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Abstract

Deniable Authentication protocols allow a Sender to authenticate a message for a Receiver,
in a way that the Receiver cannot convince a third party that such authentication (or any
authentication) ever took place.

We present two new approaches to the problem of deniable authentication. The novelty
of our schemes is that they do not require the use of CCA-secure encryption (all previous
known solutions did), thus showing a different generic approach to the problem of deniable
authentication. These new approaches are practically relevant as they lead to more efficient
protocols.

In the process we point out a subtle definitional issue for deniability. In particular we propose
the notion of forward deniability, which requires that the authentications remain deniable even if
the Sender wants to later prove that she authenticated a message. We show that a simulation-
based definition of deniability, where the simulation can be computationally indistinguishable
from the real protocol does not imply forward deniability. Thus for deniability one needs to
restrict the simulation to be perfect (or statistically close). Our new protocols satisfy this
stricter requirement.

1 Introduction

Authentication is arguably the most important security goal in cryptography. When communication
happens over a real-life network we need to make sure that we are talking to the right person and
not with an impostor.

Authentication, thus, has received a lot of attention in the cryptographic literature. Authenti-
cation methods follow the usual distinction between private and public key techniques. In a private
key scenario, two parties Alice and Bob share secret key k and use that to prove to each other that
they are the originators of the messages. Usually this is done by Alice sending a message m to Bob
together with a tag t, which is computed as a function of the message m and the key k. The pair
m, t is verified by Bob as coming from Alice if the tag matches the one that B can compute on his
own, with m and k. The tag is called a message authentication code and must satisfy some security
properties (namely unforgeability) in order for this technique to be meaningful.
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On the other hand in the public key scenario, message authentication has been long associated
with digital signatures [18]. In this case, Alice is publicly associated with a public key pkA which is
matched to a secret key skA known only to her. When Alice wants to authenticate a message m,
again it computes a tag t as a function of the secret key skA and the message m. The tag in this
case is called a digital signature, and again must satisfy some meaningful notion of unforgeability
(see [29]). The interesting twist is that the tag can be verified by anybody using the public key
pkA.

This last property is a very useful feature of digital signatures, as it provides the crucial non-
repudiation property. Once Alice signs a message, she is bound to it. Everybody can verify that
she signed it. This is very useful when digital signatures are used for contracts or commerce
transactions, where conditions must be enforced in case of dispute.

On the other hand, this feature raises important privacy issues. What if Alice wants to say
something very private to Bob, in a way that Bob believes it comes from her, but also in a way
that Bob cannot convince a third party that Alice said such a thing? Or even that Alice spoke to
Bob at all? Clearly digital signatures do not allow Alice to do this.

Notice that message authentication codes do not provide for non-repudiation, as the tag could
be easily computed by the receiver. In other words once Bob gets m, t from Alice, he is convinced
that it comes from her (as apart from Bob she is the only one who can compute t), but Bob can’t
show this to Charlie and convince him that it comes from Alice, as Bob could have computed t on
his own.

But what if Alice and Bob don’t have a shared secret key? They could, in principle, run a key
exchange protocol (see for example [18, 4]). At the end of such protocol Alice and Bob hold a shared
secret key k, and then they could use it to authenticate messages. But since most of the known
key exchange protocols use digital signatures to authenticate the parties running them, at the end
Bob can still convince Charlie that he spoke to Alice, even if not specifically about the subject of
the conversation1.

Deniable Authentication The issue of deniability in public key authentication was brought
forward and formalized by Dwork, Naor and Sahai, in their groundbreaking paper on concurrent
zero-knowledge [21]. The paradigm suggested in [21] is to replace the non-interactive transmittal
of a digital signature, with an interactive communication protocol between Alice and Bob on input
a message m. At the end of the protocol Bob is convinced that Alice wants to authenticate m to
him, but will not be able to convince a third party as his view of the communication can be easily
produced a posteriori even without the knowledge of Alice’s secret key skA. This property is called
deniability.

This protocol should maintain some meaningful unforgeability property, i.e. it should be hard
for an adversary to convince Bob that Alice wants to authenticate a message m.

Dwork et al. point out that, since we are introducing interaction, we should consider what
happens in a concurrent scenario, i.e. one in which an adversary may schedule executions of
protocols and delay messages in arbitrary ways. That is, unforgeability and deniability should
still hold against such a powerful attacker. This turned out to be a very powerful attack model,
especially when considering zero-knowledge protocols.

The basic solution for deniable authentication based on encryption can be summarized as follows
1In fact a careful use of digital signatures in key exchange protocols may prevent Charlie even from proving that

he spoke to Alice, though Alice could not deny that she was “alive” and talking to somebody at some point. See [19]
for their analysis of the deniability properties of the SIGMA key exchange protocol [37].
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(this protocol appeared first in [36], though similar protocols appear also in [20, 21]). Bob chooses
a random key k and encrypts it under Alice’s public key. Alice decrypts such key and uses it to
MAC the message m. Bob’s belief that Alice is really authenticating m comes from the fact that
she is the only one able to decrypt k. On the other hand, Bob could create the whole transcript
on his own, so the authentication is deniable.

Dwork et al. prove the unforgeability of the above scheme in a concurrent setting. The as-
sumption required to prove security is that the encryption scheme must be secure against adaptive
chosen-ciphertext attack (CCA2) [43, 20]. Informally, an encryption scheme E is said to be CCA2-
secure if the secrecy of a message m, encrypted as c = Epk(m), holds up even if an adversary is
allowed to obtain decryption of any ciphertext of her choice (except of course c). It should be clear
why this property is needed in the above scheme: Alice is in effect acting almost like a decryption
oracle, on ciphertexts that are under the control of Bob, whenever asked to authenticate a message
(the “almost” comes from the fact that Alice does not answer directly k, but rather MACk(m)).

Deniability for this basic protocol, however, cannot be proven via a black-box simulation. In
order to make the above scheme black-box simulatable, a basic challenge-response sub-protocol is
added in [21]. However this introduces a rewinding step in the proof, which causes the deniability
property to hold only if copies of the protocol are performed sequentially, and not concurrently. In
order to overcome this problem Dwork et al. introduce timing assumptions on the network to limit
the number of concurrent executions that can be performed by the adversary in the network. We
refer to the above solution as the CCA-paradigm for deniable authentication.

Other approaches: In the literature there are alternatives that require the receiver/verifier to
have a public key: Designated Verifier Proofs [34] create signatures that convince only the intended
recipient (using his public key); Ring Signatures [47] allow a member of an ad hoc group to sign
a message on behalf of the group, i.e. it is impossible to trace the actual signer inside the group.
This solution can be used to create deniable signatures by choosing the sender and the receiver
as members of the group: the signature is deniable as the receiver could have created it too.
Naor in [44] observes that in ring signatures the public keys should be registered with a proof-of-
knowledge of the corresponding secret-key: suppose that the receiver B registers a public key pkB

that is equal (or derived through a suitable one-way function) to A’s one. If the ring signature has
been created using these two public keys the involvement of A in the signature process is hardly
deniable, since B has a way of proving that he does not know its own secret key.

Naor in [44] also presents Deniable Ring Authentication combining the encryption-based ap-
proach of Dwork et al. with Ring Signatures: one member (or a proper sub-structure) of a group
can sign a message in a deniable way towards a receiver that is not required to have a public key.
This solution can be considered as an extension of the CCA-paradigm of Dwork et al.

The requirement of a registered public key for both parties creates a less general model that
does not fit in all practical applications (e.g. the Internet, where most users do not have public
keys). Thus, we can conclude that in the most general setting, where only the prover is required
to own a public key, all the known solutions follow the CCA-paradigm.

1.1 What if the Sender changes her mind?

In the definition of deniable authentication we assume that the Sender wants to preserve his privacy,
and thus prevent the Receiver from proving to a third party that he received a message from the
Sender. However there are scenarios in which deniability is actually a concern to the Receiver’s
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privacy.
Consider the following example. Alice and Bob are involved in some shady transaction, like

drug-dealing or money laundering. Alice wants to make sure that her communications to Bob cannot
be later linked to her, so she uses deniable authentication. Bob thinking that such communication
is indeed deniable, stores all the messages in his hard disk. Later the operation is busted by the
police and Alice and Bob end up in jail, and Bob’s computer is seized. Alice is offered a sweet
deal in exchange for her cooperation in linking Bob to the crime (Bob is claiming the messages in
his hard disk are not coming from Alice, that he never talked to her, actually does not even know
her, they are all simulations!!). Alice produces some piece of secret information (her secret key
for example) that indeed shows that the transcripts in Bob’s hard disk are actually authentic and
not simulations. Bob ends up in jail, cursing himself for dropping out of crypto class in graduate
school.

The above example shows that deniability is not just a concern of the Sender, but also of the
Receiver. What we would like to happen is that if the Sender acts honestly during the protocols,
she should not be able at a later stage to claim the messages as authentic. We call this property
forward deniability, as it has some affinity to the notion of forward secrecy2.

We would like to point out that the above CCA-based paradigm is indeed forward deniable.
However the issue of forward deniability has not been discussed in the literature, and indeed we
show that some proposed deniable protocols are not forward deniable (see below).

1.2 Our Contribution

New Approaches. The first question we asked was: “Are there other approaches to concurrent
deniable authentication, besides the CCA paradigm?”3. We provide a positive answer to this
question. We show that deniable authentication can be constructed out of different primitives.

The question is interesting for both theoretical and practical reasons. On the theoretical front,
it is not clear why to build authentication protocols, encryption must be needed at all. One of
our solutions uses a special kind of non-malleable commitment scheme, thus showing that deniable
authentication, while linked to non-malleability, is not linked to encryption. The practical reason
is that by creating new paradigms for deniable authentication we may end up with more efficient
protocols or protocols based on weaker computational assumptions. This is indeed what we do in
this paper.

We present two new schemes for deniable authentication. The first scheme eliminates the need
for an encryption scheme altogether. We build deniable authentication protocols, using special
kinds of trapdoor commitment schemes (the multi-trapdoor commitments of Gennaro [23]). The
protocols using this approach are incredibly simple and efficient: the cost of the protocol is twice
that of a regular digital signature 4.

2In forward secrecy if a party’s key is compromised, only the secrecy of future messages is compromised, while
past messages are still safe. Here if the Sender is “compromised” at some time t he will not be able to revoke the
deniability from transactions happened before time t.

3As stated in Section 1 , we are investigating in the general setting where only the prover is required to have a
registered public key.

4We note that we are only considering strong deniability in which Alice can deny to have ever authenticated
anything to Bob. For weak deniability, where Bob can prove to have spoken to Alice but not the content of what
Alice authenticated, signature schemes are sufficient as we pointed above in the Introduction, and thus weakly deniable
schemes can be done at the cost of a single signature. In the following when referring to deniability we will always
refer to the strong one.
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The second scheme can be seen as an improvement of the CCA-paradigm when implemented
with the Cramer-Shoup’s CCA schemes in [14]. Namely, we use some specific properties of the
projective hash functions [14] used in those schemes to build a new kind of deniable authentication.
The scheme can still be thought as the encryption of a random key which is then used to MAC the
message; however, it is not clear how to argue that the encryption module is CCA-secure. The net
result is that we save one modular exponentiation compared to the CCA-paradigm solution, and
the transcripts are shorter.

Improved Efficiency and Reductions. Our schemes are very efficient, and require four rounds.
They can be proven secure in a concurrent setting, but the proof of deniability requires timing
assumptions

On the other hand the proof of unforgeability holds even without timing assumption: while
this is not a new feature of our schemes (the CCA-paradigm enjoys it too) it is still remarkable, as
this proof in our commitment-based protocol uses rewinding as well, but in a way that does not
compromise security in unbounded concurrent executions.

An interesting feature of the commitment-based protocol is that in a realistic multi-user setting
(like the one we consider in this paper) the security reduction depends linearly on the number
of players in the network while for the CCA-paradigm protocols the dependency is linear in the
number of sessions. The latter can be a much higher parameter and thus the improvement is not
just a mere theoretical feature but it is important in practice as it guarantees security with much
smaller parameters and consequently improved efficiency.

Forward Deniability. Finally we present a formal definition of forward deniability. We argue
that deniability obtained by proving that the protocol is computational zero-knowledge protocols
is not forward deniability. We also prove that statistical zero-knowledge protocols (including our
new proposals) are forward deniable.

To prove our schemes we present a unifying model to define deniable authentication. To prove
that our protocols are secure authenticators we use the model introduced by Bellare et al. [4].
We then integrate the notion of deniability and forward deniability to it, by adding the required
simulation properties.

1.3 Related Work

As we said above, the first solution is based on the notion of multi-trapdoor commitments [23].
These commitments were inspired by the work on non-malleability by Di Crescenzo, Ishai and
Ostrovsky [16], and a series of works that followed their paradigm (e.g. [17, 35, 15, 41]). In our
solution we exploit in a novel and original way their non-malleability properties in order to obtain
deniable authentication. We note that some of the constructions of simulation-sound commitments
presented in [41] (namely the ones that achieve information-theoretic privacy of the message) can
also be used in our construction5.

The second solution exploits the properties of ε-universal projective hash functions [14], to relax
the requirement on the key establishment mechanism in the CCA paradigm. It is somewhat related
to a recent improvement to the Cramer-Shoup CCA encryption proposed by Kurosawa and Desmedt
[39]. They consider the hybrid version of the Cramer-Shoup cryptosystem described in [49]. There

5If we use the generic construction of simulation-sound commitments based on one-way functions, deniability
is only achieved in the computational sense, and thus no forward deniability is obtained. On the other hand the
number-theoretic constructions yield statistical ZK and forward deniability.
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the encryption scheme is split in a Key Encapsulation Module (KEM) where the Cramer-Shoup
encryption scheme is used to encrypt a random key, and a Data Encapsulation Module where the
message is encrypted and MAC’ed using the above key. Kurosawa and Desmedt note that in this
scenario it is not strictly necessary that the KEM is CCA-secure, and indeed they show how to
convert the Cramer-Shoup KEM in one which is still sufficient for the overall CCA-security of the
hybrid encryption, yet it is not known to be CCA secure itself. The net result is an improvement
in the efficiency of the overall scheme (especially when considering the improved proof of security
presented in [25]). In doing so, however Kurosawa and Desmedt introduced a stronger requirement
on the projective hash functions used in the scheme.

Our work, which was done independently from [39], follows a related path for the case of deniable
authentication. But our solution is conceptually simpler, again because we remove the need to
encrypt anything. Instead of using the projective hash functions to establish a random key (which
is the source of the stronger requirement in [39]), we use it directly as a message authenticator.
Thus the original notion of ε-universality in [14] suffices.

Comparison with Katz’s protocols. The CCA-paradigm for deniable authentication can also
be considered in the context of interactive CCA-secure encryption protocols (exploiting the fact that
since deniable authentication already introduces interaction, then we can use interaction also inside
the encryption step). We point to the results of Katz [35] in this area. The protocols presented
there, exploit the interactive nature of the encryption step, in order to get solutions which are
more efficient than the ones based on the basic CCA-paradigm. In order to achieve interactive
CCA-security, Katz uses proofs of plaintext knowledge for semantic secure encryptions (or even
trapdoor permutations in some cases), combined with a non-malleable commitment scheme.

Our solutions show that if one strengthens the commitments used by Katz to be multi-trapdoor
ones, then the commitments themselves yield efficient deniable authentication protocol. Thus we
dispense with using encryption altogether. The tradeoff is that we use stronger computational
assumptions: while the protocols in [35] can be proven secure based on the regular RSA and
Computational Diffie-Hellman assumptions, the efficient instantiations of our protocols require
either the Strong RSA, DSA, or Strong DH assumptions.

The efficiency of our protocol6 is basically the same as the ones in [35]. However our protocol
does not require one-time signature schemes, making the communication much shorter than in [35].
Finally our security reduction is more efficient as it depends only on the number of parties in the
network, while Katz’s depends on the total number of sessions.

Recent Work. After the publication of the preliminary version of this paper, in [19] we proved
that the basic authentication protocol based on encryption (i.e. the one from [20, 36] without the
challenge-response subprotocol) is not deniable under the mere assumption that E is CCA-secure
(by showing an example of an encryption scheme E which is CCA-secure but when used inside the
protocol yields a non-repudiable proof of authentication). On the other hand [19] proves that the
required assumption on E to prove deniability of this protocol is plaintext-awareness.

In [19] the notion of deniable key exchange is also presented as an extension of the notion of
deniable authentication from [21].

6The protocol in Figure 2 when instantiated with concrete number-theoretic commitments compared to the one
in [35] based on a similar assumption – i.e. comparing the [35] protocol based on RSA (resp. CDH) with ours based
on Strong RSA (resp. Strong DH or DSA).
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1.4 Practical Applications

Deniability is an important privacy-enabling feature of cryptographic protocols and as such has
many important practical applications.

The practical importance of this concept can be seen by the weight that deniability issues have
played in the design of Internet key exchange protocols (see for example [36, 33, 42]).

Another typical example where deniability is important is for electronic elections. There while
it is important that both parties (the voting authority and the voter) authenticate each other (for
the authority to know that the voter has the right to vote, for the voter to know that her vote
will be counted), it is also mandatory to prevent either party from walking away with a non-
repudiable proof of what the actual vote was (the message being authenticated). This application,
in particular, shows the importance of forward deniability: if the voter (sender) is authenticating
her vote to the authority, not only the latter should not be able to prove to a third party how the
voter voted, but even more importantly the voter herself should not be able to do so at a later
stage, to prevent coercion and vote-selling.

Finally we point out that deniable authentication has applications in electronic commerce as
well. As pointed out by Aumann and Rabin [1, 2], the use of deniable authentication, instead of
regular signatures, can be used to communicate confidential terms of a transactions (such as price
offers) without fear that such terms could be shown to a third party in an effort to obtain better
terms (such as a better price offer).

2 The model

This section introduces the model used in the paper for the analysis of the authentication proto-
cols. It was introduced by Bellare et al. [4] as a new modular approach to prove the security of
authentication and key exchange protocols. Here we reuse and extend that idea for the analysis of
protocols for deniable authentication.

This model deals with two kinds of network: an ideal authenticated network and a more realistic
unauthenticated network. The former models a simplified peer-to-peer network of authenticated
links in which the powers of adversary are limited to manage the delivery of the messages exchanged
by the parties (it can’t inject or manipulate messages) and to corrupt some of them. The latter
has characteristics of a real network (with unauthenticated links) in which the adversary has full
powers on the communication channels, so it can change and forge new messages.

The task to prove any kind of properties (like secrecy) of a protocol in a simplified world like
our authenticated model is simpler than in a real network. To obtain a version of the protocol
that works in a realistic unauthenticated network we can use special protocol compilers named
authenticators that, informally, take a protocol for (ideally) authenticated networks and turns it in
a protocol that has similar input-output characteristics in an unauthenticated network. This way
to proceed permits to modularize the analysis of the properties of protocols. In [4] this was applied
to prove the full security of Key Exchange protocols.

2.1 Definitions and main theorems

Here we recall some definitions, the adversarial model and the main theorems from [4]. Further,
we introduce an extension to formalize the deniability of a protocol.
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Message-driven protocols. A message-driven protocol π is an iterative process that is initially
invoked by a party with some initial state that includes the protocol’s input, randomness and
the party’s identity. Once invoked, the protocols waits for an activation that can happen for the
arrival of a message from the network or an external request (from other processes run by the same
party). Upon activation, the protocol process the incoming data together with its current internal
state, generating a new internal state (like a finite-states machine), as well as generating outgoing
messages to the network and external requests to other protocols (or processes) run by the party.
In addition, a cumulative output is generated. Once the activation is completed, the protocol waits
for the next activation.

The authenticated-links model (am). There are n parties P1, . . . , Pn, each running a copy
of a message-driven protocol π. The computation consists of a sequence of activation of π within
different parties. The adversary A is a probabilistic polynomial-time algorithm that control and
schedule these activation. That is A can decide which is the next party to activate and which
incoming message or external request the activated party is to receive. Upon the completion of an
activation, the outgoing messages and external requests and the output generated by the protocol
become known to A. The new internal state remains unknown to A.

In the authenticated-links model, A is restricted to delivering messages faithfully. That is, we
assume that each message carries the identities of the sender Pi and of the intended recipient Pj .
When a message is sent by a party, it is added to a set M of undelivered messages. Whenever A
activates a party Pj on some incoming message m it must be that m is in the set M and that Pj

is the intended recipient in m. Furthermore, m is now deleted from M .7 Note that A can change
the order of delivery and can choose to not deliver at all some messages.

The adversary A can corrupt parties as wish. Upon corruption A learns the entire current state
of the corrupted party Pi and can add to the set M any fake messages, as long as Pi is specified
as the sender of these messages. A special symbol in the output of Pi is generated to signal his
corruption. A will control all the sequent activations of Pi. We refer to an adversary as described
here as an am-adversary.

Briefly, the global output of running protocol is the concatenation of all the outputs of the
parties8, together with the output of the adversary (derived from all the information gathered
during the process). Let authπ,A(~x,~r) denote the global output of a running of the protocol π
with the n parties and the adversary A with input ~x = x1 . . . xn and random input ~r = r0r1 . . . rn

(r0 for A; xi and ri for party Pi, i > 0). Let authπ,A(~x) denote the random variable describing
authπ,A(~x,~r) when ~r is uniformly chosen.

The unauthenticated-links model (um). Basically, the unauthenticated-links model of com-
putation is similar to the previous one, with the exception that here the adversary U , referred to
as a um-adversary, is not limited to deliver messages that are in M . Instead, it can activate parties
with arbitrary incoming messages (even with fake messages that were never sent).

Further, here the protocol π is augmented with an initialization function I that models an initial
phase out-of-band and authenticated information exchange between the parties (like the creation
of public and secret keys in asymmetric cryptosystems and the trustful exchange of public keys).

The random variables unauthπ,U (~x,~r) and unauthπ,U (~x) are defined analogously to authπ,A(~x,~r)
and authπ,A(~x), but with the computation carried out in the unauthenticated-links model.

7This implies that no message appears twice. Alternatively, one can add message-ID’s to messages to make them
unique.

8This implies that also the identities of corrupted parties are part of the global output.
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Emulation of protocols. When we say that a protocol π′ in the unauthenticated-links model
emulates a protocol π in the authenticated-link model we want to capture he idea that ‘running
π′ in an unauthenticated network has the same effect as running π in an authenticated network’.
Formally speaking:

Definition 1 Let π and π′ be message-driven protocols for n parties. We say that π′ emulates π in
unauthenticated networks if for any um-adversary U there exists an am-adversary A such that for
all inputs x,

authπ,A(~x)
c≈ unauthπ′,U (~x) (1)

where
c≈ denotes ‘computationally indistinguishable’.

This definition implies that the combined distributions of the outputs of the parties, the adver-
sary’s output and the identities of corrupted parties should be indistinguishable on the two sides
of Eq. 1. In general, this condition captures the required notion of “security equivalence” between
the protocols in the sense that any consequences of the actions of the strong um-adversary against
executions of the protocol π′ can be imitated or achieved by the weaker am-adversary against the
runs of protocol π without requiring the corruption of more (or different) parties.

Authenticators. An authenticator is a ‘compiler’ that takes for input protocols designed for
authenticated networks, and turns them in ‘equivalent’ protocols for unauthenticated networks.

Definition 2 A compiler C is an algorithm that takes for input descriptions of protocols and outputs
descriptions of protocols. An authenticator is a compiler C where for any protocol π, the protocol
C(π) emulates π in unauthenticated networks.

In particular, authenticators translate secure (in some well defined sense) protocols in the authen-
ticated model in secure protocols in the unauthenticated-links model9.

Bellare et al. [4] introduced also a natural way to construct full-fledged authenticators using
simpler methods to authenticate a single message. Consider the banal protocol message transmission
mt that transport a message from a party to another. Speaking in terms of message-driven protocol:
upon activation within Pi on external request (Pj ,m), party Pi sends the message (Pi, Pj ,m) to
party Pj and outputs ‘Pi sent m to Pj’. Upon receipt of a message (Pi, Pj ,m), Pj outputs ‘Pj

received m from Pi’.
Suppose that λ is a protocol that emulates mt in unauthenticated networks (we call such

protocols mt-authenticators). We can construct a compiler Cλ that transform any protocol π in
another that use the sub-protocol λ for the transmission of each message. In other words, the
sub-protocol λ acts as a layer of transmission: instead of sending messages to the network, λ is
activated for delivery of all the messages, and instead of receiving incoming messages from the
network, the messages are taken from the λ’s output. In [4] there is a theorem that prove that this
technique yields valid authenticators.

Theorem 3 Let λ be a mt-authenticator (i.e. λ emulates mt in unauthenticated networks), and
let Cλ be a compiler constructed based on λ as described above. Then Cλ is an authenticator.

For further details on the model, see the original paper [4].
9In the Introduction we claim that our deniable authentication protocols don’t require that both parties have a

public key. Sender’s public key is sufficient for the aim of authentication of the message. In the ambit of the model,
a simulation of the authenticated channels of the um-model is possible only where the party who sends the message
has a public key.
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2.2 Extension for deniable methods

This paper focuses on deniable methods of authentication. A protocol for the authentication of
a message is a protocol between a party A (who sends the message and proves its identity) and
a party B that assures the latter of the integrity of the message and the identity of the sender
A. Informally, we say that an authentication protocol is deniable if the transcript of its execution
does not allow B to prove to a third party the participation of A. That is, the transcript of the
interaction cannot be used as evidence that A took part in the protocol (i.e. A or B can later deny
that the authentication took place).

For example, digitally signing a message m with the secret key of A is a valid technique for
message authentication but it is completely non-deniable: only A could produce a valid signature
and it is a proof for third parties.

To define deniable authentication we use the simulatability notion from [21] and combine it
with the notion of mt-authenticator:

Definition 4 We say that an mt-authenticator λ is deniable if for any receiver B, there exists a
simulator S(B)

λ that given a message m sent by a party A to B produces a transcript of a session
of λ for m that is indistinguishable from a real one.

Note that the simulator S(B)
λ can’t use the private information of the parties (i.e. private keys).

This is enough to prove that the transcript of any session of λ can’t be used by third parties to verify
the participation of the involved participants. In fact, anyone could produce realistic transcripts of
λ using the simulator S(B)

λ .
There are, as usual, three flavors of the above definition depending of what kind of indistin-

guishability the simulator achieves. We say that a deniable authenticator is perfectly or statistically
zero-knowledge if the real and simulated transcripts follow distributions which are either identical
or statistically close. We say that a deniable authenticator is computational zero-knowledge if the
real and simulated transcripts follow distributions which are computationally indistinguishable (see
[27, 28] for definitions of the various types of indistinguishability).

Remark: In [21] the authors do not specify what kind of indistinguishability they require, but it is
clear from the context that they consider computational zero-knowledge protocols to be deniable. In
[45] computational zero-knowledge is explicitly mentioned as sufficient for deniable authentication.
On the other hand Katz in [35] explicitly limits deniable authentication protocols to be statistical
ZK.

The same concept can be applied to a generic authenticator. Given a deniable mt-authenticator λ
we say that the authenticator Cλ built as in Theorem 3 is a deniable authenticator.10

2.3 Forward Deniability

If we look at the example in Section 1.1, we see that deniability is not just a concern of the sender,
but also of the receiver. In order to ensure forward deniability we need to make sure that at the
end of a real execution, the sender does not inherit a “witness” of the fact that the transcript is
real.

10More formally, we should define the concept of deniable authenticator as in Definition 4 and then straightforwardly
prove that an authenticator Cλ built using a deniable mt-authenticator λ is a deniable authenticator.
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Basically it must be hard for Alice to present a “witness” of the fact that a particular transcript
is real. Given a sender A and a receiver B using a deniable mt-authenticator λ, for Definition 4
there exists a simulator S(B)

λ that produces transcripts that are indistinguishable from the real ones.
If this indistinguishability holds in a perfect or statistical way, our authenticator must be forward
deniable too. Indeed, there does not exist any witness that the sender A can show to prove that
his transcript is real.

Definition 5 Let λ be a deniable mt-authenticator between sender A and a receiver B. We say
that λ is forward deniable if the indistinguishability of the distributions produced by the deniability
simulator is perfect or statistical.

Remark: On the honesty of the Sender. In the definition above, we assume that A behaves
honestly during the executions of λ. In particular we assume that A chooses its random input as
prescribed by the protocol. A possible way for A to prove that a transcript is real, is to modify
its coin tosses in a way that is not detectable from the outside but that will allow her later to
prove that those messages were generated by her (for example, she could choose a random string
r not by directly sampling it, but by choosing r′ and setting r = f(r′) where f is a hard-to-invert
permutation). This kind of behavior was termed semi-honest in [8]. Notice, however, that in the
case of deniable authentication A herself is not interested in keeping such a strategy as the presence
of such “witnesses”, if leaked, may be used to prove that she authenticated a message.

What about computational indistinguishability? In the next remark we show that if the simulated
distribution is only computational indistinguishable from the real one, then there exists a witness
that the sender can reveal in a later stage (violating forward deniability).

Remark: Computational ZK and forward deniability. Consider any computational ZK protocol
for an NP-complete problem, e.g. the one for graph 3-colorability [30]. The common input is a
3-colorable graph and the Prover knows such a coloring. In the first message the Prover commits
to a random 3-coloring of the graph, i.e. for each vertex v commits to π(col(v)), where col(v) is
the color of v described as an integer in {1, 2, 3} and π is a random permutation over the same set.
Then the (honest) verifier asks for a random edge and the prover decommits, to the colors of the
nodes composing that edge. Under the security of the commitment scheme this is a computational
ZK protocol: the simulator for the honest verifier chooses a random edge, commits to different
random colors for the nodes on that edge, and then commits to random colors for the other nodes.
Note that since the simulator does not know the 3-coloring, the coloring which it commits to is not
a correct 3-coloring, and that can be easily detected if all the commitments are opened. However
since the commitments are secure, and only the chosen edge is opened, the protocol is computational
ZK. However it is not forward deniable11. Indeed the prover’s state contains the openings of the
commitments, and thus the prover can produce information showing that a real transcript is indeed
real (it contains a real 3-coloring).

This problem is shared by all the computational ZK protocols we know and thus shared by
any protocol that proves deniability by reduction to such problems, and is sufficient to argue that
computational zero-knowledge is not sufficient to achieve forward deniability. In Section 3.4, we
show a deniable authentication protocol whose security is based on a reduction to a NP-complete
language, and for that reason not forward deniable.

11Although we defined forward deniability in the context of authentication, the definition can be extended to any
two-party protocol.
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The only way in which forward deniability could be achieved is if Alice “forgets” about how
she computed the commitments. I.e. erases her internal state (apart from her secret key) after
the execution of the protocol. From the argument given in the previous Remark, it would appear
in Alice’s interest to do so. However this makes the assumption on the model that such erasures
are indeed possible. This is a very strong assumption to make (e.g. see [31] for a survey on the
difficulty of erasing data).

Thus while we assume that Alice behaves honestly during the protocol (and has all the moti-
vation to do so) we also assume that it is hard for her to erase traces of her past executions of the
protocol from her memory.

3 mt-authentication using Multi-trapdoor Commitment Schemes

In this section we present a family of deniable mt-authenticators that uses as building blocks Multi-
trapdoor Commitment Schemes. For each instantiation of this kind of commitments we obtain a
different scheme of deniable authentication.

3.1 Multi-trapdoor Commitment Schemes

A commitment is the digital equivalent of a “sealed envelope”. A party commits to a value by
placing it into a sealed envelope (this is the “committing phase”), so that the same party may later
reveal the value by opening the envelope (the “opening phase”). Further, the envelope cannot be
opened by another party before the opening phase (this is known as “secrecy” or “hiding” property)
and its content cannot be altered (this is known as “binding” property).

A Trapdoor Commitment Scheme (TCS) is a commitment scheme where there exists a trapdoor
the knowledge of which allows to open a commitment in any possible way (we will refer to this
also as equivocate the commitment). Obviously this trapdoor should be hard to compute. In this
way the privacy property of the commitment is information-theoretically guaranteed (i.e., given the
commitment the receiver, even with infinite computing power, cannot guess the committed message
better than at random). On the other hand, the binding property can be only be computational
(because of the existence of the trapdoor).

A Multi-Trapdoor Commitment Scheme, introduced in [23], consists of a family of TCS with a
special binding property. Here we shall use two slightly different definition of these schemes: an
adaptive one (not presented in [23] and inspired by the notion of Simulation-Sound Commitments12

(SSC) in [22, 41]) and the original definition by Gennaro in [23] which we will name static. The first
is a stronger definition than the second one, so the instantiations of this kind of schemes are usually
less efficient, but the meta-description of the authenticator becomes simpler. The two definitions
differ only in the binding property as we shall see.

Let’s start presenting the formal definition of adaptive MTC13. An Adaptive Multi-Trapdoor
Commitment (AMTC) Scheme consists of five randomized algorithms: CKG, Sel, Tkg, Com and
Equiv with the following properties:

• CKG is the master key generation algorithm: given a security parameter it outputs a pair
(PK,TK), where PK is the master public key associated with the family of commitment

12They use the name of Simulation-Sound Trapdoor Commitments (SSTC) for their schemes but we prefer to not
use the attribute “trapdoor” for the observations raised in Section 3.4

13We elaborate in Section 3.4 on the differences between this definition and the definition of SSTC in [41].
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schemes and TK is the master trapdoor key;

• Sel is the algorithm that selects a particular scheme in the family: given PK it outputs a pk
that identifies one of the schemes;

• Tkg is the algorithm that generates the trapdoors: given the triple (PK, pk,TK) it outputs
the trapdoor information tk relative to pk;

• Com is the commitment algorithm: on input PK, pk and a message M it outputs C(M) =
Com(PK, pk,M, R) where R are the coin tosses. To open a commitment the sender reveals
(M,R) and the receiver verifies using Com to recompute the commitment;

• Equiv is the algorithm that opens a commitment in any possible way given an original opening
and the trapdoor: it takes as input PK, pk, a commitment C of a message M , its opening
(M,R), a different message M ′ 6= M and a value T ; if T = TK or T = tk then Equiv outputs
R′, uniformly chosen among all R′ such that C = Com(PK, pk,M ′, R′).

The notion of AMTC requires the following security properties:

Information Theoretic Security For every message pair (M,M ′) the distributions of the com-
mitments C(M) and C(M ′) are statistically close;

AMTC Secure Binding Consider the following game: the adversary A is given a public key
PK for a multi-trapdoor commitment family, generated with the same distribution as the ones
generated by CKG. Also, A is given access to an oracle EQ (for Equivocator). This oracle gets
as input a string (C = Com(PK, pk,M, R),M,R,M ′) with message M ′ 6= M and outputs
a random R′ such that C = Com(PK, pk,M ′, R′) (that is the oracle creates openings with
an arbitrary message M ′). The adversary A wins if it outputs (pk,M, R,M ′, R′) such that
Com(PK, pk,M, R) = Com(PK, pk,M ′, R′), M ′ 6= M and pk is different from all the public
keys used during queries to the oracle EQ (in other words, A must never have used the oracle
EQ to equivocate a commitment on the scheme with public key pk). We require that for all
the efficient algorithms A, the probability that A wins is negligible in the security parameter.

The notion of (static) MTC in [23] is identical to the previous except for the property of binding
that use a different game. Roughly, the adversary must choose the public keys to use with the oracle
before seeing the master public key PK. More precisely:

MTC Secure Binding Consider the following game: the adversary A selects k public keys
(pk1, . . . , pkk) (with k polynomial in the security parameter), then it is given a public key PK
for a multi-trapdoor commitment family, generated with the same distribution as the ones gen-
erated by CKG. The oracle EQ still gets as input a string (C = Com(PK, pk,M, R),M, R,M ′)
with message M ′ 6= M but it outputs a random R′ such that C = Com(PK, pk,M ′, R′)
only if pk = pki for some i, otherwise it outputs nil. The adversary A wins if it out-
puts (pk,M,R,M ′, R′) such that Com(PK, pk,M, R) = Com(PK, pk,M ′, R′), M ′ 6= M and
pk 6= pki for all i. As before, we require that for all the efficient algorithms A, the probability
that A wins is negligible in the security parameter.

In Appendix B, for the sake of completeness, we show an example of MTC scheme based on
the Strong-RSA Assumption.
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3.2 AMTC-based mt-authenticators

Here we present a deniable mt-authenticator λAMTC based on the notion of Adaptive Multi-Trapdoor
Commitments (AMTC). First we prove that it is a mt-authenticator then we verify the deniability
of the scheme.

Let’s start from the initialization function I of the protocol λAMTC . For each party Pi, the
master key generation algorithm of the AMTC scheme is invoked obtaining the pair (PKi,TKi).
Further, a hash function Hi is chosen from the family of UOWHFs such that it outputs strings with
the same distribution of the algorithm Sel14. The public key of Pi is PKi = (PKi,Hi) and the
secret key is the master trapdoor key TKi. So, the public information I0 is simply the collection of
all the public keys:

I0 = PK1, . . . , PKn

and the secret information of the player Pi is Ii = TKi.
Next, when activated, within party Pi and with external request to send message m to party Pj ,

protocol λAMTC invokes a two-party sub-protocol λ̂AMTC between Pi and Pj . Since the sub-protocol
λ̂AMTC involves only two parties, we use the names A and B instead of Pi and Pj for simplicity. In
this context, with (PK,H) and TK we indicate the public and secret keys of A.

The protocol λ̂AMTC works as follow: first A uses the hash function H to select a specific scheme
from the family of AMTC schemes in the following way: pk = H(m,B) where m is the message to
send and B is the identity of the receiver. After that a random string a is selected from the space
of the messages of the AMTC scheme and another random string r is chosen. The commitment
algorithm associated to the public key pk is used to commit the string a with coin tosses r obtaining
C = Com(PK, pk, a, r). Finally, A sends ‘message:m,C’ to B and outputs ‘A sent message m
to B’.

Upon receipt of ‘message:m,C’ from A, party B chooses a random string c (for challenge)
from the space of the messages of the AMTC scheme and sends it to A as ‘challenge:m, c’.

Upon receipt of ‘challenge:m, c’ from B, party A uses the master trapdoor key TK to equiv-
ocate the commitment C so that the message committed becomes the challenge string c. He com-
putes r′ = Equiv(PK, pk, C, a, r, c, TK) so that (c, r′) becomes another opening of the commitment
C (remember that the first opening is (a, r)). A replies to B with ‘reply:m, r′’.

When B receives the reply, he simply checks if the pair (c, r′) is an opening for the commitment
C, that is if C = Com(PK, pk, c, r′). Note that B can compute the specific public key pk by himself
using the hash function H. If the check is correct, then B accepts m and outputs ‘B received
m from A’. Otherwise, B rejects this message and terminates this invocation of λ̂AMTC

15. Note
that the length of strings to commit a, c should be long enough so it’s infeasible to guess them (for
example, 80 bits). A pictorial representation of a complete invocation of λ̂AMTC for a message m
can be seen in figure 1.

Theorem 6 If the underlying commitment scheme is an AMTC, then protocol λAMTC emulates
protocol mt in unauthenticated networks.

Proof: To prove that λAMTC emulates correctly the protocol mt in an unauthenticated network
we need to show that all the things that an adversary can do against λAMTC in an unauthenticated

14For all known AMTC and MTC schemes such hash functions exist and they are efficiently computable.
15One does not need to send the message m in each of the flows of the protocol. A can send it in the first flow

only, or even in the last flow only.
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protocol λ̂AMTC

A B

pk = H(m, B)
a, r at random
C = Com(PK, pk, a, r)

m , C
-

m , c
� c at random

r′ = Equiv(PK, pk, C, a, r, c, TK) m , r′
-

pk = H(m, B)

C
?
= Com(PK, pk, c, r′)

Figure 1: mt-Authenticator λ̂AMTC between A and B

world can be done against the simple protocol mt in a hypothetical authenticated environment
(the vice versa is straightforward). More specifically, let U be a um-adversary that interacts with
λAMTC . We want construct an am-adversary such that authmt,A() ≈ unauthλAMTC ,U (),16 that is
their respective views are indistinguishable.

AdversaryA runs U on the following simulated interaction with a set of n “fake” parties P ′
1 . . . P ′

n

running λAMTC . Note that A interacts with n “real” parties P1 . . . Pn running the protocol mt in an
authenticated-link environment. First A invokes the initialization function I of λAMTC so that each
simulated party P ′

i has a pair of keys (PKi, SKi). Next, when U activates some imitated party
A′ for sending a message m to imitated party B′, adversary A activates the dual party A in the
authenticated network to send m to B. Moreover, A continues the interaction between U and the
imitated parties running λAMTC . When some imitated party B′ outputs ‘B′ received m from
A′’, adversary A activates corresponding party B in the authenticated-links model with incoming
message m from A. If U corrupts some imitated party A′ in its world, A corrupts the dual party A
and hands the corresponding information to U (including the private information as the A’s secret
key that A knows). Finally, A outputs whatever U outputs.

Now we need to show that the output of A is indistinguishable from the output of U . It is easy
to see that outputs are identical unless the following event happens. Let B denote the event that
imitated party B′ outputs ‘B′ received m from A′’ where A′ is uncorrupted and the message
(m, A′, B′) is not currently in the set M of undelivered messages.17 In other words, B is the event
where B′ outputs ‘B′ received m from A′’, and either A wasn’t activated for sending m to B,
or B has already had the same output before. In this case we say that U broke party A′. This is
the only thing that our A cannot simulate without breaking the definition of am-adversary. If the
event B does not happen, it’s straightforward to see that the simulation run by A is perfect and

that authmt,A()
d≈ unauthλDDH ,U () (where

d≈ denotes ‘equally distributed’).
The remaining step is to prove that the probability of the event B is negligible. Assume that

event B occurs with non negligible probability δ. We construct an adversary E (for Equivocator)
that breaks the security of the AMTC scheme with non negligible probability (related to δ).

16Note that the mt protocol ignores its input, so we consider only the empty input.
17See the Section 2.1 for the details about the definition of an am-adversary.
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Construction of E. Given the master public key PK∗ for a Adaptive Multi-Trapdoor Commit-
ment Scheme and access to relative equivocator oracle EQ, the adversary E runs U on the following
simulated interaction with a set of parties running λAMTC . First E chooses and distributes keys for
the imitated parties according to function I, with the exception that the public key associated with
some party A∗, chosen at random, is replaced with the pair (PK∗,H∗) where PK∗ is the input key
and H∗ is a hash function as described in I. Next, E continues the simulated interaction. If during
the simulation U asks to corrupt party A∗ then the simulation aborts and E fails. If A∗ is required
to reply to a ‘challenge:m, c’ from a party B (where A∗ sent a first message ‘message:m,C’
using the specific commitment scheme associated with pk = H∗(m,B) with opening (a, r)) then
E uses the oracle EQ to equivocate C. The oracle EQ is given as input the commitment C, the
first opening (a, r) and the challenge c (that with high probability is different than a). It returns
a randomness r′ such that (c, r′) is another opening of C, so A∗ can reply with ‘reply:m, r′’.

If some party D outputs ‘D received m∗ from A∗’ and A∗ was not activated to send m∗ to
D (or if D has already output this value before), this means that U broke on party A∗ using the
message m∗. Since D outputs ‘D received m∗ from A∗’, he collected from the adversary a first
message ‘message:m∗, C’ and a replying message ‘reply:m∗, r′’ to his challenge c. This means
that we have a commitment C (related to the public key pk = H∗(m∗, D)) and a first opening
(c, r′). To obtain a second opening E can rewind the simulator that runs U (which is under his
control) to the point in which D sent its challenge c for the broken session and then use a different
‘challenge:m∗, c̄’ with c̄ 6= c. Now suppose that U runs for at most t steps (t polynomial in the
security parameter). The two mutually-exclusive events that can occur are:

• the adversary U breaks another time the same session between A∗ and D with message m∗

(but this time with challenge c̄);

• this time U doesn’t break the same session (or doesn’t break anyone). To detect this event
the simulator can wait until the running time limit t. In this case E rewinds another time the
simulation and draws a different random challenge c̄. This until the previous event occurs.

Later we analyze the expected running time of this simulation. At this point we can assume that
U breaks the same session after the rewind: this means that he forges another ‘reply:m∗, r̄′’
where the pair (c̄, r̄′) is a second opening for C. Now E can stop the simulation and output the
commitment C and the two different openings (c, r′) and (c̄, r̄′). Note that the public key pk of
the broken commitment scheme was never used during the invocations to the oracle EQ. In fact,
the pair (m,B) is different for each session (recall that all the messages coming from a party
are all different) and the hash function H∗ used to draw the AMTC scheme for every session is
collision-resistant.

Now we compute the expected-running time of the iterated simulation process. Consider the
exact instant in the simulation when the message ‘message:m∗, C’ is exposed. Related to this
instant, there is a fixed well-defined probability p that the adversary U will break that particular
session. We can see it as:

p =
number of challenges c on which U can reply

number possible challenges

When E rewinds the simulation this probability related to the session (A∗,m∗, D) is almost the
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same.18 Let p′ be this probability, so p′ ∼ p. If the probability that we draw a second challenge on
which E can reply is p′, the expected-number of times we need to iterate the rewind is exactly 1

p′ .
Follows that the expected-running time of the simulation is

t + p

(
1
p′

)
t ∼ 2t

Another way to see this is the following. If the probability p is small we need to reiterate the
rewinds many times but this event can happen only with the same small probability p. If the
probability p is big, we need to rewind few times and this happens more probably.

U ’s view in the simulation (conditioned to the event that it does not fail) is exactly the same of
a real interaction with an unauthenticated network. In fact A∗ is randomly chosen. If the number
of parties in the simulation is n, the probability that E guesses the party broken by U is 1

n , so the
probability of success of the equivocator E is δ

n (a non negligible quantity) with an expected-running
time of 2t. This actually breaks the security of the AMTC scheme.

An alternative way to think of the equivocator E is the following. We say that the message
‘message:m∗, C’ is good if the associated p is bigger than 1/2. If the message is good, by rewind-
ing ` times (where ` is polynomial in the security parameter) we get a different opening with
overwhelming probability (≥ 1− 2−`). On the other hand the first break will happen on a bad (i.e.
not good) message ‘message:m∗, C’ with probability at most 1/2. So we rewind exactly ` times,
and the success probability is bigger than δ

2n(1− 2−`) which is still non negligible. 2

Remark: Note that in the proof of this theorem (exactly as in the following Theorem 8) the
equivocator E has to guess the party broken by U among n parties; this implies that the probability
to break the AMTC is reduced by a factor of 1

n . This is a better result than other reductions (like
in Katz’s [35]), where this factor is 1

l , with l the number of total sessions that all the parties open.
Such quantity can be much higher than the number of peers in a real network and this fact leads
to more secure protocols and to smaller security parameters.

Implementations. The number-theoretic constructions of simulation-sound commitments in [41]
can be shown to be AMTC’s and thus can be used in our protocol. They are based on the
Strong RSA assumption and the security of the DSA signature scheme. We can’t however use the
generic construction based on one-way function as that does not satisfy the notion of AMTC (see
Section 3.4).

3.2.1 Deniability

λAMTC is deniable for an honest receiver. Indeed in that case the simulator could: (i) compute the
public key pk associated to the particular commitment scheme of the session as pk = H(m, B);
(ii) choose at random the challenge string c and the randomness r′; (iii) compute the commitment
C = Com(PK, pk, c, r′).

But for a dishonest verifier the way in which λAMTC authenticates the messages is actually not
deniable. Here is a strategy from a dishonest verifier B who tries to get a transcript that A can’t
later deny. B could compute c = hash(C) for some complicated hash function hash after seeing the
original commitment C. Now the above simulator will be in trouble as it chooses c before seeing
C.

18In fact, in each iteration we need to consider all the challenges on which U can reply except the challenges used
in the previous rewinds.
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We modify the protocol in order to make it deniable. We assume that the public key of A
contains the public key t for a regular trapdoor commitment scheme. The idea is to have B use t
to commit to the challenge in advance. The protocol appears in Figure 2.

protocol Den-λ̂AMTC

A B

m , γ
�

c, ρ at random
γ = TCt(c, ρ)

pk = H(m, B)
a, r at random
C = Com(PK, pk, a, r)

m , C
-

γ
?
= TCt(c, ρ) m , c, ρ

�

r′ = Equiv(PK, pk, C, a, r, c, TK) m , r′
-

pk = H(m, B)

C
?
= Com(PK, pk, c, r′)

Figure 2: Deniable mt-Authenticator Den-λ̂AMTC between A and B

Theorem 7 Protocol Den-λ̂AMTC is a forward deniable authenticator if used sequentially.

Proof: Before we prove deniability let’s make sure that the protocol is still an authenticator. The
proof of theorem 6 is identical except for the handling of event B. There we showed that if event B
happened with substantial probability then we could construct an equivocator E that would break
the security of the AMTC.

E performed an “extraction” procedure in which it asked party A∗ two different challenges on
the same AMTC C. However this time the challenges are committed in advance using TC, but
that’s not a problem as we can give to E the trapdoor t so that it can open the corresponding γ in
any way possible. The rest of the proof remains unchanged.

The deniability simulator works using standard zero-knowledge techniques. For any, possibly
dishonest, receiver B, it gets m, γ from B and computes pk = H(m,B) and C ′ = Com(PK, pk, a, r)
for random a, r. Then B opens c. At this point the simulator rewinds it to the previous step
and places C = Com(PK, pk, c, r′) for random r′. If B does not decommit on this value of C,
the rewinding step is repeated19 until B decommits to c and the simulator places c, r′ on the last
message. The expected running time of this kind of simulator is polynomial as analyzed in [26].

The simulated transcript is perfectly indistinguishable, so forward deniability holds too.
2

Remark: Concurrent Executions. First we point out that the modified protocol Den-λAMTC re-
mains an authenticator even if used in a concurrent setting. This is remarkable, as we are using
rewinding in the proof of its unforgeability. On the other hand the rewinding in the proof of denia-
bility is more troublesome and in a concurrent setting the adversary can create a scheduling which
will result in a running time exponential in the number of open sessions (see [21]). Thus we can

19If B decommits to a different value then we can break the security of TC.
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only use the protocol with a logarithmic number of such sessions open at any time, and this can be
enforced by using timing assumptions as in [21]. Notice that if the parties are not concerned about
deniability then unbounded number of executions can be performed concurrently.

3.3 Some MTC-based mt-authenticators

In Section 3.1 we presented also the original definition of Static Multi-Trapdoor Commitment (MTC)
schemes. It is a weaker definition than AMTC, in fact the proposed implementations of MTC
schemes are more efficient. Gennaro [23] introduced two efficient implementations of MTC schemes:
one based on the Strong RSA Assumption and another on a stronger variant of the DDH Assumption
introduced by Boneh and Boyen [6] over gap-DDH groups. This schemes are about twice as fast as
the AMTC’s in [41].

We show that the previous AMTC-based authenticator can be still proven secure using a MTC
scheme.

Looking at proof of Theorem 6 we can easily see why such proof does not hold with MTCs. We
construct an adversary E that given access to the adversary U and to the oracle EQ can break the
security of the commitment scheme. In particular E uses this oracle EQ to reply to the opening
requests that arrive to party A∗ (for which we don’t known the master trapdoor key TK).

When given access to an MTC oracle EQ we need to know in advance the public keys pki for
these invocations. Remember that the public key pk used during the session is determined by the
message m and by the identity of the receiver B as pk = H(m,B), thus we can’t guess the messages
that A∗ will be asked to send during the simulation.

The first, most obvious, idea is to use a chameleon hash function (see [38]) in the public key of
each player. We recall that a chameleon hash function H is a collision-resistant hash function, with
a trapdoor tH whose knowledge allows one to find arbitrary collisions. More specifically H takes
two arguments: a message M and a random string R. Given h = H(M,R),M, R,M ′, tH it is easy
to find R′ such that (i) h = H(M ′, R′) and (ii) R′ is uniformly distributed among all the random
strings with that property.

In the above λAMTC protocol we use H as follows. We set M = (m,B) and choose a random R
to compute pk = H(M,R). We add R to the first message flow. Now we can prove the protocol
secure even if we are using an MTC family instead of a AMTC.

Indeed, the proof proceeds similarly to Theorem 6, i.e. we construct an equivocator E which
will use the UM-adversary U .

As in the previous proof: let A∗ be the party chosen at random among the n parties. H∗ is the
hash function of A∗. The main difference is that E is given the trapdoor information tH∗ .

In the proof of the above theorem, we set the AMTC master key PK∗ to be the public key of
A∗ and then asked to equivocate specific public keys pk∗ as they come. Here, instead, since we are
using a MTC family we need to fix these specific public key in advance.

Let q be a polynomial upper bound to the number of messages that A∗ is requested to send. We
choose q random public keys (pk1, . . . , pkq) as pki = H∗(αi, βi) where αi, βi are randomly chosen.
We declare that these are the keys we want to equivocate on, and we get in return PK∗ the master
key for a MTC scheme, and the oracle EQ which will equivocate commitments related to the pki

keys.
When A∗ receives the ith request to send a message mi to a party Bi, E uses tH∗ to find

randomness Ri for which H(Mi, Ri) = pki (where again Mi = (mi, Bi)). After, when A∗ will
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receive the challenge from Bi, E can invoke the equivocator oracle EQ to open the commitment as
requested. The rest of the simulation proceeds as in the original proof.

Remark: What we described above is basically a generic way to build AMTC commitments out
of MTC ones via mapping the specific public keys through a chameleon hash function (indeed
the AMTC schemes in [41] can be thought as the composition of a chameleon hash with a MTC
scheme).

However, we only know how to build chameleon hashing using expensive public key opera-
tions. In Appendix C we show two alternative assumptions that can be made on H to avoid using
chameleon hashing, and without changing the protocol. In one method we use the Random Oracle
model (a non-standard approximation of the real model). The other method introduces a strong
(but well defined) computational assumption on H (an assumption modeled after a similar one
used in [24]).

Finally in the next section we show another very efficient mt-authenticator using MTC schemes
and one-time signatures, which can be proven secure in the standard model and just assuming basic
collision-resistance for H.

3.3.1 mt-authenticator based on MTC and one-time signatures schemes

In this section we introduce another version of MTC-based mt-authenticator that, using one-time
signatures, can be proven to be secure in the standard model. This construction, together with
efficient implementations of MTC schemes, leads to very efficient solutions for the problem of
deniable message authentication. The cost to pay is slightly longer transcripts because of the
one-time signature scheme. We shall denote this protocol with λMTC&Sig.

One-time Signatures. A signature scheme consists of a triple of algorithms: Gen the key gener-
ator which on input the security parameter outputs a pair of keys (vk, sk); Sign to sign a message
using the secret sign key sk and Ver to verify a signature using the public verification key vk. Our
construction requires a one-time signature scheme which is secure against chosen message attack.
Informally this means that the adversary is given the public verification key vk and a signature on
a message of his choice (chosen after seeing vk). Then it is infeasible for the adversary to compute
a signature on a different message.

One-time signatures can be constructed more efficiently than general signatures since they
usually do not require complex operations like modular operations (see [40] for further details).

The protocol. The initialization function I of the protocol λMTC&Sig is identical to the λAMTC ’s
one at Section 3.2 except that now we are using a Multi-trapdoor Commitment (MTC) scheme.
Each party Pi has a public key (PKi,Hi) and a secret key TKi, where PKi and TKi are respectively
the master public key and the master trapdoor key of a family of MTCs and Hi is a chosen UOWHF
with output distributed as the output of the algorithm Sel for the selection of a commitment.

The two-party sub-protocol λ̂MTC&Sig between two generic parties A and B is the following.
Let (PK,H) and TK be the public and secret keys of A.

First A uses the algorithm Gen for the generation of the keys of the one-time signature scheme
obtaining a pair (sk, vk). A signature of the pair (m,B) is computed using the secret sign key sk:
sig = Signsk(m,B). Then a specific member of the family of MTC schemes is selected applying the
hash functionH to the verification key vk as pk = H(vk). Exactly as in the other protocol, a random
string a is selected from the space of the messages of the MTC scheme and another random string
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r is chosen. A commitment of the string a with coin tosses r is computed as C = Com(PK, pk, a, r).
Finally, A sends ‘message:m,C, vk, sig’ to B and outputs ‘A sent message m to B’.

Upon receipt of ‘message:m,C, vk, sig’ from A, party B checks if the signature sig is valid
according to the verification key vk. If it is, a random challenge c is chosen from the space of the
messages of the MTC scheme and the message ‘challenge:m, c’ is sent to A. Otherwise B rejects
and closes the session.

The rest of the protocol is identical to λ̂AMTC , that is: upon receipt of ‘challenge:m, c’ from
B, party A computes r′ = Equiv(PK, pk, C, a, r, c, TK) so that (c, r′) is another opening of the
commitment C and he replies to B with ‘reply:m, r′’. When B receives the reply, he checks
if the pair (c, r′) is an opening for the commitment C. If it is then B accepts m and outputs
‘B received m from A’. Otherwise, B rejects this message and terminates this invocation of
λ̂MTC&Sig.

A pictorial representation of a complete invocation of λ̂MTC&Sig for a message m can be seen in
figure 3.

protocol λ̂MTC&Sig

A B

(sk, vk) = Gen(1k)
sig = Signsk(m, B)
pk = H(vk)
a, r at random
C = Com(PK, pk, a, r)

m , C , vk , sig
-

m , c
�

Vervk(sig, (m, B))
?
= 1

c at random

r′ = Equiv(PK, pk, C, a, r, c, TK) m , r′
-

pk = H(vk)

C
?
= Com(PK, pk, c, r′)

Figure 3: mt-Authenticator λ̂MTC&Sig between A and B

Theorem 8 If the underlying commitment scheme is a MTC and the one-time signature scheme
is secure against chosen message attack, then protocol λMTC&Sig emulates protocol mt in unauthen-
ticated networks.

Proof: This proof follows the outline of Theorem 6: supposing that there is a UM-adversary U
that breaks the integrity of the emulation “authenticated world vs unauthenticated world” with
non negligible probability δ we can build an equivocator E for the MTC scheme or a forger F for
the one-time signature system.

Let’s start with the construction of the equivocator E . He chooses a party A∗ among the n
parties of the simulation. Let q be a polynomial upper bound to the number of messages that A∗

is requested to send. Then E invokes q times the algorithm Gen for the generation of one-time
signature keys obtaining q pairs of keys (ski, vki). Let H∗ be a hash function as described in the
specification of λ̂MTC&Sig. For each pair (ski, vki) a public key pki for a MTC is computed as
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pki = H∗(vki). These q values pki are “declared” in the MTC secure binding game so the oracle EQ
can be invoked on them. Now adversary E receives the master public key PK∗ of the MTC family
to break.

E finalizes the setup of the simulator by choosing and distributing keys for the n imitated parties
according to function I except for party A∗, for which the pair (PK∗,H∗) is used.

In this simulation of the unauthenticated world among parties using protocol λMTC&Sig, E runs
U . If party A∗ is invoked to send a message m to a party B, E draws the first unused pair (ski, vki) of
one-time signature keys. Thus, for the creation of the first message ‘message:m,C’, we are using
the commitment scheme associated with the precomputed public key pki = H∗(vki). As described
in the protocol, E computes: sig = Signski

(m,B) and C = Com(PK, pki, a, r) with a, r chosen at
random. The message sent is ‘message:m,C, vki, sig’.

When party A∗ receives a message ‘challenge:m, c’ from a party B, E finds the keys (ski, vki)
and pki used in connection with m. Note that E is allowed to invoke the oracle EQ on the key pki

so it can be used to create the reply to the challenge. Namely, the oracle EQ is given as input the
specific public key pki, the commitment C, the first opening (a, r) and the challenge c. It returns
randomness r′ such that (c, r′) is another opening of C, so A∗ can reply with ‘reply:m, r′’.

If some party D outputs ‘D received m∗ from A∗’ and A∗ was not activated to send m∗

to D (or if D has already output this value before), this means that U broke party A∗ using the
message m∗. Since D outputs ‘D received m∗ from A∗’, he collected from A∗ a first message
‘message:m∗, C, vk∗, sig∗’ and a replying message ‘reply:m∗, r′’ to his challenge c. At this point
there are two cases:

• The verification key vk∗ used by U is different than all the verification keys vki used by A∗,
this means that U has broken the commitment schemes and to find the pair of openings we
can use the rewinding technique seen in Theorem 6. Note that the public key pk∗ = H∗(vk∗)
is with high probability different than all the public keys for which the oracle EQ is enabled to
answer (this is for the collision-resistance of H∗). Without going into details, the probability
of success of E is the same as in the proof of Theorem 6.

• vk∗ = vkj for some j and vkj was used by A∗ to authenticate in an other session a message m′

sent to a party B′. For the properties of uniqueness assumed in our model of message-driven
protocols, we can deduce that the pair (m, B) is different that (m′, B′). This means that U
given the verification key vkj and a signature on the string (m′, B′) forged a new signature
on a different string (m,B). This breaks the security of the one-time signature system. More
specifically given this adversary U we could build a forger F for the one-time signature scheme.
This construction is really similar to the E ’s one of this proof. Starting from a verification
key vk∗ and a signature on a message of his choice, F can create a simulation where all the
parties have regular public/secret keys. Then he chooses at random a session managed by the
simulator where a party A∗ send a message m∗ to a party B∗. For this session the verification
key used is vk∗ and the message is signed using the signature oracle. If U chooses to break
a sequent session cloning the verification key vk∗ we obtain a valid forger. The probability
of success of the forger F is δ

l where l is the total number of messages delivered during the
simulation.

In both cases we obtained an adversary for one scheme that was supposed to be secure. 2

Deniability. As before this protocol is not deniable. But using the same techniques as in Sec-
tion 3.2.1 it can be made deniable.

22



3.4 On Simulation Sound Commitments

As introduced in [41] a Simulation-Sound Commitment (SSC) scheme is defined as a commitment
scheme with a single public key PK, which has a matching trapdoor TK. The commitment algorithm
takes as input a message m and a tag t, and it outputs C = Com(PK,m, t, r) where r is the
randomness used. There is also a “fake” committing algorithm that takes as input both the public
key and the trapdoor and returns a value C = FakeCom(PK,TK,m, t, r). Fake commitments for a
specific tag t can be equivocated, i.e. can be opened as any message efficiently if one knows TK.
The crucial properties of SSC’s are

• the distribution of fake commitments is indistinguishable from the distribution of real com-
mitments;

• no efficient adversary can create a fake commitment and opening it in two ways for a tag t,
even after having access to an oracle that creates fake commitments and arbitrary openings
for any tag t′ 6= t.

We stress that SSCs are not necessarily information-theoretic private (indeed the generic con-
struction based on one-way function in [41] is not information-theoretic private, which means that
the indistinguishability in the first condition holds in the computational sense); also that the trap-
door may be needed to create and equivocate fake commitments.

Notice that an AMTC is a stronger version of a SSC. Indeed for AMTC (where the tag t is
interpreted as a specific public key pk) we have information theoretic security. In particular fake
commitments are not needed: the trapdoor information can equivocate real commitments as well
(so fake commitments are created identical to real ones).

In [41] there are several constructions of SSCs, one based on one-way functions and the other
based on specific number-theoretic assumptions. The number-theoretic constructions are actually
AMTCs. But the generic construction based on one-way functions is not an AMTC. Indeed in
that scheme, fake commitments are only computationally indistinguishable from real ones. This
computational indistinguishability is derived from a reduction to the ZK protocol for Hamiltonicity.
More specifically, a fake commitment contains a correct ZK proof for an Hamiltonian graph, while
a real commitment contains a simulated proof.

Consider the protocol λ̂AMTC when used with SSC. The message being authenticated is mapped
into the tag. The value C sent by the sender is computed using the fake commitment algorithm,
and then equivocated (both steps require use of the secret key TK). The proof of unforgeability
then follows from the fact that during the simulation I can put fake commitments and equivocate
them using the oracle, without knowing TK, and an adversary will equivocate a different message
and thus a different tag. Indeed the protocol remains a secure authenticator.

The proof of deniability also goes through. Indeed the simulator without knowing TK will com-
pute real commitments which are computational indistinguishable from fake ones, so the transcript
is also (computationally) indistinguishable20.

Forward deniability however cannot be proven. Indeed, the Sender can prove (by revealing how
she prepared the fake commitments) that there is a real Hamiltonian cycle contained in the fake
commitments.

20As in our proof the deniability simulator uses rewinding to create a real commitment to the challenge that the
receiver will ask later.
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4 A DDH-based mt-authenticator

Here we show a mt-authenticator (later proven deniable) whose security is based on the difficulty
of the DDH problem in some groups.

Number Theory. In the following we denote Gq a cyclic group of prime order q where multi-
plication and membership test can be perfomed efficiently. An example is to consider two prime
numbers p, q such that q|(p − 1). Then Gq is the subgroup of Z∗

p of order q. Let g1, g2 be two
generators21 for Gq. All computations are in Gq unless otherwise noted.

We are going to assume that the well-known Decisional Diffie-Hellman Assumption holds in
Gq, namely that the DDH problem is difficult in this group. Consider the following distributions
over G4

q :

DDH = {(g1, g2, g
r
1, g

r
2) | r∈RZq} , Random = {(g1, g2, g

r1
1 , gr2

2 ) | r1, r2∈RZq}

The DDH Assumption claims that these two distributions are computationally indistinguishable,
in other words no polynomial-time algorithm given as input (g1, g2, u1, u2) can decide if the input
was drawn from DDH or Random.22

Hash functions. We shall use two kinds of hash functions. First we will denote with H a function
chosen randomly in a set of Universal One-way hash functions (UOWHFs) [43].

Also we consider a hash function H : Gq → {0, 1}2k, where k is a security parameter, such
that 2−k is considered negligible. H must have the following property: the distribution of H(x)
when x∈RGq should be indistinguishable from the uniform distribution over {0, 1}2k. In this case,
we will say that it is a smooth hash function. An example of such a function is a function H
randomly chosen over a set of 2-universal family [10]: in this case assuming that |q| > 2k + 2δ we
have that the distribution {H(x)}x∈RGq is 2−δ statistically close to the uniform one over {0, 1}2k.
To avoid choosing such a large q, one could use a cryptographic hash function like SHA1, and
explicitly assume that the distribution {SHA1(x)}x∈RGq is computationally indistinguishable from
the uniform one. In the future we shall denote with dHe(x) the first k-bits of H(x) and with bHc(x)
the remaining k-bits.

The protocol. We construct the DDH-based mt-authenticator λDDH : the choice of the group
Gq and of the generators g1, g2 can be seen as the first phase of the initialization23 function I of
the protocol λDDH . To conclude the initialization phase, for each party a pair of keys (PK, SK) is
generated as follows. Consider a generic party Pi: random elements x1, x2, y1, y2 ∈ Zq are chosen
and the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2

are computed. Further, two hash functions are chosen: a UOWHF H and a smooth one H so
that H : Gq → {0, 1}2k. Finally, the public key of Pi is PKi = (c, d,H,H) and the secret key is
SKi = (x1, x2, y1, y2). The public information is the collection of the information on the underlying
group and of all the public keys:

I0 = p, q, g1, g2, PK1, . . . , PKn

21The reciprocal discrete-logs of the two generators must be secret for security reasons.
22This formulation is equivalent to several others and in particular, using the substitution g1 → g, g2 → gx, u1 →

gy, u2 → gxy, one sees that it’s equivalent to distinguish Diffie-Hellman triples (gx, gy, gxy) from non-Diffie-Hellman
triples (gx, gy, gz).

23These values could also be specific to a user’s public key, rather than common to all users.
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Pi’s private information consists of its secret key: Ii = SKi.
Next, when activated, within party Pi and with external request to send message m to party Pj ,

protocol λDDH invokes a two-party sub-protocol λ̂DDH between Pi and Pj . Since the sub-protocol
λ̂DDH involves only two parties, we use the names A and B instead of Pi and Pj for simplicity.
Going into details: first, A sends ‘message:m’ to B (A also outputs ‘A sent message m to
B’). Upon receipt of ‘message:m’ from A, party B creates a challenge for A as follows: a random
r ∈ Zq is chosen and then the following values are computed

u1 = gr
1 , u2 = gr

2 , α = H(m,B) , v = crdrα , h1 = dHe(v)

the message for A is ‘challenge:m,u1, u2, h1’.24 Upon receipt of ‘challenge:m,u1, u2, h1’ from
B, party A:

• checks the validity of the received challenge computing the values α = H(m,B) , v =
ux1+αy1

1 ux2+αy2
2 and checking that h1 = dHe(v);25

• replies to the challenge with ‘reply:m,h2’ where h2 = bHc(v).

Finally, when B receives the message ‘reply:m,h2’ from A he proceeds as follows: if h2 = bHc(v)
(using its copy of v) then B accepts m and outputs ‘B received m from A’. Otherwise, B
rejects this message and terminates this invocation of λ̂DDH . A pictorial representation of a complete
invocation of λ̂DDH for a message m can be seen in figure 4.

protocol λ̂DDH

A B

m , u1 = gr
1 , u2 = gr

2 , h1 = dHe(v)
�

r∈RZq

α = H(m, B)
v = crdrα

α = H(m, B)

v = ux1+αy1
1 ux2+αy2

2

h1
?
= dHe(v)

m , h2 = bHc(v)
- h2

?
= bHc(v)

Figure 4: mt-Authenticator λ̂DDH between A and B

Theorem 9 Assume that the DDH assumption holds on the group Gq then protocol λDDH emulates
protocol mt in unauthenticated networks.

Proof: Up till the definition of event β, the proof is identical to the proof of Theorem 6. We pick
the proof from this point, showing that event β occurs only with negligible probability. Assume
that event B occurs with non negligible probability δ. We construct a DDH-distinguisher D that
is capable to recognize DDH-instance with a non negligible probability (related to δ).

Construction of D. Let (Gq, g1, g2, u
∗
1, u

∗
2) be an instance of the DDH problem, given the

adversary U (that is able to breaks λDDH with non negligible probability δ) the distinguisher D
24Note that the values α, v are computed but not sent, to reduce bandwidth.
25It’s easy to see that if the challenge is created correctly then A and B compute the same value v.
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runs U on the following simulated interaction with a set of parties running λDDH . First D chooses
and distributes keys for the imitated parties according to function I with the only exception that
the public common information Gq, g1, g2 is taken from the DDH-instance. Let A∗ be a party
chosen at random among the n simulated parties and let

PK∗ = (c∗ = g
x∗
1

1 g
x∗
2

2 , d∗ = g
y∗1
1 g

y∗2
2 ,H∗,H∗) , SK∗ = (x∗1, x

∗
2, y

∗
1, y

∗
2)

be its pair of keys, chosen according to the correct distribution. D chooses at random m∗ among
all messages m such that some party B was activated with ‘message:m’ from A∗.26 Next, D
continues the simulated interaction. If during the simulation U asks to corrupt party A∗ then the
simulation aborts and D outputs at random ‘DDH’ or ‘random’.

If party A∗ is activated with a request ‘challenge:m,u1, u2, h1’ from B with m 6= m∗, then
A∗ checks the validity of the challenge, by computing α = H∗(m,B) , v = u

x∗
1+αy∗1

1 u
x∗
2+αy∗2

2 and
replies with ‘reply:m,h2 = bH∗c(v)’.

When a particular party B∗ is activated by U with incoming ‘message:m∗’ then D computes

α∗ = H∗(m∗, B∗) , v∗ = u∗1
x∗
1+α∗y∗1u∗2

x∗
2+α∗y∗2 , h∗1 = dH∗e(v∗)

and has B∗ respond with ‘challenge:m∗, u∗1, u
∗
2, h

∗
1’. We are embedding the instance of the DDH

problem into the challenge from B∗ for the message m∗.
Next, if A∗ is activated with incoming message ‘challenge:m∗, u∗1, u

∗
2, h

∗
1’ then the simulation

aborts and the distinguisher D outputs at random ‘DDH’ or ‘random’.
Finally, if U activates B∗ with incoming message ‘reply:m∗, h∗2’ and h∗2 = bH∗c(v) (that is

the reply to the challenge is correct), then U has broken party A∗ on the message m∗ and the
distinguisher D outputs ‘DDH’. If the simulation terminates normally then D outputs at random
‘DDH’ or ‘random’.

Analysis of D. First, let’s highlight what the distinguisher D was trying to do in its simulation:
by choosing A∗ and m∗ at random it is trying to guess the party that U will break into and the
message that it will use. Indeed the only cases where D aborts its simulation are when it’s clear
that he chose the wrong party and/or the wrong message (A∗ is corrupted or is activated to reply
to the “fake” challenge). If we denote with l the total number of messages that U delivers in its
run, the probability that D guesses the correct pair (A∗,m∗) is 1

l .
Now consider the following cases:

• if (g1, g2, u
∗
1, u

∗
2) ∈ DDH then we observe that the “forged” message ‘challenge:m∗, u∗1, u

∗
2, h

∗
1’

is a legitimate challenge, that is logg1
u∗1 = logg2

u∗2. It’s clear that, considering the view of U ,
D’s simulation is identical to the real world (also because A∗ and m∗, and A∗’s keys, are cho-
sen at random with an uniform distribution in their domains). In this case the distinguisher
D (considering also the case in which it doesn’t guess the correct broken pair) outputs ‘DDH’
with probability:

Prob(D = ‘DDH’) =
1
l
·
(

Prob(B) · 1 + Prob(B̄) · 1
2

)
+

(
1− 1

l

)
· 1
2

26This can be done because if the total number l∗ of messages that A∗ sends and U delivers is known in advance then
D simply choose the ith message (with i∈R[1 . . . l∗]). Otherwise, D chooses m∗ in the following way: whenever some
party B was activated with ‘message:m’ from A∗, distinguisher D decides to choose m∗ = m with an appropriate
probability, making sure that by the end of the run all the candidate messages have equal probability to be chosen.
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=
1
l
·
(

δ + (1− δ) · 1
2

)
+

(
1− 1

l

)
· 1
2

=
1
2

+
δ

2l

and then:
Prob(D = ‘random’) =

1
2
− δ

2l

where δ
2l is a non negligible factor.

• if (g1, g2, u
∗
1, u

∗
2) ∈ Random we prove in the following Lemma 10 that the distinguisher D says

‘DDH’ with a probability equal to 1/2 plus a negligible quantity that here we denote with τ ,
so that:

Prob(D = ‘DDH’) =
1
2

+ τ

Prob(D = ‘random’) =
1
2
− τ

Concluding, the distinguisher D solves the DDH problem with the non negligible advantage of(
δ
2l − τ

)
.

2

Remark: Note that in this proof the distinguisher D has to guess not only the party broken by
U , but also message: in other words, the broken session among l total sessions. This leads to a less
efficient reduction (with respect to Theorems 6 and 8) with a factor of 1

l (instead of 1
n).

Lemma 10 Suppose that (g1, g2, u
∗
1, u

∗
2) ∈ Random. Then, the distinguisher D outputs ‘DDH’ with

probability equal to 1/2 plus a negligible quantity.

Proof: The distinguisher D says ‘DDH’ always if U breaks into A∗ with message m∗ and with
probability 1/2 if D doesn’t guess the correct pair (A∗,m∗) or if U does not break into anyone.

To create a correct reply for the challenge ‘challenge:m∗, u∗1, u
∗
2, h

∗
1’ U must guess v∗ and

then compute h∗2 = bH∗c(v∗) or guess directly the value h∗2.
Let’s consider the U ’s view on the point (x∗1, x

∗
2, y

∗
1, y

∗
2), it is the secret key of the party A∗.

Considering the information given by his public key, the point satisfies the two equations:

log c∗ = x∗1 + λx∗2 (2)
log d∗ = y∗1 + λy∗2 (3)

where ‘log’ indicates the discrete-logarithm in base g1 and λ = logg1
g2.

Consider the challenges ‘challenge:m′, u′1, u
′
2, h

′
1’ that U submits to A∗ as party B′ during the

simulation. We say that such a challenge is valid if r′ = logg1
u′1 = logg2

u′2. Let v′ = H∗((cdα′
)r′),

where α′ = H(m′, B′). If A∗ answers a valid challenge with h′2 = bH∗c(v′), this is just giving an
extra equation

log v′ = r′(x∗1 + α′y∗1) + r′λ(x∗2 + α′y∗2)
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which is linearly dependent on Equations 2 and 3. Thus U ’s view of the point (x∗1, x
∗
2, y

∗
1, y

∗
2)

remains the same. In Lemma 11 below we show that A∗ answers invalid challenges only with
negligible probability. Thus for the rest of the proof of this Lemma, we assume A∗ never answers
such challenges.

Since (g1, g2, u
∗
1, u

∗
2) ∈ Random we can suppose that r∗1 6= r∗2, where r∗1 = logg1

u∗1 and r∗2 =
logg2

u∗2 (they are equal only with probability 1
q ). Inserting the message ‘challenge:m∗, u∗1, u

∗
2, h

∗
1’

into the simulation, D is given some information about the secret point, in particular that the point
satisfies also the equation:

log v∗ = r∗1(x1 + α∗y1) + r∗2λ(x2 + α∗y2) (4)

It’s clear that equations 2, 3 and 4 are linearly independent. This means that v∗ can take
any value and it is uniformly distributed over Gq. We are not exposing the value v∗ but U sees
h∗1 = dH∗e(v∗) that gives information about v∗. Because of the properties of H∗, the value H∗(v∗) is
uniformly distributed over {0, 1}2k thus seeing the first half, does not help in predicting the second
half. Thus U can guess h∗2 only with negligible probability 2−k. 2

Lemma 11 Even after presenting ‘challenge:m∗, u∗1, u
∗
2, h

∗
1’ to U , A∗ answers invalid challenges

only with negligible probability.

Proof: Let ‘challenge:m′, u′1, u
′
2, h

′
1’ be an invalid challenge presented by U to A∗. Since all

the messages that come from a party must be all different it follows that: m′ is different than m∗

or this challenge comes from a party B′ 6= B∗. Recall that α′ = H∗(m′, B′) and α∗ = H∗(m∗, B∗).
At the end of the proof we prove that if the event α′ = α∗ happens with non-negligible probability,
then the function H∗ is not a secure hash function. For now, we assume that α′ 6= α∗. Consider
the equation:

log v′ = r′1(x1 + α′y1) + r′2λ(x2 + α′y2) (5)

where r′1 = logg1
u′1 and r′2 = logg2

u′2 and r′1 6= r′2 (because this challenge is invalid) and v′ =
(u′1)

x∗
1+α′y∗1 (u′2)

x∗
2+α′y∗2 . Since α′ 6= α∗ and r′1 6= r′2, it is simple to verify that equations 2, 3, 4

and 5 are linearly independent. This means that v′ is uniformly distributed over Gq and that is
independent from v∗, and thus h′1 = dH ′e(v′) is independent from h∗1 = dH∗e(v∗). In other words, the
view of U up to this point, does not help U in any way to find the correct h′1. Thus the probability
that A∗ accepts is the probability that U guesses h′1 which is negligible.

Bouding the probability that α′ = α∗. If our hash function H∗ were (fully) collision-resistant,
we could conclude immediately that α′ = H∗(m′, B′) is equal to α∗ only with negligible probability,
since their inputs are different.

The same conclusion however can be reached using the weaker assumption that H∗ is only a
UOWHF27. If α′ = α∗ with non-negligible probability, the adversary U can be used to break the
UOWHF. We modify the simulation: when D sends ‘challenge:m∗, u∗1, u

∗
2, h

∗
1’ to A∗ (the broken

party), it uses α = H∗(m̂,B∗) instead of α = H∗(m∗, B∗) where m̂ is a random message. Up until
the time that a collision occurs, U ’s view is statistically indistinguishable from the view in the
original simulation, so U will find a collision with the same probability as before. In this case the
choice of (m̂,B∗) is independent from H∗ (we could fix the pair (m̂,B∗) before choosing H∗). 2

27This argument appears already in the original Cramer-Shoup paper [12] and is due to Moni Naor.
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4.1 Deniability for λDDH

As in the previous case, protocol λDDH can be proven to be a deniable mt-authenticator if the receiver
is honest. Indeed the simulator can be defined by choosing at random r∈RZq and computing the
appropriate values, like an honest receiver would.

The case of a dishonest receiver is more complicated. Here we do not have an attack, but a black
box simulation of the receiver fails (once the dishonest simulator sends us ‘challenge:m, u1, u2, h1’,
how are we going to simulate the answer h2?).

We introduce a challenge-response mechanism where A will commit to the answer h2 and then
reveal it only after B shows that he knows h2 as well. However at this point it is redundant to split
H(v) in two pieces and we can just use v alone.

The protocol appears in Figure 5. We assume that A’s public key includes an unconditionally
binding commitment scheme COM (i.e. a commitment scheme that can be opened in only one way
even if you have infinite computing power, but on the other hand its secrecy is computational).

protocol Den-λ̂DDH

A B

m , u1 = gr
1 , u2 = gr

2�

r∈RZq

α = H(m, B)
v′ = crdrα

α = H(m, B)

v = ux1+αy1
1 ux2+αy2

2

ρ at random

m , h = COM(v, ρ)
-

m , v′
�

v′ ?
= v m , ρ

- h
?
= COM(v′, ρ)

Figure 5: Deniable mt-Authenticator λ̂DDH between A and B

Theorem 12 Protocol Den-λDDH is a forward deniable authenticator if used sequentially.

Proof: Let us first check that Den-λDDH is still a secure authenticator. The proof of Theorem 9
can be carried out with minor modification. Lemma 11 continues to hold as in order for U to have
an invalid ciphertext accepted it must guess v. However in this case U is given some “help” by seeing
h = COM(v, ρ). Thus the proof of Lemma 11 holds computationally (rather than unconditionally)
under the security of COM .

The deniability simulator works again by rewinding. After getting ‘challenge:m,u1, u2’ from
the receiver, we commit to a random value, and wait for the receiver to reveal v. The receiver’s
probability of revealing v must remain close to the one of the real protocol (where the real v is
committed by the sender) otherwise we can break COM (this is basically the technique from [26]).
Once we see v we rewind the receiver and place a correct commitment to v on the previous round
and complete the simulation.

The simulated transcript is perfectly indistinguishable from a real one, so the forward deniability
holds. 2
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Remark: The first step is malleable. The above protocol shows how far we have gone from the
CCA paradigm. We can think of u1, u2 as the “encryption” of a key, and of v as the MAC of
the message. But if we do that, then we do not know how to prove the encryption step to be
CCA-secure.

Remarks: Concurrent Executions. As in the previous section, the unforgeability property of this
authenticator holds in a concurrent setting (as in all the authenticators in the CCA paradigm).
If we use timing assumptions to force only a logarithmic number of executions to be open at any
time, we achieve deniability in the concurrent setting as well.

4.2 Generalizing to Projective Hash Functions

The previous scheme can be generalized to use projective hash functions, a tool introduced by
Cramer and Shoup in [14] as a generalization of their previous CCA-secure encryption scheme
based on DDH [12].

We briefly recall the notion of projective hash functions families, with some slight change of
terminology to fit it to our scenario. Let X be a set and L ⊂ X an NP-language. Let Y be an
arbitrary set. We consider a family of hash function PHk that maps X × Y in some set Z where
k ranges in some key space K. We assume that PHk is efficiently computable, i.e. there is some
efficient algorithm that computes PHk(x, y) when given k and x, y.

We say that this family is projective if there exists a projection key that allows to compute PHk

over the subset L×Y even without knowing k. That is, there exists a projection function µ(·) that
maps keys k into their projections s = µ(k), such that there is an efficient algorithm that given
only s = µ(k), y ∈ Y , x ∈ L and w a witness of x ∈ L (which exists because L is in NP), computes
PHk(x, y). Notice that this algorithm is not given k but just s = µ(k).

An ε-2universal projective hash function has the additional property that for x /∈ L, the pro-
jection key s actually says very little about the value of PHk(x, y), even after seeing PHk(x′, y′)
for a y′ 6= y. More specifically, for every x, x′, y, y′, z, z′, such that y 6= y′ we have

Probk[PHk(x, y) = z | s = µ(k) and PHk(x′, y′) = z′] ≤ ε

In [14] ε-2universal projective hash function families are constructed under the DDH, Quadratic
Residuosity and Higher Residuosity Assumptions.

We now show how the previous scheme can be thought in terms of projective hash functions.
The set X is Gq × Gq. The set Y is M× ID, where M is the message space, and ID is the set
of possible user’s IDs. The NP-language L is the set of pairs (u1 = gr

1, u2 = gr
2) for r ∈ Zq. This

is an NP language and the witness for such an element is r. The key space of the hash function is
defined as Z4

q and thus a key k is a tuple k = (x1, x2, y1, y2).

PHx1,x2,y1,y2(u1, u2,m, B) = ux1+αy1
1 ux2+αy2

2

where α = H(m,B). The projection of the key k = (x1, x2, y1, y2) are the values c = gx1
1 gx2

2 and
d = gy1gy2

2 . Clearly given c, d if (u1, u2) is in L we can compute

PHx1,x2,y1,y2(u1, u2,m, B) = (cdα)r

The proof of the protocol basically contains a proof that thanks to the collision resistance of H,
the family PH is ε-2universal.
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The last property we need to construct the protocol is that pairs (x,w) can be efficiently
sampled. We denote with L′ the set of pairs (x,w) where w is a witness of x.

The protocol above can be generalized as follows. The public key of A is a description of X
and L, plus s = µ(k), while the secret key is k. The protocol is described in Figure 6. Notice that
A can compute PHk as she knows k, while B can compute PHk(x,m,B) because he sampled x
together with w and he knows the projection.

protocol λ̂Proj

A B
m , x , h1 = dPHke(x, m, B)

� (x, w)∈RL′

h1
?
= dPHke(x, m, B) m , h2 = bPHkc(x, m, B)

- h2
?
= bPHkc(x, m, B)

Figure 6: mt-Authenticator λ̂Proj between A and B

Remark: In the Kurosawa-Desmedt encryption scheme [39] a strongly smooth projective hash
function must be used. In this case the output of the function is required to be uniform not just
very unpredictable. This is clearly a stronger property. In [39] this is needed as the output of the
function is used as a key to encrypt and MAC a message. In our case, basically, we are using the
output of the function directly as a MAC thus good unpredictability is sufficient.

The security of λ̂Proj can be proven by generalizing the proof for λ̂DDH , as follow:

Theorem 13 Assume that L ⊂ X is an hard on the average NP-language and that PHk is a
ε-2universal projective hash function over X, L (with ε negligible), then protocol λProj emulates
protocol mt in unauthenticated networks.

Proof: Up till the definition of event β, the proof is identical to the proofs of Theorem 6 and
Theorem 9. We pick the proof from this point, showing that event β occurs only with negligible
probability. Assume that event B occurs with non negligible probability δ. We construct an
Adversary D that, given a random element x∗ ∈ X, is able to decide if x∗ is in the language or not
with a non negligible probability (related to δ).

Construction of D. Given the adversary U (that is able to break λProj with non negligible
probability δ) the distinguisher D runs U on the following simulated interaction with a set of
parties running λProj. First D chooses and distributes keys for the imitated parties according to the
protocol λProj using the sets L and X. Let A∗ be a party chosen at random among the n simulated
parties and let k∗ his secret key (chosen at random) and (s∗ = µ(k∗), X, L) his public key.

As in the previous proofs, D chooses at random m∗ among all messages m such that some party
B was activated with ‘message:m’ from A∗. If during the simulation U asks to corrupt party A∗

then the simulation aborts and D outputs at random ‘inLanguage’ or ‘outLanguage’.
If party A∗ is activated with a request ‘challenge:m,x, h1’ from B with m 6= m∗, then

A∗ computes PHk(x,m,B) using k, so he can check the validity of challenge and reply with
‘reply:m, h2 = bPH∗c(x,m,B)’.
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When a particular party B∗ is activated by U with incoming ‘message:m∗’ then D computes
h∗1 = dPHk∗e(x∗,m∗, B∗) using k∗ (and not the projection s∗ and the witness w∗ that D doesn’t
know). B∗ responds with ‘challenge:m∗, x∗, h∗1’.

Next, if A∗ is activated with incoming message ‘challenge:m∗, x∗, h∗1’ then the simulation
aborts and the distinguisher D outputs at random ‘inLanguage’ or ‘outLanguage’.

Finally, if U activates B∗ with incoming message ‘reply:m∗, h∗2’ and h∗2 = bPHk∗c(x∗,m∗, B∗)
(that is the reply to the challenge is correct), then U has broken party A∗ on the message m∗ and
the distinguisher D outputs ‘inLanguage’. If the simulation terminates normally then D outputs
at random ‘inLanguage’ or ‘outLanguage’.

Analysis of D. D tries to guess the party that U will break and the message that it will use:
A∗ and m∗. If we denotes with l the total number of the messages that U delivers in its run, the
probability that D guesses the correct pair (A∗,m∗) is 1

l .
Now consider the following cases:

• if x∗ ∈ L then we observe that the “forged” message ‘challenge:m∗, h∗1’ is a legitimate
challenge. It’s clear that, considering the view of U , D’s simulation is identical to the real
world. As in the previous Theorem, in this case the distinguisher D (considering also the case
in which it doesn’t guess the correct broken pair) outputs ‘inLanguage’ with probability:

Prob(D = ‘inLanguage’) =
1
l
·
(

Prob(B) · 1 + Prob(B̄) · 1
2

)
+

(
1− 1

l

)
· 1
2

=
1
2

+
δ

2l

and then:
Prob(D = ‘outLanguage’) =

1
2
− δ

2l

where δ
2l is a non negligible factor.

• if x∗ /∈ L we prove in the following Lemma 14 that the distinguisher D says ‘inLanguage’
with a probability equals to 1/2 plus a negligible quantity that here we denotes with τ , so
that:

Prob(D = ‘inLanguage’) =
1
2

+ τ

Prob(D = ‘outLanguage’) =
1
2
− τ

Concluding, the distinguisher D solves the membership problem related to L with the non
negligible advantage of

(
δ
2l − τ

)
.

2

Lemma 14 Suppose that x∗ /∈ L, the distinguisher D outputs ‘inLanguage’ with a probability
equals to 1/2 plus a negligible quantity.
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Proof: The distinguisher D says ‘inLanguage’ always if U breaks in A∗ with message m∗ and
with probability 1/2 if D doesn’t guess the correct pair (A∗,m∗) or if U doesn’t break anyone.

To create a correct reply for the challenge ‘challenge:m∗, x∗, h∗1’ U must guess the value
PHk∗(x∗,m∗, B∗) or, at least, the second half of it.

When A∗ replies to challenges coming from other parties B′, he exposes values like PHk∗(x′,m′, B′),
with x′ 6= x. Thanks to the characteristic property of ε-2universal projective hash functions, the
probability to guess the target hash value is negligible for U .

When D inserts in the simulation the message ‘challenge:m∗, x∗, h∗1 = dPHk∗e(x∗,m∗, B∗)’,
this value doesn’t help U in his task for the uniform distribution of PHk∗(x∗,m∗, B∗). Thus U can
guess h∗2 only with negligible probability. 2

Deniability: as before, the protocol can be proven deniable only against an honest verifier. Against
a malicious verifier, as before, we need an extra challenge response mechanism (removing the need
to split PHk(x, m,B) in two parts): the final protocol is shown in Figure 7.

protocol Den-λ̂Proj

A B

m , x
�

(x, w)∈RL′

v′ = PHk(x, m, B)
v = PHk(x, m, B)
ρ at random

m , h = COM(v, ρ)
-

m , v′
�

v′ ?
= v m , ρ

- h
?
= COM(v′, ρ)

Figure 7: Deniable mt-Authenticator λ̂Proj between A and B

This variant of the protocol is a forward deniable authenticator and the proof follows the logic
of Theorem 12. The proof still holds if the protocol is used sequentially or in a concurrent setting,
using timing assumptions to force a logarithmic number of executions to be open at any time.
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A Alternative model for the analysis

Here we briefly describe the model for the analysis of deniable authentication protocol adopted
in [21, 35]. We also show that the model we use (from [4]) is not weaker than the one presented
here. That is, we show that a protocol satisfying our definition of deniable authenticator is valid in
their model.

Model. There are a prover (or authenticator) P and a verifier V . P publishes a public key PK
that V knows. V concurrently interacts with P in many sessions. For each session, V following
the execution of an authentication protocol decides whether to accept or reject the session as an
authentication of a message m. Consider an adversary M that controls the communication of
several copies of a prover P who are not aware of each other and control the verifiers with whom
they interact.

The protocol is a deniable authentication protocol if it satisfies:

Completeness For any message m, if the prover and verifier follow the protocol for authenti-
cating the message m, then the verifier accepts.

Soundness Suppose that the copies of P are willing to concurrently authenticate any polynomial
number of messages m1,m2, . . ., which may be chosen adaptively by the adversary M. We
say that M successfully attacks the scheme if a forger C, under control of M and pretending
to be P , succeeds in authenticating to a third party D (running the verifier’s V protocol) a
message m 6= mi, i = 1, 2, . . ..

We say that the scheme is unforgeable if the probability that M successfully attacks it is
negligible.

Strong Deniability Consider an adversary M as above and suppose that the copies of P are
willing to concurrently authenticate any polynomial number of messages. Then for each
M there exists a polynomial time simulator that, given black-box access to M, outputs an
indistinguishable transcript.

Equivalence. To prove that our model implies this alternative model we need to show that a pro-
tocol in the former model (specifically a deniable mt-authenticator) is also a deniable authentication
protocol (using the above definition).

Briefly, let λ be a deniable mt-authenticator. Consider the implicit protocol between the sender
P (the prover) and the receiver V (the verifier). The completeness is straightforwardly verified.
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For the soundness, suppose there exists an adversary M who is able to break the soundness
property of the protocol. Imagine a parallel simulation between an authenticated world and an
unauthenticated one using the mt-authenticator λ as connection using the techniques of Theorem 9.
Using the adversary M (running in the unauthenticated world) we can build an AM-adversary A
for the authenticated side. The parties in the soundness-game (copies of P and verifiers) run in
the unauthenticated side of the simulation. We use the convention to attach to each message m
the identity of the sender and an incremental id specific for each sender. This way the requirement
that each party should send only distinct messages is satisfied.

If M breaks the scheme in the unauthenticated world, thanks to the fact that mt-authenticators
are simulatable, it follows that A breaks the rules of the authenticated world (sending a message
not present in the set M of “undelivered messages”).

Finally, for strong deniability it is enough to note that the simulator SM is identical to our
simulator S

(M)
λ .

B Implementations of AMTC/MTC Schemes

For the sake of completeness, we report an MTC scheme from [23] that is based on the Strong-RSA
Assumption. It can be extended to an AMTC using Chameleon Hashing: the resulting scheme is
quite similar to the construction of a Simulation-sound Commitments scheme in [41]. In the same
paper there is another construction based on the security of DSA signature scheme that can be
shown to be an AMTC too.

B.1 The RSA and Strong RSA Assumption

Let N be the product of two primes, N = pq. With φ(N) we denote the Euler function of N , i.e.
φ(N) = (p− 1)(q − 1). With Z∗

N we denote the set of integers between 0 and N − 1 and relatively
prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [46] states that it infeasible
to compute e-roots in Z∗

N . I.e. given a random element s ∈R Z∗
N it is hard to find x such that

xe = s mod N .
The Strong RSA Assumption (introduced in [3]) states that given a random element s in Z∗

N it
is hard to find x, e 6= 1 such that xe = s mod N . The assumption differs from the traditional RSA
assumption in that we allow the adversary to freely choose the exponent e for which she will be
able to compute e-roots.

B.2 The Construction of the MTC based on Strong RSA

We first show a basic trapdoor commitment based on RSA (see [11, 13]) and later show how to
make it into a MTC. Let N be the product of two large primes p, q. Let e be a prime such that
GCD(e, φ(N)) = 1, and s a random element of Z∗

N . The triple (N, s, e) are the public parameters.
The commitment scheme is defined over messages in [1..e− 1].

We denote the commitment scheme with ComN,s,e(·, ·) and we drop the indices when obvious
from the context. To commit to a ∈ [1..e − 1] the sender chooses r ∈R Z∗

N and computes A =
Com(a, r) = sa ·re mod N . To decommit the sender reveals a, r and the previous equation is verified
by the receiver.
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Under the RSA Assumption this scheme is an unconditionally secret, computationally binding
trapdoor commitment scheme. The trapdoor is the value x = s

1
e mod N .

Let us first prove that the scheme is unconditionally secret. Given a value A = sa · re we note
that for each value a′ 6= a there exists a unique value r′ such that A = sa′(r′)e. Indeed this value
is the e-root of A · s−a′ .

We now show that the scheme is computationally binding under the RSA Assumption. We
show that an adversary A who is able to open the commitment scheme in two ways can be used to
compute e-roots. The proof uses Shamir’s GCD-trick [48]. Given as input the values (N, s, e) we
want to compute integer x such that xe = s mod N . We place (N, s, e) as the public parameters
of the commitment scheme and run A. The adversary returns a commitment A and two distinct
openings of it (a, r) and (a′, r′). Thus

A = sare = sa′(r′)e =⇒ sa−a′ =
(

r′

r

)e

(6)

Let δ = a − a′. Since a, a′ < e we have that GCD(δ, e) = 1. We can find integers α, β such that
αδ + βe = 1. Now we can compute

s = sαδ+βe = (sδ)α · sβe =
(

r′

r

)αe

sβe (7)

where we used Equation (6). By taking e-roots on both sides we find that x =
(

r′

r

)α
sβ.

Finally we show that if we know x then we can open a commitment (of which we already know
one opening), in any way we want. Assume we computed A as Com(a, r) = sare, and later we want
to open it as a′. All we need to do (as shown above for the unconditional security) is to compute
the e-root of

A · s−a′ = sa−a′ · re mod N

which clearly is xa−a′ · r mod N .

Remark 1: The commitment scheme can be easily extended to any message domain M, by using
a collision-resistant hash function H from M to [1..e−1]. In this case the commitment is computed
as Com(a, r) = sH(a)re. For example, it is possible to use a collision resistant function like SHA-1
that maps inputs to 160-bit integers and then choose e’s larger than 2160.

Remark 2: How to make the scheme into a multi-trapdoor commitment. Notice that
the scheme above is really a family of commitment schemes, one for each prime e. The master
trapdoor is the factorization of N . The specific trapdoor of each scheme is s1/e mod N .

We only need to show that the Secure Binding condition holds, under the Strong RSA Assump-
tion. Assume we are given a Strong RSA problem instance N,σ. Let us now run the MTC Secure
Binding game.

The adversary is going to select k public keys which in this case are k primes, e1, . . . , ek. We set
s = σ

∏k

i=1
ei mod N and return N, s as the public key of the MTC family. Now we need to show

how to simulate the oracle EQ. But that’s easy, as we know the ei-roots of s, so we actually know
the trapdoor of the schemes in the family identified by ei.

Assume now that the adversary equivocates a commitment scheme in the family identified
by a prime e 6= ei. Using the above observation we can then compute ρ = s1/e. In turn this
allows us to solve the Strong RSA problem instance N,σ by computing an e-root of σ as follows.
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Let E =
∏k

i=1 ei. Then GCD(e,E) = 1 which means that we can find integers α, β such that
αe + βE = 1. Then

σ = σαe+βE = [σαρβ]e

This prove that this scheme is an MTC scheme.

C Alternative authenticators based on MTC

This section shows methods to make protocol λAMTC secure when using MTC commitments instead
of AMTC ones. Notice that in these cases also in order to make λAMTC deniable we need to modify
it as shown in Section 3.2.1.

C.1 Same protocol with MTC and Random Oracle proof

The only difference between the notion of AMTC and MTC schemes resides in the secure binding
properties. In the game that defines the MTC secure binding property the adversary can’t see the
master public key PK until he declares the public keys (pk1, . . . , pkk) on which he wants invoke the
equivocator oracle EQ. Instead, in the AMTC game he can invoke EQ without any limitations.

To deal with this problem in the random oracle model is relatively simple: let A∗ be the party
chosen at random among the n parties and let q be a polynomial upper bound to the number of
messages that A∗ is requested to send. Suppose that H∗ is the hash function of the public key of
A∗. Note that we need to program a random oracle only for H∗, in fact the simulator knows the
master trapdoor keys of the other parties.

We can choose q random public keys (pk1, . . . , pkq) and program the oracle of the hash function
H∗ to map the ith different request to the oracle (for example the string (mi, Bi)) on the string
pki. Further, in the MTC secure binding game, we declare that we want to be able to invoke the
equivocator EQ on all these public keys except for one pkj chosen at random. Namely, we bet on
this session hoping that it is the broken session.

Finally, we saw in the proof of Theorem 6 that if the adversary U has probability δ to break the
authenticator then the built equivocator E breaks the security of the multi-trapdoor commitment
with probability δ

n . Here, this probability is different but still non negligible, that is δ
n·q .

Remark: Note that here we are using the features of the ideal Random Oracle model only in
the proof of unforgeability. The proof of deniability is identical to Theorem 7 and it holds in the
standard model.

C.2 MTC-based authenticator without Random Oracle

Now we show that the Random Oracle in the previous construction can be replaced by a hash
function which satisfies some strong (but well defined) computational assumptions introduced by
Gennaro et al. [24].

In the previous section we saw how the adversary E can program the random oracle to obtain
the previously chosen values. In the standard model this is no longer the case: clearly, if H is
deterministic, then the choice of the message m and of the receiver uniquely determines the public
key pk and E has no room to play with these values. But even if H is randomized this does not
help E due to the fact that H is one-way. Thus, if the adversary first chooses pk and then sees the
pair (m,B), it cannot find randomness r for witch pk = H(r;m,B) (even if such r exists).
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To deal with this problem we need an oracle associated to the hash function that given the
hash Y and the message M returns a randomness R such that H(R;M) = Y . Further, we need
to assume that the presence of this oracle does not help in any way to break the security of the
commitment scheme. This technique is introduced in [24] where they use this assumption relatively
to the problem of Strong RSA. Here we present the same assumption but adapted to the use of a
generic commitment scheme.28

We say that a family of hash function is suitable, relatively to a particular family of commitment
schemes, if:

1. the hash functions in the family are collision-resistant;

2. for every function H in the family and for every two messages M1,M2, the distributions
H(R;M1), H(R;M2), induced by the random choice of R, are statistically close;

3. there is an oracle that on input H,M, Y returns a random R such that H(R;M) = Y ;

4. the security of commitment schemes still holds in a model where there exists such an oracle.

Sketch of proof. If we assume that the hash functions used in the MTC-based authenticator
are suitable, we can still prove that it emulates a protocol mt in unauthenticated networks. The
proof proceeds similarly to Theorem 6, i.e. we construct an equivocator E which will use the UM-
adversary U . The main difference is that E operates in a relativized model, given in addition access
to the oracle from Condition 3 of the suitable hash function.

As in the previous sketch of proof: let A∗ be the party chosen at random among the n parties
and let q be a polynomial upper bound to the number of messages that A∗ is requested to send.
H∗ is the hash function of A∗. As before, We can choose q random public keys (pk1, . . . , pkq) and,
in the MTC secure binding game, we declare that we want to be able to equivocate with oracle EQ
the commitments related to these keys.

When A∗ receives the ith request to send a generic message mi to a party Bi, E invokes the
randomness-finding oracle for a randomness ri for which H(ri;mi, Bi) = pki. After, when A∗ will
receive the challenge from Bi, E can invoke the equivocator oracle EQ to open the commitment as
requested.

The rest of the simulation proceeds as in the original proof, that is rewinding the simulation if
U breaks party A∗ and obtaining a double opening of a commitment of the family.29 It is important
to note that because of Condition 2 of the suitable hash function, the distribution that U sees in
this simulation is statistically close to the distribution it sees when interacting with real parties in
unauthenticated networks.

Implementations of Suitable Hash Functions. Following the discussion in [24], we argue
that adopting this type of non-standard assumptions is reasonable.

First of suitable hash functions can be built under standard assumptions (like Factoring, RSA
or Discrete Logarithm), by using Chameleon hashing [7, 38] (the trapdoor property of this hash

28If the security of the commitment scheme is base, for example, on the Strong RSA assumption, then our assump-
tion is identical to the one used in the original paper.

29The probability that U uses in the broken session a pair (m, B) with a randomness r such that H∗(r; m, B) = pki

for some i is negligible. This means that the final probability of success of the built adversary is slightly different but
still non negligible.
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function immediately gives you the inverting oracle). Indeed our Chameleon Hashing solution is
basically an istantiation of this paradigm.

But even without resorting to Chameleon Hashing, we can still assume that a very-efficient
cryptographic hash function, such as SHA-1, is suitable. Intuitively what this means is that we
are assuming that finding collisuions in SHA-1 is a computational task which is “unrelated” to
breaking the commitment scheme, and that finding such collisions would not help in say inverting
RSA.
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