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Abstract One fair e-cash system was proposed in [1]. In this paper, we show
that the system is insecure. Besides, we point out that there are two drawbacks. One
is that those integer intervals for si(i = 1, · · · , 9) are unappropriate. The other is that
the datum s3 in signature data is redundant. Moreover, we give a minute description
of the technique to shun the challenge in the scheme. We think the method is a little
interesting.
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1 Introduction

The concept of group signature was introduced by Chaum and Heyst [2], which allows individual
members to make signatures on behalf of the group. More formally, a secure group signature scheme
must satisfy the following properties: unforgeability, anonymity, traceability, coalition-resistance,
unlinkability, exculpability (see [3, 4] for more details).

An important application of group signature is to construct fair e-cash systems. Loosely speak-
ing, a fair electronic cash is a system that allows customers to make payments anonymously. More-
over, under circumstances, a trusted authority can revoke the anonymity of suspicious transactions.
The fair e-cash system[5] do not realize coin tracing. In order to remend it, Canard et al. pro-
posed a fair E-cash system based on one variant of ACJT group signature scheme. The fair e-cash
scheme differs from the one of Maitland and Boyd[5]: in their system, the group is formed from the
customers that spend the electronic coins, whereas in the new system the group is formed from the
coins themselves. The authors claimed that their system ensures traceability of double-spenders,
supports coin tracing and provides coins that are unforgeable and anonymous under standard as-
sumptions.

In the paper, we show that the scheme is not secure. It is universally forgeable. Our attack is
direct and simple without any extra assumptions. Besides, we explain our techniques to shun the
challenge in the scheme at full length. We think the method is a little interesting.
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2 Review of the E-cash system

In the simplified model, four types of parties are involved: a bank B, a trusted authority T,
shops S and customers C. The fair e-cash system consists of five basic protocols, three of which are
the same as in anonymous e-cash, namely a withdrawal protocol with which C withdraws electronic
coins from B, a payment protocol with which C pays S with the coins he has withdrawn, and a
deposit protocol with which S deposits the coins to B. The two additional protocols are conducted
between B and T, namely owner tracing and coin tracing. they work as follows:

—coin tracing protocol: the bank provides the trusted authority with the view of
a withdrawal protocol and asks for the information that allows to identify the corre-
sponding coin in the deposit phase.

—owner tracing protocol: the bank provides the trusted authority with the view of
a (suspect) payment and asks for the identity of the withdrawer of the coins used in
this (suspect) payment.

2.1 Setup

Let ǫ > 1, k, lp be security parameters, λ1, λ2, γ1, γ2 denote lengths satisfying

λ1 > ǫ(λ2 + k) + 2, λ2 > 4lp, γ1 > ǫ(γ2 + k) + 2, γ2 > λ1 + 2.

Define
Λ :=]2λ1 − 2λ2 , 2λ1 + 2λ2 [, Γ :=]2γ1 − 2γ2 , 2γ1 + 2γ2 [.

Finally, let H be a collision-resistant hash function H : {0, 1}∗ −→ {0, 1}k.

2.2 Bank’s setup protocol (performed once by B)

—Select random secret lp-bits primes p′, q′ such that p = 2p′ + 1, q = 2q′ + 1 are primes. Set
the modulus n = pq.

—Choose random generators a, a0, g, h, m ∈R QR(n), where QR(n) is the set of all quadratic
residues modulo n.

2.3 T’s setup protocol (performed once by T)

—Choose y, Y ∈R Z∗
p′q′ and publish z = gy mod n, Z = gY mod n.

Finally, the public key of the system is PK = (n, a, a0, g, h, m, z, Z), the bank’s private key is
SKB = (p′, q′) and T’s private key is SKT = (y, Y ).

2.4 Withdrawal protocol

For the sake of simplicity, we assume that there is only one coin denomination in the system.
So all coins will have the same monetary value (d$).

—The withdrawal protocol has some similarities with the Join protocol of Ateniese et al.[1]:
each coin obtained by a customer can be seen as a (new) membership certificate of the group
signature scheme of Atenises et al. At the end of the protocol, the customer C obtains a coin
(x, [A, e]) s.t. Ae = a0a

x (mod n). The value x is only known by C. The purpose of the pair
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(A1, A2), which is an ElGamal encryption of the message mx under T’s private key, and the proof
V is to ensure the possibility of ”coin tracing”. B stores ax and (A1, A2) in the user’s entry of the
withdrawal database for possible later anonymity revocation.

C B

x̃ ∈R]0, 2λ2 [, r̃ ∈R]0, n2[

C1 = gx̃hr̃ (mod n)

U = PK(α, β : C1 = gαhβ)
C1,U

−−− −→ Verifies C1 ∈ QR(n),

Verifies U
α̃,β̃

←− −−− α̃, β̃ ∈R Z∗

2λ2
×]0, 2λ2 [

x = 2λ1 + (α̃x̃ + β̃(mod 2λ2))

r ∈R {0, 1}2
lp

, C2 = ax(mod n)

A1 = mxZr, A2 = gr (mod n)

V = PK(α, β : C2 = aα∧

A1 = mαZβ ∧A2 = gβ)

W = PK(α, β, γ : α ∈]− 2λ2 , 2λ2 [

∧ C2/a2λ1

= aα ∧ Cα̃
1 gβ̃ = gα(g2λ2

)βhγ)
C2,A1,A2,V,W
−−− −→ Verifies C2 ∈ QR(n), V, W

Debits C’s account from d $

e ∈R Γ a prime

A = (a0C2)
1/e (mod n)

Verifies Ae = a0a
x (mod n)

A,e
←− −−−

2.5 Payment protocol

During the payment protocol, the payment transcript tr (where tr includes various information
such as the identification number of the shop, the date and time of the transaction, etc.) is signed
using the group (membership) certificate (A, e) and the secret key x (obtained during the withdrawal
protocol). More precisely: the customer first chooses at random ω, ω1, ω2, ω3 ∈R I2lp (where Ii =
±{0, 1}i) and then computes the following equations:

T1 = axzω (mod n), T2 = gω (mod n), T3 = Ahω1 (mod n),

T4 = mx (mod n), T5 = gω1hω2 (mod n), T6 = gehω3 (mod n).

Noting the fact that the equation of T3 can be rewritten a0 = T e
3 /(axheω1) (mod n) using Ae =

a0a
x (mod n). Then, putting the equation of T5 to e, we obtain that 1 = T e

5 /(geω1heω2) (mod n).
The payment protocol is then the following interactive signature of knowledge between C and S:
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C S

r1 ∈R Iǫ(γ2+k), r2 ∈R Iǫ(λ2+k)

r3, r7, r8 ∈R Iǫ(γ1+2lp+k+1)

r4, r5, r6, r9 ∈R Iǫ(2lp+k)

d1 = ar2zr4 , d2 = gr4 , d4 = mr2

d3 = T r1

3 /(ar2hr7), d5 = gr5hr6 ,

d6 = T r1

5 /(gr7hr8), d7 = gr1hr9 (mod n)
(d1,··· ,d7)
−−− −→ c = H(T1 ‖ · · · ‖ T6

‖ d1 ‖ · · · ‖ d7 ‖ tr)

s1 = r1 − c(e− 2γ1)
c

←− −−−−

s2 = r2 − c(x− 2λ1)

s3 = r3 − ceω, s4 = r4 − cω

s5 = r5 − cω1, s6 = r6 − cω2

s7 = r7 − ceω1, s8 = r8 − ceω2

s9 = r9 − cω3

(s1,··· ,s9)
−−− −→ d′1 = T c

1as2−c2λ1

zs4 (mod n)

d′2 = T c
2 gs4 (mod n)

d′3 = ac
0T

s1−c2γ1

3 /(as2−c2λ1

hs7) (mod n)

d′4 = T c
4ms2−c2λ1

(mod n)

d′5 = T c
5 gs5hs6 (mod n)

d′6 = T s1−c2γ1

5 /(gs7hs8) (mod n)

d′7 = T c
6 gs1−c2γ1

hs9 (mod n)

c
?
= H(T1 ‖ · · · ‖ T6 ‖ d′1 ‖ · · · ‖ d′7 ‖ tr)

Verifies s1 ∈R Iǫ(γ2+k)+1, s2 ∈R Iǫ(λ2+k)+1

Verifies s3, s7, s8 ∈R Iǫ(γ1+2lp+k+1)+1

Verifies s4, s5, s6, s9 ∈R Iǫ(2lp+k)+1

2.6 Deposit and tracing protocol

To be credited of the value of this coin, the shop spends the transcript of the execution of the
payment protocol to the bank, which verifies, exactly as the shop did, that the signature on tr is
correct (namely the signature of knowledge U). If this is successful, the bank checks for double-
spending by searching if T4 is already in its deposit database. If this value is not found, T4 is stored
in the deposit database and the payment is accepted as valid.

If T4 has been previously used, the bank sends both transcripts to the trusted authority T.
From these transcripts, T can retrieve ax = T1/T y

2 (mod n). With ax, the bank can identify
the withdrawal session in which this value has been used and consequently can also identify the
fraudulent customer.
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2.7 Coin tracing

T is given a withdrawal transcript. T decrypts the ElGamal ciphertext (A1, A2) to obtaion
the value mx. This value be put on a blacklist for recognizing it when it is spent.

2.8 Owner tracing

T is given the values T1 and T2 observed in a payment. T decrypts this ciphertext to obtain the
value ax. With this value, the bank can identify a withdrawal session and consequently a customer
C.

3 On the notation Ii = ±{0, 1}i

How to understand the notation Ii = ±{0, 1}i? One may hold that Ii =] − 2i, 2i[. If so, then
there is no length restriction for those numbers ri(0 ≤ i ≤ 9) which are randomly picked by the
customer. It’s impractical. We know that the length of random numbers acts as a key role in public
key cryptosystems. So, we hold that the notation Ii means

]2i−1, 2i[ or ]− 2i,−2i−1[

From the verifying phase, we know that s4 ∈ Iǫ(2lp+k)+1, i.e.,

s4 ∈ ]2ǫ(2lp+k), 2ǫ(2lp+k)+1[

or ]− 2ǫ(2lp+k)+1,−2ǫ(2lp+k)[

But, r4 ∈ Iǫ(2lp+k), i.e.,

r4 ∈ ]2ǫ(2lp+k)−1, 2ǫ(2lp+k)[

or ]− 2ǫ(2lp+k),−2ǫ(2lp+k)−1[

Since c ∈ {0, 1}k, i.e., c ∈]2k−1, 2k[, ω ∈ I2lp , i.e.,

ω ∈]22lp−1, 22lp [, or ]− 22lp ,−22lp−1[

Therefore,
ωc ∈]2k+2lp−2, 2k+2lp [, or ]− 2k+2lp ,−2k+2lp−2[

r4 − ωc ∈ ]2ǫ(k+2lp)−1 + 2k+2lp−2, 2ǫ(k+2lp) + 2k+2lp [

or ]− 2k+2lp − 22lp ,−2k+2lp−2 − 22lp−1[

or ]2ǫ(k+2lp)−1 − 2k+2lp , 2ǫ(k+2lp) − 2k+2lp−2[

or ]− 2ǫ(k+2lp) + 2k+2lp−2,−2ǫ(k+2lp)−1 + 2k+2lp [

Thus,

r4 − ωc ∈ ]2ǫ(k+2lp)−1 − 2k+2lp , 2ǫ(k+2lp) + 2k+2lp [

or ]− 2ǫ(k+2lp) + 2k+2lp−2,−2k+2lp−2 − 22lp−1[
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Obviously,

]2ǫ(k+2lp)−1 − 2k+2lp , 2ǫ(k+2lp) + 2k+2lp [ * ]2ǫ(2lp+k), 2ǫ(2lp+k)+1[

]− 2ǫ(k+2lp) + 2k+2lp−2,−2k+2lp−2 − 22lp−1[ * ]− 2ǫ(2lp+k)+1, 2ǫ(2lp+k)[

That means r4 − ωc might not belong to Iǫ(2lp+k)+1.
So do s1, s2, s3, s5, s6, s7, s8, s9. That is to say, a member might make a false signature even if

he executes the protocol well. Of course, the drawback is easy to overcome. It only needs to adjust
the intervals either for si (i = 1, · · · , 9) or for ω, ω1, ω2, ω3, r1, r2, r3, r4, r5, r6, r7, r8, r9.

4 Forgeability

In this section, we show that the scheme is insecure.
The attacker(A) picks random numbers1

ω, ω1, ω2, ω3, r1, r2, r3, r4, r5, r6, r7, r8, r9.

Computes

T1 = aω3zω (mod n), T2 = gω (mod n),

T3 = a0a
ω3hω1 (mod n), T4 = mω3 (mod n),

T5 = gω1hω2 (mod n), T6 = ghω1 (mod n).

and

d1 = ar2zr4 (mod n), d2 = gr4 (mod n),

d3 = ar1

0 aω3r1−r2/hr7 (mod n),

d4 = mr2 (mod n), d5 = gr5hr6 (mod n),

d6 = 1/(gr7hr8) (mod n), d7 = gr1hr9 (mod n).

Send (d1, d2, d3, d4, d5, d6, d7) to S.
S computes

c = H(T1 ‖ T2 ‖ T3 ‖ T4 ‖ T5 ‖ T6 ‖ d1 ‖ d2 ‖ d3 ‖ d4 ‖ d5 ‖ d6 ‖ d7 ‖ tr)

and send the challenge value c to A.
A calculates

s1 = r1 − c + c2γ1 (mod n), s2 = r2 − ω3c + c2λ1 (mod n),

s3 = r3 (mod n), s4 = r4 − cω (mod n),

s5 = r5 − ω1c (mod n), s6 = r6 − ω2c (mod n),

s7 = r7 + ω1(r1 − c) (mod n), s8 = r8 + ω2(r1 − c) (mod n),

s9 = r9 − ω1c (mod n).

1We don’t list out the integer sets for these random numbers because those integer intervals for si (i = 1, · · · , 9)
in original scheme are unappropriate. By the above analysis of s4, we know that the process to pick those random
numbers is tedious. In fact, the security of the scheme is based on the challenge (hash value), not on those intervals
restriction for ω, ω1, ω2, ω3, r1, r2, r3, r4, r5, r6, r7, r8, r9.
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Finally, the group signature is

(c, T1, T2, T3, T4, T5, T6, s1, s2, s3, s4, s5, s6, s7, s8, s9, tr)

Correctness:

d′1 = T c
1as2−c2λ1

zs4 = (aω3zω)car2−cω3zr4−cω = ar2zr4 = d1 (mod n),

d′2 = T c
2gs4 = gωcgr4−cω = gr4 = d2 (mod n),

d′3 = ac
0T

s1−c2γ1

3 /(as2−c2λ1

hs7) = ac
0(a0a

ω3hω1)r1−c/(ar2−ω3chr7+ω1(r1−c))

= ar1

0 aω3r1−r2/hr7 = d3 (mod n),

d′4 = T c
4ms2−c2λ1

= mω3cmr2−ω3c = mr2 = d4 (mod n),

d′5 = T c
5gs5hs6 = (gω1hω2)cgr5−ω1chr6−ω2c

= gr5hr6 = d5 (mod n),

d′6 = T s1−c2γ1

5 /(gs7hs8) = (gω1hω2)r1−c/(gr7+ω1(r1−c)hr8+ω2(r1−c))

= 1/(gr7hr8) = d6 (mod n),

d′7 = T c
6gs1−c2γ1

hs9 = (ghω1)cgr1−chr9−ω1c = gr1hr9 = d7 (mod n).

As for checking

s1 ∈R Iǫ(γ2+k)+1, s2 ∈R Iǫ(λ2+k)+1, s3, s7, s8 ∈R Iǫ(γ1+lp+k+1)+1, s4, s5, s6, s9 ∈R Iǫ(2lp+k)+1

we omit it (see the discussion in above section).

Remark 1 Actually, the number s3 is not used in verifying phase, it is redundant. This is another

designing error.

5 How to shun the challenge

First, by the form d′2 = T c
2gs4 , we know that the challenge value c has to be counteracted in the

expression. Therefore, we must assume that

T2 = gω

where ω is undetermined. Then we have d′2 = gωcgs4 = gωc+s4 . Set

r4 := s4 + ωc

it implies d′2 = gr4

Second, by the form of d′4 = T c
4ms2−c2λ1 , we know T4 must be of the form mω3 , where ω3

is undetermined. Hence, we have d′4 = mω3c+s2−c2λ1 . Set

r2 := ω3c + s2 − c2λ1

Then, we have d′4 = mr2
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By the form

d′1 = T c
1as2−c2λ1

zs4 = T c
1ar2−ω3czr4−ωc

we have to set
T1 = aω3zω

Hence, d′1 = ar2zr4

By the form d′5 = T c
5gs5hs6 , we can assume that

T5 = gω1hω2

where ω1, ω2 are undetermined. Hence, we have

d′5 = T c
5gs5hs6 = (gω1hω2)cgs5hs6 = gs5+ω1chs6+ω2c

Set
r5 := s5 + ω1c, r6 := s6 + ω2c

we have d′5 = gr5hr6

By the form d′6 = T s1−c2γ1

5 /(gs7hs8) = gω1(s1−c2γ1 )−s7hω2(s1−c2γ1 )−s8 , we set

r1 := s1 − c2γ1 + c, r7 := s7 − ω1(r1 − c), r8 := s8 − ω2(r1 − c)

Hence d′6 = 1/(gr7hr8)

By the form

d′3 = ac
0T

s1−c2γ1

3 /(as2−c2λ1

hs7) = ac
0T

r1−c
3 /(ar2−ω3chr7+ω1(r1−c))

= (a0T
−1
3 aω3hω1)cT r1

3 a−r2h−r7−ω1r1

we set
T3 = a0a

ω3hω1

Hence d′3 = ar1

0 aω3r1−r2/hr7

Finally, by the form d′7 = T c
6gs1−c2γ1hs9 = T c

6gr1−chs9 , we set

T6 = ghω1

Hence d′7 = T c
6gr1−chs9 = (ghω1)cgr1−chs9 = gr1hs9+ω1c Set

r9 := s9 + ω1c

we have d′7 = gr1hr9

Therefore, to shun the challenge in the scheme, it only needs to choose random numbers
ω, ω1, ω2, ω3, r1, r2, r3, r4, r5, r6, r7, r8, r9 such that si(1 ≤ i ≤ 9) satisfy the corresponding restric-
tions in original scheme.
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6 Conclusion

In this paper, we show that the fair e-cash system proposed in [1] is insecure. Besides, we point
out there are two drawbacks. One is that those intervals for si(i = 1, · · · , 9) are unappropriate.
The other is that the number s3 in signature data is redundant. In fact, how to design secure and
efficient fair e-cash systems is still a hot problem.
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