail2 or fail3 is non-negligible in the
previous step, it continues to be so in this step too. The simulator in step 7 corresponds to T . We
now begin with the modifications:

1. First modify S so that it never outputs fail1, and does not check if the fail1 condition holds.
We denote the modified simulator by S1. Since S outputs fail1 with negligible probability,

31

it follows that S1 and S are statistically close, and in particular, the probability with which
they output fail2 and fail3 is the same up to a negligible factor.

2. Modify S1 to obtain a new simulator S2 that behaves similarly to S1 with the following
differences: Instead of accessing an external F timed

crs functionality, it internally implements it.
(Thus the honest parties obtain their outputs from F timed

crs implemented by S2.) Furthermore,
in Phase 3 of each session sid, instead of first drawing a random Rcrs (on behalf of F timed

crs) and
then defining r =

⊕
i6=a ri ⊕Rcrs, it first draws a random r and defines Rcrs =

⊕
i6=a ri ⊕ r.

(See Eq. (2); recall that ri is the value that party Pi committed to in the beginning of Phase
2, and if Pi is corrupted then ri is obtained by applying the extraction subroutine to the
Phase 2 WISPOK given by Pi.) Note that the output distributions of S1 and S2 are identical,
and in particular the probability with which S1 and S2 output fail2 and fail3 is the same.

3. Next we observe that the rj values extracted from the Phase 2 WISPOKs are used twice by
the simulator S2:

(a) To check the fail3 condition.
(b) To compute Rcrs, which is needed when some Psid

i produces an output (sid,R). In this
case, F timed

crs (implemented by the simulator) sends Rcrs to Pi.

We claim that the second usage of the rj values is not essential. In order to see this, we
modify S2 so that instead of computing Rcrs = r1⊕, . . . ,⊕rk and sending it to Pi (thereby
using the rj values), it computes R′ = r′1⊕, . . . ,⊕r′k and sends R′ to Pi.30 As was pointed
out in footnote 29, if Rcrs 6= R′ then it must be the case that either S outputs fail3 or Psid

a

rejects one of the Phase 3 WIPOKs that it verifies, both which result with Pi not receiving
any output. Thus if Pi does receive an output it must be the case that Rcrs = R′. Therefore
this modification does not change anything in the system, except to make it explicit that the
extracted values rj are used only for determining if fail3 occurs. We denote the new simulator
by S3.

4. We next define S4 which behaves identically to S3 except for the following: S4 chooses a
random session and outputs fail2 or fail3 only if it happens in the chosen session. (In other
sessions if S3 would have output fail2 or fail3 and halted, S4 does not even check for the failure
condition and so might continue executing.) Note that there are only polynomially sessions
possible (as the adversary and the polynomially many parties are all assumed to be strict
polynomial time machines). Hence if S3 outputs fail2 or fail3 with non-negligible probability,
so does S4. (The reason that this holds is that with probability 1/poly, the first session in
which fail2 or fail3 occurs will be chosen, and the simulation until that point is identical.)

We shall denote by Ssid∗
4 the resulting simulator when S4 picks a session with session identifier

sid∗ as its random choice. All the simulators defined below also choose a random session in
the beginning. We use similar notation to denote them.

5. Ssid∗
5 is the same as Ssid∗

4 with the following difference. Ssid∗
5 does not run the Phase 2

extractors for any session except sid∗. (The Phase 1 extractors are run for all sessions.) Note
that Ssid∗

4 does not use the extracted values from Phase 2 in any other session except sid∗.
This is because it neither calculates Rcrs nor checks the fail2 and fail3 conditions in those
sessions. Thus Ssid∗

5 and Ssid∗
4 behave identically.

30Recall that r′j is the (supposedly committed) value sent by party Pj at the beginning of Phase 3 of this session,
and note that (sid, R′) is the output of Psid

a in this session.

32

6. We would next like to modify Ssid∗
5 by having an external machine simulate Psid∗

a in Phase 1.
Namely, rather than having the simulator simulate Psid∗

a sending a pair (va(sid∗)
1 , v

a(sid∗)
2) and

proving (in the Phase 1 WISPOKs) that it knows a pre-image of one of these values, we would
like this to be done by an external machine E . Thus, we would like the simulator to receive
a pair (va(sid∗)

1 , v
a(sid∗)
2) from an external machine E , and have E provide the corresponding

Phase 1 WISPOKs of Psid∗
a . However, we want to avoid rewinding E . (Note that Ssid∗

5 runs
the extraction subroutine on all the Phase 1 WISPOKs of all sessions. In sessions where the
Phase 1 WISPOKs overlap with the Phase 1 WISPOKs of Psid∗

a , the extraction subroutine
may need to “rewind” the Phase 1 WISPOKs of Psid∗

a .)

The natural idea would be to modify Ssid∗
5 as follows: For any session sid and for any corrupted

party Pj participating in session sid, rather than applying the extraction subroutine to all of
the Phase 1 WISPOKs given to Psid

a by party Pj , apply the extraction subroutine only to one
of these WISPOKs: specifically, the one which does not overlap, according to Psid

a and Psid∗
a ,

with any of the Phase 1 WISPOKs given by Psid∗
a in session sid∗.31 Notice that the existence

of such a WISPOK follows from the fact that the scheduling of the Phase 1 WISPOKs is
pairwise disjoint. Unfortunately, there is no guarantee that it is easy to find this “disjoint”
WISPOK.

So, instead we apply the extraction subroutine to all of the Phase 1 WISPOKs. We avoid
the “rewinding” of the Phase 1 WISPOKs of Psid∗

a by modifying the stand-alone provers as
follows: rather than using the usual stand-alone prover Qsid

j , we use an alternate stand-alone

prover Qsid,sid∗
j , which is the same as Qsid

j , except that Psid∗
a is modified so that it does not

take part in any Phase 1 WISPOK as a prover. We shall denote this new simulator by Ssid∗
6 .

First, notice that the internal state of E is not needed to construct Qsid,sid∗
j , since the Phase

1 WISPOKs of Psid∗
a (given externally by E) are not needed in order to construct Qsid,sid∗

j .
Second, the pairwise disjointness property of the scheduling ensures that for every corrupted
party Pj there exists at least one Phase 1 WISPOK proven by Pj which does not overlap,
according to Psid

a and Psid∗
a , with any of the Phase 1 WISPOKs proven by Psid∗

a . Recall that
the first and the last messages of these WISPOKs are sent by the verifier. This implies that
for every corrupted party Pj participating in session sid, there exists a Phase 1 WISPOK
(verified by Psid

a) such that Psid∗
a does not send any prover message between the time that

the first and the last messages of this “disjoint” WISPOK were sent. This in turn implies
that the stand-alone prover Qsid,sid∗

j , corresponding to the “disjoint” WISPOK, is identical
to Qsid

j . Thus, if this “disjoint” WISPOK is accepted with non negligible probability, then its
witness will be extracted with overwhelming probability without rewinding E.32 We conclude
that throughout its simulation, Ssid∗

6 never rewinds the Phase 1 WISPOKs proven by Psid∗
a ,

and if a session sid reaches Phase 3 then with overwhelming probability, Ssid∗
6 obtains from

the extractor witnesses wj (such that f(wj) ∈ {vj
1, v

j
2}) for every corrupted participant Pj .

Note that the only difference between Ssid∗
5 and Ssid∗

6 is in the way the Phase 1 witnesses
31Recall that pairwise disjointness between two sessions sid and sid∗ is with respect to two honest parties, one from

each session. Here we take Psid
a to be the honest party in sid and Psid∗

a to be the honest party in sid∗. This means
that Psid

a does not send any message (as a verifier) in the WISPOK proven by Pj during the WISPOKs proven by
Psid∗

a , at least as far as Psid
a is concerned. Therefore, the verification by Psid

a of Pj ’s WISPOK is disjoint from all
the proofs of Psid∗

a . It is therefore possible to extract from Pj ’s WISPOK without rewinding any of Psid∗
a ’s proofs.

32Notice that a witness to the Phase 2 WISPOK is also extracted without rewinding E . This is due to the fact
that the external machine E is used only to replace Phase 1 of session sid∗, and Ssid∗

6 only extracts from Phase 2 in
session sid∗ (so this extraction comes strictly after the external machine E terminated).

33

of corrupted parties are extracted. Since both Ssid∗
5 and Ssid∗

6 succeed in extracting these
witnesses (with overwhelming probability), for every session that reaches Phase 3, and since
these witnesses are used only in Phase 3, we would like to conclude and say that the output
distributions of Ssid∗

5 and Ssid∗
6 are statistically indistinguishable. However, there is a subtle

point here: The witnesses wj obtained by Ssid∗
5 and Ssid∗

6 may be distributed differently. But,
since these witnesses are used only in WIPOKs we conclude that the output distributions of
Ssid∗

5 and Ssid∗
6 are computationally indistinguishable, which in particular implies that the

probability with which they output fail2 and fail3 is the same (up to a negligible factor). We
note that the formal reduction (reducing any algorithm that distinguishes between the outputs
of Ssid∗

5 and Ssid∗
6 to an algorithm that breaks the witness indistinguishability property of the

WIPOK) is straightforward, and therefore omitted.

7. Finally we define Ssid∗
7 which replaces the internal simulation of the first message (namely,

(va(sid∗)
1 , v

a(sid∗)
2) and the WISPOKs given by Pa(sid∗) in session sid∗ by externally received

messages. That is, Ssid∗
7 interacts with an external machine E that picks (w1, w2), sets vi =

f(wi), sends them to Ssid∗
7 , and then engages in multiple WISPOKs to prove knowledge of

w such that f(w) ∈ {v1, v2}. Internally, Ssid∗
7 uses this to replace (part of) the computation

carried out by Psid∗
a . In other words, the program of Psid∗

a will be considered split into an
external machine E (which sends (va(sid∗)

1 , v
a(sid∗)
2) and carries out the proofs of Phase 1) and

an internal machine (which carries out the rest of the protocol execution). The extractors
will not have access to the state of the external machine. As was mentioned above, both Ssid∗

6

and Ssid∗
7 do not use the “external” part of the program Psid∗

a . Therefore, the probability
that Ssid∗

7 outputs fail2 or fail3 is the same as the probability that Ssid∗
6 does so.

T is the same as Ssid∗
7 , with sid∗ chosen randomly. The above series of steps shows that if S outputs

fail2 or fail3 with non-negligible probability, then T also outputs fail2 or fail3 with non-negligible
probability.

Construction of M : We seek to construct a machine M such that, if T has a non-negligible
probability of outputting fail2 or fail3 in its interaction with E , then with non-negligible probability,
when M interacts with E it will succeed in extracting w such that f(w) ∈ {v1, v2}, where (v1, v2)
is the pair sent to it by E .

The machine M emulates the entire system of honest parties running π and the simulator T .
However, it does not simulate E . Instead M itself interacts with E . We construct M separately for
the following two cases.

T outputs fail2 with non-negligible probability: While emulating the system, if T outputs
fail2, then M can output the witness w that caused T to fail. This witness, by definition of
fail2, equals w such that f(w) ∈ {v1, v2}, where (v1, v2) is the first message sent by E . This is in
contradiction to the fact that the WISPOKs are witness hiding.

T outputs fail3 with non-negligible probability: Recall that T outputs fail3 if some Pj sent
in the beginning of Phase 3 a value r′j 6= rj , where rj was the value extracted in Phase 2. Let sid∗

be the random session chosen by T (i.e., T is identical to Ssid∗
7). In T , when Psid∗

a enters Phase 3,
M will randomly pick a corrupt party Pj and construct a stand-alone prover corresponding to Pj ’s
Phase 3 WIPOK to Psid∗

a . The stand-alone prover is constructed by modifying Psid∗
a to simply relay

messages between Pj and an external verifier. This construction is similar to, but simpler than that
of Qsid∗

j described earlier. Recall that there Qsid∗
j worked exactly like the simulator, continuing

from the point where the extractor was invoked, except that Qsid∗
j (unlike the simulator) did not

34

interact with the honest parties running π and did not invoke the extractors that S invokes. But
now, the stand-alone prover includes the honest parties running the π protocol, and also runs all
extractors. Note that by running the extractors there is no danger in rewinding E since E is not
active any more when M reaches Phase 3 of the session sid∗.

Now, M applies a knowledge extractor to this stand alone prover, and if it extracts a witness w
such that f(w) ∈ {v1, v2}, then M outputs w. Note that T outputs fail3 when for some party Pj′ ,
the value rj′ extracted in Phase 2 is different from the value r′j′ that it sent out in Phase 3, and yet its
Phase 3 WIPOK is accepted. Note that the only valid witnesses for this WIPOK are values w such
that f(w) ∈ {v1, v2}. Now, since the probability of T outputting fail3 is non-negligible, and since
there are only polynomially many (corrupt) parties from which M picked Pj , with non-negligible
probability M picked party Pj′ , and thus convinces the external verifier of a statement with the only
witnesses being w such that f(w) ∈ {v1, v2}. This implies that the knowledge extractor when run on
M , will succeed in outputting such a w with non-negligible probability. (This knowledge extractor
runs in expected, and not strict, polynomial-time. Nevertheless, using standard arguments, we can
obtain a strict polynomial-time machine that obtains w with non-negligible probability.)

Completing the proof for fail2 and fail3. This completes the construction of M , and also the
proof that S outputs fail2 or fail3 with only negligible probability.

The Hybrids: Above we have shown that S outputs fail1, fail2 or fail3 only with negligible prob-
ability. We now prove that the output distributions of S and the honest parties running π in the
F timed

crs -hybrid model are indistinguishable from that of A and the honest parties running πρ
τε in

the real world with timing. For this we note that S in the hybrid world almost perfectly emulates
the real world interaction, but with a few differences. The main difference is that in the simulated
world in every session sid there is one party Psid

a that deviates from the protocol. This is the case
since the simulator gets a random string Rcrs from the functionality and needs to simulate the
protocol so that its output will be equal to Rcrs.

We shall build some hybrid simulators to bridge the gap between the real and hybrid worlds.

• Hybrid Simulator H1: This is similar to S2 as defined earlier: It implements F timed
crs internally

and defines Rcrs by randomly picking r and setting Rcrs =
⊕

i 6=a ri ⊕ r (however it outputs
fail1 just like S does). As argued above, this does not change anything in the system, and in
particular the output distributions remain unchanged.

• Hybrid Simulator H2: Recall that when Psid
i produces an output (sid,R), H1 delivers the

output (sid,Rcrs) from F timed
crs to Pi (after Psid

a produces an output). In contrast, the simulator
H2 will hand Pi the output R generated by Psid

i in the simulation. Note that if Psid
i outputs

(sid,R) and H1 did not output fail3 (and Psid
a produced an output) then it must be the case that

with overwhelming probability R = Rcrs, since the fact that H1 did not output fail3 and that
Psid

a produced an output implies that all parties must have sent in Phase 3 the decommitment
value which was extracted by the extracted subroutine. Therefore, the output distributions of
H1 and H2 are statistically close.

• Hybrid Simulator H3: H3 is defined exactly as H2 is, except with the following difference:
instead of running Psid

a in every session sid (with at least one honest player a), H3 runs another
program P ′sida . This program is exactly like Psid

a , except that in Phase 3, instead of sending r
received from S, it sends out ra as instructed by the honest program of ρ.

The hiding property of the Phase 2 commitment scheme, the hiding property of the Phase 2
WISPOK, and the fact that r and the committed value ra are identically distributed (both are
uniformly distributed) imply that the output distributions of H2 and H3 are computationally

35

indistinguishable.

• Hybrid Simulator H4: H4 uses exactly the program specified by ρ for Psid
a . Note that the only

difference between P ′sida used by H3 and the program specified by ρ is that while giving Phase 3
WIPOK to a party Pj , P ′sida uses the alternate witness provided by S (namely wj such that
f(wj) ∈ {vj

1, v
j
2}) instead of what is specified by the protocol ρ. The witness indistinguishable

property of this WIPOK implies that the output distributions ofH3 and H4 are computationally
indistinguishable.

Now note that the system run by H4 and the real world system are identical, except that H4 also
runs the extractors and might output fail depending on the extractor’s outputs. Other than that,
the extractors are not used in the system (because we replaced the Psid

a programs by the original
programs specified by ρ). Now since S outputs fail with negligible probability and the output
of H4 is indistinguishable from that of S, we see that H4 also outputs fail only with negligible
probability. Thus, it follows that the output of the system with H4 is indistinguishable from that
of the real world system. From the line of reasoning above, we conclude that the distribution of the
output of the system consisting of S and the honest parties running π in the F timed

crs -hybrid world
is indistinguishable from the output of the system consisting of A and the honest parties running
πρ

τε in the real world (with time).
It remains to show that ρ is a non-trivial protocol. Notice that in ρ an honest party will

output a time-out message only if a WISPOK takes more than τ = α(n)∆ local time units or if the
(pairwise-disjoint) schedule instructs it to time-out. Since the WISPOKs consist of α(n) rounds,
if the latency of the network is at most ∆ (according to all local clocks) then each WISPOK will
conclude within at most τ = α(n)∆ local time units (recall that we assume that local computation
is instantaneous). This together with the fact that the schedule used in ρ is non-trivial, implies
that ρ is non-trivial.

4 Pairwise-Disjoint Scheduling

In this section, we construct a pairwise-disjoint scheduling algorithm, thereby proving Theorem 7
of Section 3.4. On a very high level, the idea is that for each session sid ∈ {0, 1}m, the schedule
output by S(σ, sid,∆, ε) is such that protocol σ is executed m + 2 times, with delays between each
execution (here we make use of the timing model). The crux of the idea is that the delays depend
on the bits of sid, so that for any sid 6= sid′ the executions of S(σ, sid,∆, ε) and S(σ, sid′, ∆, ε) will
not be aligned. The schedule is enforced by requiring the parties to “time-out” if the execution is
too long, say if it takes more that τ local time units, where τ is a function of σ and ∆ (and the
delays depend on this parameter τ). In our specific protocol, σ is a strong proof-of-knowledge with

α(n) rounds, and we set τ
def= α(n)· ∆.33

Motivation to the schedule. Due to the technical nature of the schedule and its proof, we first
provide a lengthy discussion explaining the idea behind the construction. Recall that our aim is to
obtain pairwise disjointness, meaning that for every two sessions sid and sid′, there exists at least
one execution of σ in sid that does not overlap with any execution of σ in sid′. As a first try, suppose
that the schedule consists of running σ twice, with a delay between each execution that is “large”
and directly proportionate to the session ID sid. For example, interpret the value sid ∈ {0, 1}m as

33Note that since σ consists of α(n) rounds and ∆ is an upper bound on the latency according to all clocks, we

have that τ
def
= α(n)·∆ is an upper bound on σ’s overall running time, assuming that all messages are delivered with

∆ time units (and assuming local computation is instantaneous).

36

an integer in the range [1, . . . , 2m] and delay 2sid · τ time units between the executions, where τ
is an upper bound on how long σ should run. Furthermore, time-out an execution of σ if it runs
longer than τ time units. Now, let sid′ 6= sid be two different sessions. Denote by σ1, σ2 the two
executions of σ in session sid, and denote by σ′1, σ

′
2 the two executions of σ in session sid′. Without

taking the clock drift ε into account for now, we have the following cases:

1. Execution σ1 overlaps with execution σ′1: Notice that σ2 is delayed by 2sid · τ time units,
whereas σ′2 is delayed by 2sid′ · τ time units. Since sid′ 6= sid, there is a difference of at
least 2τ time units between the delay before σ2 and the delay before σ′2. The fact that each
execution of σ takes at most τ time units then ensures that the σ′2 execution does not overlap
with σ2. Also, the fact that the delay before σ′2 is longer than τ time units implies that σ′2
does not overlap with σ1.

2. Execution σ2 overlaps with execution σ′2: The same analysis as above yields that σ′1 does not
overlap with σ1 or σ2.

3. Execution σ1 overlaps with execution σ′2: In this case, it follows immediately that σ′1 concluded
before σ1 began (because there is a delay of more than τ time units between σ′1 and σ′2). Thus,
σ′1 does not overlap with σ1 or σ2.

4. Execution σ2 overlaps with execution σ′1: As above, it follows that σ′2 does not overlap with
σ1 or σ2.

We therefore obtain that the above is a pairwise-disjoint schedule. However, this schedule is prob-
lematic because the length of the delays are exponential in the length of sid. Thus, unless there
is an a priori polynomial bound on the number of sessions (in which case, sid can be of length
O(log n)), we obtain that the schedule is not polynomial in the security parameter.

We solve this problem by using a more involved scheduling strategy, adapted from the strategy
of Chor and Rabin [14]. We now recall this strategy (already described in Section 3.4). It was
observed in [14] that if the identifiers sid and sid′ are encoded (one-to-one) into 2m-bit strings
containing m zeros and m ones, then for any two different identifiers sid 6= sid′, there is at least
one bit position where the encoding of sid has a zero and that of sid′ has a one. Suppose now that
the time is divided into 2m distinct slots (each slot corresponding to a bit of the encoding of the
identifier), and executions of σ in the session sid are run only in the slots where the encoding of
sid has a one in that slot. Then there is a slot in which an execution of σ is run in sid′, but not
in sid. The improvement over the previous scheme is that this encoding is compact (i.e., linear),
rather than exponential, in the length of the sid.

However, there are numerous complications in adapting this strategy to our setting. Firstly,
unlike the setting considered in [14], we consider executions of ρ occurring in different sessions at
different times. Therefore, two encodings which are different may be shifted with respect to each
other in a way that all the positions with ones align with each other (e.g. the ones in 0110 and
1100 can be aligned with each other by shifting one of the two strings by one position). This
problem is solved simply by prepending a one to the encoding (for convenience in later analysis, we
shall actually add a one to both ends of the encoding). We therefore have that the above encodings
become 101101 and 111001, respectively, and shifting in either direction will result in independence.

Another problem that arises is due to the fact that in our setting, it is not possible to define
distinct time-slots (because the parties’ clocks are not synchronized). Therefore, one execution of
σ in session sid can partially overlap with two executions of σ in session sid′. We solve this by
introducing delays between the time slots in each session. We note that it suffices to delay for at

37

least the maximum time that it takes to conclude an execution of σ. (It is possible to limit the
maximum time for any execution of σ by using a time-out instruction.) We thereby obtain that
any execution of σ in session sid can overlap with at most one execution of σ in session sid′.

The final complication that arises is due to the fact that the parties’ local clocks do not proceed
at exactly the same rate, but rather can drift. Since the rates at which the local clocks of the
different parties proceed may vary adversarially (up to a factor ε), it is possible that two different
schedules from different sessions may perfectly overlap. For example, suppose that the schedule for
session sid is 10i10j1k and the schedule in sid′ is 10j10i1k (with say i > j). Furthermore, suppose
that an honest party P is participating in session sid, and another honest party P ′ is participating
in session sid′. Then, the adversary can cause the executions of P and P ′ to overlap by first running
the clock of P faster than that of P ′ by a factor of i/j (starting after the first execution of σ, up
to the second execution of σ), and then running it slower by a factor of j/i (after finishing the
second execution of σ and until reaching the third execution of σ).34 Now, note that although P
and P ′ use the prescribed distinct schedules, the adversary can make every execution of σ in sid
fully coincide with every execution of σ in sid′. However, for this to work, it must hold that i/j is
less than ε. Thus, if we make sure that there are no long runs of zeros in the encoding used, we can
use our scheduling for values of ε that can be reasonably larger than one (but not too large). This
explains the somewhat strange looking requirement that ε must be less than 3

√
1.5. The particular

encoding we use (which is sometimes called the “Manchester encoding”) ensures that there will be
at most two consecutive zeros. Our complete description of the schedule, and the formal proof,
take all of the above discussed factors into account.

Convention. We assume for simplicity (and without loss of generality) that in protocol σ there
exists one party that sends the first message which is of the form “start” and the last message
which is of the form “end” to all of the parties that participate in the protocol. This ensures that
(when the adversary does not corrupt parties and delivers all messages within time ∆) the duration
of the protocol is roughly the same for all parties participating in σ.

The construction. We now present our construction of a pairwise disjoint scheduling. We
associate with each session sid a unique session identifier usid which is a vector of zeros and ones,
so that the number of ones is the same for each identifier. Loosely speaking, each 1 entry will
correspond to an execution of σ.

Formally, our scheduling algorithm, on input a protocol σ, a session identifier sid, and time-
bounds ∆ and ε, operates as follows. We specify the delay and time-out mechanisms in terms of
some parameters d, τ , τmin(·) and τmax(·). We shall fix these parameters later, as functions of ∆
and ε.

1. Associate with session sid ∈ {0, 1}m a vector usid = (usid
1 , . . . , usid

2m+2) ∈ {0, 1}2m+2, defined
as follows:

(a) usid
1 = 1 and usid

2m+2 = 1.

(b) For every j ∈ {1, . . . ,m}, if sidj = 1 then (usid
2j , usid

2j+1) = (1, 0), and if sidj = 0 then
(usid

2j , usid
2j+1) = (0, 1).

Notice that usid has exactly m+2 ones and m zeros. Moreover, it has at most two consecutive
zeros. S(σ, sid, ∆, ε) will consist of m + 2 executions of σ, one execution corresponding to
each 1 entry of the usid vector.

34We ignore the “delaying slots” between the time slots for this discussion.

38

2. Carry out m + 2 executions of σ according to the following scheduling.

(a) Set j = 1.
(b) If usid

j = 1 then carry out an execution of σ and then continue to step 2c. Otherwise,
continue immediately to step 2c

(c) Wait d local time units (d will be specified later).

(d) Set j
def= j + 1.

(e) If j ≤ 2m + 2 then goto step 2b.

3. Time-Out Mechanism: In each of the above executions of σ, each participant checks that
no more than τ local time units passed from the time that it received its first message of the
execution (“start”), to the time that it received its last message of the execution (“end”). If
more time passes before the execution is over, then it outputs (sid, time-out) on its output
tape and halts the execution.

4. Delay Mechanism: For any x ∈ {0, 1, 2} and for any two consecutive executions of S(σ, sid)
that correspond to two 1’s with x zeros in between, each party P participating in session sid,
checks that δ, denoting the delay (according to P ’s local clock) between these two executions
(i.e., the time between receiving its last message in one execution and receiving its first
message in the next execution), is between τmin(x) and τmax(x). Here τmin(·) and τmax(·) are
increasing functions, to be specified later. For each honest participant, if the delay is too
short or too long then it outputs (sid, time-out) on its output tape and halts the execution.

Theorem 10 Assume that 1 ≤ ε < 3
√

1.5. Then the above scheduling is a non-trivial pairwise-
disjoint scheduling, for the following parameters:

τ ≥ α(n) ·∆
d > (2τε2 + ∆(1 + ε)ε)/(3− 2ε3)

τmin(x) = (x + 1)d/ε−∆
τmax(x) = (x + 1)dε + ∆

Note that the efficiency of the scheduling depends on ε. The closer ε is to 3
√

1.5, the greater the delay
is, and the less efficient the scheduling is. (This is due to the (3− 2ε3) factor in the denominator
of d.)

Proof: First, we collect a few inequalities, which we shall refer to throughout the proof.

τmin(0) > τε (4)
τmin(1) > (2τ + τmax(0))ε (5)
τmin(2) > (2τ + τmax(0))ε (6)
τmin(2) > (2τ + τmax(1))ε (7)

We note that these inequalities easily follow from the inequalities listed in the hypothesis.35

35This can be seen as follows. The denominator of the delay d is at most 1 (assuming 1 ≤ ε < 3
√

1.5), which
implies that d > 2τε2 + ∆(1 + ε)ε. Thus, τmin(0) = d/ε − ∆ > (2τε + ∆(1 + ε)) − ∆ = 2τε + ∆ε > τε, implying
Eq. (4). Next, in order to prove Eq. (5) and Eq. (7) it suffices to prove that τmin(x) − τmax(x− 1)ε > 2τε (this
can be seen by simply manipulating the equations). In order to prove that τmin(x) − τmax(x− 1)ε > 2τε, note that
τmin(x)− τmax(x− 1)ε = (x + 1)d/ε−∆− (xdε + ∆)ε = d(x/ε− xε2 + 1/ε)−∆(1 + ε). Since 1/ε− ε2 ≤ 0, the latter
equality is smallest when x = 2. Thus, τmin(x)−τmax(x− 1)ε ≥ d(2/ε−2ε2+1/ε)−∆(1+ε) = d(3−2ε3)/ε−∆(1+ε) >
(2τε + ∆(1 + ε)−∆(1 + ε) = 2τε, as desired. Finally, note that Eq. (6) follows immediately from Eq. (7).

39

Assume for the sake of contradiction that S is not a pairwise-disjoint scheduling for some
protocol σ, and timing parameters (∆, ε) such that 1 ≤ ε < 3

√
1.5. Thus, there exists a concurrent

network (in the timing-model), an ε-drift preserving adversary, and two distinct sessions sid and
sid′, such that the following holds. There exist honest parties P and P ′ participating in sessions sid
and sid′ respectively, such that according to P and P ′, every execution of S(σ, sid′, ∆, ε) overlaps
with at least one of the executions of S(σ, sid,∆, ε). For simplicity of notation, throughout this
proof we denote S(σ, sid, ∆, ε) by Σ, and S(σ, sid′, ∆, ε) by Σ′. Further, we shall use “overlaps” as
a short hand for “overlaps according to P and P ′”.

We first show that any execution of Σ can overlap with at most one execution of Σ′. This is due
to the delay inserted between each execution. More specifically, assume that there is one execution
σ in Σ which overlaps with two executions σ′1 and σ′2 in Σ′. Then there are two messages of σ
that were sent by P such that one was sent out when P ′ was in the middle of execution of σ′1 and
the other when P ′ was in the middle of execution of σ′2. Let the time between sending these two
messages be δ as measured by the clock of P , and δ′ as measured by the clock of P ′. Since the
clock drift factor is at most ε, we have δ′ ≤ δε. Note that the executions σ′1 and σ2 are separated
by at least τmin(0) local time units, according to P ′’s clock. This is the case since otherwise P ′

would timeout the execution before σ′2 really started, which would imply that σ does not overlap
σ′2 according to P and P ′, contradicting our assumption. Thus, the above mentioned messages
sent by P must also be separated by at least that much time, i.e., δ′ ≥ τmin(0). Finally, we note
that since both the messages were sent out by the honest party P in the same execution, δ ≤ τ .
Combining the above relations we get τmin(0) ≤ δ′ ≤ δε ≤ τε. This contradicts Eq. (4).

We thus have that any execution of Σ can overlap with at most one execution of Σ′. Since
both schedules carry out exactly m + 2 executions, every execution of Σ overlaps with exactly one
execution of Σ′. Moreover, it must be the case that for every l ∈ [m + 2], the l’th execution of Σ
overlaps only with the l’th execution of Σ′.

Fix any l ∈ [m + 1]. Let x′ be the number of zeros between the l’th one and the l + 1’st one
in usid′ . Note that the encoding guarantees that x′ ∈ {0, 1, 2}. We prove that the number of zeros
between the l’th one and the l + 1’st one in usid is also x′. This will imply that usid = usid′ , which
in turn will imply that sid = sid′, contradicting our assumption that sid and sid′ are distinct.

Suppose that two (consecutive) executions σ1 and σ2 in Σ overlap with two consecutive execu-
tions σ′1 and σ′2 in Σ′ respectively. Let x be the number of zeros between the ones corresponding
to σ1 and σ2 in usid. Similarly let x′ be the number of zeros between the ones corresponding to σ′1
and σ′2 in usid′ . We need to show that x = x′.

Since σ1 overlaps with σ′1, party P must have sent a message in σ1 while P ′ was in the middle
of σ′1. Call this the “first event”. The “second event” is defined analogously as party P sending
a message in σ2 while P ′ was in the middle of σ′2. Let δ denote the duration between these two
events according to the clock of P , and δ′ the duration between them according to the clock of P ′.
Then,

δ/ε ≤ δ′ ≤ δε.

Now, since σ1 and σ2 are separated by x zeros, and P is an honest party, we are assured that

τmin(x) ≤ δ ≤ τmax(x) + 2τ.

Now consider σ′1 and σ′2. Recall that P ′, being honest, checks that each of these executions run
for at most τ time units. It also checks that the delay between the last message of σ′1 and the first
message of σ′2 is in the range [τmin(x′), τmax(x′)]. Note that these checks must be satisfied since
otherwise P ′ would timeout, and thus would not participate in σ′2. Therefore, σ2 and σ′2 would not

40

overlap according to P and P ′, contradicting our assumption. Since the first and second events
occur in the middle of σ′1 and σ′2 respectively, we are assured that

τmin(x′) ≤ δ′ ≤ τmax(x′) + 2τ.

The above three displayed inequalities imply

τmin(x) ≤ δ ≤ δ′ε ≤ (2τ + τmax(x′))ε
τmin(x′) ≤ δ′ ≤ δε ≤ (2τ + τmax(x))ε

From these two inequalities we can easily derive contradictions for all the combinations (x, x′) =
(1, 0), (x, x′) = (2, 0), (x, x′) = (0, 1), (x, x′) = (2, 1), (x, x′) = (0, 2) and (x, x′) = (1, 2). For
instance, setting (x, x′) = (1, 0) or (x, x′) = (0, 1), we obtain

2τ + τmax(0) ≥ δ′ ≥ δ/ε ≥ τmin(1)/ε

which contradicts Eq. (5). Similarly, setting (x, x′) = (2, 0) or (x, x′) = (0, 2) contradicts Eq. (6),
and setting (x, x′) = (2, 1) or (x, x′) = (1, 2) contradicts Eq. (7). Hence we conclude that x′ = x,
as required.

This shows that the scheduling is indeed pairwise disjoint. It remains to show that it is non-
trivial. For this, consider a scheduling Σ being executed in the presence of an adversary who does
not corrupt any party and delivers all messages within time ∆ by the clocks of all the parties.
Firstly, since the protocol has α(n) rounds, setting the time-out for an individual execution to be
τ = α(n) ·∆ ensures that no party times-out an execution. We need to also ensure that for every
party, the checks on the delays between the executions are also satisfied. Recall our convention
that a designated party sends out “start” and “end” messages to every party in the protocol;
call this party P . For any two executions σ1 and σ2, corresponding to two ones with x zeros in
between, party P delays δ

def= (x + 1)d local time units between the “end” message of σ1 and the
“start” message of σ2. By the clock of another party P ′ this duration will be measured as δ′, where
δ/ε ≤ δ′ ≤ δε. However P ′ considers the time at which these two messages reach it (rather than
when they were sent). At one extreme, the “end” message may be delivered instantaneously and
the subsequent “start” message delivered with a delay of ∆ (by P ′’s clock), in which case the time
between the arrival of the two messages will be δ′ + ∆. At the other extreme, “end” is delayed by
∆, while “start” reaches instantaneously, making the time between the two arrivals δ′ −∆. Thus,
the delay between the two messages will be in the range [δ′−∆, δ′+∆] which is in turn in the range
[δ/ε−∆, δε+∆]. Since δ = (x+1)d, this range is the same as [τmin(x), τmax(x)]. Thus no party will
time-out in the schedule. Also note that m and O(α(n)) are bounded by a polynomial. Hence the
schedule will be completed in polynomial number of steps and within polynomial number of time
units according to any party. Thus the scheduling algorithm is polynomial and non-trivial.

5 Impossibility for Non-Delayed General Composition

In this section, we prove that introducing some element of time into the protocol π (as we did in
modifying π into πτε) is essential for obtaining secure composition. In order to state this result, we
first define the notion of a timing-free protocol. Intuitively, such a protocol does not use timing in
its instructions. Formally, in our model, a timing-free protocol does not read the clock tape. (The
“plain model” in the theorem refers to the model as defined in this paper, without for example,
any trusted setup phase.)

41

Theorem 11 In the plain model and without an assumed honest majority, there exist probabilistic
polynomial-time functionalities that cannot be securely computed (by a non-trivial protocol) under
concurrent general composition with timing-free protocols, even in the (∆, ε)-timing model, for any
∆ and any ε ≥ 1.36

We prove this theorem by showing that for every protocol ρ in the timing model, if ρ is secure
under concurrent general composition with timing-free protocols, then it can be modified to become
secure under 1-bounded parallel general composition in a model with no timing. (In the setting of
1-bounded parallel general composition, a secure protocol ρ is executed once in parallel with an
arbitrary protocol π.) This suffices for proving Theorem 11 because impossibility of this case is
proven explicitly in [32]. As in [32], we also limit ourselves to 2-party protocols.

The intuition behind the proof of Theorem 11 is as follows. If a secure protocol ρ is run together
with a timing-free protocol π, then this means that the adversary has full control over the scheduling
of the messages of π. Now, consider a single execution of ρ together with π. Since the adversary
can schedule π-messages as it wishes, it can force π to run perfectly in parallel with ρ. Notice that
this holds irrespective of the timing instructions used in ρ. We conclude that ρ must remain secure
when run in parallel with an arbitrary protocol π, in contradiction to the impossibility results
of [32]. We now proceed to the formal proof.

Proof: Let ∆ ≥ 1 and ε ≥ 1 be any values, and let ρ be a 2-party protocol that securely computes
a functionality F under concurrent general composition with timing-free protocols, in the (∆, ε)-
timing model.37 Denote the participating parties by P1 and P2.

We now construct a modified protocol ρ′ that is timing-free. In ρ′, instead of using the clock,
the parties simulate the clock themselves by incrementing a counter on each activation (this counter
is initialized to 0). This simulated clock is then made available to Protocol ρ (or more precisely,
to the computation specified by Protocol ρ). Note that ρ′ consists of two components: a clock
simulation protocol and the original protocol ρ in the timing-model.

We now show that if ρ is non-trivial and secure under concurrent general composition in the
timing model, then ρ′ is non-trivial and secure under 1-bounded parallel general composition (in
the timing-free model). We note that if the adversary in the timing-free model activates the same
party multiple times before activating the other party, then in ρ′ the simulated clocks would have
an unavoidable drift. This is problematic because in this case ρ does not give any guarantee of
security. However, we consider parallel general composition for ρ′. In this setting, the adversary
strictly alternates between activating P1 and P2. Furthermore, in the i+1th activation of a party,
the adversary delivers it the ith-round message from ρ′ and the ith-round message from π (where π
is the arbitrary protocol running concurrently with ρ′). We call such an adversary for the parallel
setting a round-robin adversary. The formal arguments are given in the proof of the following claim.

Claim 12 Let ρ be a two-party protocol and let ∆, ε ≥ 1 be any values. If ρ is non-trivial and
securely realizes a functionality F under concurrent general composition in the (∆, ε)-timing model
(even when run concurrently with timing-free protocols), then ρ′ as described above is a non-trivial

36The notion of non-trivial protocols has also been considered in the timing-free model since the trivial protocol
that just hangs and never generates output securely realizes all functionalities. Therefore, as in the timing model, only
non-trivial protocols are of interest. In the timing-free model, a protocol is called non-trivial if output is guaranteed in
the event that the adversary corrupts no parties and (eventually) delivers all messages. As expected, the impossibility
results of [32] for parallel general composition hold only for non-trivial protocols.

37We stress that a contradiction will be derived for any choice of ∆, ε ≥ 1. Note that ε ≥ 1 by definition, and that
∆ ≥ 1 is the smallest increment possible.

42

protocol that securely realizes F under 1-bounded parallel general composition in the timing-free
model.

Proof: Let π be an arbitrary timing-free two-party protocol. In order to prove the security
claim on ρ′, we need to show that for any given round-robin adversary, there exists a simulator S
such that the output distribution of A and the honest parties running π and ρ′ in the real model is
computationally indistinguishable from the output distribution of S and the honest parties running
π with ideal access to F in the F-hybrid model. In order to construct S, we first we show an
intermediate adversary H (who interacts with the parties running ρ in the timing model) such
that the output distributions of the adversary and honest parties in the following two scenarios are
identical:

• Scenario A: The honest parties and the adversary A run π and ρ′ in the timing-free (real)
model.

• Scenario B: The honest parties and the adversary H run π and ρ in the real model with time.

We now describe the adversary H in the timing model. H internally invokes A and perfectly
emulates all of A’s actions. This means that H delivers messages whenever A does (thereby
activating the recipients) and passes A the messages that it receives. In addition to this emulation,
H needs to increment the clocks of the honest parties (because H works in the timing model, unlike
A). This is carried out simply by having H increment the clocks of all honest parties by 1 at the
beginning of each round-robin round.

Before proceeding, we show that the outputs of the honest parties and adversaries are identical
in scenarios A and B, described above. This follows from the fact that in both scenarios, the clock
of each party is incremented by 1 between every activation. Furthermore, H carries out exactly the
same actions as A. (The only difference is that in scenario A, the clocks are updated in sequence
upon each activation, whereas in scenario B, they are all updated together. However, since parties
only read their clocks upon activation, this is exactly the same.) We therefore have that for every
round-robin adversary A in the timing-free real model with π and ρ′ there exists an adversary H
in the timing model with π and ρ such that the output distributions in both cases are identical.

Next, notice that as long as H is ε-drift preserving, the assumed security of ρ implies that
there exists a simulator S such that the output distribution of an execution with S and the honest
parties running π in the F-hybrid model is indistinguishable from an execution with H and the
honest parties running π and ρ in the real timing model. This suffices because H satisfies the
drift condition for any ε (notice that the clocks of all the honest parties are always the same).
Combining the above two steps, we obtain that ρ′ securely realizes F under one-bounded parallel
general composition.

To complete the proof of the claim, we shall show that if ρ is non-trivial then so is ρ′. Recall
that ρ′ is non-trivial (in the timing-free model) if in the case that A corrupts no parties and delivers
all messages, then all parties receive output. In order to see that this holds, first recall that H
essentially just emulates A. Therefore, if A corrupts no parties, then so does H. Furthermore, by
the assumption that A is a round-robin adversary, we know that it always delivers all messages
immediately (i.e., all round i messages are received in round i + 1). Therefore, H delivers all
messages within time ∆ = 1. Finally, as we have shown above, H is always ε-drift preserving (for
any ε ≥ 1). We conclude that in an execution of ρ′ in which A does not corrupt any parties,
the analogous execution of ρ with H is such that H corrupts no parties, is ε-drift preserving and
delivers all messages within time ∆ = 1. Therefore, by Definition 2 and the assumption that ρ is
non-trivial, we have that in this execution of ρ with H, the honest parties all obtain their output

43

(and this output does not equal time-out). By the equivalence between scenarios A and B above,
we obtain that in the execution of ρ′ with A, the parties also all receive output. That is, ρ′ is
non-trivial. This completes the proof of non-triviality and of the claim.

As we have mentioned above, the proof of the theorem follows immediately from the above claim
and the impossibility results for 1-bounded parallel general composition (in the timing-free model)
as proven in [32].

Remark. Theorem 11 states that there exist functionalities that cannot be securely computed
under concurrent general composition with timing-free protocols. However, the proof actually
shows that this setting inherits all of the impossibility results of [32], which are in turn inherited
from [11]. Thus, we actually obtain very broad impossibility results that hold for large classes of
functionalities.

Acknowledgements

We would like to thank Ran Canetti, Oded Goldreich and Shai Halevi for helpful discussions and
comments.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages
106–115, 2001.

[2] B. Barak, Y. Lindell and S. Vadhan. Lower Bounds for Non-Black-Box Zero-Knowledge. In
44th FOCS, pages 384–393, 2003.

[3] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[4] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In CRYPTO’92, Springer-
Verlag (LNCS 740), pages 390–420, 1992.

[5] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[6] M. Blum. How to Prove a Theorem So No One Else Can Claim It. Proceedings of the
International Congress of Mathematicians, pages 1444–1451, USA.

[7] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Theory of
Cryptography Library, Record 98-18, version of June 4th, 1998 (later versions do not contain
the referenced material).

[8] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[9] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. In 42nd FOCS, pages 136–145, 2001.

[10] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001,
Springer-Verlag (LNCS 2139), pages 19–40, 2001.

44

[11] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composable Two-
Party Computation Without Set-Up Assumptions. In EUROCRYPT’03, Springer-Verlag
(LNCS 2656), pages 68–86, 2003.

[12] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Computation. In 34th STOC, pages 494–503, 2002.

[13] D. Chaum, C. Crepeau and I. Damgard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[14] B. Chor and M. Rabin. Achieving Independence in Logarithmic Number of Rounds. In 6th
PODC, pages 260–268, 1987.

[15] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on Com-
puting, 30(2):391–437, 2000.

[16] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. Journal of the ACM,
51(6):851–898, 2004.

[17] C. Dwork and M. Naor. Zaps and Their Applications. In 41st FOCS, pages 283–293, 2000.

[18] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Con-
straints. In CRYPTO’98, Springer-Verlag (LNCS 1462), pages 442–457, 1998.

[19] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

[20] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In
22nd STOC, pages 416–426, 1990.

[21] J. Garay and P. Mackenzie. Concurrent Oblivious Transfer. 41st FOCS, pp. 314–324, 2000.

[22] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge University
Press, 2001.

[23] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[24] O. Goldreich. Concurrent Zero-Knowledge With Timing Revisited. In 34th STOC, pages
332–340, 2002.

[25] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[26] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[27] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In 16th DISC,
Springer-Verlag (LNCS 2508), pages 17–32 2002.

[28] S. Goldwasser, S. Micali and C. Rackoff The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

45

[29] J. Katz. Efficient and Non-malleable Proofs of Plaintext Knowledge and Applications. In
EUROCRYPT 2003, Springer-Verlag (LNCS 2656), pages 211–228, 2003.

[30] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.
Journal of Cryptology, 16(3):143–184, 2003.

[31] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assump-
tions. In 35th STOC, pages 683–692, 2003.

[32] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-
putation. In 44th FOCS, pages 394–403, 2003.

[33] Y. Lindell. Lower Bounds for Concurrent Self Composition. In the 1st Theory of Cryptog-
raphy Conference (TCC), Springer-Verlag (LNCS 2951), pages 203–222, 2004.

[34] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[35] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology,
4(2):151–158, 1991.

[36] R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composi-
tion. In Eurocrypt 2003, Springer-Verlag (LNCS 2656), pages 160–176, 2003.

[37] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority.
In the 36th STOC, pages 232–241, 2004.

[38] R. Pass and A. Rosen Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. In 44th FOCS, pages 404–413, 2003.

[39] B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure Reactive
Systems. In 7th ACM Conference on Computer and Communication Security, pages 245–
254, 2000.

[40] M. Prabhakaran and A. Sahai. New Notions of Security: Universal Composability Without
Trusted Setup. In 36th STOC, pages 242–251, 2004.

[41] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EUROCRYPT’99, Springer-Verlag (LNCS 1592), pages 415–431, 1999.

[42] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

46

