Compact E-Cash

Jan Camenisch Susan Hohenberget, and Anna Lysyanskaya

1 IBM Research, Zurich Research Laboratory, CH-88@3¢hlikon, Switzerland.
jca@zurich.ibm.com
2 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
srhohen@mit.edu
3 Computer Science Department, Brown University, Providence, Rl 02912, USA,
anna@cs.brown.edu

Abstract. This paper presents efficient off-line anonymous e-cash schemes where
a user can withdraw a wallet containig§ coins each of which she can spend
unlinkably. Our first result is a scheme, secure under the strong RSA and the
y-DDHI assumptions, where the complexity of the withdrawal and spend opera-
tions isO(£ + k) and the user’s wallet can be stored usitgf + k) bits, wherek

is a security parameter. The best previously known schemes require at least one of
these complexities to b@(2° - k). In fact, compared to previous e-cash schemes,
our whole wallet oR¢ coins has about the same sizeascoin in these schemes.

Our scheme also offers exculpability of users, that is, the bank can prove to third
parties that a user has double-spent. We then extend our scheme to our second
result, the first e-cash scheme that provides traceable coins without a trusted third
party. That is, once a user has double spent one df‘tlweins in her walletall

her spendings of these coins can be traced. However, the price for this is that the
complexity of the spending and of the withdrawal protocols becafgsk) and

O - k + k?) bits, respectively, and wallets tak¥¢ - k) bits of storage. All our
schemes are secure in the random oracle model.

1 Introduction

Electronic cash was invented by Chaum [27, 28], and extensively studied since [31,
40,32,9,10, 22,11, 48, 39,49, 5]. The main idea is that, even though the same party (a
bankB) is responsible for giving out electronic coins, and for later accepting them for
deposit, the withdrawal and the spending protocols are designed in such a way that it
is impossible to identify when a particular coin was spent. |.e., the withdrawal protocol
does not reveal any information to the bank that would later enable it to trace how a
coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic cash
scheme requires a mechanism that prevents a user from spending the same coin twice
(double-spending). There are two scenarios. Indidine scenario [28—30], the bank
is on-line in each transaction to ensure that no coin is spent twice, and each merchant
must consult the bank before accepting a payment. Iroffiéne [31] scenario, the
merchant accepts a payment autonomously, and later submits the payment to the bank;

* Research performed while at IBM Research, Zurich Research Laboratory, CH-8803
Ruschlikon, Switzerland.

the merchant is guaranteed that such a payment will be either honored by the bank, or
will lead to the identification (and therefore punishment) of the double-spender.

In this paper, we give an off-ling‘-spendable unlinkable electronic cash scheme.
Namely, our scheme allows a user to withdraw a wallet @ftboins, such that the space
required to store these coins, and the complexity of the withdrawal protocol, are pro-
portional to/, rather than t@‘. We achieve this without compromising the anonymity
and unlinkability properties usually required of electronic cash schemes.

This problem is well-motivated: (1) communication with the bank is a bottleneck
in most electronic cash schemes and needs to be minimized; (2) it is desirable to store
many electronic coins compactly, as one can imagine that they may be stored on a
dedicated device such as a smartcard that cannot store too much data. This problem
has also proved quite elusive: no one has offered a compact e-cash solution (even for a
weaker security model) since the introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders to
outside third parties in an undeniable fashion. l.e., assuming a PKI, if adiseéth
public key pk,, spent a coin more times than he is allowed (in our case, entl
coins from a wallet containing’ coins), then this fact can be proven to anyone in a
sound fashion. This property of an electronic cash scheme is satisfied by numerous
e-cash schemes in the literature. Our solution has this property as well.

Finally, it may often be desirable that an e-cash scheme should allow one to trace
all coins of a cheating user. It was known that this property can be implemented using
a trusted third party [48, 14], by requiring that: (1) in each withdrawal protocol a user
gives to the bank an encryption under the TTP’s public key of a serial nufhisich
will be revealed during the spending protocol; and (2) in each spending protocol, the
user submits to the merchant an encryption of the user’s public key under the TTP’s
public key. Then, should a coin with serial numtseever be double-spent, the TTP can
get involved and decrypt the serial number of all of this user’s coins. But the existence
of such a TTP contradicts the very definition of electronic cash: to the TTP, the user is
not anonymous! Therefore, another desirable and elusive property of an electronic cash
scheme was traceabilityithouta TTP. Our scheme achieves this property as well.

Recently, Jarecki and Shmatikov [42] also made a step in this direction. Although
their work is not explicitly about electronic cash, it can be thought of in this way. Their
scheme allows to withdraw arithkably (linkability is actually a feature for them) but
anonymously spend a coili times; but should a user wish to spend the chint 1
times, his identity gets revealed. Their solution is inferior to ours for two reasons: (1) it
does not achieve unlinkability; and (2) in their protocol, each time a user spends a coin
he has to run a protocol whose communication complexity is proportiorfdl tather
thanlog K, as we achieve. In 1989, Okamoto and Ohta [45] proposed an e-cash scheme
with similar functionality, without achieving unlinkability or compact wallets.

Our work can also be viewed as improving on the recent traceable group signatures
by Kiayias, Tsiounis, and Yung [43]. In their scheme, once a special piece of tracing
information is released, it is possible to trace all group signatures issued by a particular
group member; otherwise this member’s signatures are guaranteed to remain anony-
mous. Normally, in a group signature setting, this piece of informatiastbe released
by a TTP, as there is no equivalent oflauble-spendewhose misbehavior may au-

tomatically lead to the release of the tracing information; however, if a limit is placed
on how many signatures a group member may issue, then our e-cash scheme can be
viewed as doundedgroup signature scheme, where a group member can sign a mes-
sage by incorporating it into the signature proof of a coin’s validity. A group manager
may allocate signing rights by acting as a bank allocating coins; and if any member
exceeds their allocation, the special tracing information is revealed automatically, and
all signatures produced by that group member may be traced. Our tracing algorithm is
more efficient than that of Kiayias et al. [43]; in ours, sighatures can be tracked by a tag
(that appears to be random until the user double-spends), while in thkiexisting
signatures must be tested, one-by-one, using the special tracing information provided
by the TTP, to determine if a certain signer created it or not.

Our results.Let us summarize our results. We solve all of the open problems outlined
above in the random-oracle model, under the Strong RSA assumption in combination
with the decisional Diffie-Hellman (DH) inversion [6, 37] and sum-free DH [36] as-
sumptions for groups with bilinear maps. The communication complexity of the spend-
ing and of the withdrawal protocol i©(¢ - k) andO(¢ - k + k?) bits, respectively; it
takesO(¢ - k) bits to store all the coins. This scheme is presented in Section 4.2.

We also give a scheme where the withdrawal and the spending protocols have com-
plexity only O(¢+ k), and it also takes onl§? (¢ + k) bits to store all the coins, based on
the Strong RSA [41, 3] and the DDHI [37] assumptions in the random-oracle model.

This less expensive scheme does not allow traceability, however. This scheme is pre-
sented in Section 4.1.

Furthermore, in the model where the bank completely trusts the merchant (this ap-
plies to, for example, a subscription service where the entity creating and verifying the
coins is one and the same), we have solutions based on the same set of assumptions
but in the standard modelSections 4.1 and 4.2 containing our random-oracle-based
schemes also explain how these security properties are obtained once the random ora-
cle is removed.

Overview of our constructiorOur schemes are based on the signature schemes with
protocols due to Camenisch and Lysyanskaya [18, 19]. These schemes allow a user
to efficiently obtain a signature on committed messages from the signer. They further
allow the user to convince a verifier that she possesses a signature by the signer on a
committed message. Both of these protocols rely on the Pedersen commitment scheme.
To explain our result, let us describe how single-use electronic cash can be obtained
with CL-signatures, drawing on a variety of previously known techniques [13, 18].
Let G = (g) be a group of prime ordey where the discrete logarithm problem is
hard. Suppose that a udérhas a secret keyky, € Z, and a public keyk,, = g**u.
An electronic coin is a signature under the b#tpublic keypk; on the set of values
(sku, s, t), wheres, ¢t € Z, are random values. The valués theserial numberof the
coin, whilet is theblinding valueof this coin. A protocol whereby a user obtains such
a signature is callethe withdrawal protocal
In a spending protocol, the user sends the merchant a Pedersen comraltinéme
values(sky, s, t), and computes a non-interactive preqfthat they have been signed
by the bank. The merchant verifies and then picks a random valuec Z,. Finally,

the user reveals the serial numbeand the valué = sk;; + a - t mod ¢. Let us refer

to b as adouble-spending equatidior the coin. The user must also compute a proof
mo that the values andb correspond to commitmeidt. Finally, the merchant submits
(s,a,b,m,ms) for payment.

Note that one double-spending equation reveals nothing atdgubecause is
random, but using two double-spending equations, we can sol¥&;fo50 if the same
serial numbes is submitted for payment twice (i.e., two double-spending equations are
revealed), the secret key;, and therefore the identity of the double-spengey, =
g**v can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin can
be used at mos2¢ times. The trivial solution would be to obtaitf coins. For our
purposes, however, it is unacceptable?‘amay be quite large (e.g., 1000) and we want
each protocol to be efficient.

The idea underlying our system is that the valsesdt implicitly define several
(pseudorandom) serial numbefsand blinding valueg’;, respectively. In other words,
we need a pseudorandom functibBpnsuch that we can sé&; = Fi (i), andT; = F}(i),
1 < i < 2% Then the user ge®®¥ pseudorandom serial numbers with the corresponding
blinding values defined bgs, ¢). This leaves us with a very specific technical problem.
The challenge is to find a pseudorandom function such that, given (1) a commitment
to (s, t); (2) a commitment ta; and (3) the values; andT;, the user can efficiently
prove that she derived the valu€sandT; correctly froms andt, i.e., S; = Fs(i) and
T; = Fy(i) for somel < i < 2°.

Recently, Dodis and Yampolsky [37] proposed the following discrete-logarithm-
based pseudorandom function (PRE)(z) = ¢*/(s*%) wheres,» € Z,, andg is
a generator of a grou@ of orderq in which the decisional Diffie-Hellman inversion
problem is hard. (In the sequel, we denote this PRF&SY (-).) Using standard meth-
ods for proving statements about discrete-logarithm representations, we obtain a zero-
knowledge argument system for showing that a pair of va($gsT;) is of the form
S; = FPY (i) andT; = FPY (i) corresponding to the seesigndt signed by the bank
B and to some index € [1,2¢] .

Note that if S; andT; are computed this way, then they are element& afither
than ofZ,. So this leaves us with the following protocol: to withdraw a coin, a user
obtains a signature ofsky, s, t). During the spending protocol, the user revesils
and the double-spending equatibn=g¢**«T¢, where sk;, is the user’s secret key
andpk,, = g**« the corresponding public key. Now, with two double-spending equa-
tionsb; = g**uT% andb, = g**T7* we can infer the valugh}2 /pd1)(a2—a) ™" —
(pkf2T192 JpkdrTara2)(a2—a) ™" — (ppae=ar)y(a—a)™" — pp This is sufficient

4 Another example of a pseudorandom function PRF suitable for our purposes is the one due to
Naor and Reingold [44]. It is based on the decisional DH problem. However, a seed for the NR
PRF consists of valuessi, ..., s¢ € Zq, instead of just one, which makes it less desirable
for our purposes, as each resulting coin would be regifé- k)-bit size representation. On
the other hand, an advantage of using the NR PRF is the fact that the resulting scheme would
be based on assumptions that are considered more standard. In the current exposition, we do
not describe the NR-based version of our construction due to lack of space.

to detect and identify double spenders. We describe this construction in more depth in
Section 4.1.

However, the above scheme does not allow the bank to identify the other spendings
of the coin, i.e., to generate all the serial numbers that the user can derive.ftan
us now describe how we achieve this. For the moment, let us assume that the technique
described above allows us to inféf;, rather tharpk,,. If this were the case, we could
require that the user, as part of the withdrawal protocol, should verifiably encrypt [1, 15,
23] the values under her owrpk,,, to form a ciphertext. The record pk,,, c) is stored
by the bank. Now, suppose that at a future point, the user spends too many coins and
thus hersky, is discovered. From this, het,, can be inferred and the recofgk,,, c)
can be located. Now that;, is known,c can be decrypted, the seedliscovered, the
valuesS; computed for alll < i < 2¢, and hence the database of transactions can be
searched for records with these serial numbers.

Let us now redefine the way a user’'s keys are picked such that we can recover
sky, rather thanpk,,. Suppose thaf? is a group with a non-degenerate bilinear map
e : G x G — G Letsky be an element oZ,. Let pk,, = e(g, g**). Recently,
Ateniese et al. [2] exhibited a cryptosystem that usies as a public key, such that in
order to decrypt it is sufficient to know the valg&v.

So, in our scheme, the uskrwould encrypts underpk;, using the cryptosystem
due to Ateniese et al. From the double-spending equations, the same way as before, the
bank infers the the valug**«. This value now allows the bank to decrypt

This is almost the solution, except for the following subtletyGithas a bilinear
map, then the decisional Diffie-Hellman problem is easy, and so the Dodis-Yampolsky
construction is not a PRF in this setting! Instead, we must assume sum-free Diffie-
Hellman [36], and slightly change the construction. This is why the variant of our
scheme that allows to trace coins is a factor/ohore expensive than the one that
does not. The details of this construction are given in Section 4.2.

One of the main remaining problems for electronic cash which this paper does not
address is that of efficiently allowing for multiple denominations in a non-trivial way;
that is, without simply executing the spending protocol a number of times.

2 Definition of Security

Notation: if P is a protocol betweerl and B, then P(A(z), B(y)) denotes thatl’s
inputisx andB’s is y.

Our electronic cash scenario consists of the three usual players: the user, the bank,
and the merchant. Our electronic cash scheme consists of algoBtkeggen, UKeygen,
Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership. Let us give
some input-output specifications for these protocols, as well as some informal intuition
for what they do.

— TheBKeygen(1¥, params) algorithm is a key generation algorithm for the bask
It takes as input the security parametér and, if the scheme is in the common
parameters model, it also takes as input these parametarsis. This algorithm
outputs the key paifpky, skg). (Assume thaskg contains theparams, so we do
not have to givevarams explicitly to the bank again.)

Similarly, UKeygen(1¥, params) is a key generation algorithm for the ugérwhich
outputs(pk,,, ski(). Since merchants are a subset of users, they may use this algo-
rithm to obtain keys as well. (Assume thatcontains thearams, so we do not have

to give params explicitly to the user again.)

— In the Withdraw(U (pk g, sku,n), B(pky, sk, n)) protocol, the uset/ withdraws
awallet W of n coins from the bani3. The user’s output is the wallé¥’, or an
error messagels’s output is some informatiofiy,, which will allow the bank to
trace the user should this user double-spend some coin, or an error message. The
bank maintains a databagkfor this trace information, to which it enters the record
(pkl/{a TW)

— InaSpend(U(W, pk), M(sk s, pkg,n)) protocol, a usel/ gives one of the coins
from his walleti¥ to the merchani\1. Here, the merchant obtains a serial number
S of the coin, and a proof of validity of the coin. The user’s output is an updated
walletW”’.

— In aDeposit(M(ska, S, 7, pkg), B(pk o, sk)) protocol, a merchani deposits
a coin (S, 7) into its account held by the bark Whenever an honest! obtained
(S,) by running theSpend protocol with any (honest or otherwise) user, there is a
guarantee that this coin will be accepted by the b#&hadds(S,) to to its list L of
spent coins. The merchant’s output is nothing or an error message.

— Theldentify(params, S, 71, o) algorithm allows to identify double-spenders using
a serial numbef and two proofs of validity of this coing; andms, possibly sub-
mitted by malicious merchants. This algorithm outputs a publicigy and a proof
II. If the merchants who had submitteg andm, arenot malicious, thenll; is
evidence thapk,, is the registered public key of a user that double-spent §oin

— The VerifyGuilt(params, S, pk,,, II) algorithm allows to publicly verify the proof
Il that the user with public keyk,, is guilty of double-spending coif.

— TheTrace(params, S, pky,, I1, D, n) algorithm, given a public keyk,, of a double-
spender, a proofi; of his guilt in double-spending coifl, the databas®, and a
wallet sizen, computes the serial numbess, . . ., S, of all of the coins issued to
pk,, along with proofsiTy, ..., I, of pk;,'s ownership. [fVerifyGuilt(params, S,
pky,, I1) does not accept (i.epk;, is honest), this algorithm does nothing.

— TheVerifyOwnership(params, S, II, pk;;, n) algorithm allows to publicly verify the
proof IT that a coin with serial numbe$ belongs to a double-spender with public

key pk,,.

We will now informally define the security properties. The more elaborate formal
definitions are given in the full version of this paper [17].

CorrectnessWe require the usual correctness property: if an honest useYVithdraw
with an honest bank, then neither will output an error message; if an honest user runs
Spend with an honest merchant, then the merchant accepts the coin.

Balance.From the bank’s point of view, what matters is that no user or collection of
users or merchants can ever spend more coins than they withdrew. We require that there
is a knowledge extractat that executes Withdraw protocols with all adversarial users

and extractain serial numberssy ;. .., S,,. We require that for every adversary, the

probability that an honest bank will accgs,) as the result of th®eposit protocol,
whereS # S; V1 < i < un, is negligible. IfS,, ..., S, is a set of serial numbers output
by £ when running/Nithdraw with public keypk;,, we say that coin$;, . .., S, belong
to pky,.

Identification of double-spendeiSupposes is honest. Suppos#&1; and M, are hon-
est merchants who ran tlend protocol with the adversary, such th&t;’s output

is (S, m1) and My's output is(S, m2). The identification of double-spenders property
guarantees that, with high probabilitgentify(params, S, 71, m2) outputs a keypk;,
and proofll¢ such thaWVerifyGuilt(params, S, pk;,;, IIc) accepts.

Tracing of double-spender&iven that a usepk;, is shown guilty of double-spending
coin S by a proof II; such thatVerifyGuilt accepts, this property guarantees that
Trace(params, S, pky, Ilc, D, n) will output the serial numbers,, . . ., S,,, of all coins
that belong tok,;, along with proofs of ownershifyy, . . ., II,,, such that for alf, with
high probability,VerifyOwnership(params, S;, I1;, pk;,, n) also accepts.

Anonymity of userd=rom the privacy point of view, what matters to users is that the
bank, even when cooperating with any collection of malicious users and merchants,
cannot learn anything about a user’'s spendings other than what is available from side
information from the environment. In order to capture this property more formally,
we introduce a simulataf. S has some side information not normally available to
players. E.g., if in the common parameters modejenerated these parameters; in the
random-oracle mode§ is in control of the random oracle; in the public-key registration
model S may hold additional information about the bank’s keys, etc. We require that
S can create simulated coins without access to any wallets, such that a simulated coin
is indistinguishable from a valid one. More precis&lyexecutes the user’s side of the
Spend protocol without access to the user’s secret or public key, or his widllet

Exculpability.Suppose that we have an adversary that participates any number of times
in the Withdraw protocol with the honest user with public ke¥,,, and subsequently
to that, in any number of leg&bend protocols with the same user. l.e., if the user with-
drewwu wallets ofn coins each, then this user can participate in at masipend proto-
cols. The adversary then outputs a coin serial nunstaerd a purported prodf that the
user with public keyk,, is a double-spender and owns céinTheweakexculpability
property postulates that, for all adversaries, the probabiktyfyOwnership(params,
S, pky, IT,n) accepts is negligible.

Furthermore, the adversary may continue to engage thekgen Spend protocols
even if it meang#k;, must double-spend some coins of her choosing (in which case the
state of her wallet is reset). The adversary then outffit&l). Thestrongexculpability
property postulates that, for all adversaries, wids a coin serial numbearotbelong-
ing to pk,,, the weak exculpability property still holds, and wh&is a coin serial num-
ber not double-spent byk,,, the probability thaterifyGuilt(params, S, IT, pk;;, n)
accepts is negligible.

This ends the informal description of our security definition; the descriptions in the
full version of this paper [17] are more precise, but this intuition should be sufficient
for understanding our subsequent security guarantees.

Strengthening the definition: the UC framewdgven though our definition of security

is not in the UC framework, note that our definition would imply UC-security whenever
the extractol€ and simulatorS are constructed appropriately. In a nutshell, an ideal
electronic cash functionality would allow an honest user to withdraw and speaits.

In this case, if the merchant and bank are controlled by the malicious environment,
the simulatorS defined above creates the merchant’s and bank’s view o§laed
protocol. At the same time, the balance property guarantees that the bank gets the same
protection in the real world as it does in the ideal world, and the exculpability property
ensures that an honest user cannot get framed in the real world, just as (s)he cannot
get framed in the ideal world. Thus, in order to construct a UC-secure scheme we need
black-box& andS that do not use rewinding.

3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we now
briefly review. Many of these protocols can be shown secure under several different
complexity assumptions, a flexibility that will extend to our e-cash systems.

Notation: We denote the set of quadratic residues moddsQR,, C Z7; i.e., the
elements: € Z?, such that there existstac Z? such thab? = a modn. The notation
G = (¢g) means thay generates the groug.

3.1 Complexity Assumptions

The security of our e-cash systems is based on the following complexity assumptions:
Strong RSA Assumption [4, 41]: Given an RSA modulus and a random element
g € Z}, itis hard to computé € Z; and integee > 1 such that:®* = g modn. The
modulusr is of a special fornpg, wherep = 2p’ + 1 andq = 2¢’ + 1 are safe primes.
y-Decisional Diffie-Hellman Inversion Assumption ¢-DDHI) [6, 37]: Given a ran-
dom generatoy € G, whereG has prime ordey, the valuegg, ¢%, ..., ¢*")) for a
randomz € Z,, and a valuek € G, itis hard to decide iR = ¢g'/* or not®

Weak Sum-Free Decisional Diffie-Hellman Assumption (WSF-DDH) [36]Suppose
thatg € G is a random generator of orderLet L be any polynomial function df|.
Let O, (-) be an oracle that, on input a subse€ {1,..., L}, outputs the valug’”
wherefr = [[,.; a; for somea = (ai,...,ar) € ZqL. Further, letR be a predicate
such thatR(J, I, ..., I;) = 1ifand only if J C {1,..., L} is four-wise independent
from the I;’s; that is, whenv(I;) is the L-length vector with a one in positio if
and only ifj € I; and zero otherwise, then there are no three kgt§,, I. such that
v(J)Bv(l,)®v(ly) ®v(l.) = 0 (whered indicates bitwise addition modulo 2). Then,
for all probabilistic polynomial time adversarigk),

Pria=(a1,...,ar) « ZE; (J,) — A% (();yo = gllicr ;1 — G;
b {0,1};b «— A% (,yp,) : b=V AR(J,Q) = 1] = negl(|q]),
where(Q is the set of queries that made toO,(+).

5 Others [6, 37] have used a strondpiinear version of they-DDHI assumption, where, given
the same input ifg)¥* it is hard to distinguiste(g, g)'/* from a randomR in (e(g, g)).

3.2 Bilinear Maps

Let Bilinear_Setup be an algorithm that, on input the security parameteroutputs

~v = (q, g1, h1, G1, g2, ha, G2, €), wheree is a non-degenerate efficiently computable
bilinear map fromG; = (g1) = (h1) to Go = (g2) = (hs), both groups of prime
orderq = ©(2%). Lete(g1,91) = g2 ande(hy, h1) = hy. We assume that each group
element has a unique binary representation. More formally(z; x G, — Gy is a
function thatis: (bilinear) for alj;, hy € Gy, foralla,b € Z,, e(g$, hY) = e(g1, h1)?;
(non-degenerate) if; is a generator off1, thene(g1, g1) generatesss; and (efficient)
computinge(-, -) is efficient for allg,, hy € G;.

3.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving
statements about discrete logarithms, such as (1) proof of knowledge of a discrete log-
arithm modulo a prime [47] or a composite [41, 35], (2) proof of knowledge of equality
of representation modulo two (possibly different) prime [33] or composite [21] moduli,
(3) proof that a commitment opens to the product of two other committed values [20,
25,12], (4) proof that a committed value lies in a given integer interval [26, 20, 20, 8],
and also (5) proof of the disjunction or conjunction of any two of the previous [34].
These protocols modulo a composite are secure under the strong RSA assumption and
modulo a prime under the discrete logarithm assumption.

When refering to the proofs above, we will follow the notation introduced by Ca-
menisch and Stadler [24] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms. For instance,

PK{(a,3,0) :y = g PP Aj= G R’ A (u < o <)}

denotes aZero-knowledge Proof of Knowledge of integetrss, andé such thaty =

¢g“h? andj = §*h°® holds, where, < o < v,” wherey, g, h, j, §, andh are elements

of some group€&’ = (g) = (h) andG = (j) = (h). The convention is that Greek letters
denote quantities of which knowledge is being proven, while all other values are known
to the verifier. We apply the Fiat-Shamir heuristic [38] to turn such proofs of knowledge
into signatures on some messagedenoted as, e.gSPK{(a) : y = g*}(m).

3.4 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions recently
proposed by Dodis and Yampolsky [37], which they expand to verifiable random func-
tions using bilinear maps. Their construction is:

For everyn, a functionf € F,, is defined by the tupléG, ¢, g, s), whereG is group of
orderg, g is ann-bit prime, g is a generator of7, ands is a seed ir¥Z,. For any input

x € Z, the functionfp 4 4 +(-), which we will often simply denote ag”" (-) where

there is values foP, ¢, g are clear, is defined a&”¥ (z) = ¢g'/(*+9),

This construction is secure under theDDHI assumption. As mentioned in the
introduction, we could instead substitute in the Naor-Reingold PRF [44], and replace the
y-DDHI assumption with the more standard DDH assumption, at the cost of enlarging
our wallets fromO(¢ + k) bits toO(¢ - k) bits.

3.5 CL Signatures

Recall the Pedersen commitment scheme [46], in which the public parameters are a

groupG of prime orderg, and generatorgy, . . ., g,). In order to commit to the values
(V1,...,0m) € Z,™, pick a randomr € Z, and setC' = PedCom(v1,...,Um;T) =
90 H:il 9"

Camenisch and Lysyanskaya [18] came up with a secure signature scheme with two
protocols: (1) An efficient protocol between a user and a signer with gy, sks).

The common input consists pk ¢ andC', a Pedersen commitment. The user’s secret in-
putis the setof value@, . . ., vs, r) such thal' = PedCom(vy, . .., ve; 7). As aresult

of the protocol, the user obtains a signatagg_ (v1, .. .,ve) on his committed values,

while the signer does not learn anything about them. The signature ha8(gike; q).

(2) An efficient proof of knowledge of a signature protocol between a user and a ver-
ifier. The common inputs argk ¢ and a commitmen€'. The user’s private inputs are

the valuegvy, ..., ve,7), ando,i (v1, . .., v¢) such thal' = PedCom(vy, ..., ve; 7).

These signatures are secure under the strong RSA assumption. For the purposes of this
exposition, it does not matt&iow CL signatures actually work, all that matters are the
facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption indepen-
dently of the CL signatures. By making additional assumptions based on bilinear maps,
we can use alternative schemes by Camenisch and Lysyanskaya [19] and Boneh, Boyen
and Shacham [7], yielding shorter signatures in practice.

3.6 \Verifiable, Bilinear EI Gamal Encryption

In Section 4.2, we apply a technique by Camenisch and Badnid 5] for turning any
semantically-secure encryption scheme into a verifiable encryption scheme. A verifi-
able encryption scheme is a two-party protocol between a prover and encR/ptud

a verifier and receive¥’. Roughly, their common inputs are a public encryption kiy

and a commitmentl. As a result of the protocol/ either rejects or obtains the en-
cryptionc of the opening ofd. The protocol ensures thitaccepts an encryption of an
invalid s only with negligible probability and th&t™ learns nothing meaningful about
the opening ofd. Together with the corresponding secret k&ytranscriptc contains
enough information to recover the openingAgfficiently. We hide some details here
and refer to Camenisch and Daand [15] for the full discussion.

In particular, we apply the verifiable encryption techniques above to a bilinear
variant of El Gamal encryption due to Ateniese et al. [2]. Assume a bilinear map
e: G5 — Gy. Let (G, E, D) denote the standard key generation, encryption, and de-
cryption algorithms. On inputl”, ¢), the key generation algorithi@ outputs a pair
(pk, sk) = (gy,gy) for a randomu € Z,. To encrypt a message € G, underpk,
select a randonk € Z, and output the ciphertext = (g&, pk"m) = (gk,gs*m).
Then, to decrypt = (¢, c2), Simply computes /e(cq, sk). Ateniese et al. [2] show
that this encryption scheme is semantically-secure under the DBDH assumption, i.e.,
given (g3, g4, g5, g5, X) for randoma, b,c € Z, and X € Gs, it is hard to decide if
X = ggbe.

4 Two Compact E-Cash Systems

We present two compact e-cash systems. In System One, an honest bank can quickly
detect double-spending, identify the perpetrator, and prove his guilt to a third party
from two coin deposits with the same serial number. This system allows a waflét of
coins to be stored iP (¢ + k) bits. In System Two, the bank can do everything that it
could before, and in addition, the bank can compute the serial numbers for all the coins
that belong to the perpetrator along with proofs of their ownership. Here, our wallets
of 2¢ coins requireO(¢ - k) bits, which is still remarkably small. If a user does not
double-spend, her coins are unlinkable. There is no trusted party.

Global parameters for both systemsLet 1* be the security parameter and lebe
any value inO(log k). Our subsequent schemes work most efficiently by having three
different groups:

— G1 = (g1, wheren is a special RSA modulus @k bits, g; is an element i R,,,
andh; is an element igj; . Common uses: Pedersen commitments and RSA-based
CL signatures.

— Gy = (g2), Whereg, is an element of prime order = ©(2%), andh, is an ele-
ment inG,. Common uses: coin serial numPers, security tags, and range of bilinear
mapping. In particular, we |eF”Y (z) = g; 7 denote the PRF due to Dodis and
Yampolsky [37].

— G3 = (g3), wheregs is an element of the same prime ordeiGasand there exists
a bilinear mapping : Gz x Gz — Go. Common uses: domain of bilinear mapping.

Our first scheme will not requirg;. Assume that, on input*, each system is initialized
with the necessary common parameters, dengted specified above. We also define
PedCom(x1,...,zn;7) = AT, g;*. Sometimes for simplicity we do not explicitly

include the randomessin the input to the commitment. The values{g; } are assumed
to be publicly known elements of the appropriate group.

4.1 System One: Wallets of Siz€ (¢ + k) with Public Key Recovery

Our first system supports the basic algorithiB&eygen, UKeygen, Withdraw, Spend,
Deposit, |dentify, VerifyGuilt). In this scheme, a wallet of siz8(¢ + k) is sufficient to
hold 2¢ coins. In theldentify algorithm, the bank can recover the identity of a double-
spendepk,;, from two deposits with the same coin serial numBelJsing VerifyGuilt,

the bank can prove that;, double-spent coi¥ to a third party; while all honest users
are guaranteed strong exculpability.

The parties set up their keys as follows BKeygen(1*, ¢), the bank3 generates a CL
signature key paifpk gz, sk) for message spade such thaZ, x Z, x Z, C M. In
UKeygen (1%, (), each uset/ generates a unique key pdijik,,, sky) = (g4, u) for a
randomu € Z,. Recall that merchants are a subset of users.

Withdraw (U (pkg, sku, 2°), B(pky, sks, 2°)): A userl interacts with the bani8 as
follows:

(=Y

. U identifies himself to the bank by proving knowledge ofk;,.

2. U selectsrandom value§ ¢ € Z, and sends a commitmenAt = PedCom(u, s, t; 1)
to B. B sends a random’ € Z,. Thenl{ and B locally computeA = gg'A’ =
PedCom(u, s' + 1/, t;r) = PedCom(u, s, t;r) if s = " + 1.

3. U andB run the CL protocol for obtaining’s signature on committed values con-
tained in commitment. As a result{{ obtainso(u, s, t).

4. U savesthe wallélV = (sky, s = s'+r,t,05(u, s,t),J), wheres, t are the wallet
secretsg(u, s, t) is the bank’s signature, anflis an¢-bit coin counter initialized
to zero.

5. B records a debit a2’ coins for accounpk,.

Spend (U (W, pk r4), M(sk m, kg, 2°)): U anonymously transfers a coin fet as fol-
lows. (An optimized version appears in the full version of this paper [17].)

1. M (optionally) sends a strinnfo € {0, 1}* containing transaction information to
U and authenticates himself by proving knowledge/of,.

2. M chooses arandoifi € Z; and sendsz to /. (To eliminate this step of interac-
tion, in the random oracle model, I8tbe the output of a hash functiéd on pk , ,
the current time, the session id, etc.)

3. U sends the deterministic serial number of the i FPY (J+1) = gb/ /™),

a (now fixed) security ta@ = pky FLY (J + 1) = phk,gh/ ™Y and a proof

@ of their validity to M. The signature proap consists of:

(@) A = PedCom(J + 1) and proof thatd is a commitment to an integer in the
rangell. .. 2,

(b) B = PedCom(u), C = PedCom(s), D = PedCom(t) and proof of knowl-
edge of a CL signature froifi on the openings oB3, C andD in that order,

(c) and a proof” thatS = gé/(‘]“ﬂ) andT = g;““R/(J”“).
More formally, I" is the following signature proof of knowledge:

I'= SPK{(Oz,ﬁ,(S,’yl, ceyY3) i g1 = (AC)ahlvl NS =gsA
91 =(AD)’™ A B=g:’m™ A T =gi(g3)"}
(57T7A7B707D791;h17n7g27pkM7R7 Z’ﬂfO)

The spender is required to sign a host of parameters, in additiomfdéo to
prevent the coin from becoming malleable.
4. If @ verifies, M accepts the coil(S, r), wherer = (R, T,®), and temporarily
stores it until deposit time.
5. U updates his countef = .J + 1 as before. Whed > 2¢ — 1, the wallet is empty.

Deposit(M sk, S, m, pk), B(pk o, skg)): A merchantM deposits a coiS, n =
(R,T,®)) into its account held by bank as follows:

1. M and?B (optionally) authenticate themselves by proving knowledgekaf and
sk respectively. We sagptionallybecause this step may be done physically.

2. M sendsB his entire coin(S, 7). If @ verifies andR is fresh (i.e., the pai(S, R)
are not already in the list of spent coins), thei accepts the coin for deposit,
adds(S,) to the list L of spent coins, and crediis ,,'s account; otherwisel3
sendsM an error message.

Because of this deposit protocol, wheké must convinces that it behaved honestly
in accepting some coiS, 7), our security proof require random oraclesMf andB
were the same entity, and théithdraw andSpend protocols were interactive, then we
would achieve balance and anonymity in the plain model.

We note that if5 was satisfied with detecting/identifying double-spenders, without
worrying about proving anything to a third party, it need only st@#eR, T') in L for
each coin at a considerable storage savings.

Identify({, S, 71, 72): SUppos&R;,T1) € w1 and(Rq, Tz) € w2 are two entries in the
bank’s databasé of spent coins for serial numbét. Then outputll; = (71, m2) and
pk = (T =)

Let us explain why this produces the public kéy, of the double-spender. Suppose
coin S belonged to some usek,, = gy, then each; is of the formgy ™ for the
same values anda. (Either this is true or an adversary has been successful in forging
a coin, which we subsequently show happens with only negligible probability.) As the
bank only accepts coins with fresh valuesidfi.e., Ry # R»), it allows to compute:
u(Ry—Rg)

_ -1
)(Rl Ry2) :g2(R1—R2) :gg:pku'

’ltR] +R1 RQ(X
2

S
T1R2 g§R2+R1 Raa

VerifyGuilt(params, S, pky,, 1) : Parsellg as (w1, m2) and eachr; as(R;, T;, P;).
Run Identify(params, S, w1, m2) and compare the first part of its output to the public
key pk;, given as input. Check that the values match. Next, verify @gahith respect
to (S, R;, T;). If all checks pass, the algorithm accepts; otherwise, it rejeffis.i¢ not
a particularly elegant proof, but it is interesting that it does not require any secret input
from a bank or other, perhaps trusted, party.)

Efficiency Discussion of System Orighe dominant computational cost in these proto-
cols are the single and multi base exponentations. In a good implementation, a multi-
base exponentation is essentially as fast an ordinary exponentation. While we do not
provide the full details of th&Vithdraw protocol, it can easily be derived from the
known protocols to obtain a CL-signature on a committed signature [18, 16]. Depend-
ing on how the proof of knowledge protocol is implementétithdraw requires as little

as 3 moves of communication.

The details of (an optimized version of) tS@end protocol are given in the full
version [17]. One can verify that a user must compute 7 multi-base exps to build the
commitments and 11 more for the proof. The merchant and bank need to do 11 multi-
base exps to check that the coin is of the proper form. The protocols requires two rounds
of communication between the user and the merchant and one round between the bank
and the merchant.

Theorem 1. System One supports the algorith(BKeygen, UKeygen, Withdraw,

Spend, Deposit, Identify) and guarantees balance, identification of double-spenders,
anonymity of users, and strong exculpability under the Strong RSA/40HI as-
sumptions in the random oracle model.

Proof of Theorem 1 appears in the full version of this paper [17].

4.2 System Two: Wallets of Siz& (€ - k) with Traceable Coins

We now extend System One to allow coin tracing. Suppose for the moment that the
Identify algorithm recoveredk;, rather tharpk,, for a double-spender. Suppose, more-
over, that users provide the bank with a verifiable encryption of their wallet secret
(used to generate the coin serial numbers) utioieir own public keyk,;, during the
withdrawal protocol. Then, when a user double-spends, the bank can coshpute-

cover secrek, and output the serial numbefs = fPY (i), for i = 1 to 2¢, of all

coins belonging to that user. (Observe that recovesingin the above scheme allows

the bank to tracell coins fromall wallets for a user and not just from the wallet from
which the coin was double-spent!) If a user does not double-spend a coin, however, her
anonymity is computationally guaranteed.

The verifiable encryption techniques of Camenisch and Bathcs described in
Section 3.6, can be applied to any semantically-secure encryption scheme for our with-
drawal protocol. Thus, all we need is a coin construction which allows one to re-
cover a double-spenderg:;,. Luckily, the bilinear EI Gamal scheme recently pro-
posed by Ateniese et al. (see Section 3.6) allows for encryption keys of thegform
for u € Z,, where knowingg} is sufficient for decryption, given the bilinear mapping
e : Gs x G3 — G,. So then, by setting our coin tag= g4 f°¥ (J + 1) in G, without
any other changes, we can now recogfefrom a coin spent twice.

One complication with settin@’ in G3 is that the Dodis-Yampolsky [37] construc-
tion is no longer a PRF when DDH is easy, as it igjin This breaks the anonymity
of our coins. Thus, we need a PRF that works in DDH-easy groups. We are aware of
one such example due to Dodis [36]. Unfortunately, his construction [36] does not work
well for our purposes, as it would require us to preform expensive proofs of knowledge
of values represented as vectorgdi'(2¢). Instead, we propose a new PRF construc-
tion based on the WSF-DDH assumption (see Section 3.1) that allows for more efficient
protocols. Given our space constraints, we present the PRF here and prove its security
elsewhere [17].

PRF based on the Weak Sum-Free DDH AssumptionVe define an encodingy :
{0,1}* — {0,1}* asV(J) = Cy - J||Cq - J||...||Cae - J, where eactC; is ané-

bit 0/1-vector,- denotes the dot product (modulo 2), gihdenotes concatenation. Let
C = (C4,...,Cy) be a set oft-bit 0/1 vectors such that there do not exist distinct
Ji, Ja, Js, Jy € {0,1}¢ such thatV (J;) @ V(J3) = V(J3) @ V(Jy). We show that
such aC must exist [17], and aé = O(log k), we can find it by brute-force search.
Then, for fixed valuegk, ¢, C) and a see& = (sg,...,S4) € Z;‘”l, we define a

function f in our new PRF familyF, asfY (J) = g, My s,

Our second system supports all the algorithms mentioned in Secti@K2ygen,
UKeygen, Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership).
In this scheme, a wallet of siz@(¢- k) is sufficient to hold®‘ coins. We add coin tracing
for the bank and retain strong exculpability for the users.

In addition to the global parameters of Scheme One, the global paranjeteriside
our PRF vector€. We assume a standard digital signature schgfdg Sign, SV f).
Then,UKeygen(1%,¢) runsSG(1%,¢) — (vky, ssky) and the bilinear EI Gamal key
generation algorithn@'(1%,¢) — (eky, dky) = (g%, gY%), and outputpk,, = (eky,
vky) andsky = (dky, ssky). The bank’s keys are as before.

Withdraw (U (pk g, sku, 2°), B(pky,, ski, 2°)): A userl interacts with the bani8 as
follows:

1. U identifies himself to the bank by proving knowledge ok, = (dky, ssky).

2. U selects random values, to, . .., tye € M. Lett denote the sequencg . .., t4.
U sends the commitmem’ = PedCom(u, s’,t) to B3, obtains a random’ as
before, and, as before, bdthand locally setA = gg/A’.

3. U forms a verifiable encryptiod) of the values = s’ + r’ under his own key
eky = g4. (This encryption can be proved correct relative to commitraeht) is
signed byi{. B verifies the correctness @) and the signature on Q. U obtains
a CL signature fronB on the values committed iA via the protocol for getting a
signature on a set of committed values.

4. B debits2’ from accounpk,,, records the entrgpk,,, Q, o) in his databas®, and
issued/ a CL signature orY".

5. U saves the wallelV = (sky, s, t,o5(u, s,t), J), whereJ is an¢-bit counter set
to zero.

Spend(U(W, pk r,), M(sk a1, pkg,2¢)): The only change from System One is in the
calculation of the security ta@ and the subsequent proéf Assumeinfo € {0,1}*
andR € Z; are obtained as before.

1.2 sends the deterministic serial number of the c®ir fPY (J +1) = gb/ /T,

. . u+R . 1y ti
a (now fixed) security ta@’ = pk,, fY (J + 1) = g3+ follivani=n ¢
@ of their validity to.M. The signature proap consists of:

, and a proof

(a) A =PedCom(J+1) and a proof tha#l is a commitment to an integer in the range
[,...,24,

(b) B; = PedCom(.J;) for i = 1 to ¢ (commitments to the bits of) and proof that
eachB; opens to either 0 or 1; that i8,K{(y1,72) : Bi/g1 = ™V B; = hi ™},

(c) proof thatd and{ B} are consistent; thati&K {(7) : A/g1 [[-—, B = hi"},

(d) C = PedCom(u), D = PedCom(s), E; = PedCom(¢;) for i = 0 to 4¢, and proof
of knowledge of a CL signhature on the opening€ofD, and allE;’s in that order,

(e) Fy = Ey, F;, = PedCom(H{jSi:V(J)]:l} t;) for ¢ = 1 to 4¢ (helpers for showing
correctness of),

u+R ; i
(f) and a proofl” that$ = g}/ /+**) andT = g5 fo = b,

More formally,I" = I'o A Iy A ... A Ty is the following signature proof of knowl-
edge:

Iy = SPK{(a, 8,7, 61,02,05) : g1 = (AD)*h°* A S = gy A
C=g, h22 AFy=gi"m® AT = g3 (g3)3
and for: = 1 to 4/,

I = SPK{(v, B, di, {3\™}) -

(Fi=Foah?” A I B) =0) v

{3:Cs,5=1}
_ @ wr o , ©
(E = Fia_zlhlwi /\E7 =g 1h1'yl /\(H B]) = '§]12¢1+1h1’yz)}(.) s
{j:C;,;=1}

where(; ; represents thg-th bit of thei-th parity check vecto€; € C which
defines the encoding. Let us briefly explain this last step. Iy, the prover shows
that S is correct and then showss is formed correctly relative to a commitment
F4. The prover demonstrates that the openinggfis a product of signed secrets
where eacht;, for i = 1 to 4, is used inFy, (that is, F; = F* hy") if and
only if VI(J); = 1. Recall thatV(.J); = 1 whenJ - C; = 1 mod 2, the bits of
J are commited to i{ B, }, and eaclC; is public. Thus, in eacli’;, we compute
I1;.c. ,—1} B; to form a commitment to the sum of bit§ whereC;; = 1. We
then use the commitment @ s J; to show that either: (1) the opening is
even and; is not in Fyy, or (2) |t is odd}andz, as signed by, is in Fyy.

2. M andi{ proceed exactly as before.

TheDeposit protocol andVerifyGuilt algorithm follow the same outline as System One.
During deposit, the bank may store orly, R, T') in databasd. to obtain all desired
functionality — except the ability to convince a third party of anything, such as a double-
spender’s identity or which coins belong to him. In fdentify protocol, the proof of
guilt 11 will additionally include the part of the user’s secret key recovereglas

Trace(¢, S, pky, I1c, D, 2%): Parsellg as (dk, i, m2) and pky, as (eky, vky). The
bank checks that(gs, dk) = eky; if not, it aborts. Otherwise the bank searches its
databasé, generated during the withdrawal protocol, for verifiable encryptions tagged
with the public keypk,,. For each matching entripk,,, Q, o), B does the following:

(1) runs the Camenisch-Daragl decryption algorithm o) with dk to recover the
values; and (2) then for = 1 to 2¢, outputs a serial numbet; = Y (i) and a proof

of ownershipll; = (Q, o, dk, 7).

VerifyOwnership(¢, S, IT, pky,, 2°): Parsell as(Q, o, dk, i). Check that is pk,,’s sig-
nature orQ) and thati is in the rangél, . . ., 2¢]. Next, verify thatdk is pk,,'s decryption
key by checking that(gs, dk) = eky,. Finally, run the verifiable decryption algorithm
onQ with dk to recovers’ and verify thatS = f2Y (4). If all checks pass, the algorithm
accepts, otherwise, it rejects.

Efficiency Discussion of System Twim Withdraw, the number of communication
rounds does not change from System One, but one of the multi-base exponentiations
will involve 4¢ bases and hence its computation will take longer. Let us discuss the
computational load of the verifiable encryption. For a cheating probability of at most
27% the user must additionally computeexps andk encryptions with the bilinear El
Gamal scheme. To verify, the bank also must perférexps but onlyk encryptions.
Upon recovery of the double-spender’s secret key, the bank needs to perform &t most
decryptions and exponentiations. Furthermore, the bank needs to compute alf the
serial numbers each of which takes one exp.

In Spend, the user must compute a total ®f+ 9¢ multi-base exps for the com-
mitments and 2 + 20¢ multi-base exps for the signature proof (where eBctakes5
multi-base exps). The merchant and the bank also need to perfon20¢ multi-base
exps. In each of these numbers there is one multi-base explévikponents while all
the others involve two to four bases. Although complex, these are practical systems.

Theorem 2. System Two supports the algorith(iBKeygen, UKeygen, Withdraw,

Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees bal-
ance, identification of double-spenders, tracing of double-spenders, anonymity of users,
and weak and strong exculpability under the Strong RSBDPHI, and WSF-DDH as-
sumptions in the random oracle model.

Proof of Theorem 2 appears in the full version of this paper [17]. Random oracles
can be removed as discussed in System One.

AcknowledgmentsPart of the first author’'s work reported in this paper is supported
by the European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT and by the IST Project PRIME. The PRIME projects receives research
funding from the European Community’s Sixth Framework Programme and the Swiss
Federal Office for Education and Science. The information in this document reflects
only the author’s views, is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatlEEE
Journal on Selected Areas in Communicatidt®(4):591-610, Apr. 2000.

2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes
with Applications to Secure Distributed Storage. the 12th Annual NDS$ages 29-43,
2005. Full version available at http://eprint.iacr.org/2005/028.

3. N. Bart and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In W. Fumy, editoAdvances in Cryptology — EUROCRYPT,'98lume
1233 ofLNCS pages 480-494. Springer Verlag, 1997.

4. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. IMAdvances in Cryptology — EUROCRYPT,9@lume 1233 of LNCS, pages
480-494, 1997.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In M. Yung, eAileances
in Cryptology — CRYPTO 20020lume 2442 o NCS pages 162-177, 2002.

. D.Boneh and X. Boyen. Short signatures without random oraclégitances in Cryptology

— EUROCRYPT 20040lume 3027 of- NCS pages 54-73, 2004.

. D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong Diffie-Hellman.

In Advances in Cryptology — CRYPTO ;0blume 3152 of LNCS, pages 41-55, 2004.

. F. Boudot. Efficient proofs that a committed number lies in an intervalAdwances in

Cryptology — EUROCRYPT '0@olume 1807 oL NCS pages 431-444, 2000.

. S. Brands. An efficient off-line electronic cash system based on the representation problem.

Technical Report CS-R9323, CWI, Apr. 1993.

S. Brands. Untraceable off-line cash in wallets with observers. manuscript, CWI, 1993.

S. Brands. Untraceable off-line cash in wallets with observers. In D. R. Stinson, editor,
Advances in Cryptology — CRYPTO ;9 lume 773 oLLNCS pages 302-318, 1993.

S. Brands. Rapid demonstration of linear relations connected by boolean operators. In
Advances in Cryptology — EUROCRYPT, 9@lume 1233 oL NCS pages 318-333, 1997.

S. BrandsRethinking Public Key Infrastructure and Digital Certificates— Building in Pri-
vacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands, 1999.

E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based tracing extensions to anonymous cash
and the making of anonymous change AM-SIAM '95 pages 457—-466, 1995.

J. Camenisch and |. Daugl. Verifiable encryption, group encryption, and their applications

to group signatures and signature sharing schemes. In T. Okamoto, édit@nces in
Cryptology — ASIACRYPT 'Q8olume 1976 o£ NCS pages 331-345, 2000.

J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical aspects.
In proceedings of SCN 'Q40lume 3352 of LNCS, pages 120-133, 2004.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash, 2005. Full version to
appear at http://eprint.iacr.org/2005.

J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocdBCNn

2002 volume 2576 oL NCS pages 268-289, 2003.

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. IMdvances in Cryptology — CRYPTO 200dlume 3152 oL NCS pages
56-72, 2004.

J. Camenisch and M. Michels. Proving in zero-knowledge that a numisehe product of

two safe primes. In J. Stern, editérdvances in Cryptology — EUROCRYPT,'98lume

1592 ofLNCS pages 107-122. Springer Verlag, 1999.

J. Camenisch and M. Michels. Separability and efficiency for generic group signature
schemes. In M. Wiener, editohdvances in Cryptology — CRYPTO ;9%®lume 1666 of

LNCS pages 413-430. Springer Verlag, 1999.

J. Camenisch, J.-M. Piveteau, and M. Stadler. Blind signatures based on the discrete logaritm
problem. INEUROCRYPT '94volume 950 oLNCS pages 428-432, 1994.

J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete log-
arithms. In D. Boneh, editoAdvances in Cryptology — CRYPTO 2088lume 2729 of

LNCS pages 126-144, 2003.

J. Camenisch and M. Stadler. Efficient group signature schemes for large groygs: In
ceeding of Crypto '9;/volume 1296 of LNCS, pages 410-424, 1997.

J. L. Camenisch.Group Signature Schemes and Payment Systems Based on the Discrete
Logarithm Problem PhD thesis, ETH drich, 1998.

A. Chan, Y. Frankel, and Y. Tsiounis. Easy come — easy go divisible cagkdviences in
Cryptology — EUROCRYPT '98olume 1403 oLNCS pages 561-575, 1998.

D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest, and A. T.
Sherman, editorgddvances in Cryptology — CRYPTO ;§&ges 199-203, 1982.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

D. Chaum. Blind signature systems. In D. Chaum, edAdvances in Cryptology —
CRYPTO '83page 153. Plenum Press, 1984.

D. Chaum. Security without identification: Transaction systems to make big brother obsolete.
Communications of the ACM8(10):1030-1044, Oct. 1985.

D. Chaum. Online cash checks. In J.-J. Quisquater and J. Vandewalle, éditcances in
Cryptology — EUROCRYPT '890lume 434 olLNCS pages 289-3293, 1989.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic casAdirances in Cryptology —
CRYPTO '88volume 403 oLLNCS pages 319-327, 1990.

D. Chaum and T. P. Pedersen. Transferred cash grows in sigdvémces in Cryptology —
EUROCRYPT '92volume 658 0l.NCS pages 390—407, 1993.

D. Chaum and T. P. Pedersen. Wallet databases with observétdvdnces in Cryptology

— CRYPTO '92volume 740 olLNCS pages 89-105, 1993.

R. Cramer, |. Danfyd, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Y. G. Desmedt, edifatyances in Cryptology —
CRYPTO '94volume 839 oL NCS pages 174-187. Springer Verlag, 1994.

I. Damgrd and E. Fujisaki. An integer commitment scheme based on groups with hidden
order. InAdvances in Cryptology — ASIACRYPT 20@slume 2501 of. NCS 2002.

Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Y. Desmedt,
editor, Public Key Cryptographyolume 2567 o£NCS pages 1-17. Springer Verlag, 2002.

Y. Dodis and A. Yampolsky. A Verifiable Random Function with Short Proofs an Keys. In
Public Key Cryptography '05volume 3386 of LNCS, pages 416-431, 2005.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. IAdvances in Cryptology — CRYPTO ;8®lume 263 of LNCS, pages
186-194, 1986.

Y. Frankel, Y. Tsiounis, and M. Yung. “Indirect discourse proofs:” Achieving efficient fair
off-line e-cash. IPAdvances in Cryptology — ASIACRYPT, 96lume 1163 o NCS pages
286-300, 1996.

M. Franklin and M. Yung. Towards provably secure efficient electronic caghroteedings

of ICALP '93 volume 700 of LNCS, pages 265-276, 1993.

E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polyno-
mial relations. InAdvances in Cryptology — CRYPTO ;9%lume 1294 ofLNCS pages
16-30, 1997.

S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transaction escrow
scheme. IMdvances in Cryptology — EUROCRYPT 20@dlume 3027 olLNCS pages
590-608, 2004.

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signaturesAdumances in Cryptology —
EUROCRYPT '04volume 3027 of LNCS, pages 571-589, 2004.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. Journal of the ACM51, Number 2:231-262, 2004.

T. Okamoto and K. Ohta. Disposable zero-knowledge authentications and their applications
to untraceable electronic cash. Adlvances in Cryptology — CRYPTO ;8®lume 435 of
LNCS pages 481-496, 1990.

T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology — CRYPTO 9blume 576 oLLNCS pages 129-140, 1992.

C. P. Schnorr. Efficient signature generation for smart cardisurnal of Cryptology
4(3):239-252, 1991.

M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatur@slvances in Cryptol-

ogy — EUROCRYPT '9%olume 921 ol.NCS pages 209-219, 1995.

Y. S. Tsiounis.Efficient Electonic Cash: New Notions and TechniquekD thesis, North-
eastern University, Boston, Massachusetts, 1997.

