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Abstract. In recent years cryptographic protocols based on the Weil
and Tate pairings on elliptic curves have attracted much attention. A no-
table success in this area was the elegant solution by Boneh and Franklin
[7] of the problem of efficient identity-based encryption. At the same
time, the security standards for public key cryptosystems are expected to
increase, so that in the future they will be capable of providing security
equivalent to 128-, 192-, or 256-bit AES keys. In this paper we examine
the implications of heightened security needs for pairing-based cryp-
tosystems. We first describe three different reasons why high-security
users might have concerns about the long-term viability of these sys-
tems. However, in our view none of the risks inherent in pairing-based
systems are sufficiently serious to warrant pulling them from the shelves.

We next discuss two families of elliptic curves E for use in pairing-
based cryptosystems. The first has the property that the pairing takes
values in the prime field Fp over which the curve is defined; the second
family consists of supersingular curves with embedding degree k = 2.
Finally, we examine the efficiency of the Weil pairing as opposed to the
Tate pairing and compare a range of choices of embedding degree k,
including k = 1 and k = 24.

1. Introduction

Let E be the elliptic curve

(1) y2 = x3 + ax+ b

defined over a finite field Fq, and let P be a basepoint having prime order n
dividing #E(Fq), where we assume that n does not divide q. Let k be the
multiplicative order of q modulo n; in other words, it is the smallest positive
k such that n | qk − 1. The number k, which is called the embedding degree,
has been of interest to cryptographers ever since it was shown in [32] how
to use the Weil pairing to transfer the discrete log problem in the group
〈P 〉 ⊂ E(Fq) to the discrete log problem in the finite field Fqk .

In recent years, the Tate pairing (introduced to cryptographers by Frey-
Rück [15]) and the Weil pairing have been used to construct a number of
different cryptosystems. These systems were the first elliptic curve cryp-
tosystems not constructed by analogy with earlier versions that used the
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multiplicative group of a finite field. Rather, pairing-based cryptosystems
use properties of elliptic curves in an essential way, and so they cannot be
constructed in simpler settings (such as finite fields or the integers modulo
N). In the next section we shall describe a particularly elegant example of
such a cryptosystem, namely, the solution of Boneh and Franklin [7] of the
problem of efficient identity-based encryption.

Meanwhile, it is becoming increasingly apparent that we are approaching
a transitional moment in the deployment of cryptography. Calls are go-
ing out for heightened security standards for public key cryptosystems, so
that in the future they will be capable of providing security equivalent to
128-, 192-, or 256-bit AES keys. In this paper we examine the implications
for pairing-based elliptic curve cryptography of a move to higher levels of
security.

Our first purpose is to describe three general questions about efficiency
and security that arise. These concerns are not new to people working in
the area, but they are rarely mentioned explicitly in print. By calling the
reader’s attention to these issues we have no intention of sounding alarmist
or of discouraging deployment of these systems. On the contrary, in our
view none of the considerations discussed below are sufficiently worrisome
to justify abandoning pairing-based cryptography.

Our second purpose is to describe two very simple families of elliptic
curves defined over a prime field Fp with embedding degrees k = 1 and
k = 2, respectively, that could be used in pairing-based cryptosystems. The
main advantage of these families is the flexibility one has in choosing the
two most important parameters of the system — the field size p and the
prime order n of the basepoint P ∈ E(Fp). One can easily get n and p both
to have optimal bitlengths and at the same time to be Solinas primes [43]
(that is, the sum or difference of a small number of powers of 2). In earlier
papers on parameter selection for pairing-based systems we have not found
any discussion of the advantages and disadvantages of low-Hamming-weight
p.

On the negative side, when k = 1 one does not have any of the speedups
that come from working in a subfield at various places in the pairing com-
putations. When k = 2 our curves are supersingular, and so one must antic-
ipate some resistance to their use because of the traditional stigma attached
to the word “supersingular” by implementers of elliptic curve cryptography.
Moreover, in both cases the use of Solinas primes p could possibly enable
an attacker to use the special rather than general number field sieve. If this
can be done, then any efficiency advantage would be offset by the increased
field sizes that would be necessary.

Our third purpose is to compare different choices of k, ranging from 1
to 24, for different security levels. Although much depends on the imple-
mentation details, it appears that for nonsupersingular curves the choice
k = 2 that is recommended by some authors [42] is probably less efficient
than higher values of k. We also find that for very high security levels, such
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as 256 bits, the Weil pairing computation seems to be faster than the Tate
pairing.

Earlier work in this area has focused on providing 80 bits of security, which
is sufficient for most current applications. In contrast, we are particularly
interested in how the choice of parameters will be affected by the move to the
higher AES standard of 128, 192, or 256 bits of security that is anticipated
in the coming years.

2. Identity-Based Encryption

One of the most important applications of the Weil (or Tate) pairing is
to identity-based encryption [7]. Let’s recall how the basic version of the
Boneh–Franklin scheme works. Suppose that E over Fq is an elliptic curve on
which (a) the Diffie–Hellman problem is intractable and (b) the Weil pairing
ê(P,Q) ∈ Fqk can be efficiently computed. (For an excellent treatment of
the Weil and Tate pairings, see [16].) Here P and Q are Fqk -points of prime
order n, where n | #E(Fq), and the embedding degree k (for which E(Fqk)

contains all n2 points of order n) must be small.
Bob wants to send Alice a message m, which we suppose is an element of

Fqk , and he wants to do this using nothing other than her identity, which we
suppose is hashed and then embedded in some way as a point IA of order
n in E(Fq). In addition to the field Fq and the curve E, the system-wide
parameters include a basepoint P of order n in E(Fqk) and another point
K ∈ 〈P 〉 that is the public key of the Trusted Authority. The TA’s secret
key is the integer s that it used to generate the key K = sP .

To send the message m, Bob first chooses a random r and computes the
point rP and the pairing ê(K, IA)

r = ê(rK, IA). He sends Alice both the
point rP and the field element u = m+ ê(rK, IA). In order to decrypt the
message, Alice must get her decryption key DA from the Trusted Authority;
this is the point DA = sIA ∈ E(Fq) that the TA computes using its secret
key s. Finally, Alice can now decrypt by subtracting ê(rP,DA) from u (note
that, by bilinearity, we have ê(rP,DA) = ê(rK, IA)).

3. Clouds on the Horizon?

The first reservation that a high-security user might have about pairing-
based systems relates to efficiency. A necessary condition for security of any
pairing-based protocol is that discrete logarithms cannot be feasibly found
in the finite field Fqk . In practice, q is either a prime or a power of 2 or 3, in
which case the number field sieve [17, 40] or function field sieve [13, 1, 41]
will find a discrete log in time of order L(1/3); this means that the bitlength
of qk must be comparable to that of an RSA modulus offering the same
security. In both cases the bitlength should be, for example, at least 15360
to provide security equivalent to a 256-bit AES key [26, 37].

As in the case of RSA, the loss of efficiency compared to non-pairing-based
elliptic curve cryptography (ECC) increases steeply as the security level
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grows. Unlike RSA, pairing-based systems can achieve certain cryptographic
objectives — notably, identity-based encryption — that no one has been
able to achieve using ordinary ECC. So one has to ask how badly one wants
the features that only pairing-based methods can provide. As the security
requirements increase, the price one has to pay for the extra functionality
will increase sharply.

It should be noted that in certain applications bandwidth can be a reason
for using pairing-based systems (see, for example, [5, 6, 8]). We shall not
consider bandwidth in this paper, except briefly in §4.1 for Boneh–Lynn–
Shacham signatures.

The other two concerns about pairing-based systems are more theoretical,
and both relate to security. In the first place, in most pairing-based protocols
security depends upon the assumed intractability of the following problem,
which Boneh and Franklin [7] called the Bilinear Diffie–Hellman Problem
(BDHP): Given P, rP, sP,Q ∈ E(Fqk) such that ζ = ê(P,Q) 6= 1, compute
ζrs.

The BDHP is a new problem that has not been widely studied. It is
closely related to the Diffie–Hellman Problem (DHP) in the elliptic curve
group E(Fqk), which is the problem, given P , rP , and sP , of computing
rsP . Since ζrs = ê(rsP,Q), it follows that if one has an algorithm for the
DHP on the curve, one can immediately solve the BDHP as well. But the
converse is not known, and it is possible that the BDHP is an easier problem
than the DHP on the curve.

In the early discussions of discrete-log-based cryptosystems it was a source
of concern that security depended on the presumed intractability of the
Diffie–Hellman Problem rather than the more natural and more extensively
studied Discrete Log Problem (DLP). That is why cryptographers were very
pleased when a series of papers by den Boer, Maurer, Wolf, Boneh, Lipton
and others (see [30] for a survey) developed strong evidence for the equiv-
alence of the Diffie–Hellman and Discrete Log Problems on elliptic curves.
But unfortunately, no such evidence has been found for hardness of the Bi-
linear Diffie–Hellman Problem. Of course, no one knows of any way to solve
the BDHP except by finding discrete logs, so perhaps it is reasonable to pro-
ceed as if the BDHP is equivalent to the DHP and the DLP on elliptic curves
— despite the absence of theoretical results supporting such a supposition.

The BDHP is also closely related to the Diffie–Hellman Problem in the
finite field Fqk , and any algorithm for the DHP in the field will immediately
enable us to solve the BDHP too. But it is possible that the BDHP is
strictly easier than the DHP in the field. In the DHP we are given only the
values ζ, ζr, and ζs, whereas in the BDHP the input also includes the inverse
images of these n-th roots of unity under the Menezes-Okamoto-Vanstone
[32] embedding from 〈P 〉 ⊂ E(Fqk) to the finite field given by X 7→ ê(X,Q)
for X ∈ 〈P 〉.

This brings us to the third major concern with pairing-based cryptosys-
tems, namely, Verheul’s theorem [45].
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Even if one is willing to suppose that the Bilinear Diffie–Hellman Prob-
lem on a low-embedding-degree curve is equivalent to the DHP and the
DLP on the curve, in practice one really considers the DHP and DLP in the
multiplicative group of a finite field, because it is there that the problem
has been extensively studied and index-calculus algorithms with carefully
analyzed running times have been developed. Using the MOV embedding,
the DHP and DLP on the low-embedding-degree curve reduce to the cor-
responding problems in the finite field. At first it seems that it would be
nice to have reductions in the other direction as well. That is, a homomor-
phism in the opposite direction to the MOV embedding would show that
the problems on the curve and in the field are provably equivalent. Indeed,
in special cases construction of such a homomorphism was posed as an open
problem in [25] and [33]. However, in [45] Verheul dashed anyone’s hopes of
ever strengthening one’s confidence in the security of pairing-based systems
by constructing such a reduction.

Verheul proved the following striking result. Let µn denote the n-th roots
of unity in Fp6 , where n|(p2 − p + 1), and hence µn is not contained in a
proper subfield; this is called an XTR group [27]. Suppose that an efficiently
computable nontrivial homomorphism is found from µn to 〈P 〉 ⊂ E(Fp2),

where E is an elliptic curve defined over Fp2 with #E(Fp2) = p2 − p + 1.
Here we are assuming, as before, that P is a point of prime order n. Then
Verheul’s theorem states that the DHP is efficiently solvable in both µn and
〈P 〉.

A generalization of Verheul’s theorem, which was conjectured but not
proved in [45], would give the same result whenever a group µn ⊂ Fqk can

be efficiently mapped to a supersingular curve E(Fq). (Note that q = p2

and k = 3 for the XTR group.) It is this generalized version that prompted
Verheul to suggest that his results “provide evidence that the multiplicative
group of a finite field provides essentially more...security than the group of
points of a supersingular elliptic curve of comparable size.”

The following observation, which was not made in [45], seems to give
further support for Verheul’s point of view. Given an arbitrary finite field
Fq, suppose that one can efficiently construct a trace-zero elliptic curve E
over Fq, that is, a curve for which #E(Fq) = q + 1. (If q ≡ −1 (mod
4) or q ≡ −1 (mod 6), then the curve (4) or (5) in §7 has this property;
more generally, see §7.6 and Exercise 2 in Chapter 7 of [12] for the prime
field case.) We then have the following theorem about the so-called class-VI
supersingular curves, which can be viewed as curves of embedding degree
k = 1/2.

Theorem 1. Let Fq be an arbitrary finite field, and let E be a trace-zero
elliptic curve over Fq. Suppose that E has equation y2 = f(x) for odd q
and y2 + y = f(x) for q a power of 2. Let β ∈ Fq2 be a nonsquare in
Fq2 for odd q and an element of absolute trace 1 for q a power of 2 (that

is, TrFq2/F2
(β) = 1). Let Ẽ be the “twisted” curve over Fq2 with equation
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βy2 = f(x) for odd q and y2+y+β = f(x) for q a power of 2. Then Ẽ(Fq2)
is a product of two cyclic groups of order q− 1, each of which is isomorphic
to the multiplicative group of Fq under the MOV embedding.

This theorem is an immediate consequence of the classification of super-
singular elliptic curves (see Table 5.2 in [31]). Notice that for a trace-zero
curve E we have #E(Fq) = q + 1 = q + 1− α− α with α2 = −q, and hence
#E(Fq2) = q2 + 1 − α2 − α2 = q2 + 1 + 2q. Thus, for the twist we have

#Ẽ(Fq2) = q2 + 1− 2q.
It is reasonable to think that Verheul’s theorem can be generalized to the

curves in the above theorem. One would need to describe algorithms for ob-
taining a trace-0 curve for arbitrary q and a “distortion” map in the twisted
curve over Fq2 . In that case the construction of a Verheul homomorphism
would make the DHP easy in all finite fields.

Thus, there are two possible interpretations of Verheul’s theorem in its
(conjectured) general form. The “optimistic” interpretation is that a Ver-
heul homomorphism will never be constructed, because to do so would be
tantamount to making the Diffie–Hellman problem easy in all finite fields.
Under this interpretation we are forced to conclude that the DHP that arises
in pairing-based cryptography is not likely to be provably equivalent to the
DHP in finite fields. The “pessimistic” interpretation is that a Verheul ho-
momorphism might some day be constructed. Even if it were constructed
just for the class-VI supersingular elliptic curves, that would be enough
to render all pairing-based cryptosystems (and also many XTR protocols)
completely insecure.

Remark 1. This issue does not arise in the usual non-pairing-based elliptic
curve cryptography (ECC). In ECC protocols one uses nonsupersingular
curves having large embedding degree k. In fact, k is generally of size
comparable to n itself (see [2]), in which case even the input to the Verheul
inversion function would have exponential size. Thus, the danger posed by
such a map — if it could be efficiently computed — applies only to small k.

Remark 2. The third concern with pairing-based systems — that the prob-
lem that their security relies on is not provably equivalent to a standard
problem that is thought to be hard unless both problems are easy — is
analogous to a similar concern with RSA. In [10] Boneh and Venkatesan
proved that an “algebraic” reduction from factoring to the RSA problem
with encryption exponent 3 is not possible unless both problems are easy.

4. Parameter Sizes

For the remainder of this paper, unless stated otherwise, we shall suppose
that Fq is a prime field, and we set q = p. As mentioned in the last section,
in order for a pairing-based cryptosystem to be secure, the field Fpk must be
large enough so that discrete logs cannot feasibly be found using the best
available algorithms (the number field and function field sieves). It is also
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necessary for the prime order n of the basepoint P to be large enough to
withstand the Pollard-ρ attack on discrete logs in the group 〈P 〉. Table 1
(see [26, 37]) shows the minimum bitlengths of n and pk as a function of the
desired security level.

security level (in bits) 80 128 192 256

bn (min. bits of prime subgroup) 160 256 384 512

bpk (min. bits of big field) 1024 3072 8192 15360

γ = the ratio bpk/bn 6.4 12 21 1
3

30

Table 1. Minimum bitlengths of n and pk

4.1. Short signatures. One of the best known uses of pairings is to pro-
duce short signatures [9]. Without using pairing methods, the shortest sig-
natures available are the ECDSA, where the length is roughly 2bn bits,
and the Pintsov–Vanstone [38] and Naccache–Stern [36] schemes, where the
length is roughly 1.5bn. The pairing-based Boneh–Lynn–Shacham signa-
tures have length approximately equal to the bitlength of p, which is ρbn,
where ρ = log p/ log n.

Thus, in order to have short Boneh–Lynn–Shacham signatures, one must
choose the parameters so that ρ = log p/ log n is close to 1 and hence k = γ/ρ
is nearly equal to γ = bpk/bn (see Table 1). Starting with [35], techniques
have been developed to do this with nonsupersingular curves when k can be
taken equal to 2, 3, 4, or 6. In those cases the k-th cyclotomic polynomial
is linear or quadratic, and the resulting Diophantine equations are compu-
tationally tractable. For larger k — notably, for k = 24 — the best results
are due to Brezing–Weng [11], who obtain ρ = 1.25. For example, at the
256-bit security level with 512-bit n they can produce 640-bit signatures,
compared to 768 bits for Pintsov–Vanstone and Naccache–Stern and 1024
bits for ECDSA.

It should also be noted that at very high security levels the Boneh–
Lynn–Shacham public keys are much larger than in the Pintsov–Vanstone,
Naccache–Stern and ECDSA schemes. For instance, at the 256-bit level
the latter public keys are roughly 512 bits long, whereas in the pairing-
based short signature scheme the public key is a point of E(Fpk), where pk

has about 15360 bits. It suffices to give the x-coordinate of the public-key
point, and for even k we may assume that this coordinate is in the smaller
field Fpk/2 (see the end of §8.2). But even then the public key is about 7680
bits.

4.2. Changes as security requirements increase. As our security needs
increase, the gap between the desired sizes of n and of pk increases (see
Table 1). At the same time, the optimal choices of algorithms in implemen-
tations — and hence the decisions about what families of curves provide
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greatest efficiency — are likely to be affected. That is, certain tricks that
were useful at lower security levels may become less important than other
considerations, such as the ability to choose parameters of a special form.

Our first observation is that as bn and bpk increase for greater security,
the parameter selection methods proposed with nonsupersingular curves of
embedding degree k ≥ 2 do not seem to yield values of n (the prime order
of the basepoint) and p (the size of the prime field) that are both Solinas
primes. In the literature we have found one construction, due to Barreto
and Scott [4], that comes close to solving this problem at the 128-bit security
level. Namely, one can apply their construction for k = 6 in §5 of [4] with
x = 12Dz2+1, where D is a small power of 2 and z is a roughly 80- to 90-bit
power of 2 or sum or difference of two powers of 2 that is chosen so that
both n = x2 − x+ 1 and p = (x3 − 2x2 + 14x− 1)/12 are primes. Then the
bitlengths of n and p6 are roughly equal to the optimal values in Table 1;
moreover, n and p are each equal to a sum or difference of a relatively small
number of powers of 2. However, for higher security levels and k ≥ 2 we do
not know of any similar method to achieve nearly-optimal characteristics.

Example 1. Set D = 1, z = 281 + 255. Then n is a 332-bit prime with
Hamming weight 19, and p is a 494-bit prime with Hamming weight 44.

Our second observation is that for k 6= 2 it is probably not advisable to
use supersingular elliptic curves at the higher security levels. The greatest
value of k that one can get is k = 6, and there are only two supersingular
elliptic curves E, both defined over F3, that have embedding degree 6. Be-
cause of the efficiency of the function field sieve in finding discrete logs in
characteristic-3 fields, it would be advisable to choose fields F3m such that
the bitlength of 36m is larger than the value of bpk in Table 1. But even
using the values in Table 1, there is a serious question of whether one can
find a field extension degree m ≈ bpk/(6 log2 3) such that #E(F3m) has a
prime factor n of the appropriate size. There are a relatively small number
of possible choices of extension degree, so an elliptic curve group whose order
has such a factor n might simply not exist. Moreover, even if it does exist,
to find it one needs to factor #E(Fq), q = 3m, which cannot feasibly be
done unless one is lucky and this number is fairly smooth. For example, at
the 256-bit security level we would want the 2560-bit integer #E(Fq) to be
the product of a roughly 512-bit prime and a 2048-bit cofactor made up of
primes that are small enough to be factored out of #E(Fq) by the Lenstra
elliptic curve factorization method [28]. This is not very likely; in fact, stan-
dard estimates from analytic number theory imply that the probability of a
random 2048-bit integer being 2150-smooth is less than 2−50.

Our third observation is that as n and pk increase, one should look more
closely at the possibility of switching back to use the Weil pairing rather than
the Tate pairing. We shall examine this question when we study efficiency
comparisons in §8.
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5. Pairing-Friendly Fields

Suppose that we have an elliptic curve E defined over Fp with even em-
bedding degree k. We shall say that the field Fpk is pairing-friendly if p ≡ 1

(mod 12) and k is of the form 2i3j .1 The following theorem is a special case
of Theorem 3.75 of [29]:

Theorem 2. Let Fpk be a pairing-friendly field, and let β be an element of

Fp that is neither a square nor a cube in Fp.
2 Then the polynomial Xk − β

is irreducible over Fp.

The field Fpk can thus be constructed from Fp as a tower of quadratic
and cubic extensions by successively adjoining the squareroot or cuberoot
of β, then the squareroot or cuberoot of that, and so on (see Figure 1). It
is easy to see that, if an element of Fpk = Fp[X]/(Xk − β) is written as a

polynomial
∑

`<k a`X
`, then it belongs to a subfield Fpk′ , where k′ = 2i

′

3j
′

,

if and only if ` is a multiple of k/k′ = 2i−i
′
3j−j

′
in all of the nonzero terms.

Namely, if we set Fpk′ = Fp[Y ]/(Y k′ −β), then the map Y 7→ Xk/k′ gives an

embedding of the elements of Fpk′ (regarded as polynomials in Y ) into Fpk .

Thus, when we do arithmetic in the field Fpk , we can easily work with the
tower of quadratic and cubic field extensions used to construct it.

N = M [X]/(X2 − Y )

M = L[Y ]/(Y 2 − Z)

2

L = K[Z]/(Z2 − T )

2

K ′ = Fp[T
′]/(T ′2 − β) K = Fp[T ]/(T

3 − β)

2

Fp

2

UUUUUUUUUUUUUUUUUUUUU

3

Figure 1. Tower of pairing-friendly fields

In practice, it is easy to find a small value of β that satisfies the conditions
of the theorem. In that case multiplication by β in Fp is much faster than a
general multiplication in that field, and so can be neglected in our count of

1If j = 0, we only need p ≡ 1 (mod 4).
2If j = 0, it is enough for β to be a nonsquare.
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field multiplications. Then the Karatsuba method reduces a multiplication
in a quadratic extension to 3 (rather than 4) multiplications in the smaller
field; and the Toom–Cook method reduces a multiplication in a cubic ex-
tension to 5 (rather than 9) small field multiplications (see §4.3.3 of [22]).
This means that we can expect to perform a field operation in Fpk in time

ν(k)m, where ν(k) = 3i5j for k = 2i3j ,

and m denotes the time to perform a multiplication in Fp.
In what follows we shall occasionally perform multiplications in a qua-

dratic subfield Fpk/2 ⊂ Fpk . Because of the Karatsuba technique, we suppose

that an Fpk/2-operation is equivalent to 1/3 of an Fpk -operation.

Another nice feature of k = 2i3j is that many of the best examples of
families of curves for pairing-based cryptography have embedding degree
2, 6, 12, or 24. For instance, we noted in §4.1 that examples with ρ =
log p/ log n = 1.25 were constructed in [11] with k = 24.

6. Curves with Embedding Degree 1

Let p > 2 be a prime of the form A2 + 1. If 4 | A, let E be the elliptic
curve defined over Fp with equation

(2) y2 = x3 − x.

If, on the other hand, A ≡ 2 (mod 4), then let E be the curve

(3) y2 = x3 − 4x.

Theorem 3. The elliptic curve group E(Fp) is isomorphic to Z/AZ⊕Z/AZ.
In addition, the map (x, y) 7→ (−x,Ay) is a “distortion map” on this group
in the sense of §4.2 of [45].

Proof. The curve E is the reduction modulo p of a rational elliptic curve of
the form y2 = x3−N2x, where N = 1 in (2) and N = 2 in (3). This curve has
endomorphism ring Z[i], where i corresponds to the map (x, y) 7→ (−x, iy);
modulo p the endomorphism i corresponds to the map (x, y) 7→ (−x,Ay)
(note that A is a squareroot of −1 in Fp). According to the theorem in
§2 of [24], the Frobenius endomorphism of E is the (unique up to complex
conjugation) element α of Z[i] having norm p and satisfying the congruence
α ≡

(
N
p

)
(mod 2 + 2i), where

(
N
p

)
denotes the Legendre symbol. When

4 divides A, we see that α = 1 + Ai ≡ 1 (mod 2 + 2i); when A ≡ 2
(mod 4), we note that p ≡ 5 (mod 8) and hence

(
2
p

)
= −1, and so again

α = 1 + Ai ≡ −1 (mod 2 + 2i). Thus, in both cases the number of Fp-
points on E is |α − 1|2 = A2. Moreover, all Fp-points on E are in the
kernel of the endomorphism α− 1 = Ai, and E(Fp) is isomorphic as a Z[i]-
module to Z[i]/AiZ[i] ' Z/AZ⊕ Z/AZ. In the first place, this implies that
E(Fp) is isomorphic as an abelian group to Z/AZ ⊕ Z/AZ. In the second
place, if P = (x, y) is a point of prime order n | A, the whole n-torsion
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group is generated over Z by P and iP = (−x,Ay); in other words, the
endomorphism i is a distortion map. ¤

Remark 3. As noted in [2] (see Remark 2 of §2), if n is a prime dividing A,
then most curves E over Fp with the property that n2 | #E(Fp) have cyclic
n-part, that is, they do not have n2 Fp-points of order n, and one has to go
to the degree-n extension of Fp to get all the points of order n. Thus, the
property E(Fp) ' Z/AZ ⊕ Z/AZ of the curves (2) and (3) is very unusual,
statistically speaking. On the other hand, our elliptic curves are much easier
to construct than ones with n2 | #E(Fp) and only n points of order n.

Remark 4. The coefficient of x in (2) and (3) can be multiplied by any
fourth power N4

0 in Fp without changing anything, as one sees by making
the substitution x 7→ x/N 2

0 , y 7→ y/N3
0 .

Remark 5. In general, a distortion map exists only for supersingular curves;
it can exist for a nonsupersingular curve only when k = 1 (see Theorem 6
of [45]).

6.1. History of embedding degree 1. Although many papers have pro-
posed different families of elliptic curves for use in pairing-based systems,
until now no one has seriously considered families with embedding degree
k = 1. Most authors stipulate from the beginning that k ≥ 2. We know of
only three papers ([19, 21, 45]) that briefly discuss curves E over Fp with
#E(Fp) = p− 1. In [19], Joux points out that no efficient way is known to
generate such curves with p − 1 divisible by n but not by n2, a condition
that he wants to have in order to ensure that the Tate pairing value 〈P, P 〉
must always be nontrivial. In [21], Joux and Nguyen repeat this observa-
tion. Even though they then show that 〈P, P 〉 is nontrivial for most P even
when there are n2 points of order n, they leave the impression that such
curves are less desirable than the supersingular ones that they use in their
examples.

In [45], Verheul discusses the nonsupersingular k = 1 curves. However, he
erroneously states that the discrete logarithm problem in the subgroup 〈P 〉
of prime order n reduces to the discrete log in the field Fn, in which case
one needs bn ≥ 1024 to achieve 80 bits of security. This mistake leads him
also to over-estimate the required bitlength of p, and apparently accounts
for his negative view of the practicality of such curves. Thus, the few papers
that include the k = 1 case quickly dismiss it from serious consideration.
No valid reason has been given, however, for excluding such curves.

6.2. Choice of parameters. We must choose A = nh such that n and
p = A2 + 1 are prime; and, to maximize efficiency, we want

(a) n and p to have respective bitlengths approximately bn and bpk cor-
responding to the desired security level (see Table 1);

(b) n to be a Solinas prime, that is, equal to a sum or difference of a
small number of powers of 2;
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(c) p also to be a Solinas prime.

The bitlengths of n and p in the following examples are equal to or just
slightly more than the minimum values given in Table 1 for the correspond-
ing security level.

Example 2. For 128 bits of security let n be the prime 2256−2174+1 and let
h = 21345. Then p = (nh)2+1 = 23202−23121+23038+22947−22865+22690+1
is prime.

Example 3. For 192 bits of security let n be the prime 2386−2342−1 and let
h = 23802. Then p = (nh)2+1 = 28376−28333+28288−27991+27947+27604+1
is prime.

Example 4. For 256 bits of security let n be the Mersenne prime n = 2521−1
and let h = 27216. Then p = (nh)2+1 = 215474−214954+214432+1 is prime.

Remark 6. If p is of a certain special form, then discrete logarithms can
be found using a special version of the number field sieve (see, for example,
[14, 20]). Then the running time for 2b-bit primes is roughly comparable to
the running time of the general number field sieve for b-bit primes. For this
reason it is important to avoid the special number field sieve when choosing
p. It is unclear whether or not the Solinas primes in these examples and
others that one might want to use are of a form that permits the use of the
special sieve. This question needs further investigation.

Example 5. For the prime p = 21007+21006+21005+21004−1 = 240·21000−1
discrete logs in Fp can be found using the special sieve. The reason is that
2100 is a root mod p of the polynomial f(X) = 240X10− 1, which has small
degree and small coefficients.

7. Supersingular Curves with k = 2

Suppose that n is a prime and p = nh− 1 is also a prime, where 4 | h. If
h is not divisible by 3, we let E be the elliptic curve defined over Fp with
equation

(4) y2 = x3 − 3x;

if 12 | h, then we let E be either the curve (4) or else the curve

(5) y2 = x3 − 1.

It is an easy exercise to show that in these cases #E(Fp) = p+1 = nh, and
so E is a supersingular elliptic curve with embedding degree k = 2. Note
also that β = −1 is a nonsquare in Fp, and so Fp2 = Fp[X]/(X2 + 1). In
addition, the map (x, y) 7→ (ζx, εy) is a distortion map in the sense of [45],
where

ζ = −1 and ε = a squareroot of − 1 in Fp2

for the curve (4) and

ε = 1 and ζ = a nontrivial cuberoot of 1 in Fp2
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for the curve (5).

7.1. History of embedding degree 2 (supersingular case). In the
early days of elliptic curve cryptography, before the publication of [32] caused
people to turn away from such elliptic curves, the supersingular curves (4)
with p ≡ −1 (mod 4) and (5) with p ≡ −1 (mod 6) were the most popular
examples, because of the simple form of the equation, the trivial determi-
nation of the group order, and the easy deterministic coding of integers as
points (see Exercise 2 of Chapter 6 of [23]). For similar reasons, Boneh and
Franklin used these curves as examples in [7]. On the other hand, authors
who study implementation issues tend to shun supersingular curves, per-
haps because of the subconscious association of the word “supersingular”
with “insecure.”

Despite the customary preference for nonsupersingular elliptic curves,
there is no known reason why a nonsupersingular curve with small em-
bedding degree k would have any security advantage over a supersingular
curve with the same embedding degree. Of course, it is not inconceivable
that some day someone might find a way to use the special properties of
supersingular elliptic curves to attack the security of the system, perhaps
by constructing a Verheul homomorphism from µn to the curve (see §3).
However, one consequence of a generalized version of Verheul’s theorem (see
the end of §3) is that if supersingular curves were broken in this way, then
the Diffie–Hellman problem in any finite field would be easy, and hence
nonsupersingular curves of low embedding degree would be insecure as well.
This means that the only way that supersingular curves could fall without
bringing down all low-embedding-degree curves with them is through some
special attack unrelated to a Verheul homomorphism.

Thus, on the one hand one has the remote possibility of a vulnerability
of supersingular elliptic curves that is not shared by other curves of low
embedding degree. On the other hand, one has the very real efficiency
advantages of supersingular curves with k = 2. Namely, they provide the
benefits of both the k = 1 case (flexibility in the choice of n and p) and also
the k ≥ 2 case (speedups coming from subfields).

7.2. Choice of parameters. It is a simple matter to select n and h so that
both n and p are Solinas primes.

Example 6. At the 80-bit security level let n be the prime 2160 + 23 − 1,
and let h = 2360; then p = nh− 1 = 2520 + 2363 − 2360 − 1 is prime.

Example 7. At the 128-bit level let n = 2256 + 2225 − 1, h = 21326, p =
nh− 1 = 21582 + 21551 − 21326 − 1.

Example 8. At the 192-bit level let n = 2384 − 260 + 1, h = 23847, p =
nh− 1 = 24231 − 23907 + 23847 − 1.
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Example 9. At the 256-bit level let n = 2521 − 1, h = 26704(2521 + 1),
p = nh− 1 = 27746 − 26704 − 1. Note that here 12 | h, so we can use either
curve (4) or (5).

As in the k = 1 case (see Remark 6), an open question that needs to be
investigated is whether there is a special version of the number field sieve for
Fp2 that would apply to certain Solinas primes, and, if so, how one should
select p so as to avoid that.

8. Efficiency Comparisons

Let’s briefly recall the ingredients in pairing computations (see [16]). The
Weil pairing ê(P,Q) is a quotient of the form FP (DQ)/FQ(DP ), in which
one must find a function FP whose divisor is n(P ) − n(∞) and evaluate it
at a divisor DQ that is equivalent to the divisor (Q)− (∞) and has support
disjoint from that of (FP ), and similarly for the denominator FQ(DP ). The
divisor DQ is constructed by choosing an auxiliary point R ∈ E(Fpk) and
setting DQ = (Q + R) − (R). The procedure to compute the numerator
(or denominator) resembles the double-and-add method for finding a point
multiple. If n is a Solinas prime, then the number of adds/subtracts is
negligible compared to the number of doublings. For each bit of n we have
to perform a point doubling which leads to two functions ` and v, and then
we have a function-evaluation step of the form

f1
f2
← f21

f22
· `(Q+R)v(R)

`(R)v(Q+R)
.

Such a procedure is called a “Miller operation” [34].
For this type of computation it is usually most efficient to use Jacobian

coordinates (see [18], §3.2.2). A point (X,Y, Z) in Jacobian coordinates cor-
responds to the point (x, y) in affine coordinates with x = X/Z2, y = X/Z3.
In Jacobian coordinates the formula for doubling a point T = (X,Y, Z) takes
the form 2T = (X3, Y3, Z3) with

X3 = (3X2 + aZ4)2 − 8XY 2,

Y3 = (3X2 + aZ4)(4XY 2 −X3)− 8Y 4,

Z3 = 2Y Z.

The functions ` and v correspond, respectively, to the tangent line to the
curve at T and the vertical line through the point 2T ; in the formulas below
we have deleted denominators that cancel when f1 is divided by f2:

v(x) = Z23x−X3;

`(x, y) = 2Y Z · Z2y − 2Y 2 − (3X2 + aZ4)(xZ2 −X).
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8.1. The case k = 1. We first examine the case k = 1, where E has
equation (2) or (3). For convenience we may choose R to be the point (0, 0).
Using the above formulas, we count the number S of squarings and the
number M of multiplications in Fp that must be performed for each bit of
n. That is, after initially setting T = P , f1 = f2 = 1, for each bit of n we
do

T ← 2T

f1 ← f21 `(Q+R)v(R)(6)

f2 ← f22 v(Q+R)`(R).

Our field operation count is 9S+13M .3 Since we must go through essen-
tially the same procedure twice — once for FP (DQ) and once for FQ(DP )
— the total number of operations per bit of n required to evaluate the Weil
pairing is 18S + 26M .

In recent years most authors have preferred to use the Tate pairing rather
than the Weil pairing. It has the advantage of requiring only computation
of FP (DQ), not of FQ(DP ). When k = 1, we have 9S + 13M rather than
18S + 26M for each bit of n, and in the case k ≥ 2 one can gain further
savings by working in subfields, as we’ll see later. On the other hand, in
the Tate pairing computation the preliminary result is an element of Fpk

that must be raised to the ((pk − 1)/n)-th power to convert it to an n-th
root of unity. For high security levels the bitlength of pk is large compared
to that of n (the ratio is what we denoted γ in Table 1), and so the time
required for this exponentiation is not negligible. If k = 1 and (p − 1)/n
has sparse binary representation, or if we use window methods, then the
exponentiation is essentially bpk − bn = (γ−1)bn squarings in the field. This
adds (γ − 1)S to our operation count for each bit of n. If we suppose that
S ≈ M , then we see that the Tate method retains its advantage as long as
(γ − 1)S < 9S + 13M ≈ 22S. But when γ > 23 the Weil computation is
faster in the case k = 1. According to Table 1, the cross-over point when
we should switch to the Weil pairing for k = 1 occurs just above the 192-bit
security level.

8.2. The case k ≥ 2. Now suppose that k ≥ 2, and k is even. In that case
one distinguishes between full field multiplications in Fpk , multiplications
in the quadratic subfield Fpk/2 (each of which takes one third as long as

a multiplication in the full field, see §5), and multiplications where one or
both elements are in Fp. We let S and M , as before, denote squaring and

3In the case k ≥ 2, without loss of generality we may assume that the coefficient a in
the elliptic curve equation y2 = x3 + ax+ b is equal to −3, in which case in the doubling
one saves two squarings. (This is because 3X2+aZ4 = 3(X+Z2)(X−Z2) when a = −3.)
When k = 1, we suppose that the curve is given by (2) or (3), and so we still have the extra
squarings but save one multiplication (by a). If we want to use the equation y2 = x3− 3x
instead of (2) or (3), we may do so, provided that 3 | h = A/n (so that 3 is a quadratic
residue in Fp) and 3 is a fourth power in Fp when 4 | A but not when A ≡ 2 (mod 4).
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multiplication in the large field Fpk , and we let s and m denote squaring and
multiplication in Fp; we suppose that a multiplication of an element in Fpk

by an element in Fp takes time km. When we make efficiency comparisons,
we shall further assume that S ≈ M , s ≈ m, and M ≈ ν(k)m, where
k = 2i3j and ν(k) = 3i5j (see §5).

In most cryptographic protocols there is some flexibility in the choice of
order-n subgroups generated by P and by Q. In particular, one of the two
— say, P — can be chosen in E(Fp). Then 〈P 〉 is the unique subgroup of
order n in E(Fp). In this case the Miller operation for computing FP (DQ)
in the Weil pairing is quicker than that for FQ(DP ), and so has been dubbed
“Miller lite” by Solinas [44].

In addition, in [3] it was pointed out that when the embedding degree k is
even, the subgroup 〈Q〉 ⊂ E(Fpk) can be chosen so that the x-coordinates of
all of its points lie in the quadratic subextension Fpk/2 and the y-coordinates

are products of elements of Fpk/2 with
√
β, where β is a fixed nonsquare in

Fpk/2 and
√
β denotes a fixed squareroot in Fpk . We shall call such values of

x and y “real” and “imaginary,” respectively, by analogy with the familiar
complex plane.

To see that Q can be chosen in this way, we consider the “twisted” elliptic

curve Ẽ with equation βy2 = x3 + ax + b. It is easy to show that if E has

pk/2+1−t points over the field Fpk/2 , then Ẽ has pk/2+1+t points over Fpk/2 .
Over the big field Fpk the number of points on E is equal to the product of

the orders of E and its twist Ẽ over Fpk/2 . Since n2 divides #E(Fpk) and

only n (but not n2) divides #E(Fpk/2), it follows that n | #Ẽ(Fpk/2).4 Thus,

there is a point Q̃ ∈ Ẽ(Fpk/2) of order n. The map (x, y) 7→ (x, y
√
β) maps

Q̃ and its multiples to Fpk -points of E (because (y
√
β)2 = x3+ ax+ b) that

have “real” x and “imaginary” y.

8.3. Operation count for k ≥ 2. When computing the Tate pairing, ma-
jor savings can be obtained by ignoring terms in (6) that are contained in
a proper subfield of Fpk (see [16, 3, 42]). The reason such terms can be ig-

nored is that when raised to the ((pk−1)/n)-th power at the end of the Tate
pairing computation, they become 1; this is because k is the multiplicative
order of p modulo n, and so (pk−1)/n is a multiple of pk

′−1 for any proper
divisor k′ of k. Since we may assume that the coordinates of P and R are
in Fp and the x-coordinate of Q is in Fpk/2 , we can drop the v(R) term and

the entire denominator in (6). In addition, in Theorem 1 of [3] it is shown
that without loss of generality we can now take R to be the identity (point
at infinity). As a result, the function-evaluation step becomes simply

(7) f1 ← f21 `(Q).

4Another way to see this is to note that n | (pk/2 + 1) and also n | (pk/2 + 1− t), from

which it follows that n | (pk/2 + 1 + t).
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A count of the number of operations in a Miller lite point doubling and
function evaluation gives 4s+8m+S+M for k = 2 and 4s+(k+7)m+S+M
for k ≥ 4 even.

The final stage of the Tate pairing computation is the exponentiation.
This can be expedited if we use the fact that n | Φk(p), where Φk is the k-th
cyclotomic polynomial; once again, this is a consequence of the assumption
that k is the multiplicative order of p modulo n. We then write

y(p
k−1)/n =

(
y(p

k−1)/Φk(p)
)Φk(p)/n

.

Now raising to the power (pk − 1)/Φk(p) takes very little time (since the
p-th power map takes negligible time in extensions Fp[X]/(Xk − β) once

Xpi mod (Xk − β) has been precomputed for i = 1, 2, . . . , k − 1). Thus,
our estimate for the number of field operations (squarings in Fpk) is the

bitlength of Φk(p)/n, which is ϕ(k)
k bpk − bn = (τkγ − 1)bn, where we define

τk =
ϕ(k)

k
=

{
1/2 if k = 2i, i ≥ 1;
1/3 if k = 2i3j , i, j ≥ 1.

Thus, the operation count for the exponentiation in the Tate pairing is
(τkγ − 1)S for each bit of n.

The results so far are summarized in the first two columns of Table 2.

Exponentiation at
end of Tate Miller Full

pairing computation lite Miller

k = 1 (γ − 1)S not applicable 9S + 13M

k = 2 (ss) (γ
2
− 1)S 4s+ 8m+ S +M 2m+ 10

3
S + 13

3
M

k = 2 (ns) (γ
2
− 1)S 4s+ 8m+ S +M 3m+ 10

3
S + 13

3
M

k ≥ 4 even (τkγ − 1)S 4s+ (k + 7)m+ S +M 3
2
km+ 10

3
S + 13

3
M

Table 2. Operation counts for each bit of n
(ss=“supersingular,” ns=“nonsupersingular”)

8.4. Weil or Tate? The case k ≥ 2. If we want to compute the Weil
pairing rather than the Tate pairing, we need to go through two Miller
procedures, one to find FP (DQ) and the other to find FQ(DP ). In the case
k ≥ 2, we suppose that P ∈ E(Fp), in which case the former is the “Miller
lite” part and the latter is the full Miller computation. At first glance
it appears that even the Miller lite part is more time-consuming than in
the case of the Tate pairing, because we can no longer neglect terms whose
((pk−1)/n)-th power equals 1. However, we make the following observation.
In any cryptographic application of the pairing it makes no difference if the
pairing is replaced by its m-th power, where m is a fixed integer not divisible
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by n. In particular, for k even we can replace ê by its (pk/2 − 1)-th power.
That means that the same terms in the Miller lite computation can be
ignored in the Weil pairing as in the Tate pairing, and the process (6) again
simplifies to (7). For the full Miller part (where the roles of P and Q are
reversed, that is, we take Q ∈ E(Fp)), we can drop the v(R) and v(Q+ R)
terms in (6), because they lie in Fpk/2 . Finally, we can choose the auxiliary
point R to have very small x-coordinate; for instance, we can choose x = 0
or 1 if either b or b− 2 is a square in Fp (see (1), in which a = −3).5 If we
make a careful count of the number of operations required for each bit of
n (and recall that an Fpk/2-operation is equivalent to one third of an Fpk -

operation, see §5), we find that the operation count for the full Miller step
is 32km+ 10

3 S+ 13
3 M . In the supersingular case considered in §7, we save an

additional m by choosing R to be the point (0, 0) on the curve (4) or (1, 0)
on the curve (5).6

We can decide between the Tate and Weil pairings by comparing the
exponentiation column in Table 2 with the full Miller column. As before,
we assume that S ≈ M , s ≈ m, and M ≈ ν(k)m. We find that the Tate
pairing is quicker as long as γ < 18 23 for k = 2 in the supersingular case,

γ < 1913 for k = 2 in the nonsupersingular case, and τkγ < 26
3 + 1.5k

ν(k) for

k ≥ 4, that is, as long as γ < 27.8 for k = 6, γ < 27.2 for k = 12, and
γ < 26.8 for k = 24. But for higher values of γ — that is, when we get to
roughly the 192-bit security level for k = 2 and the 256-bit level for k = 6,
12, 24 — we should switch to the Weil pairing.

8.5. Time comparison when k = 1, 2, 6, 12, 24. Let T (b) denote the time

required for a multiplication in Fp for general b-bit p, and let T̃ (b) denote
the time required when p is a b-bit Solinas prime. As before, we assume that
s ≈ m, S ≈M , M ≈ ν(k)m.

For k = 1 the operation count is 9S + 13M +min((γ − 1)S, 9S + 13M),
where the latter minimum determines the choice of Tate versus Weil pairing.
For even k ≥ 4 the operation count is

4s+ (k + 7)m+ S +M +min((τkγ − 1)S,
3

2
km+

10

3
S +

13

3
M)

≈
(
k + 11 + ν(k) + min(τkγν(k),

3

2
k +

26

3
ν(k))

)
m;

for k = 2 we have the same count reduced by a single m (and in the super-
singular case we replace 3

2k by k inside the minimum).
Notice that for nonsupersingular curves even at the 80-bit security level

the choice k = 2 seems to be less efficient than higher k, and that, more

5Alternatively, if 2 | #E(Fp), then we can choose R to be a point of order 2, so that
its y-coordinate is 0.
6In the case of equation (5), where a = 0 rather than −3, a multiplication can be

replaced by a squaring in the point-duplication part of both the Miller lite and full Miller
computations. Of course, this has no effect on Table 3.
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Security (bits) 80 128 192 256

bitlength of pk 1024 3072 8192 15360

k = 1 27T̃ (1024) 33T̃ (3072) 42T̃ (8192) 44T̃ (15360)

k = 2 (ss) 25T̃ (512) 33T̃ (1536) 43T̃ (4096) 43T̃ (7680)

k = 2 (ns) 25T (512) 33T (1536) 44T (4096) 44T (7680)

k = 6 64T (171) 92T (512) 139T (1365) 171T (2560)

k = 12 248T (256) 388T (683) 476T (1280)

k = 24 1376T (640)

Table 3. Pairing evaluation time for each bit of n
(ss=“supersingular,” ns=“nonsupersingular”)

generally, for k ≥ 2 Table 3 suggests an advantage for large k. The compar-
ison between k = 1 and k ≥ 2 is harder to make, because it depends on how
much of a saving we are able to achieve when multiplying modulo a Solinas
prime rather than an arbitrary prime. It is not clear, for example, whether

44T̃ (15360) is greater or less than 44T (7680) or 1376T (640). The limited
experiments we have conducted with integer multiplication packages were
inconclusive.

We estimate that T (512) is at least twice T̃ (512), and so for k = 2 super-
singular curves are at least twice as fast as nonsupersingular curves at the
80-bit security level.

Finally, we emphasize that the above analysis is imprecise, and defini-
tive conclusions will be possible only after extensive experimentation. In
addition, the relative merits of k = 1 and k ≥ 2 depend on the protocol
being used and the types of optimization that are desirable in the particular
application.

For example, in identity-based encryption suppose that we are very con-
cerned about the time it takes to convert Alice’s identity to a public key,
which in the Boneh–Franklin system is a point IA ∈ E(Fp). One is then at a
disadvantage when k = 1. The reason is that after Alice’s identity is hashed
into the curve, the resulting point must be multiplied by h =

√
(p− 1)/n to

get a point IA of order n. The bitlength of h is 12(γ−1)bn. In contrast, when
k ≥ 2 the cofactor h ≈ p/n is usually small; its bitlength is (ρ− 1)bn, where
ρ = log p/ log n is generally between 1 and 2. In the k = 1 case, to avoid the
point multiplication by h one might want to use a different identity-based
encryption scheme, such as the one in [39] or [46], where Alice’s public key
is an integer rather than a point.
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9. Open Problems

(1) Prove Verheul’s theorem for class-VI supersingular elliptic curves,
which, as we saw at the end of §3, contain subgroups isomorphic to
the multiplicative groups of all finite fields.

(2) To what extent can the special number field sieve be applied to Fp

for Solinas primes p? For what Solinas primes can we be confident
that only the general number field sieve and not the special one can
be used to find discrete logarithms?

(3) What Solinas primes can be used with embedding degree k = 2
without allowing an attacker to use the special number field sieve
for Fp2?

(4) At the 80-bit security level with nonsupersingular elliptic curves, is
embedding degree 6 faster than embedding degree 2, as suggested
by the preliminary results in §8.5?

(5) For higher security levels such as 192 and 256 bits, is it possible to
construct nonsupersingular examples with k ≥ 2 where n and pk

have roughly bn and bpk bits and both n and p are Solinas primes?
(6) Determine more precisely the relative efficiency of curves with em-

bedding degree 1.
(7) More generally, analyze the efficiency of pairing-based protocols at

the AES security levels.

10. Conclusions

It is still hard to say whether pairing-based cryptosystems will be able to
provide satisfactory security and efficiency as the desired level of security
rises. None of the concerns raised in §3 give sufficient cause to avoid these
systems, but they certainly point to the need to proceed with caution.

Despite the spate of recent papers on curve selection for pairing-based
cryptosystems, the simplest cases — that of embedding degree 1 and that
of supersingular curves with embedding degree 2 — have been largely ne-
glected. To be sure, the k = 1 case has some drawbacks, since all of the
arithmetic must be done in the large field (there being no subfield) and
certain simplifications of the pairing computations when k ≥ 2 are unavail-
able. On the other hand, the greater flexibility in choosing the pair (n, p)
is a compensating advantage. Thus, the embedding degree 1 case should be
seriously considered by implementers of pairing-based cryptography.

Similarly, unless someone finds a way to exploit some special properties of
supersingular curves to attack the Bilinear Diffie–Hellman Problem — and
we see no reason to believe that this will happen — implementers should
pay special attention to supersingular curves with k = 2. Those curves have
the efficiency advantages of both k = 1 (flexibility in the choice of n and p)
and also k ≥ 2 (speedups coming from subfields).

When k = 1 the Weil pairing rather than the Tate pairing should be used
at security levels significantly above 192 bits, such as the 256-bit level. For
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k = 2 the Weil pairing should be used at the 192-bit level and above, and
for k ≥ 4 the Weil pairing should be used at the 256-bit level and above.

For nonsupersingular curves with k ≥ 2 our preliminary results do not
seem to support the viewpoint expressed in [42] that k = 2 is the embedding
degree that leads to the fastest implementation. Rather, at all security levels
considered it appears that among the possible values of k ≥ 2 one should
choose k = 2i3j as large as possible.

For k > 2 at high security levels nonsupersingular curves should be used,
as it is unlikely that suitable parameters can be found with supersingular
curves.

There is a need for further study of the relative merits of different values
of k as our security requirements increase from the present 80 bits to 128,
192, 256 bits and beyond.
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