
Unfairness of a protocol for certified delivery

Juan M. Estevez-Tapiador and Almudena Alcaide
Computer Science Department, Carlos III University of Madrid

Avda. Universidad 30, 28911, Leganés, Madrid (Spain)
{jestevez, aalcaide}@inf.uc3m.es

Abstract

Recently, Nenadić et al. (2004) proposed the RSA-CEGD protocol for
certified delivery of e-goods. This is a relatively complex scheme based
on verifiable and recoverable encrypted signatures (VRES) to guarantee
properties such as strong fairness and non-repudiation, among others. In
this paper, we demonstrate how this protocol cannot achieve fairness by
presenting a severe attack and also pointing out some other weaknesses.

Keywords: Cryptographic protocols; Fair exchange; Non-repudiation;

1 Introduction

Interest in protocols for fair exchange of information with non-repudiation stems
from its importance in many applications where disputes among parties can oc-
cur. Assurance of these properties enables the deployment of a wide range of
applications, such as certified e-mail or business transactions through communi-
cation networks. As a result, fair non-repudiation has experienced an explosion
of proposals in recent years (see [3] for an excellent survey).

Nevertheless, fairness and non-repudiation have not been so extensively stud-
ied as other classic issues, such as confidentiality or authentication. Previous
experience in these contexts has shown that designing security protocols is an
error-prone task. Consider, as an illustrative example, a non-repudiation pro-
tocol proposed in 1996 by Zhou and Gollman [7] that was verified and proved
correct using three different methods [1, 5, 8]. Surprisingly, in 2002 Gürgens
and Rudolph demonstrated the absence of fair non-repudiation in that protocol
under reasonable assumptions [2]. In this case, possible attacks were detected
after an analysis performed with a different formalism that considered scenarios
not checked before.

The RSA-CEGD protocol [4] was recently proposed for certified delivery of
e-goods, i.e. commercial products that can be represented in electronic form
and transmitted over open networks. The scheme is designed to satisfy six ma-
jor security requirements: non-repudiation of origin; non-repudiation of receipt;

1



strong fairness; e-goods content/quality assurance; e-goods and receipt confi-
dentiality; and transparency of the STTP. In this paper we demonstrate that
this protocol suffers from severe security problems, and some of the require-
ments mentioned above cannot be satisfied. In particular, we present attacks
that show how the protocol does not assure fairness.

The rest of this paper is organized as follows. Section 2 introduces the
notation and briefly reviews the RSA-CEGD protocol. Section 3 discusses the
vulnerabilities and illustrate them through specific attack scenarios. Finally,
Section 4 summarizes the paper by presenting some conclusions.

2 Overview of the RSA-CEGD protocol

For readability and completeness, we first provide a brief review of the RSA-
CEGD protocol.

2.1 Notation

Throughout this paper, we will use the same notation introduced by the authors
in the original paper [4]. The protocol’s items and cryptographic symbols are
described below.

• Pa, Pb, Pt: different protocol parties, where Pa is the e-goods provider
(message sender) and Pb is the purchaser (message receiver). Pt acts as
a Semi-Trusted Third Party (STTP).

• Da: e-goods to be purchased.

• ka: symmetric key used by Pa to encrypt Da.

• ra : random prime generated by Pa.

• xa = (ra × ka) mod na : encryption of key ka with random number ra

• CertDa = (desca, hda, ha, eka, signCA) : certificate for Da issued by a
CA, where:

– desca = description (content summary) of Da

– hda = h(Eka(Da)) : hash value of the encryption of Da with key ka

– ha = h(Da) : hash value of Da

– eka = Epka(ka) : encryption of the key ka with Pa’s public key, pka

• Eska(hda) : Pa’s RSA signature on Da serving as a proof of origin of Da

• ya = Epka(ra) : RSA encryption of number ra with key pka

• rb : random prime generated by Pb for the generation of the VRES
(yb, xb, xxb).

2



The exchange sub-protocol
E1: Pa → Pb : Eka

(Da), CertDa, xa, Eska
(ha)

E2: Pb → Pa : (xb, xxb, yb), sb, Cbt

E3: Pa → Pb : ra

E4: Pb → Pa : rb

The recovery sub-protocol
R1: Pa → Pt : Cbt, yb, sb, ya, ra

R2: Pt → Pa : rb

R3: Pt → Pb : ra

Figure 1: The RSA-CEGD protocol.

• recb = (ha)db mod nb : Pb’s receipt for Pa’s e-goods Da, i.e. Pb’s RSA
signature on Da

• (yb, xb, xxb) : Pb’s VRES, where

– yb = rb
eb mod (nb×nbt) : encryption of rb with Pb’s public key. Also

recoverable by Pt

– xb = (rb × (ha)db) mod nb = (rb × recb) mod nb : encryption of recb

with rb

– xxb = (rb × Eskbt
(h(yb))) mod nbt : control number that confirms

the correct use of rb

• Cbt = (pkbt, wbt, sbt) : Pb’s RSA public-key certificate issued by Pt

• pkbt = (ebt, nbt) : public RSA key related to Cbt, with ebt = eb

• skbt = (dbt, nbt) : private RSA key related to Cbt

• wbt = (h(skt, pkbt)−1 × dbt) mod nbt

• sbt = Eskt(h(pkbt, wbt)) : Pt’s signature on h(pkbt, wbt)

• sb = Eskb
(h(Cbt, yb, ya, Pa)) : Pb’s recovery authorization token.

2.2 Exchange and recovery sub-protocols

The RSA-CEGD is an optimistic fair exchange protocol composed of two sub-
protocols, as shown in Fig. 1. As usual, the exchange sub-protocol is used to
carry out the exchange between parties without any TTP’s involvement. In case
the process fails to complete successfully, a recovery protocol can be invoked to
handle this situation.

The notion of verifiable and recoverable encrypted signature (VRES) under-
lies at the core of the RSA-CEGD protocol. A VRES is basically an encrypted

3



signature, which acts as a receipt from the receiver’s point of view, with two main
properties. First, it can be verified : the receiver is assured that the VRES con-
tains the expected signature without obtaining any valuable information about
the signature itself during the verification process. And second, the receiver is
assured that the original signature can be recovered with the assistance of a
designated TTP in case the original sender refuses to do it.

Due to these two properties, the VRES becomes an interesting cryptographic
primitive upon which fairness can be provided. The RSA-CEGD protocol relies
on this element within the general scheme we sketch in what follows:

1. A ciphers the message with an encryption key and sends it to B.

2. B generates the VRES of his signature and sends it back to A.

3. Upon successful verification of the VRES, A is assured that it is secure
for her to send the decryption key to B, so he can access the message.

4. Finally, B sends his original signature to A as a receipt. In case he refuses,
a TTP can recover the signature from the VRES, thus restoring fairness.

The RSA-CEGD protocol makes use of a novel VRES method based on the
RSA system, hence its name. The idea stems from the so-called theory of cross-
decryption [6], which establishes that an RSA encrypted text can be decrypted
by using two different keys if both pairs of secret/public keys are appropriately
chosen. Party B is enforced to use a key of this kind to encrypt the VRES,
while the TTP retains the other. This way, if subsequently B refuses to provide
A with his signature, the TTP is able to recover it from the VRES.

3 Protocol vulnerabilities

Before stating specific attack scenarios, note that:

1. The VRES received by party Pa in step E2 contains the receipt recb,
though it is not directly accessible to her. However, party Pa is provided
with all the information required by the STTP to assist Pa in the recovery
of the receipt, i.e. the authorization token sb and Pb’s certificate Cbt.

2. Items < (xb, xxb, yb), sb, Cbt > do not contain themselves any link to the
current protocol execution. They only refer to the e-goods Da, the receipt
recb, an authorization to Pa, Pb’s certificate, and the random numbers ra

and rb.

3. The STTP can restore fairness only upon Pa request. Party Pb has no
means to invoke a recovery sub-protocol. This puts Pa in an advantageous
position with respect to the other party.

Invocation of the recovery sub-protocol by party Pa will provide Pb with the
number ra, thus being able to recover the encryption key and, hence, access

4



Pa Pb

Run 1

(2) E2Run1

(1) E1Run1

Pa Pb

Pt

(3) R1Run1 (4) R2Run1 (5) R3Run1

Run 2

(2) E2Run2

(1) E1Run2

Figure 2: Scheme of the attack.

the e-goods Da. Nevertheless, Pa can appeal to the STTP during a different
protocol execution, since the information required to access the receipt does not
identify the protocol session. In this scenario, the recovery sub-protocol also
sends number ra to Pb. However, the protocol specification does not require Pb

to try the key received on messages of previous exchanges. In other words, is
not reasonable to assume that Pb stores all proofs he ever received, especially
those related to previous, unsuccessful exchanges.

As a result of the scheme outlined above, party Pa obtains a valid proof
(receipt) of Pb having received e-goods Da. Pb, on the other hand, does not
has access to e-goods Da (or is not aware that he has received the correct
decryption key). Thus, non-repudiation is not satisfied and the protocol does
not provide fairness for Pb. This situation is described in detail in the attack
scenario described in the following section. Furthermore, some other weaknesses
are pointed out in Section 3.2.

3.1 A replay attack

The basic scenario is graphically sketched in Fig. 2. The attack is executed
through two different protocol runs between the same parties, Pa and Pb. This
is not a strong assumption, since it is reasonable to expect that Pb wish to buy
several e-goods to the same seller.

During the first protocol running, Pa carries out step E1 and then waits for
the VRES, the authorization token, and Pb’s certificate. We assume that Pa

performs the required verifications on these items, so she is assured they are
valid. At this point, Pa aborts the protocol. In fact, there is no abort procedure
per se, so she only does not continue with step E3. Note as well that Pb has no
means to invoke a recovery sub-protocol in this situation.

5



Now Pa owns the received items:

< (xb, xxb, yb), sb, Cbt >

and also number ra and its signature, ya. From these, Pa constructs and stores
the following message:

m1 =< Cbt, yb, sb, ya, ra >

Suppose that subsequently Pb contacts Pa to initiate another exchange aimed
at buying a different e-good, say D′

a. Again, Pa follows step E1 and, after E2,
she receives:

< (x′b, xx′b, y
′
b), s

′
b, Cbt >

from Pb. Then, Pa aborts the exchange sub-protocol and starts an instance of
the recovery sub-protocol. According to the protocol semantics, it is expected
that Pa sends the following items to the STTP in step R1:

m2 =< Cbt, y
′
b, s

′
b, y

′
a, r′a >

However, Pa chooses m1 as the message to send. As this is a valid proof,
the STTP will recover numbers rb and ra, which will be sent to Pa and Pb,
respectively. The key point is that both numbers are not related with the
current protocol execution, but with the previous one. This way, Pa can use rb

to obtain the receipt recb contained in m1. Even though Pb also receives ra, this
number is useless for him to recover the key required to access D′

a. In fact, this
ra might provide Pb with access to the former e-goods he tried to buy. However,
in all likelihood he is not aware of this.

As a result, Pa has a valid receipt of Pb having received e-goods Da, though
Pb does not actually owns it. Therefore, the protocol does not provide fairness
for Pb.

3.2 Indistinguishability of evidences of origin

Parties’ identities are not included in the receipt, nor any other information
related with the current protocol execution. Even using authenticated channels,
evidences obtained do not link together the sender, the originator, the receiver,
the current protocol execution, etc. This fact yields to a weakness related to the
indistinguishability of evidences exchanged during the protocol, in particular,
evidence of origin (EOO).

Suppose Pa and Pb perform a protocol execution, so finally Pb obtains Da

and an EOO = Eska(hda), where hda = h(Eka(Da)). This evidence does not
assure itself that Pb is the intended receiver. In other words, if the exchange
would have been carried out between parties Pa and Pc, then the EOO received
by Pc would have been identical (assuming that the same symmetric key, ka is
used). This way, once Pb owns Da and EOO, he might provide another party,
Pc, with both items by using a traditional channel. As a result, Pc possesses the
e-goods coupled with a valid EOO for her. Party Pa, on the other hand, does
not own a receipt issued by Pc. Consequently, the protocol neither provides
fairness for Pa.

6



4 Conclusions

In this paper, we have demonstrated how the RSA-CEGD protocol suffers from
severe vulnerabilities. Our attacks show up that this scheme can lead to an
unfair situation for any of the two parties involved in the exchange. To the best
of our knowledge, the aforementioned weaknesses have not been pointed out
before.

References

[1] G. Bella and L. Paulson. “Mechanical Proofs about a Non-repudiation
Protocol”. Proc. 14th Intl. Conf. Theorem Proving in Higher Order Logic.
LNCS, pp.91–104. Springer-Verlag, 2001.

[2] S. Gürgens and C. Rudolph. “Security Analysis of (Un-) Fair Non-
repudiation Protocols”, FASec 2002, LNCS 2629, pp. 97–114. Springer-
Verlag, 2002.

[3] S. Kremer, O. Markowitch, and J. Zhou. “An intensive survey of fair non-
repudiation protocols”. Computer Comunications, 25(17):1606–1621. Else-
vier, 2002.

[4] A. Nenadić, N. Zhang, B. Cheetham, and C. Globe. “A Security Protocol
for Certified E-goods Delivery”, Proc. IEEE Int. Conf. Information Tech-
nology, Coding, and Computing (ITCC’04), Las Vegas, NV, USA, IEEE
Computer Society, 2004, pp. 22–28.

[5] S. Schneider. “Formal Analysis of a Non-repudiation Protocol”. IEEE Com-
puter Security Foundations Workshop. IEEE Computer Society Press, 1998.

[6] I. Ray and I. Ray. “An Optimistic Fair Exchange E-commerce Protocol
with Automated Dispute Resolution”. Proc. Int. Conf. E-Commerce and
Web Technologies, EC-Web 2000. LNCS 1875, pp. 84–93. Springer-Verlag,
2000.

[7] J. Zhou and D. Gollman. “A fair non-repudiation protocol”. Proc. 1996
Symp. on Research in Security and Privacy, pp. 55–61. Oakland, CA, USA.
IEEE Computer Society Press, 1996.

[8] J. Zhou and D. Gollman. “Towards verification of non-repudiation proto-
cols”. Proc. 1998 Intl. Refinement Workshop and Formal Methods Pacific,
pp. 370–380. 1998.

7


