
A Fast Parallel Scalar Multiplication against

Side–Channel Analysis for Elliptic Curve

Cryptosystem over Prime Fields∗

Dabi Zou1,2 and Dongdai Lin1

1 Department of Computer Science and Technology,

University of Science and Technology of China
2 State Key Laboratory of Information Security,

Software Institute of China Academic of Sciences

{dbzou, ddlin}@is.iscas.ac.cn

Abstract

The scalar multiplication is the dominant operation in Elliptic Curve
Cryptosystems (ECC). In this paper, we propose a modified width–w
window method to compute the scalar multiplication efficiently and se-
curely against side–channel analysis, based on the side–channel atom-
icity introduced by Benoit Chevallier–Mames. Utilizing this window
method, we propose a new parallel scalar multiplication algorithm,
which is secure against side–channel analysis and more efficient than
existing ones.

Keywords: Elliptic curve cryptosystem; side-channel analysis; win-
dow method; parallel scalar multiplication

1 Introduction

ECC introduced by Victor Miller [2] and Neal Koblitz [3] independently,
have recently gained a lot of attention in industry and academia. The main
reason for this is the fact that there is no sub–exponential algorithm known
to solve the discrete logarithm problem on a properly chosen elliptic curve.
This means that significantly smaller parameters can be used in ECC than
in other competitive systems such as RSA, while with equivalent levels of

∗Supported by the National Natural Science Foundation of China under Grant
No.90204016; the National High-Tech Research and Development Plan of China under
Grant No.2003AA144030; the National Grand Fundamental Research 973 Program of
China under Grant No.2004CB318004.

1

security. A typical example of the size in bits of the keys used in differ-
ent public–key systems, with a comparable level of security (against known
attacks), is that a 160–bit ECC key is equivalent to RSA with a modulus
of 1024 bits. This makes ECC ideal for constrained environments such as
PDAs and smart cards.

The fundamental operation in ECC is scalar multiplication, namely,
given an integer d and an elliptic curve point P , the computation of dP .
It is computed by a series of doubling(ECDBL) and addition(ECADD) op-
erations of the point P , depending upon the bit sequence representing d. A
lot of methods have been proposed to perform the scalar multiplication in
a secure and efficient way. For an excellent review, see [16]. In this paper,
we propose a secure and more efficient method (the SPA–resistant width–w
window method.) for the computing of scalar multiplication, which is based
on the side–channel atomicity [15] and the width–w window method. After
that, we propose a parallel scalar multiplication algorithm integrated with
the SPA–resistant width–w window method, which is more efficient than
existing ones and is SPA–resistant.

The rest of this paper is organized as follows. In the next section, we
briefly introduce the necessary backgrounds, which include elliptic curve
preliminaries, non–adjacent form (NAF) and width–w window method us-
ing NAF, side–channel analysis, and side–channel atomicity. The proposed
SPA–resistant width–w window method is described in section 3 and the
parallel scalar multiplication algorithm is introduced in section 4. Finally
in section 5, we give a brief conclusion.

2 Background

2.1 Elliptic curve preliminaries

There exists an extensive literature on elliptic curve cryptography. Here we
just mention the results we needed, without proof. For detailed descriptions,
we refer the reader to [16].

In the current work we will concentrate on curves over large prime fields
only.

Consider the elliptic curve E defined over a prime field Fp (with p > 3)
given by the following equation:

E/Fp
: y2 = x3 + ax + b (1)

To avoid field inversion, which is time consuming, Jacobian coordinates
are generally used for representing point on E/Fp

. With Jacobian coordi-
nates, the doubling of P is 2(X1, Y1, Z1) = (X3, Y3, Z3),where

X3 = M2 − 2S, Y3 = M(s−X3)− T, Z3 = 2Y1Z1 (2)

2

With M = 3X2
1 + aZ4

1 , S = 4X1Y
2
1 and T = 8Y 4

1 .
The sum of two (distinct) points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2)

is (X3, Y3, Z3), where

X3 = W 3 − 2U1W
2 + R2,

Y 3 = −S1W
3 + R(U1W

2 −X3), (3)
Z3 = Z1Z2W

With U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 ,W = U1 − U2 and

R = S1 − S2.
Let [a], [m] and [s] denote the time required for one addition, multipli-

cation and squaring in the underlying field respectively. Then ADD has
complexity of 7[a] + 12[m] + 4[s] and DBL has 11[a] + 4[m] + 6[s]([17]).

The scalar multiplication is generally computed using a left-to-right bi-
nary algorithm(see Algorithm 1).

Algorithm 1: Binary algorithm for scalar multiplication
Input: integer d = dn−12n−1 + · · ·+ d12 + d0, dn−1 �= 0,

and a base point P
Output: dP
1: P0 := p ;
2: for i := 0 to n− 2
3: Pi+1 = ECDBL(Pi);
4: if dn−2−i = 1
5: Pi+1 = ECADD(Pi+1, P);
6: Return(Pn−1);

2.2 Non-adjacent form(NAF)

Every integer d has a unique representation of the form d =
∑l−1

j=0 dj2j ,
where each kj ∈ {−1, 0, 1},such that no two consecutive digits are nonzero.
This representation is the so called non-adjacent form (NAF), which was
first described by Reitwiesner [1] (see also [7] and [11]).

The computing of dP can be improved if d is represented in NAF. This
is obtained from the following facts:

• The expected weight of a NAF of length l is l/3, see[7] for details.

• The computation of the negation of a point P (x, y) can be obtained
easily: −P = (x,−y), so the cost of addition or subtraction is practi-
cally the same.

There are several algorithms for computing the NAF of d from its binary
representation. Algorithm 2 is from Solinas [9].

3

Algorithm 2: Computation of NAF (d)
Input: integer d
Output: NAF (d) = (dl−1 · · · d1d0)
1: c:=d; l:=0;
2: while c > 0 do
3: if c odd then {dl := 2− (c mod 4); c := c− dl;}
4: else dl := 0;
5: c:=c/2; l:=l+1;
6: return (NAF(d) = (dl−1 · · · d1d0));

2.3 The width-w window method using NAF

There are several generalizations of the binary method such as the m–ary
method, sliding method, etc., work by processing simultaneously a block of
digits. Here we describe the so called width–w window method(see [9]). In
order to utilize the non–adjacent form in the width–w window method, it is
necessary to compute the width–w non–adjacent form d =

∑l−1
j=0 dj2j where:

• each nonzero dj is odd and less than 2w−1 in absolute value, w is an
integer greater than 1

• among any w consecutive coefficients, at most one is nonzero.

The algorithm for computing the width–w non–adjacent form of d is given
below (Algorithm 3, see [9]). So the scalar multiplication can be carried
out by Algorithm 4.

Algorithm 3: Computation of NAFw(d)
Input: integer d
Output: NAFw(d) = (dl−1 · · · d1d0)
1: c := d; l := 0;
2: while c > 0do
3: if c odd then
4: dl := 2− c mod 2w;
5: if dl > 2w−1 then dl := dl − 2w

6: c := c− dl;
7: else dl := 0;
8: c := c/2; l := l + 1;
9: return (NAF w(d) := (dl−1 · · · d1d0))

Algorithm 4: The width-w window method
Input: integers d and window width-w, and a point P = (x, y) ∈ E(Fq)
Output: the point Q = dP ∈ E(Fq)
//Precomputation: compute uP for u odd and 2 < u < 2w−1

1: P0 := P ; T := 2P ;

4

2: for i from 1 to 2w−2 − 1 do { Pi := Pi−1 + T ; }
//Main computation
3: compute NAF w(d) := (dl−1 · · · d1d0); Q:=(0,0);
4: for j from l − 1 downto 0 do
5: Q:=2Q;
6: if dj �= 0 then i = (|dj | − 1)/2;
7: if dj > 0then Q := Q + Pi;
8: else Q := Q− Pi;
9: return Q;

The number of nonzero digits in the NAFw(d) is on average l/(w + 1)
[10]. Therefore, Algorithm 4 requires 2w−2 − 1 additions and one doubling
for the precomputation step, and l/(w +1) additions and l−1 doublings for
the main computation. So the total time complexity of Algorithm 4 is

(2w−2 − 1 + l/(w + 1))[ECADD] + l[ECDBL]

2.4 Side-Channel Analysis and Side Channel Atomicity

Side-Channel Analysis
Side channel analysis(SCA) was introduced for the first time by Kocher
in 1996[5], and was further studied in 1999[6]. This attack allow ad-
versaries to obtain partial information on a cryptographic device, or
even the secret key in it, by observing side channel information such as
computing time and power consumption traces if the implementation is
poor. This is a serious and practical threat especially to mobile devices
like smart cards. Thus, it is necessary to implement the algorithms not
only efficient but also SCA-resistant.

In particular, simple power analysis(SPA) and differential power
analysis(DPA) are two kinds of such attack. SPA utilizes information
from a single computation, while DPA uses statistical tools to evaluate
information from multiple computations. There are several ways to
resist SPA. Most of these methods are on the expense of efficiency, like
Montgomery ladder, while [15] propose the least amount of computa-
tional overhead very recently(see next paragraph). In order to thwart
the DPA, one has to randomize the inputs of the crypto–algorithm so
that it is no longer readily for the attacker to prepare two sets of points
with a selection function. And the randomization includes base–point
P ’s and scalar d’s randomizing. For more details, see [14].

Side Channel Atomicity
The main idea of Side–channel atomicity [15] is to divide each EC–
operation, namely ECADD and ECDBL, into atomic blocks which are
indistinguishable from the side–channel. So, in this model the compu-

5

tation of scalar multiplication is a sequence of indistinguishable atomic
blocks. By this way, the attacker cannot use simple power analysis to
obtain the side channel information, and thus this implementation is
SPA–resistant. The following algorithm (Algorithm 5) is such an im-
plementation [15].

Algorithm 5: Side-channel atomic double–and–add algorithm
for elliptic curves over Fp

Input: P := (X, Y, Z),d,matrix(u∗
k,l)

Output: Pd = dP
1: R1 := X; R2 := Y ; R3 := Z; R7 := X; R8 := Y ; R9 := Z;
2: R0 := 0; i := n− 2; s := 1;
3: while i ≥ 0 do
4: k := s == 0?k + 1 : 0; s := di == 0?(k div 9) : (k div 25);
5: Ru∗[k,0] := Ru∗[k,1] · Ru∗[k,2]; Ru∗[k,3] := Ru∗[k,4] + Ru∗[k,5];
6: Ru∗[k,6] := −Ru∗[k,6;]; Ru∗[k,7] := Ru∗[k,8] + Ru∗[k,9];
7: i := i− s;
8: return (R1, R2, R3);

It is worthy to note that, in terms of field multiplications, Algorithm
5 is as efficient as the unprotected binary double–and–add implementa-
tion, namely Algorithm 1. So its complexity is the same as Algorithm
1:

(n− 2)[ECDBL] + H(d)[ECADD] (4)

H(d) stands for the Hamming weight of d.
The matrix u∗

k,l is as follows. For the details why choosing such an
array, we refer the interesting readers to [15].

The values of (u∗
k,l) 0≤k≤25

0≤l≤9

4 1 1 5 4 4 3 4 4 5
5 3 3 1 1 1 3 1 1 3
5 5 5 1 1 3 3 1 1 3
5 0 5 4 4 5 3 5 2 2
3 3 5 1 1 3 3 1 1 3
2 2 2 2 2 2 4 1 1 3
5 1 2 1 1 5 5 1 1 5
1 4 4 1 1 5 4 1 1 5
2 2 2 2 2 2 3 5 1 5
4 4 5 2 2 4 2 4 4 5
4 9 9 5 1 5 5 5 1 5
1 1 4 5 1 5 5 5 1 5
4 4 9 5 1 5 5 5 1 5

6

2 2 4 5 1 5 5 5 1 5
4 3 3 5 1 5 5 5 1 5
5 4 7 2 2 5 5 5 1 5
4 3 4 2 2 5 6 6 5 6
4 4 8 6 5 6 4 4 2 4
3 3 9 6 5 6 6 6 5 6
3 3 5 6 5 6 6 6 5 6
6 5 5 6 3 6 3 6 3 6
1 1 6 1 1 4 4 1 1 4
5 5 6 6 1 2 2 6 2 6
1 4 4 1 1 5 6 1 1 6
2 2 5 1 1 6 3 6 1 6
4 4 6 2 2 4 6 6 1 6

3 The SPA-resistant width-w window method

In the former section, we have just studied a window method using
NAF for the computation of scalar multiplication, and then the side–
channel atomicity. Based on these algorithms, we can now derive an
SPA–resistant width–w window method as shown in Algorithm 6. The
matrix u∗

k,l is the same as in Algorithm 5.

Algorithm 6: Side-channel atomic width-w window method
for elliptic curves over Fp

Input: P = (X, Y, Z), d, matrix(u∗
k,l), width w

Output: Pd = dP
//Pre-computation: Compute uP for u odd and 2 < u < 2w−1

1: P0 := P ; T := 2P ;
2: for i from 1 to 2w−2 − 1 do

Pi := Pi−1 + T ;
//Main computation
3: compute NAF w(d) := (dl−1 · · · d1d0); //dl−1 �= 0
4: t := (|dl−1| − 1)/2;
5: if dl−1 > 0 do

{R1 := PtX; R2 := PtY ; R3 := PtZ;}
6: else do

{R1 := (−Pt)X; R2 := (−Pt)Y ; R3 := (−Pt)Z;}
7: R0 := 0; i := l − 2; s := 1;
8: while i ≤ 0 do
9: k := s == 0?k + 1 : 0;
10: s := di == 0?(k div 9) : (k div 25);
11: t := (|di| − 1)/2;
12: if di > 0 do //Q← Q + Pt

7

{R7 := PtX; R8 := PtY ; R9 := PtZ}
13: if di < 0 do //Q← Q− Pt

{R7 := (−Pt)X; R8 := (−Pt)Y ; R9 := (−Pt)Z}
14: else //Q← 2Q

{R7 := X; R8 := Y ; R9 := Z}
15: Ru∗[k,0] := Ru∗[k,1] · Ru∗[k,2]; Ru∗[k,3] := Ru∗[k,4] + Ru∗[k,5];
16: Ru∗[k,6] := −Ru∗[k,6;]; Ru∗[k,7] := Ru∗[k,8] + Ru∗[k,9];
17: i := i− s;
18: return (R1, R2, R3);

Since the underlying side–channel atomicity does not bring in re-
dundant EC–operations, so, in terms of field multiplications, this SPA-
resistant algorithm is as efficient as the unprotected width–w window
method(i.e. Algorithm 4).

That is,it involves(l is the length of d in NAF)

• 2w−2−1 additions plus one doubling in the pre-computation step,
and

• l/(w + 1) additions plus l− 1 doublings in the main computation
step.

So the overall complexity of Algorithm 6 is as follows:

(2w−2 − 1 + l/(w + 1))[ECADD] + l[ECDBL] (5)

From (4), we know that the time complexity of Algorithm 5 is

H(d)[ECADD] + (n− 2)[ECDBL]

where n is the length of d and H(d) is the Hamming weight of d.
Now let’t take a closer look at them.

• With proper selected width w(i.e. 3 ≤ w ≤ 8),we have l < n/2,
and then 2w−2 − 1 + l/(w + 1) < n− 2.

• H(d) is greater than l/(w + 1) in normal sense due to the nature
of NAF.

So now we can draw our conclusion that Algorithm 6 is a more efficient
algorithm than Algorithm 5, while remaining the same level of security.

4 Parallel scalar multiplication

In [12], Garcia et al. propose a parallel algorithm (we name it here
Garcia’s parallel algorithm) for the computing of scalar multiplications

8

(dP), which is especially efficient for the Koblitz curves[4]. Here in our
paper, we propose a new parallel scalar multiplication algorithm, which
is more compatible with the SPA–resistant width–w window method
mentioned above.

Firstly, we divide the binary representation of d into p blocks of
l = �n/p	 bits each one(this bit scattering pattern is different from the
one in [12]). It means we split d into s0, s1, · · · , sp−1 as follows:

s0 = (dl−1 · · · d1d0)2
0

s1 = (d2l−1 · · · dl+1dl)2
l

...

sp−1 = (d(p−1)l+l−1 · · · d(p−1)l+1d(p−1)l)2
(p−1)l

(6)

That is, for i = 0, 1, · · · , p− 1, we have

si = (dil+l−1 · · · dil+1dil)2
il = Di2

il

Di = (dil+l−1 · · · dil+1dil)
(7)

So we get:

d = s0 + s1 + · · ·+ sp−1

dP =
p−1∑

i=0

siP =
p−1∑

i=0

Di2
ilP

(8)

Now, we can compute siP in parallel, and then collect and add up all
the immediate results to obtain the final result of dP .

Here, in order to obtain fast computation of 2ilP , we adopt the pro-
posed algorithm, namely Itoh’s m–repeated Elliptic Doubling Routine,
in [8], which is faster than the one in IEEE P1363 draft. As for the com-
puting of 2lP , the complexity of the former method is (8l+2)([m]+[a]),
while that of the latter is 10l[m] + 13l[a]. For more details see [8]. The
proposed parallel scalar multiplication is as Algorithm 7.

Algorithm 7: Parallel scalar multiplication for elliptic curves
over Fp

Input: integer d, n(length of d), a base point P
and the processor number p

Output: dP
//step 1: the computation of 2ilP
1: P0 := P ;
2: for j from 1 to p− 1 do

9

{Pj:=Itoh(l, Pj−1)}//Itoh’s m–repeated elliptic doubling routine
//step 2: splitting of d into Di

3: divide d into the set {D0, D1, · · · , Dp−1}
//step 3: parallel computing
4: for each i(0 ≤ i ≤ p− 1) par–do //using p processor elements(PE)

Qi:=S–window(Di, Pi); //S–window denotes Algorithm 6
//step 4: results collecting
5: for t := 1 to logP do
6: for j := 0 to p− 1 step 2t par–do //using p/2 PEs at most

Qj := Qj + Qj+2t−1; //the immediate results
7: return Q0;

Now let us take a look at the complexity of Algorithm 7 briefly as
follows.

• In step 1, we have to compute Itoh() p − 1 times, so the time
complexity is (p− 1)(8l + 2)([m] + [a])

• In step 2, the splitting can be obtained in a negligible time.

• In step 3, the complexity is (2w−2 − 1 + l/(w + 1))[ECADD] +
l[ECDBL], including the pre-computation time of algorithm 6.

• In step 4, obviously it can be completed in �logP 	 steps, so its
complexity is close to �logP 	[ECADD].

Thus, the total time complexity of algorithm 7 is as follows:

T = (p− 1)(8l + 2)([m] + [a])

+ (2w−2 − 1 + l/(w + 1) + �logP)[ECADD]

+ l[ECDBL] (9)

Since [ECDBL] = 11[a] + 4[m] + 6[s] ≈ 11[a] + 10[m], we have

(8l + 2)([m] + [a]) < (4l/5)[ECDBL]

Further, we know l = �n/p	,then the time complexity of Algorithm
7(i.e. T) satisfy the following inequation:

T < (2w−2 − 1 + �n/p	/(w + 1) + �logP)[ECADD]

+ ((4p/5 + 1/5)�n/p)[ECDBL] (10)

From [12], we know that, in the best case, the time complexity of
Garcia’s parallel algorithm is:

TG = (�H(d)/p	+ �logP)[ECADD] + (n− 1)[ECDBL] (11)

10

In order to do a comparison between the proposed parallel algo-
rithm and Garcia’s parallel algorithm, we compare with each other the
coefficients of [ECADD] and [ECDBL] of (10) and (11) respectively.

Firstly, we consider the case of [ECADD]. With proper selected w
(i.e. 3 ≤ w ≤ 8), the value of 2w−2 is pretty small in contrast to n,
and thus is negligible. As a result of the form NAF, we know H(d)
is n/(w + 1) on average. So in this case, the time consumptions are
approximately the same.

Secondly, it is the case of [ECDBL]. Due to the fact that the proces-
sor number p is greater than 1, it is obviously that (4p/5+1/5)�n/p	 <
n− 1 holds.

So we safely come to this point that T < TG holds in a reasonable
way. That is, our proposed parallel algorithm is a more efficient one.

Further more, if the base point P and the length of scalar d are
available in advance, step 1 of Algorithm 7 can be pre–computed. By
this, the algorithm can be accelerated, and achieve an even better per-
formance.

Further, even integrated with Algorithm 6, Garcia’s parallel algo-
rithm cannot achieve a better performance than Algorithm 7. This is
due to the fact that, the bit scattering pattern it adopted could not fit
well. That is, the number of the computing of 2iP (step 1, Algorithm
7) is much bigger than that in our proposed algorithm, because here i
is from 1 to �n/p	 (greater than p in Algorithm 7).

It is worthy to note that, as the underlying blocks of Algorithm 7 is
secure against SPA, we have proposed an efficient and SPA–resistant
parallel scalar multiplication algorithm for elliptic curves over the prime
field Fp.

5 Conclusion

In this paper, we firstly give a list of backgrounds, which include side–
channel analysis etc., and then we utilize the window method and
side–channel atomicity to compose a SPA–resistant width–w window
method, which is both efficient and secure against simple power attack.
After that, we propose a new parallel scalar multiplication algorithm,
which is integrated with the SPA–resistant width–w window method
and Itoh’s m–repeated doubling routine. The proposed parallel algo-
rithm is efficient and SPA–resistant.

To make our parallel algorithm be DPA–resistant, one only need
to add some randomization into it. There are several ways to achieve
this, see [14] for details.

11

References

[1] G. Reitwiesner, Binary arithmetic, Advances in Computers, 1,
pp.231–308, 1960

[2] V. Miller, Use of elliptic curves in cryptography, Advances in Cryp-
tography: proceedings of Crypto’85, LNCS 218, pp.417-426, New
York: Springer-Verlag, 1986

[3] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Compu-
tation, 48, pp.203-209, 1987

[4] N. Koblitz, CM–curves with good cryptographic properties , Ad-
vances in Cryptology-CRYPTO’91, LNCS 576, pp.279-287, 1992

[5] P.C. Kocher, Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems, In Advances in Cryp-
tology - CRYPTO’96, vol. 1109 of Lecture Notes in Computer
Science, pages 104-113. Springer-Verlag, 1996

[6] P.C. Kocher,J. Jaffe, and B. Jun, Differential power analysis, In
Advances in Cryptology - CRYPTO’99, vol. 1666 of Lecture Notes
in Computer Science, pages 388-397. Springer-Verlag, 1999

[7] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptogra-
phy, Cambridge University Press, 1999

[8] K. Itoh, M. Takenaka, N. Torii, S. Temma and Y. Kurihara,
Fast Implementation of Public-Key Cryptography on a DSP
TMS320C6201, Proceedings of the First International Workshop
on Cryptographic Hardware and Embedded Systems, pp.61-72,
Springer Verlag, 1999

[9] J. Solinas, Improved Algorithms for Arithmetic on Anomalous Bi-
nary Curves, CACR(Univ. of Waterloo) Technical Report, CORR
99-46, http://www.cacr.math.uwaterloo.ca/techreports/1999/
corr99-46.pdf, 1999

[10] J. Solinas, Efficient Arithmetic on Koblitz Curves, in De-
signs,Codes and Cryptography, volume 19, issue 2-3, pp. 195-249,
2000

[11] J. Lopez and R. Dahab, An Overview of Elliptic Curve Cryptog-
raphy, http://citeseer.ist.psu.edu/lop00overview.html, 2000

[12] J. Garcia, and R. Carcia, Parallel algorithm for multiplication on
elliptic curves, Proceedings of the ENC’01, September 2001

12

[13] T. Izu, B. Moller, and T. Takagi, Improved Elliptic Curve Multipli-
cation Methods Resistant against Side Channel Attacks, Progree
in Cryptology-INDOCRYPT 2002, Springer-Verlag LNCS 2551,
pp. 296-313, 2002

[14] M. Joye, Elliptic Curve Cryptography and Side Channel
Attacks, http://ca.itsc.ruhr-uni-bochum.de/hgi/smaca/bochum-
joye.pdf, 2003

[15] B. Chevallier-Mames, M. Ciet and M. Joye, Low-Cost Solutions for
Preventing Simple Side-Channel Analysis: Side-Channel Atomic-
ity, IEEE Trans. on Computers, 53(6):760-768, 2004

[16] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer-Verlag, 2004

[17] P. Mishra, Pipelined Computation of Scalar Multiplication in El-
liptic Curve Cryptosystems, CHES 2004, LNCS 3156, pp. 328-342,
2004, Springer-Verlag

[18] P. Mishra, Scalar Multiplication in Elliptic Curve Cryptosystems:
Pipelining with Pre-computation, 2004

13

