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Abstract. This paper presents efficient off-line anonymous e-cash schemes where
a user can withdraw a wallet containing2` coins each of which she can spend
unlinkably. Our first result is a scheme, secure under the strong RSA and the
y-DDHI assumptions, where the complexity of the withdrawal and spend opera-
tions isO(`+k) and the user’s wallet can be stored usingO(`+k) bits, wherek
is a security parameter. The best previously known schemes require at least one of
these complexities to beO(2` ·k). In fact, compared to previous e-cash schemes,
our whole wallet of2` coins has about the same size asonecoin in these schemes.
Our scheme also offers exculpability of users, that is, the bank can prove to third
parties that a user has double-spent. We then extend our scheme to our second
result, the first e-cash scheme that provides traceable coins without a trusted third
party. That is, once a user has double spent one of the2` coins in her wallet,all
her spendings of these coins can be traced. However, the price for this is that the
complexity of the spending and of the withdrawal protocols becomesO(` ·k) and
O(` · k + k2) bits, respectively, and wallets takeO(` · k) bits of storage. All our
schemes are secure in the random oracle model.

1 Introduction

Electronic cash was invented by Chaum [27, 28], and extensively studied since [31,
40, 32, 9, 10, 22, 11, 48, 39, 49, 5]. The main idea is that, even though the same party (a
bankB) is responsible for giving out electronic coins, and for later accepting them for
deposit, the withdrawal and the spending protocols are designed in such a way that it
is impossible to identify when a particular coin was spent. I.e., the withdrawal protocol
does not reveal any information to the bank that would later enable it to trace how a
coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic cash
scheme requires a mechanism that prevents a user from spending the same coin twice
(double-spending). There are two scenarios. In theon-linescenario [28–30], the bank
is on-line in each transaction to ensure that no coin is spent twice, and each merchant
must consult the bank before accepting a payment. In theoff-line [31] scenario, the
merchant accepts a payment autonomously, and later submits the payment to the bank;
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the merchant is guaranteed that such a payment will be either honored by the bank, or
will lead to the identification (and therefore punishment) of the double-spender.

In this paper, we give an off-line2`-spendable unlinkable electronic cash scheme.
Namely, our scheme allows a user to withdraw a wallet with2` coins, such that the space
required to store these coins, and the complexity of the withdrawal protocol, are pro-
portional to`, rather than to2`. We achieve this without compromising the anonymity
and unlinkability properties usually required of electronic cash schemes.

This problem is well-motivated: (1) communication with the bank is a bottleneck
in most electronic cash schemes and needs to be minimized; (2) it is desirable to store
many electronic coins compactly, as one can imagine that they may be stored on a
dedicated device such as a smartcard that cannot store too much data. This problem
has also proved quite elusive: no one has offered a compact e-cash solution (even for a
weaker security model) since the introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders to
outside third parties in an undeniable fashion. I.e., assuming a PKI, if a userU with
public keypkU spent a coin more times than he is allowed (in our case, spent2` + 1
coins from a wallet containing2` coins), then this fact can be proven to anyone in a
sound fashion. This property of an electronic cash scheme is satisfied by numerous
e-cash schemes in the literature. Our solution has this property as well.

Finally, it may often be desirable that an e-cash scheme should allow one to trace
all coins of a cheating user. It was known that this property can be implemented using
a trusted third party [48, 14], by requiring that: (1) in each withdrawal protocol a user
gives to the bank an encryption under the TTP’s public key of a serial numberS which
will be revealed during the spending protocol; and (2) in each spending protocol, the
user submits to the merchant an encryption of the user’s public key under the TTP’s
public key. Then, should a coin with serial numberS ever be double-spent, the TTP can
get involved and decrypt the serial number of all of this user’s coins. But the existence
of such a TTP contradicts the very definition of electronic cash: to the TTP, the user is
not anonymous! Therefore, another desirable and elusive property of an electronic cash
scheme was traceabilitywithouta TTP. Our scheme achieves this property as well.

Recently, Jarecki and Shmatikov [42] also made a step in this direction. Although
their work is not explicitly about electronic cash, it can be thought of in this way. Their
scheme allows to withdraw andlinkably (linkability is actually a feature for them) but
anonymously spend a coinK times; but should a user wish to spend the coinK + 1
times, his identity gets revealed. Their solution is inferior to ours for two reasons: (1) it
does not achieve unlinkability; and (2) in their protocol, each time a user spends a coin
he has to run a protocol whose communication complexity is proportional toK, rather
thanlog K, as we achieve. In 1989, Okamoto and Ohta [45] proposed an e-cash scheme
with similar functionality, without achieving unlinkability or compact wallets.

Our work can also be viewed as improving on the recent traceable group signatures
by Kiayias, Tsiounis, and Yung [43]. In their scheme, once a special piece of tracing
information is released, it is possible to trace all group signatures issued by a particular
group member; otherwise this member’s signatures are guaranteed to remain anony-
mous. Normally, in a group signature setting, this piece of informationmustbe released
by a TTP, as there is no equivalent of adouble-spenderwhose misbehavior may au-



tomatically lead to the release of the tracing information; however, if a limit is placed
on how many signatures a group member may issue, then our e-cash scheme can be
viewed as aboundedgroup signature scheme, where a group member can sign a mes-
sage by incorporating it into the signature proof of a coin’s validity. A group manager
may allocate signing rights by acting as a bank allocating coins; and if any member
exceeds their allocation, the special tracing information is revealed automatically, and
all signatures produced by that group member may be traced. Our tracing algorithm is
more efficient than that of Kiayias et al. [43]; in ours, signatures can be tracked by a tag
(that appears to be random until the user double-spends), while in theirs,all existing
signatures must be tested, one-by-one, using the special tracing information provided
by the TTP, to determine if a certain signer created it or not.

Our results.Let us summarize our results. We solve all of the open problems outlined
above in the random-oracle model, under the Strong RSA assumption in combination
with the decisional Diffie-Hellman (DH) inversion [6, 37] and sum-free DH [36] as-
sumptions for groups with bilinear maps. The communication complexity of the spend-
ing and of the withdrawal protocol isO(` · k) andO(` · k + k2) bits, respectively; it
takesO(` · k) bits to store all the coins. This scheme is presented in Section 4.2.

We also give a scheme where the withdrawal and the spending protocols have com-
plexity onlyO(`+k), and it also takes onlyO(`+k) bits to store all the coins, based on
the Strong RSA [41, 3] and they-DDHI [37] assumptions in the random-oracle model.
This less expensive scheme does not allow traceability, however. This scheme is pre-
sented in Section 4.1.

Furthermore, in the model where the bank completely trusts the merchant (this ap-
plies to, for example, a subscription service where the entity creating and verifying the
coins is one and the same), we have solutions based on the same set of assumptions
but in the standard model. Sections 4.1 and 4.2 containing our random-oracle-based
schemes also explain how these security properties are obtained once the random ora-
cle is removed.

Overview of our construction.Our schemes are based on the signature schemes with
protocols due to Camenisch and Lysyanskaya [18, 19]. These schemes allow a user
to efficiently obtain a signature on committed messages from the signer. They further
allow the user to convince a verifier that she possesses a signature by the signer on a
committed message. Both of these protocols rely on the Pedersen commitment scheme.

To explain our result, let us describe how single-use electronic cash can be obtained
with CL-signatures, drawing on a variety of previously known techniques [13, 18].

Let G = 〈g〉 be a group of prime orderq where the discrete logarithm problem is
hard. Suppose that a userU has a secret keyskU ∈ Zq and a public keypkU = gskU .
An electronic coin is a signature under the bankB’s public keypkB on the set of values
(skU , s, t), wheres, t ∈ Zq are random values. The values is theserial numberof the
coin, whilet is theblinding valueof this coin. A protocol whereby a user obtains such
a signature is calledthe withdrawal protocol.

In a spending protocol, the user sends the merchant a Pedersen commitmentC to the
values(skU , s, t), and computes a non-interactive proofπ1 that they have been signed
by the bank. The merchant verifiesπ1 and then picks a random valuea ∈ Zq. Finally,



the user reveals the serial numbers, and the valueb = skU + a · t mod q. Let us refer
to b as adouble-spending equationfor the coin. The user must also compute a proof
π2 that the valuess andb correspond to commitmentC. Finally, the merchant submits
(s, a, b, π1, π2) for payment.

Note that one double-spending equation reveals nothing aboutskU becauset is
random, but using two double-spending equations, we can solve forskU . So if the same
serial numbers is submitted for payment twice (i.e., two double-spending equations are
revealed), the secret keyskU and therefore the identity of the double-spenderpkU =
gskU can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin can
be used at most2` times. The trivial solution would be to obtain2` coins. For our
purposes, however, it is unacceptable, as2` may be quite large (e.g., 1000) and we want
each protocol to be efficient.

The idea underlying our system is that the valuess andt implicitly define several
(pseudorandom) serial numbersSi and blinding valuesTi, respectively. In other words,
we need a pseudorandom functionFs such that we can setSi = Fs(i), andTi = Ft(i),
1 ≤ i ≤ 2`. Then the user gets2` pseudorandom serial numbers with the corresponding
blinding values defined by(s, t). This leaves us with a very specific technical problem.
The challenge is to find a pseudorandom function such that, given (1) a commitment
to (s, t); (2) a commitment toi; and (3) the valuesSi andTi, the user can efficiently
prove that she derived the valuesSi andTi correctly froms andt, i.e.,Si = Fs(i) and
Ti = Ft(i) for some1 ≤ i ≤ 2`.

Recently, Dodis and Yampolsky [37] proposed the following discrete-logarithm-
based pseudorandom function (PRF):Fs(x) = g1/(s+x), wheres, x ∈ Zq, andg is
a generator of a groupG of orderq in which the decisional Diffie-Hellman inversion
problem is hard.4 (In the sequel, we denote this PRF asFDY

(·) (·).) Using standard meth-
ods for proving statements about discrete-logarithm representations, we obtain a zero-
knowledge argument system for showing that a pair of values(Si, Ti) is of the form
Si = FDY

s (i) andTi = FDY
t (i) corresponding to the seedss andt signed by the bank

B and to some indexi ∈ [1, 2`] .

Note that ifSi andTi are computed this way, then they are elements ofG rather
than ofZq. So this leaves us with the following protocol: to withdraw a coin, a user
obtains a signature on(skU , s, t). During the spending protocol, the user revealsSi

and the double-spending equationb = gskUT a
i , whereskU is the user’s secret key

andpkU = gskU the corresponding public key. Now, with two double-spending equa-
tions b1 = gskUT a1

i andb2 = gskUT a2
i we can infer the value(ba2

1 /ba1
2 )(a2−a1)

−1
=

(pka2
U T a1a2

i /pka1
U T a1a2

i )(a2−a1)
−1

= (pka2−a1
U )(a2−a1)

−1
= pkU . This is sufficient

4 Another example of a pseudorandom function PRF suitable for our purposes is the one due to
Naor and Reingold [44]. It is based on the decisional DH problem. However, a seed for the NR
PRF consists of̀ valuess1, . . . , s` ∈ Zq, instead of just one, which makes it less desirable
for our purposes, as each resulting coin would be requireO(` · k)-bit size representation. On
the other hand, an advantage of using the NR PRF is the fact that the resulting scheme would
be based on assumptions that are considered more standard. In the current exposition, we do
not describe the NR-based version of our construction due to lack of space.



to detect and identify double spenders. We describe this construction in more depth in
Section 4.1.

However, the above scheme does not allow the bank to identify the other spendings
of the coin, i.e., to generate all the serial numbers that the user can derive froms. Let
us now describe how we achieve this. For the moment, let us assume that the technique
described above allows us to inferskU rather thanpkU . If this were the case, we could
require that the user, as part of the withdrawal protocol, should verifiably encrypt [1, 15,
23] the values under her ownpkU , to form a ciphertextc. The record(pkU , c) is stored
by the bank. Now, suppose that at a future point, the user spends too many coins and
thus herskU is discovered. From this, herpkU can be inferred and the record(pkU , c)
can be located. Now thatskU is known,c can be decrypted, the seeds discovered, the
valuesSi computed for all1 ≤ i ≤ 2`, and hence the database of transactions can be
searched for records with these serial numbers.

Let us now redefine the way a user’s keys are picked such that we can recover
skU rather thanpkU . Suppose thatG is a group with a non-degenerate bilinear map
e : G × G 7→ G′. Let skU be an element ofZq. Let pkU = e(g, gskU ). Recently,
Ateniese et al. [2] exhibited a cryptosystem that usespkU as a public key, such that in
order to decrypt it is sufficient to know the valuegskU .

So, in our scheme, the userU would encrypts underpkU using the cryptosystem
due to Ateniese et al. From the double-spending equations, the same way as before, the
bank infers the the valuegskU . This value now allows the bank to decrypts.

This is almost the solution, except for the following subtlety: ifG has a bilinear
map, then the decisional Diffie-Hellman problem is easy, and so the Dodis-Yampolsky
construction is not a PRF in this setting! Instead, we must assume sum-free Diffie-
Hellman [36], and slightly change the construction. This is why the variant of our
scheme that allows to trace coins is a factor of` more expensive than the one that
does not. The details of this construction are given in Section 4.2.

One of the main remaining problems for electronic cash which this paper does not
address is that of efficiently allowing for multiple denominations in a non-trivial way;
that is, without simply executing the spending protocol a number of times.

2 Definition of Security

Notation: if P is a protocol betweenA andB, thenP (A(x), B(y)) denotes thatA’s
input isx andB’s is y.

Our electronic cash scenario consists of the three usual players: the user, the bank,
and the merchant. Our electronic cash scheme consists of algorithmsBKeygen, UKeygen,
Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership. Let us give
some input-output specifications for these protocols, as well as some informal intuition
for what they do.

– TheBKeygen(1k, params) algorithm is a key generation algorithm for the bankB.
It takes as input the security parameter1k and, if the scheme is in the common
parameters model, it also takes as input these parametersparams. This algorithm
outputs the key pair(pkB, skB). (Assume thatskB contains theparams, so we do
not have to giveparams explicitly to the bank again.)



Similarly,UKeygen(1k, params) is a key generation algorithm for the userU , which
outputs(pkU , skU ). Since merchants are a subset of users, they may use this algo-
rithm to obtain keys as well. (Assume thatsk contains theparams, so we do not have
to giveparams explicitly to the user again.)

– In the Withdraw(U(pkB, skU , n),B(pkU , skB, n)) protocol, the userU withdraws
a wallet W of n coins from the bankB. The user’s output is the walletW , or an
error message.B’s output is some informationTW which will allow the bank to
trace the user should this user double-spend some coin, or an error message. The
bank maintains a databaseD for this trace information, to which it enters the record
(pkU , TW ).

– In aSpend(U(W, pkM),M(skM, pkB, n)) protocol, a userU gives one of the coins
from his walletW to the merchantM. Here, the merchant obtains a serial number
S of the coin, and a proofπ of validity of the coin. The user’s output is an updated
walletW ′.

– In a Deposit(M(skM, S, π, pkB),B(pkM, skB)) protocol, a merchantM deposits
a coin(S, π) into its account held by the bankB. Whenever an honestM obtained
(S, π) by running theSpend protocol with any (honest or otherwise) user, there is a
guarantee that this coin will be accepted by the bank.B adds(S, π) to to its listL of
spent coins. The merchant’s output is nothing or an error message.

– The Identify(params, S, π1, π2) algorithm allows to identify double-spenders using
a serial numberS and two proofs of validity of this coin,π1 andπ2, possibly sub-
mitted by malicious merchants. This algorithm outputs a public keypkU and a proof
ΠG. If the merchants who had submittedπ1 andπ2 arenot malicious, thenΠG is
evidence thatpkU is the registered public key of a user that double-spent coinS.

– TheVerifyGuilt(params, S, pkU ,ΠG) algorithm allows to publicly verify the proof
ΠG that the user with public keypkU is guilty of double-spending coinS.

– TheTrace(params, S, pkU ,ΠG, D, n) algorithm, given a public keypkU of a double-
spender, a proofΠG of his guilt in double-spending coinS, the databaseD, and a
wallet sizen, computes the serial numbersS1, . . . , Sm of all of the coins issued to
pkU along with proofsΠ1, . . . ,Πm of pkU ’s ownership. IfVerifyGuilt(params, S,
pkU , ΠG) does not accept (i.e.,pkU is honest), this algorithm does nothing.

– TheVerifyOwnership(params, S,Π, pkU , n) algorithm allows to publicly verify the
proof Π that a coin with serial numberS belongs to a double-spender with public
keypkU .

We will now informally define the security properties. The more elaborate formal
definitions are given in the full version of this paper [17].

Correctness.We require the usual correctness property: if an honest user runsWithdraw
with an honest bank, then neither will output an error message; if an honest user runs
Spend with an honest merchant, then the merchant accepts the coin.

Balance.From the bank’s point of view, what matters is that no user or collection of
users or merchants can ever spend more coins than they withdrew. We require that there
is a knowledge extractorE that executesu Withdraw protocols with all adversarial users
and extractsun serial numbersS1, . . . , Sun. We require that for every adversary, the



probability that an honest bank will accept(S, π) as the result of theDeposit protocol,
whereS 6= Si ∀1 ≤ i ≤ un, is negligible. IfS1, . . . , Sn is a set of serial numbers output
byE when runningWithdraw with public keypkU , we say that coinsS1, . . . , Sn belong
to pkU .

Identification of double-spenders.SupposeB is honest. SupposeM1 andM2 are hon-
est merchants who ran theSpend protocol with the adversary, such thatM1’s output
is (S, π1) andM2’s output is(S, π2). The identification of double-spenders property
guarantees that, with high probability,Identify(params, S, π1, π2) outputs a keypkU
and proofΠG such thatVerifyGuilt(params, S, pkU ,ΠG) accepts.

Tracing of double-spenders.Given that a userpkU is shown guilty of double-spending
coin S by a proofΠG such thatVerifyGuilt accepts, this property guarantees that
Trace(params, S, pkU ,ΠG, D, n) will output the serial numbersS1, . . . , Sm of all coins
that belong topkU along with proofs of ownershipΠ1, . . . ,Πm such that for alli, with
high probability,VerifyOwnership(params, Si,Πi, pkU , n) also accepts.

Anonymity of users.From the privacy point of view, what matters to users is that the
bank, even when cooperating with any collection of malicious users and merchants,
cannot learn anything about a user’s spendings other than what is available from side
information from the environment. In order to capture this property more formally,
we introduce a simulatorS. S has some side information not normally available to
players. E.g., if in the common parameters model,S generated these parameters; in the
random-oracle model,S is in control of the random oracle; in the public-key registration
modelS may hold additional information about the bank’s keys, etc. We require that
S can create simulated coins without access to any wallets, such that a simulated coin
is indistinguishable from a valid one. More precisely,S executes the user’s side of the
Spend protocol without access to the user’s secret or public key, or his walletW .

Exculpability.Suppose that we have an adversary that participates any number of times
in theWithdraw protocol with the honest user with public keypkU , and subsequently
to that, in any number of legalSpend protocols with the same user. I.e., if the user with-
drewu wallets ofn coins each, then this user can participate in at mostun Spend proto-
cols. The adversary then outputs a coin serial numberS and a purported proofΠ that the
user with public keypkU is a double-spender and owns coinS. Theweakexculpability
property postulates that, for all adversaries, the probabilityVerifyOwnership(params,
S, pkU ,Π, n) accepts is negligible.

Furthermore, the adversary may continue to engage the userpkU in Spend protocols
even if it meanspkU must double-spend some coins of her choosing (in which case the
state of her wallet is reset). The adversary then outputs(S, Π). Thestrongexculpability
property postulates that, for all adversaries, whenS is a coin serial numbernotbelong-
ing topkU , the weak exculpability property still holds, and whenS is a coin serial num-
ber not double-spent bypkU , the probability thatVerifyGuilt(params, S,Π, pkU , n)
accepts is negligible.

This ends the informal description of our security definition; the descriptions in the
full version of this paper [17] are more precise, but this intuition should be sufficient
for understanding our subsequent security guarantees.



Strengthening the definition: the UC framework.Even though our definition of security
is not in the UC framework, note that our definition would imply UC-security whenever
the extractorE and simulatorS are constructed appropriately. In a nutshell, an ideal
electronic cash functionality would allow an honest user to withdraw and spendn coins.
In this case, if the merchant and bank are controlled by the malicious environment,
the simulatorS defined above creates the merchant’s and bank’s view of theSpend
protocol. At the same time, the balance property guarantees that the bank gets the same
protection in the real world as it does in the ideal world, and the exculpability property
ensures that an honest user cannot get framed in the real world, just as (s)he cannot
get framed in the ideal world. Thus, in order to construct a UC-secure scheme we need
black-boxE andS that do not use rewinding.

3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we now
briefly review. Many of these protocols can be shown secure under several different
complexity assumptions, a flexibility that will extend to our e-cash systems.

Notation: We denote the set of quadratic residues modulon asQRn ⊆ Z∗n; i.e., the
elementsa ∈ Z∗n such that there exists ab ∈ Z∗n such thatb2 ≡ a modn. The notation
G = 〈g〉means thatg generates the groupG.

3.1 Complexity Assumptions

The security of our e-cash systems is based on the following complexity assumptions:

Strong RSA Assumption [4, 41]:Given an RSA modulusn and a random element
g ∈ Z∗n, it is hard to computeh ∈ Z∗n and integere > 1 such thathe ≡ g modn. The
modulusn is of a special formpq, wherep = 2p′ + 1 andq = 2q′ + 1 are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [6, 37]: Given a ran-
dom generatorg ∈ G, whereG has prime orderq, the values(g, gx, . . . , g(xy)) for a
randomx ∈ Zq, and a valueR ∈ G, it is hard to decide ifR = g1/x or not.5

Weak Sum-Free Decisional Diffie-Hellman Assumption (WSF-DDH) [36]:Suppose
thatg ∈ G is a random generator of orderq. Let L be any polynomial function of|q|.
Let Oa(·) be an oracle that, on input a subsetI ⊆ {1, . . . , L}, outputs the valuegβI

1

whereβI =
∏

i∈I ai for somea = (a1, . . . , aL) ∈ ZL
q . Further, letR be a predicate

such thatR(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . , L} is four-wise independent
from the Ii’s; that is, whenv(Ii) is the L-length vector with a one in positionj if
and only if j ∈ Ii and zero otherwise, then there are no three setsIa, Ib, Ic such that
v(J)⊕v(Ia)⊕v(Ib)⊕v(Ic) = 0 (where⊕ indicates bitwise addition modulo 2). Then,
for all probabilistic polynomial time adversariesA(·),

Pr[a = (a1, . . . , aL)← ZL
q ; (J, α)← AOa(ζ); y0 = g

Q
i∈J ai ; y1 ← G;

b← {0, 1}; b′ ← AOa(ζ, yb, α) : b = b′ ∧R(J,Q) = 1] = negl(|q|),

whereQ is the set of queries thatA made toOa(·).
5 Others [6, 37] have used a strongerbilinear version of they-DDHI assumption, where, given

the same input in〈g〉y+1 it is hard to distinguishe(g, g)1/x from a randomR in 〈e(g, g)〉.



3.2 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter1k, outputs
γ = (q, g1, h1, G1, g2, h2, G2, e), wheree is a non-degenerate efficiently computable
bilinear map fromG1 = 〈g1〉 = 〈h1〉 to G2 = 〈g2〉 = 〈h2〉, both groups of prime
orderq = Θ(2k). Let e(g1, g1) = g2 ande(h1, h1) = h2. We assume that each group
element has a unique binary representation. More formally,e : G1 × G1 → G2 is a
function that is: (bilinear) for allg1, h1 ∈ G1, for all a, b ∈ Zq, e(ga

1 , hb
1) = e(g1, h1)ab;

(non-degenerate) ifg1 is a generator ofG1, thene(g1, g1) generatesG2; and (efficient)
computinge(·, ·) is efficient for allg1, h1 ∈ G1.

3.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving
statements about discrete logarithms, such as (1) proof of knowledge of a discrete log-
arithm modulo a prime [47] or a composite [41, 35], (2) proof of knowledge of equality
of representation modulo two (possibly different) prime [33] or composite [21] moduli,
(3) proof that a commitment opens to the product of two other committed values [20,
25, 12], (4) proof that a committed value lies in a given integer interval [26, 20, 20, 8],
and also (5) proof of the disjunction or conjunction of any two of the previous [34].
These protocols modulo a composite are secure under the strong RSA assumption and
modulo a prime under the discrete logarithm assumption.

When refering to the proofs above, we will follow the notation introduced by Ca-
menisch and Stadler [24] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integersα, β, andδ such thaty =
gαhβ and ỹ = g̃αh̃δ holds, whereu ≤ α ≤ v,” wherey, g, h, ỹ, g̃, andh̃ are elements
of some groupsG = 〈g〉 = 〈h〉 andG̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters
denote quantities of which knowledge is being proven, while all other values are known
to the verifier. We apply the Fiat-Shamir heuristic [38] to turn such proofs of knowledge
into signatures on some messagem; denoted as, e.g.,SPK{(α) : y = gα}(m).

3.4 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions recently
proposed by Dodis and Yampolsky [37], which they expand to verifiable random func-
tions using bilinear maps. Their construction is:

For everyn, a functionf ∈ Fn is defined by the tuple(G, q, g, s), whereG is group of
orderq, q is ann-bit prime,g is a generator ofG, ands is a seed inZq. For any input
x ∈ Z∗q , the functionfP,q,g,s(·), which we will often simply denote asfDY

s (·) where
there is values forP, q, g are clear, is defined asfDY

s (x) = g1/(x+s).
This construction is secure under they-DDHI assumption. As mentioned in the

introduction, we could instead substitute in the Naor-Reingold PRF [44], and replace the
y-DDHI assumption with the more standard DDH assumption, at the cost of enlarging
our wallets fromO(` + k) bits toO(` · k) bits.



3.5 CL Signatures

Recall the Pedersen commitment scheme [46], in which the public parameters are a
groupG of prime orderq, and generators(g0, . . . , gm). In order to commit to the values
(v1, . . . , vm) ∈ Zq

m, pick a randomr ∈ Zq and setC = PedCom(v1, . . . , vm; r) =
gr
0

∏m
i=1 gvi

i .
Camenisch and Lysyanskaya [18] came up with a secure signature scheme with two

protocols: (1) An efficient protocol between a user and a signer with keys(pkS , skS).
The common input consists ofpkS andC, a Pedersen commitment. The user’s secret in-
put is the set of values(v1, . . . , v`, r) such thatC = PedCom(v1, . . . , v`; r). As a result
of the protocol, the user obtains a signatureσpkS

(v1, . . . , v`) on his committed values,
while the signer does not learn anything about them. The signature has sizeO(` log q).
(2) An efficient proof of knowledge of a signature protocol between a user and a ver-
ifier. The common inputs arepkS and a commitmentC. The user’s private inputs are
the values(v1, . . . , v`, r), andσpkS

(v1, . . . , v`) such thatC = PedCom(v1, . . . , v`; r).
These signatures are secure under the strong RSA assumption. For the purposes of this
exposition, it does not matterhowCL signatures actually work, all that matters are the
facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption indepen-
dently of the CL signatures. By making additional assumptions based on bilinear maps,
we can use alternative schemes by Camenisch and Lysyanskaya [19] and Boneh, Boyen
and Shacham [7], yielding shorter signatures in practice.

3.6 Verifiable, Bilinear El Gamal Encryption

In Section 4.2, we apply a technique by Camenisch and Damgård [15] for turning any
semantically-secure encryption scheme into a verifiable encryption scheme. A verifi-
able encryption scheme is a two-party protocol between a prover and encryptorP and
a verifier and receiverV . Roughly, their common inputs are a public encryption keypk
and a commitmentA. As a result of the protocol,V either rejects or obtains the en-
cryptionc of the opening ofA. The protocol ensures thatV accepts an encryption of an
invalid s only with negligible probability and thatV learns nothing meaningful about
the opening ofA. Together with the corresponding secret keysk , transcriptc contains
enough information to recover the opening ofA efficiently. We hide some details here
and refer to Camenisch and Damgård [15] for the full discussion.

In particular, we apply the verifiable encryption techniques above to a bilinear
variant of El Gamal encryption due to Ateniese et al. [2]. Assume a bilinear map
e : G2

3 → G2. Let (G, E, D) denote the standard key generation, encryption, and de-
cryption algorithms. On input(1k, ζ), the key generation algorithmG outputs a pair
(pk , sk) = (gu

2 , gu
3 ) for a randomu ∈ Zq. To encrypt a messagem ∈ G2 underpk ,

select a randomk ∈ Zq and output the ciphertextc = (gk
3 , pkkm) = (gk

3 , guk
2 m).

Then, to decryptc = (c1, c2), simply computec2/e(c1, sk). Ateniese et al. [2] show
that this encryption scheme is semantically-secure under the DBDH assumption, i.e.,
given (g3, g

a
3 , gb

3, g
c
3, X) for randoma, b, c ∈ Zq andX ∈ G2, it is hard to decide if

X = gabc
2 .



4 Two Compact E-Cash Systems

We present two compact e-cash systems. In System One, an honest bank can quickly
detect double-spending, identify the perpetrator, and prove his guilt to a third party
from two coin deposits with the same serial number. This system allows a wallet of2`

coins to be stored inO(` + k) bits. In System Two, the bank can do everything that it
could before, and in addition, the bank can compute the serial numbers for all the coins
that belong to the perpetrator along with proofs of their ownership. Here, our wallets
of 2` coins requireO(` · k) bits, which is still remarkably small. If a user does not
double-spend, her coins are unlinkable. There is no trusted party.

Global parameters for both systems.Let 1k be the security parameter and let` be
any value inO(log k). Our subsequent schemes work most efficiently by having three
different groups:

– G1 = 〈g1〉, wheren is a special RSA modulus of2k bits,g1 is an element inQRn,
andh1 is an element inG1. Common uses: Pedersen commitments and RSA-based
CL signatures.

– G2 = 〈g2〉, whereg2 is an element of prime orderq = Θ(2k), andh2 is an ele-
ment inG2. Common uses: coin serial numbers, security tags, and range of bilinear

mapping. In particular, we letFDY
s (x) = g

1
x+s

2 denote the PRF due to Dodis and
Yampolsky [37].

– G3 = 〈g3〉, whereg3 is an element of the same prime order asG2, and there exists
a bilinear mappinge : G3 × G3 → G2. Common uses: domain of bilinear mapping.

Our first scheme will not requireG3. Assume that, on input1k, each system is initialized
with the necessary common parameters, denotedζ, as specified above. We also define
PedCom(x1, . . . , xn; r) = hrΠn

i=1g
xi
i . Sometimes for simplicity we do not explicitly

include the randomessr in the input to the commitment. The valuesh, {gi} are assumed
to be publicly known elements of the appropriate group.

4.1 System One: Wallets of SizeO(` + k) with Public Key Recovery

Our first system supports the basic algorithms(BKeygen,UKeygen,Withdraw, Spend,
Deposit, Identify, VerifyGuilt). In this scheme, a wallet of sizeO(` + k) is sufficient to
hold 2` coins. In theIdentify algorithm, the bank can recover the identity of a double-
spenderpkU from two deposits with the same coin serial numberS. UsingVerifyGuilt,
the bank can prove thatpkU double-spent coinS to a third party; while all honest users
are guaranteed strong exculpability.

The parties set up their keys as follows. InBKeygen(1k, ζ), the bankB generates a CL
signature key pair(pkB, skB) for message spaceM such thatZq × Zq × Zq ⊆ M . In
UKeygen(1k, ζ), each userU generates a unique key pair(pkU , skU ) = (gu

2 , u) for a
randomu ∈ Zq. Recall that merchants are a subset of users.

Withdraw(U(pkB, skU , 2`),B(pkU , skB, 2`)): A userU interacts with the bankB as
follows:



1. U identifies himself to the bankB by proving knowledge ofskU .
2. U selects random valuess′, t ∈ Zq and sends a commitmentA′ = PedCom(u, s′, t; r)

to B. B sends a randomr′ ∈ Zq. ThenU andB locally computeA = gr′

2 A′ =
PedCom(u, s′ + r′, t; r) = PedCom(u, s, t; r) if s = s′ + r′.

3. U andB run the CL protocol for obtainingB’s signature on committed values con-
tained in commitmentA. As a result,U obtainsσB(u, s, t).

4. U saves the walletW = (skU , s = s′+r, t, σB(u, s, t), J), wheres, t are the wallet
secrets,σB(u, s, t) is the bank’s signature, andJ is an`-bit coin counter initialized
to zero.

5. B records a debit of2` coins for accountpkU .

Spend(U(W, pkM),M(skM, pkB, 2`)): U anonymously transfers a coin toM as fol-
lows. (An optimized version appears in the full version of this paper [17].)

1. M (optionally) sends a stringinfo ∈ {0, 1}∗ containing transaction information to
U and authenticates himself by proving knowledge ofskM.

2. M chooses a randomR ∈ Z∗q and sendsR to U . (To eliminate this step of interac-
tion, in the random oracle model, letR be the output of a hash functionH onpkM,
the current time, the session id, etc.)

3. U sends the deterministic serial number of the coinS = FDY
s (J+1) = g

1/(J+s+1)
2 ,

a (now fixed) security tagT = pkUFDY
t (J + 1)R = pkUg

R/(J+t+1)
2 , and a proof

Φ of their validity toM. The signature proofΦ consists of:
(a) A = PedCom(J + 1) and proof thatA is a commitment to an integer in the

range[1 . . . 2`],
(b) B = PedCom(u), C = PedCom(s), D = PedCom(t) and proof of knowl-

edge of a CL signature fromB on the openings ofB,C andD in that order,
(c) and a proofΓ thatS = g

1/(J+s+1)
2 andT = g

u+R/(J+t+1)
2 .

More formally,Γ is the following signature proof of knowledge:

Γ = SPK{(α, β, δ, γ1, . . . , γ3) : g1 = (AC)αh1
γ1 ∧ S = gα

2∧
g1 = (AD)βh1

γ2 ∧ B = g1
δh1

γ3 ∧ T = gδ
2(g

R
2 )β}

(S, T, A,B,C,D, g1, h1, n, g2, pkM, R, info)

The spender is required to sign a host of parameters, in addition toinfo, to
prevent the coin from becoming malleable.

4. If Φ verifies,M accepts the coin(S, π), whereπ = (R, T, Φ), and temporarily
stores it until deposit time.

5. U updates his counterJ = J + 1 as before. WhenJ > 2` − 1, the wallet is empty.

Deposit(M(skM, S, π, pkB),B(pkM, skB)): A merchantM deposits a coin(S, π =
(R, T, Φ)) into its account held by bankB as follows:

1. M andB (optionally) authenticate themselves by proving knowledge ofskM and
skB respectively. We sayoptionallybecause this step may be done physically.



2. M sendsB his entire coin(S, π). If Φ verifies andR is fresh (i.e., the pair(S, R)
are not already in the listL of spent coins), thenB accepts the coin for deposit,
adds(S, π) to the listL of spent coins, and creditspkM’s account; otherwise,B
sendsM an error message.

Because of this deposit protocol, whereM must convinceB that it behaved honestly
in accepting some coin(S, π), our security proof require random oracles. IfM andB
were the same entity, and theWithdraw andSpend protocols were interactive, then we
would achieve balance and anonymity in the plain model.

We note that ifB was satisfied with detecting/identifying double-spenders, without
worrying about proving anything to a third party, it need only store(S, R, T ) in L for
each coin at a considerable storage savings.

Identify(ζ, S, π1, π2): Suppose(R1, T1) ∈ π1 and(R2, T2) ∈ π2 are two entries in the
bank’s databaseL of spent coins for serial numberS. Then outputΠG = (π1, π2) and

pk =
(
TR1

2 /TR2
1

)(R1−R2)
−1

.
Let us explain why this produces the public keypkU of the double-spender. Suppose

coin S belonged to some userpkU = gu
2 , then eachTi is of the formgu+Riα

2 for the
same valuesu andα. (Either this is true or an adversary has been successful in forging
a coin, which we subsequently show happens with only negligible probability.) As the
bank only accepts coins with fresh values ofR (i.e.,R1 6= R2), it allows to compute:

(TR1
2

TR2
1

)(R1−R2)
−1

=
(guR1+R1R2α

2

guR2+R1R2α
2

)(R1−R2)
−1

= g
u(R1−R2)
(R1−R2)

2 = gu
2 = pkU .

VerifyGuilt(params, S, pkU ,ΠG) : ParseΠG as(π1, π2) and eachπi as(Ri, Ti, Φi).
Run Identify(params, S, π1, π2) and compare the first part of its output to the public
keypkU given as input. Check that the values match. Next, verify eachΦi with respect
to (S, Ri, Ti). If all checks pass, the algorithm accepts; otherwise, it rejects. (ΠG is not
a particularly elegant proof, but it is interesting that it does not require any secret input
from a bank or other, perhaps trusted, party.)

Efficiency Discussion of System One.The dominant computational cost in these proto-
cols are the single and multi base exponentations. In a good implementation, a multi-
base exponentation is essentially as fast an ordinary exponentation. While we do not
provide the full details of theWithdraw protocol, it can easily be derived from the
known protocols to obtain a CL-signature on a committed signature [18, 16]. Depend-
ing on how the proof of knowledge protocol is implemented,Withdraw requires as little
as 3 moves of communication.

The details of (an optimized version of) theSpend protocol are given in the full
version [17]. One can verify that a user must compute 7 multi-base exps to build the
commitments and 11 more for the proof. The merchant and bank need to do 11 multi-
base exps to check that the coin is of the proper form. The protocols requires two rounds
of communication between the user and the merchant and one round between the bank
and the merchant.



Theorem 1. System One supports the algorithms(BKeygen, UKeygen, Withdraw,
Spend, Deposit, Identify) and guarantees balance, identification of double-spenders,
anonymity of users, and strong exculpability under the Strong RSA andy-DDHI as-
sumptions in the random oracle model.

Proof of Theorem 1 appears in the full version of this paper [17].

4.2 System Two: Wallets of SizeO(` · k) with Traceable Coins

We now extend System One to allow coin tracing. Suppose for the moment that the
Identify algorithm recoveredskU rather thanpkU for a double-spender. Suppose, more-
over, that users provide the bank with a verifiable encryption of their wallet secrets
(used to generate the coin serial numbers) undertheir own public keypkU during the
withdrawal protocol. Then, when a user double-spends, the bank can computeskU , re-
cover secrets, and output the serial numbersSi = fDY

s (i), for i = 1 to 2`, of all
coins belonging to that user. (Observe that recoveringskU in the above scheme allows
the bank to traceall coins fromall wallets for a user and not just from the wallet from
which the coin was double-spent!) If a user does not double-spend a coin, however, her
anonymity is computationally guaranteed.

The verifiable encryption techniques of Camenisch and Damgård, as described in
Section 3.6, can be applied to any semantically-secure encryption scheme for our with-
drawal protocol. Thus, all we need is a coin construction which allows one to re-
cover a double-spender’sskU . Luckily, the bilinear El Gamal scheme recently pro-
posed by Ateniese et al. (see Section 3.6) allows for encryption keys of the formgu

2 ,
for u ∈ Zq, where knowinggu

3 is sufficient for decryption, given the bilinear mapping
e : G3 × G3 → G2. So then, by setting our coin tagT = gu

3fDY
t (J + 1) in G3, without

any other changes, we can now recovergu
3 from a coin spent twice.

One complication with settingT in G3 is that the Dodis-Yampolsky [37] construc-
tion is no longer a PRF when DDH is easy, as it is inG3. This breaks the anonymity
of our coins. Thus, we need a PRF that works in DDH-easy groups. We are aware of
one such example due to Dodis [36]. Unfortunately, his construction [36] does not work
well for our purposes, as it would require us to preform expensive proofs of knowledge
of values represented as vectors inGF (2`). Instead, we propose a new PRF construc-
tion based on the WSF-DDH assumption (see Section 3.1) that allows for more efficient
protocols. Given our space constraints, we present the PRF here and prove its security
elsewhere [17].

PRF based on the Weak Sum-Free DDH Assumption.We define an encodingV :
{0, 1}` → {0, 1}4` asV (J) = C1 · J ||C2 · J || . . . ||C4` · J , where eachCi is an`-
bit 0/1-vector,· denotes the dot product (modulo 2), and|| denotes concatenation. Let
C = (C1, . . . , C4`) be a set of̀ -bit 0/1 vectors such that there do not exist distinct
J1, J2, J3, J4 ∈ {0, 1}` such thatV (J1) ⊕ V (J2) = V (J3) ⊕ V (J4). We show that
such aC must exist [17], and as̀ = O(log k), we can find it by brute-force search.
Then, for fixed values(k, `, C) and a seeds = (s0, . . . , s4`) ∈ Z4`+1

q , we define a

functionf in our new PRF familyFk asfV
s (J) = g

s0
Q

V (J)i=1 si

3 .



Our second system supports all the algorithms mentioned in Section 2:(BKeygen,
UKeygen, Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership).
In this scheme, a wallet of sizeO(`·k) is sufficient to hold2` coins. We add coin tracing
for the bank and retain strong exculpability for the users.

In addition to the global parameters of Scheme One, the global parametersζ include
our PRF vectorsC. We assume a standard digital signature scheme(SG, Sign, SV f).
Then,UKeygen(1k, ζ) runsSG(1k, ζ) → (vkU , sskU ) and the bilinear El Gamal key
generation algorithmG(1k, ζ) → (ekU , dkU ) = (gu

2 , gu
3 ), and outputspkU = (ekU ,

vkU ) andskU = (dkU , sskU ). The bank’s keys are as before.

Withdraw(U(pkB, skU , 2`),B(pkU , skB, 2`)): A userU interacts with the bankB as
follows:

1. U identifies himself to the bankB by proving knowledge ofskU = (dkU , sskU ).
2. U selects random valuess′, t0, . . . , t4` ∈M . Let t denote the sequencet0, . . . , t4`.
U sends the commitmentA′ = PedCom(u, s′, t) to B, obtains a randomr′ as
before, and, as before, bothU andB locally setA = gr′

2 A′.
3. U forms a verifiable encryptionQ of the values = s′ + r′ under his own key

ekU = gu
3 . (This encryption can be proved correct relative to commitmentA.) Q is

signed byU . B verifies the correctness ofQ and the signatureσ on Q. U obtains
a CL signature fromB on the values committed inA via the protocol for getting a
signature on a set of committed values.

4. B debits2` from accountpkU , records the entry(pkU , Q, σ) in his databaseD, and
issuesU a CL signature onY .

5. U saves the walletW = (skU , s, t, σB(u, s, t), J), whereJ is an`-bit counter set
to zero.

Spend(U(W, pkM),M(skM, pkB, 2`)): The only change from System One is in the
calculation of the security tagT and the subsequent proofΦ. Assumeinfo ∈ {0, 1}∗
andR ∈ Z∗q are obtained as before.

1.U sends the deterministic serial number of the coinS = fDY
s (J + 1) = g

1/(J+s+1)
2 ,

a (now fixed) security tagT = pkUfV
t (J + 1)R = g

u+Rt0
Q
{i:V (J)i=1} ti

3 , and a proof
Φ of their validity toM. The signature proofΦ consists of:

(a) A = PedCom(J +1) and a proof thatA is a commitment to an integer in the range
[1, . . . , 2`],

(b) Bi = PedCom(Ji) for i = 1 to ` (commitments to the bits ofJ) and proof that
eachBi opens to either 0 or 1; that is,PK{(γ1, γ2) : Bi/g1 = h1

γ1 ∨Bi = h1
γ2},

(c) proof thatA and{Bi} are consistent; that is,PK{(γ) : A/g1

∏`
i=1 B2i−1

i = h1
γ},

(d) C = PedCom(u), D = PedCom(s), Ei = PedCom(ti) for i = 0 to 4`, and proof
of knowledge of a CL signature on the openings ofC, D, and allEi’s in that order,

(e) F0 = E0, Fi = PedCom(
∏
{j≤i:V (J)j=1} tj) for i = 1 to 4` (helpers for showing

correctness ofT ),

(f) and a proofΓ thatS = g
1/(J+s+1)
2 andT = g

u+Rt0
Q
{i:V (J)i=1} ti

3 .



More formally,Γ = Γ0 ∧Γ1 ∧ . . .∧Γ4` is the following signature proof of knowl-
edge:

Γ0 = SPK{(α, β, γ, δ1, δ2, δ3) : g1 = (AD)αh1
δ1 ∧ S = gα

2∧

C = gβ
2 hδ2

2 ∧ F4` = g1
γh1

δ3 ∧ T = gβ
3 (gR

3 )γ}(. . .)

and fori = 1 to 4`,

Γi = SPK{(αi, βi, φi, {γ(n)
i }) :(

Fi = Fi−1h1
γ(2)
∧

( ∏
{j:Ci,j=1}

Bj

)
= g1

2βih1
γ
(3)
i

)
∨

(
Fi = Fαi

i−1h1
γ
(4)
i ∧Ei = g1

αih1
γ
(5)
i ∧

( ∏
{j:Ci,j=1}

Bj

)
= g1

2φi+1h1
γ
(6)
i

)
}(. . .) ,

whereCi,j represents thej-th bit of the i-th parity check vectorCi ∈ C which
defines the encodingV . Let us briefly explain this last step. InΓ0, the prover shows
that S is correct and then showsT is formed correctly relative to a commitment
F4`. The prover demonstrates that the opening ofF4` is a product of signed secrets

where eachti, for i = 1 to 4`, is used inF4` (that is,Fi = Fαi
i−1h1

γ
(4)
i ) if and

only if V (J)i = 1. Recall thatV (J)i = 1 whenJ · Ci = 1 mod 2, the bits of
J are commited to in{Bj}, and eachCi is public. Thus, in eachΓi, we compute∏
{j:Ci,j=1} Bj to form a commitment to the sum of bitsJj whereCi,j = 1. We

then use the commitment to
∑

{j:Ci,j=1} Jj to show that either: (1) the opening is
even andti is not inF4`, or (2) it is odd andti, as signed byB, is in F4`.

2.M andU proceed exactly as before.

TheDeposit protocol andVerifyGuilt algorithm follow the same outline as System One.
During deposit, the bank may store only(S, R, T ) in databaseL to obtain all desired
functionality – except the ability to convince a third party of anything, such as a double-
spender’s identity or which coins belong to him. In theIdentify protocol, the proof of
guilt ΠG will additionally include the part of the user’s secret key recovered asgu

3 .

Trace(ζ, S, pkU ,ΠG, D, 2`): ParseΠG as (dk , π1, π2) and pkU as (ekU , vkU ). The
bank checks thate(g3, dk) = ekU ; if not, it aborts. Otherwise the bank searches its
databaseD, generated during the withdrawal protocol, for verifiable encryptions tagged
with the public keypkU . For each matching entry(pkU , Q, σ), B does the following:
(1) runs the Camenisch-Damgård decryption algorithm onQ with dk to recover the
values; and (2) then fori = 1 to 2`, outputs a serial numberSi = fDY

s (i) and a proof
of ownershipΠi = (Q, σ, dk , i).

VerifyOwnership(ζ, S,Π, pkU , 2`): ParseΠ as(Q, σ, dk , i). Check thatσ is pkU ’s sig-
nature onQ and thati is in the range[1, . . . , 2`]. Next, verify thatdk ispkU ’s decryption
key by checking thate(g3, dk) = ekU . Finally, run the verifiable decryption algorithm
onQ with dk to recovers′ and verify thatS = fDY

s′ (i). If all checks pass, the algorithm
accepts, otherwise, it rejects.



Efficiency Discussion of System Two.In Withdraw, the number of communication
rounds does not change from System One, but one of the multi-base exponentiations
will involve 4` bases and hence its computation will take longer. Let us discuss the
computational load of the verifiable encryption. For a cheating probability of at most
2−k, the user must additionally computek exps and2k encryptions with the bilinear El
Gamal scheme. To verify, the bank also must performk exps but onlyk encryptions.
Upon recovery of the double-spender’s secret key, the bank needs to perform at mostk
decryptions andk exponentiations. Furthermore, the bank needs to compute all the2`

serial numbers each of which takes one exp.
In Spend, the user must compute a total of8 + 9` multi-base exps for the com-

mitments and12 + 20` multi-base exps for the signature proof (where eachΓi takes5
multi-base exps). The merchant and the bank also need to perform12 + 20` multi-base
exps. In each of these numbers there is one multi-base exp with4` exponents while all
the others involve two to four bases. Although complex, these are practical systems.

Theorem 2. System Two supports the algorithms(BKeygen,UKeygen, Withdraw,
Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees bal-
ance, identification of double-spenders, tracing of double-spenders, anonymity of users,
and weak and strong exculpability under the Strong RSA,y-DDHI, and WSF-DDH as-
sumptions in the random oracle model.

Proof of Theorem 2 appears in the full version of this paper [17]. Random oracles
can be removed as discussed in System One.
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