Tight Reductions among Strong Diffie-Hellman Assumptions

Victor K. Wei
Department of Information Engineering
The Chinese University of Hong Kong
Shatin, Hong Kong
kwwei@ie.cuhk.edu.hk

Abstract

We derive some tight equivalence reductions between several Strong Diffie-Hellman (SDH) assumptions.

1 Results

Let $\hat{e}: G_{1} \times G_{2} \rightarrow G_{T}$ be a bilinear mapping. The k-Strong Diffie-Hellman Problem (k-SDH) is the problem of computing a pair $\left(g_{1}^{1 /(\gamma+x)}, x\right)$ given $g_{1} \in G_{1}$, and $g_{2}, g_{2}^{\gamma}, g_{2}^{\gamma^{2}}, \cdots, g_{2}^{\gamma^{k}} \in G_{2}$. The k-Strong Diffie-Hellman Assumption is that no PPT algorithm has a non-negligible probability of solving a random instance of the k-Strong Diffie Hellman Problem. For details, see [2, 3].

The k-SDH Assumption is closely related to the coalition-resistance of pairing-based signature schemes and group signature schemes $[4,6,2,3,5]$. Typically, k colluders cannot jointly forge an additional signature not traceable to them when the k-SDH Assumption holds. The following variants are also related to the coalition-resistance of pairing based signatures and group signatures:

- The k-SDH' Problem is the problem of computing a pair $\left(g_{1}^{1 /(\gamma+x)}, x\right)$ given $g_{1}, g_{1}^{\gamma}, g_{1}^{\gamma^{2}}, \cdots, g_{1}^{\gamma^{k}} \in G_{1}$ and $g_{2}, g_{2}^{\gamma} \in G_{2}$.
- The k-CAA Problem is, given $g_{2}, g_{2}^{\gamma} \in G_{2}, v \in G_{1}$, and and pairs (A_{i}, e_{i}) with distinct and nonzero e_{i} 's satisfying $A_{i}^{\gamma+e_{i}}=v, 1 \leq i \leq k$, compute a pair (A_{k+1}, e_{k+1}) with $e_{k+1} \neq e_{i}$ for any $i, 1 \leq i \leq k$, and satisfying $A_{k+1}^{\gamma+e_{k+1}}=v$.
- The k-SDH'2 Problem is, given $g_{2}, g_{2}^{\gamma} \in G_{2}, g_{1}^{\gamma^{i}}$ and $g_{3}^{\gamma^{i}}$ in G_{1} for $0 \leq i \leq k$, compute a triple $\left(\left(g_{1} g_{3}^{\tilde{x}}\right)^{1 /(\gamma+\tilde{e})}, \tilde{x}, \tilde{e}\right)$.
- The k-CAA2 Problem is, given $g_{2}, g_{2}^{\gamma} \in G_{2}, u, v \in G_{1},\left(A_{i}, e_{i}, x_{i}\right)$ satisfying $A_{i}^{\gamma+e_{i}} u^{x_{i}}=v$ for $1 \leq i \leq k$ and all e_{i} 's are distinct and nonzero, compute another triple ($A_{k+1}, e_{k+1}, x_{k+1}$) satisfying $A_{k+1}^{\gamma+e_{k+1}} u^{x_{k+1}}=v$ and $e_{k+1} \neq n_{i}$ for any $i, 1 \leq i \leq k$.

The k-SDH' (resp. $k-C A A, k-S D H^{\prime}, k$, -CAA2) Assumption is that no PPT algorithm has a nonnegligible probability of solving a random instance of the k-SDH' (resp. k-CAA, k-SDH', k-CAA2) Problem. The k-CAA Assumption is from Zhang, et al.[6], where CAA stands for Collusion Attack Algorithm. They showed the k-CAA Assumption holds if and only if their group signature scheme is k-coalition resistant. [2, 3] showed the k-CAA Assumption implies the k-SDH Assumption. However, no implicaiton in the opposite direction was given. The full traceability of the exculpable version of [3]'s group signature in their Section 7 can be easily shown equivalent to the k-CAA2 Assumption. [5] showed the k-CCA2 Assumption implies the k-SDH Assumption. Abdalla, et al.[1] defined a different, and only remotely related, assumption which they also called the strong Diffie-Hellman assumption.

Typically, there exists an efficiently computable homomorphism ψ such that $\psi\left(g_{2}\right)=g_{1}$. Then the k-SDH Assumption implies the k-SDH' Assumption. In Section 2, we prove the following Theorems:

Theorem 1. The $k-S D H^{\prime}$ Assumption and the $k-C A A$ Assumption are equivalent.
Theorem 2. Assume the discrete \log value $\log _{v}(u)$ is known. Then the k-SDH' Assumption and the $k-C A A 2$ Assumption implies each other.

Theorem 3. The k-SDH'2 Assumption implies the k-CAA2 Assumption.

In proving results concerning SDH-based signatures (resp. group signatures), u is often the output of a hashing function. Then the value of $\log _{v}(u)$ is known to the Simulator under the random oracle model. More specifically, $u=$ Hash(something), and the Simulator can select α and backpatch Hash (something) $\leftrightarrow v^{\alpha}$. In such cases, Theorem 2 can be used to establish equivalence between coalitionresistant unforgeability of SDH-based signature (resp. group signature) schemes and the k-SDH' Assumption. On the other hand, Theorem 3 can be used to reduce the coalition-resistant unforgeability of some SDH-based signatures (resp. group signatures) to the k-SDH'2 Assumption without the random oracle model. It remains intereating to explore other equivalence reductions between these and other SDH-related assumptions, and their applications to pairing-based signatures and group signatures.

We also note that the above equivalence reductions are tight, meaning that one solution algorithm's time complexity (resp. success probability) is within a reasonable additive term of the solution algorithm of the other problem. Such tightness will be established by our proofs below.

2 Proofs

2.1 Proof Sketch of Theorem 1

(1) Solving k-CAA Problem implies solving k-SDH' Problem. Assume PPT algorithm \mathcal{A} solves k-CAA. Given a k-SDH' problem instance, randomly generate distinct nonzero $e_{i}, 1 \leq i \leq k$. Let $f(\gamma)=\prod_{i=1}^{k}(\gamma+$ e_{i}). Denote $f(\gamma)=\sum_{i=0}^{k} f_{i} \gamma^{i}$. Let $v=g_{1}^{f(\gamma)}$. For $1 \leq i \leq k$ let $f^{[j]}=f(\gamma) /\left(\gamma+e_{j}\right)=\sum_{i=0}^{k-1} f_{i}^{[j]} \gamma^{i}$. Then

$$
A_{j}=v^{1 /\left(\gamma+e_{j}\right)}=g_{1}^{f^{[j]}(\gamma)}=g_{1}^{\sum_{i=0}^{k-1} f_{i}^{[j]} \gamma^{j}}=\prod_{i=0}^{k-1}\left(g_{1}^{\gamma^{j}}\right)^{f_{i}^{[j]}}
$$

Note that for each $j, 1 \leq j \leq k$, we have $A_{j}^{\gamma+e_{j}}=v$. Invoking \mathcal{A} to solve this k-CAA Problem, we obtain $\left(A_{k+1}, e_{k+1}\right)$ satisfying $A_{k+1}^{\gamma+e_{k+1}}=v$. Denote $B=v \hat{f}(\gamma)^{-1}$ where $\hat{f}(\gamma)=f(\gamma)\left(\gamma+e_{k+1}\right)$. Next, we describe how to compute B. Denote $\hat{f}(\gamma)=\sum_{i=0}^{k+1} \hat{f}_{i} \gamma^{i}$ and

$$
\hat{f}^{[j]}(\gamma)=\hat{f}(\gamma)\left(\gamma+e_{j}\right)^{-1}=\prod_{1 \leq i \leq k+1, i \neq j}\left(\gamma+e_{i}\right)=\sum_{i=1}^{k} \hat{f}_{i}^{[j]} \gamma^{i}
$$

for $1 \leq j \leq k+1$. Denote $\tilde{e}=e_{k+1}$, we have

$$
\begin{aligned}
& B^{\gamma^{j+1}+\gamma_{j} \tilde{e}}=B^{\left(\gamma^{j}+\gamma^{j-1} \tilde{e}\right) \gamma}=g_{1}^{j}, \text { for } 0 \leq j \leq k \\
& B^{\hat{f}(\gamma)}=v
\end{aligned}
$$

The above system of $k+2$ equations can be solved for the $k+2$ unknowns $B^{\gamma^{\ell}}, 0 \leq \ell \leq k+1$, including B where (B, \tilde{e}) solves the k-SDH' Problem.
(2) Solving k-SDH' Problem implies solving k-CAA Problem. Assume \mathcal{A} is a PPT solver of the k-SDH' Problem. Given $A_{i}^{\gamma+e_{i}}, 1 \leq i \leq k$, let $f(\gamma)=\prod_{I=1}^{k}\left(\gamma+e_{i}\right)$. Let $g_{1}=v^{1 / f(\gamma)}$. Next, we describe how to compute g_{1}.

Denote $f(\gamma)=\sum_{i=0}^{k} f_{i} \gamma^{i}$ and $f^{[j]}(\gamma)=f(\gamma) /\left(\gamma+e_{j}\right)=\sum_{i=0}^{k-1} f_{i}^{[j]} \gamma^{i}$, for $1 \leq j \leq k$. We have $v=g_{1}^{f(\gamma)}=\prod_{i=0}^{k}\left(g_{1}^{\gamma^{i}}\right)^{f_{i}}$ and

$$
\begin{equation*}
A_{j}=g_{1}^{f^{[j]}(\gamma)}=\prod_{i=0}^{k}\left(g_{1}^{\gamma^{i}}\right)^{f_{i}^{[j]}} \tag{1}
\end{equation*}
$$

Rearranging, we have

$$
\begin{equation*}
\prod_{i=0}^{k}\left(g_{1}^{\gamma^{i}}\right)^{M_{i, j}}=A_{j}, \text { for } 0 \leq j \leq k \tag{2}
\end{equation*}
$$

where the $(k+1) \times(k+1)$ matrix $\overline{\mathbf{M}}$ is

$$
\overline{\mathbf{M}}=\left[M_{i, j}\right]_{0 \leq i, j \leq k}=\left[\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{k} \\
0 & f_{1}^{[1]} & \cdots & f_{k}^{[1]} \\
\vdots & & & \\
0 & f_{1}^{[k]} & \cdots & f_{k}^{[k]}
\end{array}\right]
$$

Note $f_{i}^{[j]}=\mathrm{S}_{k-1-i}\left(E \backslash\left\{e_{j}\right\}\right)$ for all i and $j, 1 \leq i \leq k-1,1 \leq j \leq k$, where $E=\left\{e_{1}, \cdots, e_{k}\right\}$ and $\mathrm{S}_{a}\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)$ is the a-th order symmetric function

$$
\mathrm{S}_{a}\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\sum_{1 \leq i_{1}<\cdots<i_{a} \leq n} x_{i_{1}} \cdots x_{i_{a}}
$$

Denote the $k \times k$ matrix $\mathbf{M}=\left[M_{i, j}\right]_{1 \leq i, j \leq k}$. We prove the following Lemma later:
Lemma $4 \operatorname{det}(\mathbf{M})=\prod_{1 \leq i<j \leq k}\left(e_{i}-e_{j}\right)$.
Therefore $\operatorname{det}(\overline{\mathbf{M}})=\left(\prod_{\ell=1}^{k} e_{\ell}\right)\left(\prod_{1 \leq i, j \leq k}\left(e_{i}-e_{j}\right)\right) \neq 0$, and Equation (2) can be solved to obtain $g_{1}^{\gamma^{i}}$, for all $i, 0 \leq i \leq k$. Invoking the k-SDH' solver \mathcal{A} to obtain $g_{1}^{1 /(\gamma+x)}$ and x.

Let $\bar{f}(\gamma)=\sum_{i=0}^{k-1} \bar{f}_{i} \gamma^{i}$ and \bar{c} be such that $f(\gamma) /(\gamma+x)=\bar{f}(\gamma)+\bar{c} /(\gamma+x)$. Then compute

$$
A_{k+1}=g_{1}^{f(\gamma) /(\gamma+x)}=g_{1}^{\bar{f}(\gamma)}\left(g_{1}^{1 /(\gamma+x)}\right)^{\bar{c}}=\left[\prod_{i=0}^{k-1}\left(g_{1}^{\gamma^{i}}\right)^{\bar{f}_{i}}\right]\left(g_{1}^{1 /(\gamma+x)}\right)^{\bar{c}}
$$

and we solve k-CAA Problem with $\left(A_{k+1}, x\right)$.

2.2 Proof Sketch of Lemma 4

Note \mathbf{M} equals the following matrix:

$$
\mathbf{M}\left(k, e_{1}, \cdots, e_{k}\right)=\left[\begin{array}{c}
\mathrm{S}_{k-1}\left(E \backslash\left\{e_{1}\right\}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{1}\right\}\right) \\
\mathrm{S}_{k-1}\left(E \backslash\left\{e_{2}\right\}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{2}\right\}\right) \\
\cdots \\
\vdots \\
\mathrm{S}_{0-1}\left(E \backslash\left\{e_{0}\right\}\right) \\
\mathrm{S}_{k-1}\left(E \backslash\left\{e_{k}\right\}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{2}\right\}\right) \\
\\
\end{array}\right]
$$

By convention $\mathrm{S}_{0}=1$. We prove the the following statement:

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{M}\left(k, e_{1}, \cdots, e_{k}\right)\right)=\left(\prod_{i=2}^{k}\left(e_{1}-e_{i}\right)\right) \operatorname{det}\left(\mathbf{M}\left(k-1, e_{2}, \cdots, e_{k}\right)\right) \tag{3}
\end{equation*}
$$

Then induction on k yields the Lemma.
Let matrix

$$
\mathbf{U}=\left[\begin{array}{cccc}
1-1 & -1 & \cdots & -1 \\
& 1 & & \\
& & \ddots & \\
& & & \\
0 & & \ddots & \\
& & & 1
\end{array}\right]
$$

Multiplying two matrices we obtain $\mathbf{M}\left(k, e_{1}, \cdots, e_{k}\right) \mathbf{U}=$

$$
\left[\begin{array}{cccc}
\mathrm{S}_{k-1}\left(E \backslash\left\{e_{1}\right\}\right) & \mathrm{S}_{k-2}\left(E \backslash\left\{e_{1}\right\}\right) & \cdots & \mathrm{S}_{1}\left(E \backslash\left\{e_{1}\right\}\right) \\
\left(e_{1}-e_{2}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{1}, e_{2}\right\}\right)\left(e_{1}-e_{2}\right) \mathrm{S}_{k-3}\left(E \backslash\left\{e_{1}, e_{2}\right\}\right) & \cdots & \mathrm{S}_{0}\left(E \backslash\left\{e_{1}-e_{2}\right) \mathrm{S}_{0}\left(E \backslash\left\{e_{1}, e_{2}\right\}\right)\right. & 0 \\
\left(e_{1}-e_{3}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{1}, e_{3}\right\}\right)\left(e_{1}-e_{3}\right) \mathrm{S}_{k-3}\left(E \backslash\left\{e_{1}, e_{3}\right\}\right) & \cdots & \left(e_{1}-e_{3}\right) \mathrm{S}_{0}\left(E \backslash\left\{e_{1}, e_{3}\right\}\right) & 0 \\
\vdots \\
\left(e_{1}-e_{k}\right) \mathrm{S}_{k-2}\left(E \backslash\left\{e_{1}, e_{k}\right\}\right)\left(e_{1}-e_{k}\right) \mathrm{S}_{k-3}\left(E \backslash\left\{e_{1}, e_{k}\right\}\right) & \cdots\left(e_{1}-e_{k}\right) \mathrm{S}_{0}\left(E \backslash\left\{e_{1}, e_{k}\right\}\right) & 0
\end{array}\right]
$$

Consider the lower left $(k-1) \times(k-1)$ matrix. Its i-th row is exactly the i-th row of $\mathbf{M}\left(k-1, E \backslash\left\{e_{1}\right\}\right)$ multiplied by $e_{1}-e_{i}$, This proves Equation (3) and thus the Lemma.

2.3 Proof Sketch of Theorem 2

Assume $\log _{v}(u)=\alpha$. The proof is similar to that of Theorem 1 . We describe mainly the difference below. Given a PPT algorithm \mathcal{A} which solves k-CAA2, and a k-SDH' Problem instance, randomly generate distinct nonzero e_{i} and $x_{i}, 1 \leq i \leq k$. Let $f(\gamma), f^{[i]}(\gamma)$ be as defined in the proof of Theorem 1. Then

$$
A_{j}=v^{\left(1-x_{i} \alpha\right) /\left(\gamma+e_{i}\right)}=g_{1}^{\left(1-x_{i} \alpha\right) f^{[i]}(\gamma)}
$$

Invoking \mathcal{A} to obtain $\left(A_{k+1}, e_{k+1}, x_{k+1}\right)$ satisfying $A_{k+1}^{\gamma+e_{k+1}} u^{x_{k+1}}=v$. The rest is similar to the proof of Theorem 1.

Given a PPT algorithm \mathcal{A} which solves the k-SDH' Problem and a k-CCA2 Problem instance, we have $A_{i}^{\gamma+e_{i}}=v^{1-x_{i} \alpha}$. Let $g_{1}=v^{1 / f(\gamma)}$, then Equation (1) becomes

$$
A_{j}=g_{1}^{\left(1-x_{i} \alpha\right) f^{[j]}(\gamma)}, 1 \leq j \leq k .
$$

The non-singularity of the matrix $\overline{\mathbf{M}}$ ensures that a k-SDH' Problem instance can be computed from the A_{j} 's. Invoke \mathcal{A} to solve this problem instance, and then convert its answer to an answer for the k-CAA2 Problem is straightforward.

2.4 Proof Sketch of Theorem 3

Assume \mathcal{A} solves the k-CAA2 Problem. Given a k-SDH'2 Problem instance, randomly choose nonzero distinct e_{i} and $x_{i}, 1 \leq i \leq k$, and let $f(\gamma), f^{[i]}(\gamma)$, and v be as defined in the Proof Sketch of Theorem 1. Furthermore, let $u=g_{3}^{f(\gamma)}$. Then let $A_{i}=g_{1}^{f(\gamma) /\left(\gamma+e_{i}\right)} g_{3}^{\left.-x_{i} f(\gamma) / \gamma+e_{i}\right)}$, and we have $A_{i}^{\gamma+e_{i}} u^{x_{i}}=v$ for each $i, 1 \leq i \leq k$. Invoking \mathcal{A} to obtain $(\tilde{A}, \tilde{e}, \tilde{x})$ satisfying $\tilde{A}^{\gamma+\tilde{e}} u^{\tilde{x}}=v$. Then $(B, \tilde{e},-\tilde{x})$ solves the k-SDH'2 Problem where $B=\left[\tilde{A}\left(g_{1} g_{3}^{-\tilde{x}}\right)^{\bar{f}(\gamma)}\right]^{c^{-1}}, f(\gamma) /(\gamma+\tilde{e})=\bar{f}(\gamma)+\bar{c} /(\gamma+\tilde{e}), \bar{d}$ is a constant.

Acknowledgements to Professor Zhang, Fangguo, for helpful discussions.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. DHIES: an encryption scheme based on the Diffie-Hellman problem. In $C T-R S A$ 2001, volume 2045 of $L N C S$. Springer-Verlag, 2001.
2. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt 2004, volume 3027 of LNCS, pages 56-73. Springer-Verglag, 2004.
3. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPYTO 2004, volume 3152 of LNCS. Springer-Verglag, 2004.
4. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans., E85-A(2):481-484, 2002.
5. Victor K. Wei. Tracing-by-linking group signatures. Cryptology ePrint Archive, Report 2004/370, 2004. http://eprint.iacr.org/.
6. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bilinear pairings and its applications. In PKC 2004, 2004.
