On the affine classification of cubic bent functions

Sergey Agievich
National Research Center for Applied Problems of Mathematics and Informatics
Belarusian State University

Fr. Skorina av. 4, 220050 Minsk, Belarus
agievich@bsu.by

Abstract

We consider cubic boolean bent functions, each cubic monomial of which contains the same variable. We investigate canonical forms of these functions under affine transformations of variables. In particular, we refine the affine classification of cubic bent functions of 8 variables.

1 Preliminaries

Let V_{n} be an n-dimensional vector space over the field \mathbb{F}_{2}, and \mathcal{F}_{n} be the set of all boolean functions $V_{n} \rightarrow \mathbb{F}_{2}$. We identify a function $f \in \mathcal{F}_{n}$ of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with its algebraic normal form, that is, a polynomial of the ring $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ reduced modulo the ideal $\left(x_{1}^{2}-\right.$ $x_{1}, \ldots, x_{n}^{2}-x_{n}$). Denote by $\operatorname{deg} f$ the degree of such polynomial.

The Walsh-Hadamard transform associates with $f \in \mathcal{F}_{n}$ the function

$$
\hat{f}(\mathbf{u})=\sum_{\mathbf{x} \in V_{n}} \chi(f(\mathbf{x})+\mathbf{x} \cdot \mathbf{u}), \quad \mathbf{u} \in V_{n}
$$

where $\chi(a)=(-1)^{a}$ is the additive character of \mathbb{F}_{2} and $\mathbf{x} \cdot \mathbf{u}$ is the dot product of two vectors. Denote by $\hat{\mathcal{F}}_{n}$ the image of \mathcal{F}_{n} under the mapping $f \mapsto \hat{f}$.

Let \mathcal{B}_{n} be the set of all boolean bent functions of n variables: $f \in \mathcal{B}_{n}$ if $|\hat{f}(\mathbf{u})|=2^{n / 2}$ for all $\mathbf{u} \in V_{n}$. Bent functions were introduced by Rothaus in 1976 [7], and since then have been widely studied. It is clear that $\mathcal{B}_{n} \neq \varnothing$ only for even n. Therefore, when we write \mathcal{B}_{n}, we mean that n is even.

Let $\mathbf{A G L}_{n}$ be the general affine group of transformations of V_{n}. An element $\sigma \in \mathbf{A G L}_{n}$ acts as follows: $\sigma(\mathbf{x})=\mathbf{x} A+\mathbf{b}$, where A is an invertible $n \times n$ matrix over $\mathbb{F}_{2}, \mathbf{b} \in V_{n}$. Extend the action of $\mathbf{A G L} \mathbf{L}_{n}$ on \mathcal{F}_{n} in a natural way:

$$
\sigma(f)(\mathbf{x})=f(\mathbf{x} A+\mathbf{b})
$$

and call two functions affine equivalent if one can be obtained from the other by a transformation $\sigma \in \mathbf{A G L}_{n}$ and addition of an affine function $l(\operatorname{deg} l \leq 1)$.

It is known that affine equivalent functions are both bent or both not bent. In this connection it would be interesting to find the number and representatives of affine equivalence classes of \mathcal{B}_{n}.

By Dickson's theorem (see, for example, [6]), any quadratic function $f\left(x_{1}, \ldots, x_{n}\right)$ is affine equivalent to the function

$$
\begin{equation*}
x_{1} x_{2}+\ldots+x_{2 m-1} x_{2 m} \tag{1}
\end{equation*}
$$

The number $2 m$ here is determined uniquely and called the rank of $f(\operatorname{rank} f)$. It is known that f is bent iff rank $f=n$ and, consequently, every quadratic bent function of n variables is affine equivalent to the function (11) with $m=n / 2$.

Unfortunately, obtaining similar classification even for cubic bent functions is a more complex problem. Today, such classification is completed only for $n=6$: any cubic bent function of 6 variables is affine equivalent to one of the three functions given by Rothaus in [7.

Hou in [5] has considered cubic bent functions of 8 variables. Using the classification of cubic forms (see [2, [4]), Hou stated that any such function $f(\mathbf{x}), \mathbf{x} \in V_{8}$, is affine equivalent to one of the following:

$$
\begin{aligned}
& f_{1}(\mathbf{x})=x_{1} x_{2} x_{3}+q_{1}(\mathbf{x}) \\
& f_{2}(\mathbf{x})=x_{1} x_{2} x_{3}+x_{2} x_{4} x_{5}+q_{2}(\mathbf{x}) \\
& f_{3}(\mathbf{x})=x_{1} x_{2} x_{7}+x_{3} x_{4} x_{7}+x_{5} x_{6} x_{7}+q_{3}(\mathbf{x}) \\
& f_{4}(\mathbf{x})=x_{1} x_{2} x_{3}+x_{2} x_{4} x_{5}+x_{3} x_{4} x_{6}+q_{4}(\mathbf{x}) \\
& f_{5}(\mathbf{x})=x_{1} x_{2} x_{3}+x_{2} x_{4} x_{5}+x_{3} x_{4} x_{6}+x_{1} x_{4} x_{7}+q_{5}(\mathbf{x})
\end{aligned}
$$

where $\operatorname{deg} q_{i}=2$. Thus, to complete the classification, it remains to refine the functions q_{i}. Hou refined q_{1}, further we will refine q_{2} and q_{3}.

We will use the following observation: each cubic monomial of f_{2} contains the variable x_{2} and each cubic monomial of f_{3} contains x_{7}. In accordance with this observation, consider cubic bent functions of the form

$$
\begin{equation*}
f(u, v, \mathbf{x})=u a(v, \mathbf{x})+b(u, v, \mathbf{x}), \quad \mathbf{x} \in V_{n}, \quad \operatorname{deg} a=2, \quad \operatorname{deg} b \leq 2 \tag{2}
\end{equation*}
$$

Let us examine the properties of such functions.

2 Results

Before proceeding, recall the notion of bent rectangles from [1. Let $f \in \mathcal{F}_{n}$ and m, k be positive integers such that $n=m+k$. Define the function

$$
f(\mathbf{u}, \mathbf{v})=\sum_{\mathbf{y} \in V_{k}} \chi(f(\mathbf{u}, \mathbf{y})+\mathbf{v} \cdot \mathbf{y}), \quad \mathbf{u} \in V_{m}, \quad \mathbf{v} \in V_{k},
$$

and call it the rectangle of f. Denote by $\stackrel{\square}{\mathcal{F}}_{m, k}$ the set of all such rectangles.
For a fixed \mathbf{u} call the mapping $\mathbf{v} \mapsto f(\mathbf{u}, \mathbf{v})$ a column of f. Analogously, for a fixed \mathbf{v} call the mapping $\mathbf{u} \mapsto \stackrel{\square}{f}(\mathbf{u}, \mathbf{v})$ a row of f. By definition, each row of \bar{f} is an element of $\hat{\mathcal{F}}_{k}$. If furthermore each column of f multiplied by $2^{(m-k) / 2}$ is an element of $\hat{\mathcal{F}}_{m}$, then the rectangle f is called bent.

In [1] we pointed out the following correspondence between bent functions and bent rectangles.

Proposition 1. A function $f \in \mathcal{F}_{m+k}$ is bent if and only if a rectangle $\underset{f}{f} \in \stackrel{\square}{\mathcal{F}}_{m, k}$ is bent.
Using 2-row bent rectangles $f \in \stackrel{\square}{\mathcal{F}}_{1, n+1}$, we can proof the following result.
Proposition 2. A cubic bent function of the form (2) is affine equivalent to the function

$$
\begin{equation*}
u(h(\mathbf{x})+v)+g(\mathbf{x}), \tag{3}
\end{equation*}
$$

where $h(\mathbf{x})=x_{1} x_{2}+\ldots+x_{2 m-1} x_{2 m}$ and g is a quadratic bent function such that $g+h$ is also bent.

Let $\operatorname{Stab}_{\mathbf{A G L}_{n}}(h)$ be the stabilizer of h in $\mathbf{A G L} \mathbf{L}_{n}$, that is, the set of all $\sigma \in \mathbf{A G L}_{n}$ such that $\sigma(h)=h$. To refine (3), we have the following possibilities:
(a) apply to g transformations of $\operatorname{Stab}_{\mathbf{A G L}_{n}}(h)$,
(b) add h to g by replacing u with $u+1$.

Proceed with the transformations (a). We need to know the canonical form to which we can reduce a quadratic bent function $g(\mathbf{x})$ by elements of $\operatorname{Stab}_{\mathbf{A G L}_{n}}\left(x_{1} x_{2}+\ldots+x_{2 m-1} x_{2 m}\right)$. Let us state a result in this direction. It will be convenient to rename variables and talk about a classification of quadratic bent functions $g(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{y} \in V_{m}, \mathbf{z} \in V_{2 k}$, under the action of $\operatorname{Stab}_{\mathbf{A G L}_{2(m+k)}}(\mathbf{x} \cdot \mathbf{y})$.

Before stating the result, define for $r=1,2, \ldots$ the function

$$
\rho\left(\mathbf{x}, \mathbf{y}, z_{1}, z_{2}\right)=y_{1} z_{1}+x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{r-1} y_{r}+x_{r} z_{2}, \quad \mathbf{x}, \mathbf{y} \in V_{r},
$$

and call it the chain of rank $2 r+2$. For $r=0$ and "empty" vectors \mathbf{x}, \mathbf{y} call $\rho\left(\mathbf{x}, \mathbf{y}, z_{1}, z_{2}\right)=$ $z_{1} z_{2}$ the chain of rank 2 . Denote by

$$
C\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & \alpha_{1} \\
1 & 0 & \ldots & 0 & \alpha_{2} \\
0 & 1 & \ldots & 0 & \alpha_{3} \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & 1 & \alpha_{r}
\end{array}\right)
$$

the companion matrix of the polynomial $p(\lambda)=\alpha_{1}+\alpha_{2} \lambda+\ldots+\alpha_{r} \lambda^{r-1}+\lambda^{r}$. The characteristic polynomial of $C=C\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ equals $p(\lambda)$ and C is invertible iff $\alpha_{1} \neq 0$.

Lemma. Any quadratic bent function $g(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{y} \in V_{m}, \mathbf{z} \in V_{2 k}$, by a transformation of $\operatorname{Stab}_{\mathbf{A G L}_{2(m+k)}}(\mathbf{x} \cdot \mathbf{y})$ and addition of an affine function can be reduced to the form

$$
\sum_{i=1}^{k} \rho_{i}\left(\mathbf{x}_{i}, \mathbf{y}_{i}, z_{2 i-1}, z_{2 i}\right)+\mathbf{y}_{k+1} Q \mathbf{x}_{k+1}^{\mathrm{T}}
$$

where
(i) $\mathbf{x}_{i}, \mathbf{y}_{i} \in V_{m_{i}}, i=1, \ldots, k+1$, such that $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k+1}\right)=\mathbf{x}$ and $\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k+1}\right)=\mathbf{y}$;
(ii) ρ_{i} is the chain of rank $2 m_{i}+2, i=1, \ldots, k$;
(iii) Q is the uniquely determined square matrix of order m_{k+1}, "empty" for $m_{k+1}=0$ and having the form

$$
Q=\operatorname{diag}\left(C_{1}, \ldots, C_{d}\right)
$$

for $m_{k+1}>0$. In the last case C_{i} are invertible companion matrices with characteristic polynomials $p_{i}(\lambda)$ such that $p_{1}(\lambda)\left|p_{2}(\lambda), p_{2}(\lambda)\right| p_{3}(\lambda), \ldots, p_{d-1}(\lambda) \mid p_{d}(\lambda)$.

Interesting in view of Proposition 2 quadratic bent functions $g(\mathbf{x}, \mathbf{y}, \mathbf{z})$ have the additional property: $g(\mathbf{x}, \mathbf{y}, \mathbf{z})+\mathbf{x} \cdot \mathbf{y}$ is also bent. This property imposes the following restriction on Q : the addition of 1 to its diagonal elements keeps the matrix invertible. Hence, if $C_{i}=$ $C_{i}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is a diagonal companion matrix of Q, then $r \geq 2$ and $\alpha_{2}+\ldots+\alpha_{r}=1$.

Example. Let $m+k=3$. Under the stated restrictions on the diagonal matrices of Q, the function $g(\mathbf{x}, \mathbf{y}, \mathbf{z})$ by a transformation of $\mathbf{A G L}_{6}(\mathbf{x} \cdot \mathbf{y})$ and addition of an affine function can be reduced to one of the following forms:

$m=1$	$m=2$	$m=3$
$y_{1} z_{1}+x_{1} z_{2}+z_{3} z_{4}$	$y_{1} z_{1}+x_{1} y_{2}+x_{2} z_{2}$	$x_{1} y_{2}+x_{2} y_{3}+x_{3}\left(y_{1}+y_{2}\right)$
	$x_{1} y_{2}+x_{2}\left(y_{1}+y_{2}\right)+z_{1} z_{2}$	$x_{1} y_{2}+x_{2} y_{3}+x_{3}\left(y_{1}+y_{3}\right)$

Concentrate on the case $m=3, k=0$. We have two canonical functions $\mathbf{y} Q \mathbf{x}^{\mathrm{T}}$ and $\mathbf{y} \tilde{Q} \mathbf{x}^{\mathrm{T}}$, where

$$
Q=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \tilde{Q}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Let I_{r} be the identity $r \times r$ matrix. The characteristic polynomial of $Q+I_{3}$ coincides with the characteristic polynomial of \tilde{Q} and we can choose an invertible matrix S such that

$$
S^{-1}\left(\tilde{Q}+I_{3}\right) S=Q
$$

It means that by adding the function $\mathbf{x} \cdot \mathbf{y}$ to $\mathbf{y} \tilde{Q} \mathbf{x}^{T}$ and then applying the transformation $(\mathbf{x}, \mathbf{y}) \mapsto\left(\mathbf{x} S^{\mathrm{T}}, \mathbf{y} S^{-1}\right)$ of $\operatorname{Stab}_{\mathbf{A G L}_{6}}(\mathbf{x} \cdot \mathbf{y})$, we get the function $\mathbf{y} Q \mathbf{x}^{\mathrm{T}}$.

Using the example above, we immediately obtain the following result that actually contains refinements of the functions f_{1}, f_{2}, f_{3} from the previous section.

Proposition 3. Let $f\left(u, v, x_{1}, \ldots, x_{6}\right)$ be a cubic bent function of the form (2). Then f is affine equivalent to one of the following functions:

$$
\begin{aligned}
& u\left(x_{1} x_{2}+v\right)+x_{1} x_{3}+x_{2} x_{4}+x_{5} x_{6} \\
& u\left(x_{1} x_{2}+x_{3} x_{4}+v\right)+x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}, \\
& u\left(x_{1} x_{2}+x_{3} x_{4}+v\right)+x_{1} x_{4}+x_{3}\left(x_{2}+x_{4}\right)+x_{5} x_{6}, \\
& u\left(x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+v\right)+x_{1} x_{4}+x_{3} x_{6}+x_{5}\left(x_{2}+x_{4}\right) .
\end{aligned}
$$

Now, to complete the affine classification of \mathcal{B}_{8}, it remains to refine quadratic parts of the functions f_{4} and f_{5}. Note that every cubic monomial of these functions contains at least one of the variables x_{1}, x_{4} (or, for example, x_{2}, x_{4}) and it is promising to use 4 -row bent rectangles for the classification.

3 Proofs

Proof of Proposition 1

Let $f \in \mathcal{B}_{n}$. Define the function $g \in \mathcal{F}_{n}$ by the rule

$$
\chi(g(\mathbf{v}, \mathbf{u}))=2^{-n / 2} \hat{f}(\mathbf{u}, \mathbf{v}), \quad \mathbf{u} \in V_{k}, \quad \mathbf{v} \in V_{m}
$$

and determine the corresponding rectangle $\stackrel{\square}{g} \in \stackrel{\square}{\mathcal{F}}_{k, m}$:

$$
\begin{aligned}
g(\mathbf{v}, \mathbf{u}) & =2^{-n / 2} \sum_{\mathbf{x} \in V_{m}} \hat{f}(\mathbf{x}, \mathbf{v}) \chi(\mathbf{u} \cdot \mathbf{x}) \\
& =2^{-n / 2} \sum_{\mathbf{x} \in V_{m}} \sum_{\mathbf{w} \in V_{m}} \sum_{\mathbf{y} \in V_{k}} \chi(f(\mathbf{w}, \mathbf{y})+\mathbf{x} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{y}+\mathbf{u} \cdot \mathbf{x}) \\
& =2^{-n / 2} \sum_{\mathbf{y} \in V_{k}} \sum_{\mathbf{w} \in V_{m}} \chi(f(\mathbf{w}, \mathbf{y})+\mathbf{v} \cdot \mathbf{y}) \sum_{\mathbf{x} \in V_{m}} \chi((\mathbf{w}+\mathbf{u}) \cdot \mathbf{x}) .
\end{aligned}
$$

Since for $\mathbf{a} \in V_{m}$,

$$
\sum_{\mathbf{x} \in V_{m}} \chi(\mathbf{a} \cdot \mathbf{x})=\left\{\begin{aligned}
2^{m}, & \mathbf{a}=\mathbf{0} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

we have

$$
g(\mathbf{v}, \mathbf{u})=2^{m-n / 2} \sum_{\mathbf{y} \in V_{k}} \chi(f(\mathbf{u}, \mathbf{y})+\mathbf{v} \cdot \mathbf{y})=2^{(m-k) / 2} \frac{\square}{f}(\mathbf{u}, \mathbf{v}) .
$$

Therefore, each column of f multiplied by $2^{(m-k) / 2}$ is an element of $\hat{\mathcal{F}}_{m}$ and ${ }^{\square}$ is bent.
Conversely, if f is bent then $\stackrel{\square}{g}(\mathbf{v}, \mathbf{u})=2^{(m-k) / 2}{ }_{f}^{\square}(\mathbf{u}, \mathbf{v})$ is well defined rectangle that corresponds to the function $g(\mathbf{v}, \mathbf{u}), \chi(g(\mathbf{v}, \mathbf{u}))=2^{-n / 2} \hat{f}(\mathbf{u}, \mathbf{v})$. Hence $|\hat{f}(\mathbf{u}, \mathbf{v})|=2^{n / 2}$ for all \mathbf{u}, \mathbf{v} and f is bent.

Proof of Proposition 2

Let $f(u, v, \mathbf{x})$ have the form (2). Construct the rectangle $\stackrel{\square}{f} \in \stackrel{\square}{\mathcal{F}}_{1, n+1}$. The rows of $\stackrel{\square}{f}$ are results of applying the Walsh-Hadamard transform to the functions

$$
f_{1}(v, \mathbf{x})=b(0, v, \mathbf{x}), \quad f_{2}(v, \mathbf{x})=a(v, \mathbf{x})+b(1, v, \mathbf{x}) .
$$

The functions f_{i} are quadratic and Dickson's theorem yields

1) $\left|\hat{f}_{i}(\mathbf{w})\right| \in\left\{0,2^{n+1-\operatorname{rank} f_{i} / 2}\right\}, \mathbf{w} \in V_{n+1}$;
2) the supports $E_{i} \subset V_{n+1}$ of \hat{f}_{i} are flats of dimensions rank f_{i}.

Examining the restrictions on columns of $\stackrel{\square}{f}$, we conclude that f is bent iff $\operatorname{dim} E_{1,2}=n$ and $E_{1} \cap E_{2}=\varnothing$.

Using an affine transformation of (v, \mathbf{x}), we can make

$$
E_{1}=\left\{(0, \mathbf{x}): \mathbf{x} \in V_{n}\right\}, \quad E_{2}=\left\{(1, \mathbf{x}): \mathbf{x} \in V_{n}\right\} .
$$

It means that f is affine equivalent to the function

$$
u\left(g_{1}(\mathbf{x})+g_{2}(\mathbf{x})+v\right)+g_{1}(\mathbf{x}), \quad g_{i} \in \mathcal{B}_{n}, \quad \operatorname{deg} g_{i}=2
$$

Let $\operatorname{rank}\left(g_{1}+g_{2}\right)=2 m$. Using an affine transformation of \mathbf{x}, we can convert $g_{1}(\mathbf{x})+g_{2}(\mathbf{x})$ to the form $h(\mathbf{x})+l(\mathbf{x})$, where $h(\mathbf{x})=x_{1} x_{2}+\ldots+x_{2 m-1} x_{2 m}$ and l is an affine function. Now replacing now v with $v+l$, we obtain the function

$$
u(h(\mathbf{x})+v)+g(\mathbf{x}), \quad g, g+h \in \mathcal{B}_{n}, \quad \operatorname{deg} g=2
$$

that is affine equivalent to f.

Proof of Lemma

We will use notations that can be easily understood by the following example: the transformation that replaces x_{1} with $x_{1}+x_{2}, y_{2}$ with $y_{2}+y_{1}$ and does not change all other variables is denoted by $\left\{x_{1} \curvearrowright x_{1}+x_{2}, y_{2} \curvearrowright y_{2}+y_{1}\right\}$.

Start the proof with two auxiliary results.
Sublemma 1. Any quadratic bent function $g(\mathbf{x}, \mathbf{y}), \mathbf{x}, \mathbf{y} \in V_{m}$, by a transformation of $\operatorname{Stab}_{\mathbf{A G L}_{2 m}}(\mathbf{x} \cdot \mathbf{y})$ and addition of an affine function can be reduced to the form

$$
\mathbf{y} Q \mathbf{x}^{\mathrm{T}}, \quad Q=\operatorname{diag}\left(C_{1}, \ldots, C_{d}\right)
$$

where C_{i} are invertible companion matrices with characteristic polynomials $p_{i}(\lambda)$ such that $p_{1}(\lambda)\left|p_{2}(\lambda), p_{2}(\lambda)\right| p_{3}(\lambda), \ldots, p_{d-1}(\lambda) \mid p_{d}(\lambda)$. The matrix Q is determined uniquely.

Proof. During the proof we will consecutively eliminate monomials $x_{i} x_{j}$ and $y_{i} y_{j}$ in g, then bring g to the form $\mathbf{y} Q \mathbf{x}^{\mathrm{T}}$ and prove the uniqueness of Q.

1. Write

$$
g(\mathbf{x}, \mathbf{y})=x_{1}\left(a_{2} x_{2}+\ldots+a_{m} x_{m}+b_{1} y_{1}+b_{2} y_{2}+\ldots+b_{m} y_{m}+c\right)+g_{1}\left(x_{2}, \ldots, x_{m}, \mathbf{y}\right) .
$$

If some of the coefficients $a_{i}, b_{i}, i=2, \ldots, m$, are nonzero, then by renumbering the variables x_{i}, y_{i} and interchanging x_{2} and y_{2} if necessary, we can make $b_{2}=1$.

Now by the transformations
(a) $\left\{x_{1} \curvearrowright x_{1}+b_{1} x_{2}, y_{2} \curvearrowright y_{2}+b_{1} y_{1}\right\}$,
(b) $\left\{y_{2} \curvearrowright y_{2}+a_{2} x_{2}+a_{2}\right\}$,
(c) $\left\{y_{2} \curvearrowright y_{2}+a_{i} x_{i}+b_{i} y_{i}+a_{i} b_{i}, x_{i} \curvearrowright x_{i}+b_{i} x_{2}, y_{i} \curvearrowright y_{i}+a_{i} x_{2}\right\}, i=3, \ldots, m$,
and addition of x_{1} if necessary, we bring g to the form

$$
x_{1} y_{2}+g_{2}\left(x_{2}, \ldots, x_{m}, \mathbf{y}\right) .
$$

Applying similar transformations to

$$
g_{2}\left(x_{2}, \ldots, x_{m}, \mathbf{y}\right)=x_{2}\left(a_{3}^{\prime} x_{3}+\ldots+a_{m}^{\prime} x_{m}+b_{1}^{\prime} y_{1}+\ldots+b_{m}^{\prime} y_{m}+c^{\prime}\right)+g_{3}\left(x_{3}, \ldots, x_{m}, \mathbf{y}\right)
$$

and further, at some stage we get the function

$$
x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{r-1} y_{r}+x_{r}\left(\alpha_{1} y_{1}+\ldots+\alpha_{r} y_{r}\right)+g_{4}\left(x_{r+1}, \ldots, x_{m}, \mathbf{y}\right) .
$$

2. Denote $\mathbf{x}_{1}=\left(x_{1}, \ldots, x_{r}\right), \mathbf{y}_{1}=\left(y_{1}, \ldots, y_{r}\right)$ and rewrite this function as

$$
\mathbf{y}_{1} C \mathbf{x}_{1}^{\mathrm{T}}+g_{4}\left(x_{r+1}, \ldots, x_{m}, \mathbf{y}\right),
$$

where $C=C\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is a companion matrix.
The matrices C and C^{T} are similar, that is, there exists an invertible matrix S such that $S^{-1} C S=C^{\mathrm{T}}$. Using the transformation $\left\{\mathbf{x}_{1} \curvearrowright \mathbf{y}_{1} S^{\mathrm{T}}, \mathbf{y}_{1} \curvearrowright \mathbf{x}_{1} S^{-1}\right\}$, we bring g to the form

$$
x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{r-1} y_{r}+x_{r}\left(\alpha_{1} y_{1}+\ldots+\alpha_{r} y_{r}\right)+g_{5}\left(\mathbf{x}, y_{r+1}, \ldots, y_{m}\right)
$$

3. If g_{5} contains the monomial $x_{1} x_{2}$, eliminate it by replacing y_{2} with $y_{2}+x_{2}+1$. Next eliminate the monomials $x_{1} x_{j}, 3 \leq j \leq m$, by the transformations $\left\{y_{2} \curvearrowright y_{2}+x_{j}, y_{j} \curvearrowright y_{j}+x_{2}\right\}$ and the monomials $x_{1} y_{j}, r+1 \leq j \leq m$, by the transformations $\left\{y_{2} \curvearrowright y_{2}+y_{j}, x_{j} \curvearrowright x_{j}+x_{2}\right\}$.

In similar way we can eliminate the monomials $x_{2} x_{3}, \ldots, x_{2} x_{m}, x_{2} y_{r+1}, \ldots, x_{2} y_{m}, x_{3} x_{4}$, $\ldots, x_{r-1} x_{r}, x_{r-1} y_{r+1}, \ldots, x_{r-1} y_{m}$ and hence obtain the function

$$
\begin{aligned}
& x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{r-1} y_{r}+x_{r}\left(\alpha_{1} y_{1}+\ldots+\alpha_{m} y_{m}+\beta_{r+1} x_{r+1}+\ldots+\beta_{m} x_{m}\right) \\
& \quad+g_{6}\left(x_{r+1}, \ldots, x_{m}, y_{r+1}, \ldots, y_{m}\right) .
\end{aligned}
$$

If $\alpha_{r+1}=\ldots=\alpha_{m}=\beta_{r+1}=\ldots=\beta_{m}=0$, we continue to eliminate monomials $x_{i} x_{j}$, $y_{i} y_{j}$ in the function g_{6} of a lesser number of variables. Otherwise, if some of the coefficients $\alpha_{r+1}, \ldots, \alpha_{m}, \beta_{r+1}, \ldots, \beta_{m}$ are nonzero, then return to step 1 , bring g to the form

$$
x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{r^{\prime}-1} y_{r^{\prime}}+x_{r^{\prime}}\left(\alpha_{1}^{\prime} y_{1}+\ldots+\alpha_{r^{\prime}}^{\prime} y_{r^{\prime}}\right)+g_{4}^{\prime}\left(x_{r^{\prime}+1}, \ldots, x_{m}, \mathbf{y}\right), \quad r^{\prime}>r
$$

and repeat steps 2,3 .
4. Using the manipulations above, we can eliminate all monomials $x_{i} x_{j}, y_{i} y_{j}$ and bring g to the form $\mathbf{y} Q \mathbf{x}^{\mathrm{T}}$, where Q is an $m \times m$ matrix. Given an invertible matrix S of order m, we can replace (\mathbf{x}, \mathbf{y}) with $\left(\mathbf{x} S^{\mathrm{T}}, \mathbf{y} S^{-1}\right)$ and thus pass from Q to the similar matrix $\tilde{Q}=S^{-1} Q S$. Under an appropriate choice of S, we can bring Q to the Frobenius canonical form given in the statement.

On the other hand, if g is equivalent to $\mathbf{y} \tilde{Q} \mathbf{x}^{T}$ under the action of $\operatorname{Stab}_{\mathbf{A G L}_{2 m}}(\mathbf{x} \cdot \mathbf{y})$, then the matrices Q and \tilde{Q} are similar. Indeed, the equivalence of $\mathbf{y} Q \mathbf{x}^{T}$ and $\mathbf{y} \tilde{Q} \mathbf{x}^{T}$ means that there exists an invertible matrix A of order $2 m$ such that

$$
A\left(\begin{array}{cc}
0 & I_{m} \\
I_{m} & 0
\end{array}\right) A^{\mathrm{T}}=\left(\begin{array}{cc}
0 & I_{m} \\
I_{m} & 0
\end{array}\right), \quad A\left(\begin{array}{cc}
0 & Q \\
Q^{\mathrm{T}} & 0
\end{array}\right) A^{\mathrm{T}}=\left(\begin{array}{cc}
0 & \tilde{Q} \\
\tilde{Q}^{\mathrm{T}} & 0
\end{array}\right) .
$$

Hence invariant polynomials of the λ-matrices

$$
\left(\begin{array}{cc}
0 & \lambda I_{m}+Q \\
\lambda I_{m}+Q^{\mathrm{T}} & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & \lambda I_{m}+\tilde{Q} \\
\lambda I_{m}+\tilde{Q}^{\mathrm{T}} & 0
\end{array}\right)
$$

are equal (see, for example, [3, ch. 6]). Consequently, invariant polynomials of the λ matrices $\lambda I_{m}+Q$ and $\lambda I_{m}+\tilde{Q}$ are equal too, matrices Q, \tilde{Q} are similar and have the same Frobenius canonical form.

Sublemma 2. Any quadratic bent function $g(\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{x}, \mathbf{y} \in V_{m}, \mathbf{z} \in V_{2 k}, k>0$, that does not contain the monomials $z_{i} z_{j}, 1 \leq i<j \leq 2 k$, by a transformation of $\operatorname{Stab}_{\mathbf{A G L}_{2(m+k)}}(\mathbf{x} \cdot \mathbf{y})$ and addition of an affine function can be reduced to the form

$$
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r-1} y_{r}+x_{r} z_{2}+g^{\prime}\left(x_{r+1}, \ldots, x_{m}, y_{r+1}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right)
$$

Proof. We divide the proof into four steps.

1. Since g does not contain the monomials $z_{1} z_{j}$ and has full rank, g must contain at least one monomial of the form $x_{i} z_{1}$ or $y_{i} z_{1}$, say $y_{1} z_{1}$. Write

$$
g(\mathbf{x}, \mathbf{y}, \mathbf{z})=\left(y_{1}+l_{1}\right)\left(z_{1}+l_{2}\right)+g_{1}\left(\mathbf{x}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right)
$$

where $l_{1}=l_{1}\left(\mathbf{x}, y_{2}, \ldots, y_{m}\right)$ and $l_{2}=l_{2}\left(\mathbf{x}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right)$ are affine functions. Replacing z_{1} with $z_{1}+l_{2}$, then using some of the transformations
(a) $\left\{y_{1} \curvearrowright y_{1}+x_{1}+1\right\}$,
(b) $\left\{y_{1} \curvearrowright y_{1}+x_{i}, y_{i} \curvearrowright y_{i}+x_{1}\right\}, 2 \leq i \leq m$,
(c) $\left\{y_{1} \curvearrowright y_{1}+y_{i}, x_{i} \curvearrowright x_{i}+x_{1}\right\}, 2 \leq i \leq m$,
and adding z_{1} if necessary, we obtain the function

$$
y_{1} z_{1}+g_{2}\left(\mathbf{x}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right)
$$

2. If g_{2} does not contain the monomials $x_{1} z_{j}$, then we proceed as in step 1 of the previous proof and bring g to the form

$$
y_{1} z_{1}+x_{1} y_{2}+g_{3}\left(x_{2}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right)
$$

Continuing with the function g_{3} and further, at some stage we obtain one of the following functions:

$$
\begin{align*}
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r-1} y_{r} & +x_{r}\left(\alpha_{2} y_{2}+\ldots+\alpha_{r} y_{r}\right) \\
& +g_{4}\left(x_{r+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right) \tag{4}
\end{align*}
$$

$$
\begin{equation*}
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r-1} y_{r}+g_{5}\left(x_{r}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{2}, \ldots, z_{2 k}\right) \tag{5}
\end{equation*}
$$

where g_{5} contains a monomial of the form $x_{r} z_{j}$, say $x_{r} z_{2}$.
Consider the function (4). If we replace x_{i} with $x_{i}+\alpha_{i+1} x_{r}, i=1, \ldots, r-1$, we eliminate all monomials that contain x_{r}. Therefore the function (4) is not bent and we reject it.

Rewrite (5) as

$$
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r-1} y_{r}+\left(x_{r}+l_{1}\right)\left(z_{2}+l_{2}\right)+g_{6}\left(x_{r+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right),
$$

where $l_{1}=l_{1}\left(x_{r+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}\right)$ and $l_{2}=l_{2}\left(x_{r+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right)$ are affine functions.

Replacing z_{2} with $z_{2}+l_{2}$, then using some of the transformations
(a) $\left\{x_{r} \curvearrowright x_{r}+x_{i}, y_{i} \curvearrowright y_{i}+y_{r}\right\}, r+1 \leq i \leq m$,
(b) $\left\{x_{r} \curvearrowright x_{r}+y_{i}, x_{i} \curvearrowright x_{i}+y_{r}\right\}, 2 \leq i \leq m, i \neq r$,
(c) $\left\{x_{r} \curvearrowright x_{r}+y_{r}+1\right\}$,
and adding z_{2} if necessary, we bring (5) to the form

$$
\begin{equation*}
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r-1} y_{r}+x_{r} z_{2}+g_{7}\left(x_{r+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right) . \tag{6}
\end{equation*}
$$

3. By the transformations $\left\{x_{r-1} \curvearrowright x_{r-1}+x_{i}, y_{i} \curvearrowright y_{i}+y_{r-1}\right\}$ eliminate the monomials $y_{r} x_{i}$, $r+1 \leq i \leq m$, in (6). Next by the transformations $\left\{x_{r-1} \curvearrowright x_{r-1}+y_{j}, x_{j} \curvearrowright x_{j}+y_{r-1}\right\}$ eliminate the monomials $y_{r} y_{j}, 2 \leq j \leq m, j \neq r-1$. The monomial $y_{r-1} y_{r}$ can be eliminated by replacing x_{r-1} with $x_{r-1}+y_{r-1}+1$. In similar way consecutively eliminate all other monomials $y_{r-1} x_{i}, y_{r-1} y_{j}, \ldots, y_{2} x_{i}, y_{2} y_{j}$. Then eliminate possibly appeared monomials $y_{1} x_{i}$, $y_{1} y_{j}$ by replacing z_{1} with $z_{1}+x_{i}$ or $z_{1}+y_{i}$.

Finally we obtain the function

$$
\begin{align*}
y_{1} z_{1} & +x_{1} y_{2}+\ldots+x_{r-1} y_{r}+x_{r} z_{2} \\
& +\sum_{i=2}^{r} \sum_{j=3}^{2 k} a_{i j} y_{i} z_{j}+g^{\prime}\left(x_{r+1}, \ldots, x_{m}, y_{r+1}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right) . \tag{7}
\end{align*}
$$

4. If some of the coefficients $a_{i j}$ are nonzero, then we proceed as follows
(a) interchange x_{i} and $y_{r+1-i}, i=1, \ldots, r$,
(b) interchange z_{1} and z_{2},
(c) repeat step 2 and obtain the function

$$
y_{1} z_{1}+x_{1} y_{2}+\ldots+x_{r^{\prime}-1} y_{r^{\prime}}+x_{r^{\prime}} z_{2}+g_{7}^{\prime}\left(x_{r^{\prime}+1}, \ldots, x_{m}, y_{2}, \ldots, y_{m}, z_{3}, \ldots, z_{2 k}\right), \quad r^{\prime}<r
$$ instead of (6),

(d) repeat steps 3,4 .

It is clear that after some iteration by the schema above we obtain the function of the form (7), where all the coefficients $a_{i j}=0$.

Return to the proof of Lemma. If g contains a monomial of the form $z_{i} z_{j}$, say $z_{1} z_{2}$, then we can write

$$
g(\mathbf{x}, \mathbf{y}, \mathbf{z})=\left(z_{1}+l_{1}\right)\left(z_{2}+l_{2}\right)+g_{1}\left(\mathbf{x}, \mathbf{y}, z_{3}, \ldots, z_{2 k}\right),
$$

where $l_{1}=l_{1}\left(\mathbf{x}, \mathbf{y}, z_{3}, \ldots, z_{2 k}\right)$ and $l_{2}=l_{2}\left(\mathbf{x}, \mathbf{y}, z_{3}, \ldots, z_{2 k}\right)$ are affine functions. Applying the transformation $\left\{z_{1} \curvearrowright z_{1}+l_{1}, z_{2} \curvearrowright z_{2}+l_{2}\right\}$, we bring g to the form

$$
z_{1} z_{2}+g_{2}\left(\mathbf{x}, \mathbf{y}, z_{3}, \ldots, z_{2 k}\right)
$$

In similar way we can isolate all other monomials of the form $z_{i} z_{j}$, then using sublemmas extract chains $\rho_{i}\left(\mathbf{x}_{i}, \mathbf{y}_{i}, z_{2 i-1}, z_{2 i}\right)$ of ranks $2 m_{i}+2 \geq 4$ and finally fix the term $\mathbf{y}_{k+1} Q \mathbf{x}_{k+1}^{\mathrm{T}}$.

It remains to proof the uniqueness of the matrix Q. Let E and R be the square matrices of order $2(m+k)$ such that

$$
\begin{aligned}
& (\mathbf{x}, \mathbf{y}, \mathbf{z}) R(\mathbf{x}, \mathbf{y}, \mathbf{z})^{\mathrm{T}}=\sum_{i=1}^{k} \rho_{i}\left(\mathbf{x}_{i}, \mathbf{y}_{i}, z_{2 i-1}, z_{2 i}\right)+\mathbf{x}_{k+1} Q \mathbf{y}_{k+1}^{\mathrm{T}} \\
& (\mathbf{x}, \mathbf{y}, \mathbf{z}) E(\mathbf{x}, \mathbf{y}, \mathbf{z})^{\mathrm{T}}=\mathbf{x} \cdot \mathbf{y}
\end{aligned}
$$

Suppose that g can be reduced to yet another function

$$
\sum_{i=1}^{k} \tilde{\rho}_{i}\left(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{y}}_{i}, z_{2 i-1}, z_{2 i}\right)+\tilde{\mathbf{x}}_{k+1} \tilde{Q} \tilde{\mathbf{y}}_{k+1}^{\mathrm{T}}, \quad \tilde{\mathbf{x}}_{i}, \tilde{\mathbf{y}}_{i} \in V_{\tilde{m}_{i}}
$$

that represented by a matrix \tilde{R}. Repeating the arguments of step 4 of the proof of Sublemma 1, we conclude that invariant polynomials of the λ-matrices

$$
S=\left(\begin{array}{cc}
0 & R+\lambda E \\
R^{\mathrm{T}}+\lambda E & 0
\end{array}\right), \quad \tilde{S}=\left(\begin{array}{cc}
0 & \tilde{R}+\lambda E \\
\tilde{R}^{\mathrm{T}}+\lambda E & 0
\end{array}\right)
$$

are coincide. To the chains $\rho_{i}, \tilde{\rho}_{i}$ there correspond blocks of S, \tilde{S} such that all their invariant polynomials are equal to 1 . It yields that invariant polynomials of the λ-matrices $Q+\lambda I_{m_{k+1}}$, $\tilde{Q}+\lambda I_{\tilde{m}_{k+1}}$ are equal and, consequently, $m_{k+1}=\tilde{m}_{k+1}$ and $Q=\tilde{Q}$.

References

1. S. V. Agievich. On the representation of bent functions by bent rectangles. In: Probabilistic Methods in Discrete Mathematics: Proceedings of the Fifth International Petrozavodsk Conference (Petrozavodsk, June 1-6, 2000). Utrecht, Boston: VSP, pp. 121-135, 2002. Available at http://arxiv.org/abs/math.CO/0502087.
2. A. V. Cheremushkin. Methods of the affine and linear classification of binary functions. In: Proceedings on discrete mathematics, vol. 4, Moscow: Fizmatlit, pp. 273-314, 2001 (In Russian).
3. F. R. Gantmacher. The theory of matrices. NY: Chelsea Publishing Co., 1960.
4. X. Hou. $G L(m, 2)$ acting on $R(r, m) / R(r-1, m)$. Discrete Math., vol. 149, pp. 99-122, 1996.
5. X. Hou. Cubic bent functions. Discrete Math., vol. 89, pp. 149-161, 1998.
6. F. J. MacWilliams, N. J. A. Sloane. Theory of error correction codes. Amsterdam: NorthHolland, 1977.
7. O. S. Rothaus. On"bent" functions. J. Comb. Theory, Ser. A, vol. 20, pp. 300-305, 1979.
