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Abstract

Multivariate quadratic systems can be used to construct both secure and effi-
cient public key schemes. In this article, we introduce the necessary mathe-
matical tools to deal with multivariate quadratic systems, present an overview
of important schemes known so far and outline how they fit into a taxonomy
of only four basic schemes and some generic modifiers. Moreover, we sug-
gest new constructions not previously considered. In this context, we propose
some open problems and new research directions in the field of multivariate
quadratic schemes.
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1 Introduction

Public key cryptography is used in e-commerce systems for authentication
(electronic signatures) and secure communication (encryption). The secu-
rity of cryptosystems widely used at the moment is based on the difficulty
of solving a small class of problems: the RSA scheme relies on the difficulty
of factoring large integers, while the hardness of solving discrete logarithms
provide the basis for ElGamal and Elliptic Curves [MvOV96]. Given that
the security of these public key schemes relies on such a small number of
problems that are currently considered to be hard, research on new schemes
based on other classes of problems is necessary as such work will provide
greater diversity and hence forces cryptanalysts to spend additional effort
concentrating on completely new types of problems. Moreover, we make
sure that not all “crypto-eggs” are in one basket. In this context, we want
to point out that important results on the potential weaknesses of existing
public key schemes are emerging. In particular techniques for factorisation
and solving discrete logarithm improve continually. For example, polyno-
mial time quantum algorithms [Sho97] can be used to solve both problems.
Therefore, the existence of quantum computers in the range of 1000 bits
would be a real-world threat to systems based on factoring or the discrete
logarithm problem. This stresses the importance of research into new algo-
rithms for asymmetric cryptography.

One proposal for secure public key schemes is based on the problem of
solving Multivariate Quadratic equations (MQ-problem) over finite fields.
This article introduces the necessary mathematical tools and develops a
taxonomy ofMQ-schemes.

1.1 Related Work

As outlined above, we concentrate on Multivariate Quadratic equations
over finite fields in this text. They have the nice property that an attacker
does not even know which type of scheme he attacks, given the public key
alone, i.e., we have a kind of “secret public key schemes” [Pat00]. When
organising the material for this article, we had to draw the line somewhere.
Therefore, we decided to use the degree of the public key polynomials, i.e.,
other multivariate schemes which are based on equations of higher degree
are not considered, e.g., the polynomial substitution scheme of [FD85], or
the Dragon scheme from [Pat96a]. In this context we also want to men-
tion the Bi-Quadratic C∗ scheme of [DF05]. Similarly, we do not consider
birational permutations [Sha93], as they are based on finite rings rather



2 GENERAL MQ-CONSTRUCTION 5

than finite fields. Moreover, they have been successfully cryptanalysed in
[CSV93, The95, CSV97]. In addition, we do not consider the matrix based
schemes from [PGC98a] either, as its use has been strongly discouraged in
the very paper were it has been developed, and also is not an MQ-system
in this stronger sense. Moreover, there is also a survey paper [DS04] which
includes several schemes based on factoring, too.

In this context we refer to Section 2.2: there, we outline while quadratic
equations play such a prominent role. In a nutshell, they are already NP-
complete while the number of coefficients is still reasonably small. This also
stresses why we decided to concentrate on schemes based on Multivariate
Quadratic equations rather than including other schemes.

1.2 Outline

After having briefly considered related work, we move on to the organisation
of this paper. In the next section, we give some basic mathematical theory
necessary for the development of Multivariate Quadratic schemes. This
includes formulas for the size of the public key, the signing and encryption
process, the general MQ-trapdoor, and MQ-related problems. After this,
we move on to the core of this paper, i.e., the taxonomy of schemes based on
Multivariate Quadratic polynomials. These basic schemes are Unbalanced
Oil and Vinegar (UOV, Section 3.1), Stepwise Triangular Systems (STS,
Section 3.2), the Matsumoto-Imai Scheme A (MIA, Section 3.3), and Hidden
Field Equations (HFE, Section 3.4). Following this, we continue with generic
modifiers of multivariate schemes, i.e., modifications which can be applied
for any form of the central equations, cf Section 4 for more details. After
developing this taxonomy we briefly discuss how the basic trapdoors and
the modifiers were applied in practice to derive concrete schemes. This is
followed by a brief discussion of the recent development of “mixed schemes”
in Section 6. Using the theory developed in the previous sections of this
article, we sketch some new schemes in Section 7. This article concludes
with Section 8.

2 General MQ-construction

In this section, we introduce some properties and notations useful for the
remainder of this article. After briefly introducing finite fields, we concen-
trate on the general problem of multivariate polynomial equations, consider
affine transformations, and also the two related problems MinRank and Iso-
morphism of Polynomials.
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2.1 Finite Fields

As finite fields are a very basic building block for these kind of schemes,
we start with properly introducing them. Loosely speaking, a finite field
consists of a (finite) set of elements, and two operations, namely addition
(denoted “+”) and multiplication (denoted “·”). These operations need to
fulfil certain criteria:

Definition 2.1 Let (F,+, ·) be a set of q ∈ N elements with the two oper-
ations addition + : F × F → F and multiplication · : F × F → F. We call
(F,+, ·) a field if the following axioms are fulfilled:

1. additive Abelian group (F,+):

(a) associativity: ∀a, b, c ∈ F : ((a + b) + c) = (a + (b + c))

(b) additive neutral: ∃e ∈ F : ∀a ∈ F : a + e = a. In the remainder
of this article, we denote this e with 0

(c) additive inverse: ∀a ∈ F ∃a′ ∈ F : a + a′ = 0. In the remainder
of this article, we denote this a′ with −a

(d) commutativity: ∀a, b ∈ F : a + b = b + a

2. multiplicative Abelian group (F∗, ·) for F∗ := F \ {0}:

(a) associativity: ∀a, b, c ∈ F : ((a · b) · c) = (a · (b · c))
(b) multiplicative neutral: ∃e ∈ F : ∀a ∈ F : a · e = a. In the

remainder of this article, we denote this e with 1

(c) multiplicative inverse: ∀a ∈ F∗ ∃a′ ∈ F∗ : a · a′ = 1. In the
remainder of this article, we denote this a′ with a−1

(d) commutativity: ∀a, b ∈ F : a · b = b · a

3. distributivity: ∀a, b, c ∈ F : a · (b + c) = a · b + a · c

Remark. For brevity, we write ab instead of a · b. If it is clear from
the context which addition and multiplication we use with the field, we also
write F instead of (F,+, ·).

Definition 2.2 Let q be a prime number, F := {0, . . . , q − 1}, and addi-
tion and multiplication usual integer addition and multiplication modulo this
prime number q. Then we call (F,+, ·) a prime field.
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Definition 2.3 Let F be a field and i(t) ∈ F[t] an irreducible univariate
polynomial in the variable t over F with degree n. Furthermore, we define the
set E := F[t]/i(t), i.e., polynomials in t with coefficients from F, the operation
addition “+” as normal addition of polynomials, and “·” multiplication of
polynomials modulo the irreducible polynomial i(t). Then we call (E,+, ·) a
polynomial field and also say that it is a degree n extension of the ground
field F.

We want to point out that definitions 2.1, 2.2, and 2.3 are consistent: it it
possible to prove that the construction from the two latter comply with the
field axioms from the first. The corresponding proofs and further properties
of finite fields can be found in [LN00]. In particular, we want to stress the
following

Lemma 2.4 Let F be a finite field and let q := |F| be the number of its
elements. Then we have ∀x ∈ F : xq = x (Frobenius automorphism).

This lemma will prove particular useful in the context of schemes defined
over extension fields (cf sections 3.3 and 3.4) and in the context of affine
transformations (cf Section 2.3); efficient implementation of arithmetic on
finite fields can be found in [BSS99, LD00].

2.2 Considerations about Multivariate Polynomial Equations

After introducing finite fields, we move on to the problem of solving a system
of multivariate polynomial equations. Let n ∈ N be the number of variables,
m ∈ N the number of equations, and d ∈ N the degree of the system. Here
x1, . . . , xn are variables over F. By convention, we set x0 := 1, i.e., the
multiplicative neutral in F. Furthermore, for given n, d ∈ N we define

Vd
n :=

{
{0} for d = 0
{v ∈ {0, . . . , n}d : i ≤ j ⇒ vi ≤ vj} otherwise

where we denote components of the vector v by v1, . . . , vd ∈ {0, . . . , n}. We
are now able to state the problem of multivariate polynomial equations. Let
P be a system of m polynomials in n variables with maximum degree d ∈ N
each, i.e., we have P := (p1, . . . , pm) where all pi have the form

pi(x1, . . . , xn) :=
∑
v∈Vd

n

γi,v

d∏
j=1

xvj for 1 ≤ i ≤ m

with the coefficients γi,v ∈ F and vectors v ∈ Vd
n.
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This allows us to define the problem of Simultaneous Multivariate Equa-
tions (SME): Let y1, . . . , ym ∈ F be some field elements and multivariate
polynomials p1, . . . , pm defined as above. Then finding a solution x ∈ Fn for
the simultaneous system of equations in the polynomial vector P and given
y ∈ Fm is called an SME-problem, cf Figure 1.

y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn)

Figure 1: Example of an SME-problem with n variables and m equations

The key-length in a system based on the intractability of the simul-
taneous solving of multivariate, non-linear equations (i.e., d ≥ 2) can be
computed using the following formulas. Therefore, we first define

τd(Fn) :=
d∑

i=0

τ(i)(Fn)

for the number of terms in a single polynomial equation over F, maximal
degree d and in n variables. Here, we have

τ(d)(Fn) :=

{ ∑min(|F|−1,d)
i

(
n
i

)
for d > 0

1 for d = 0

for the number of terms for all degrees. For the correctness of the above
formula, we notice that we have xq−1 = 1 with q := |F| in all finite fields (cf
Lemma 2.4).

In particular, this leads to the following size function for given parame-
ters F, n,m, d:

size(F, n,m, d) := mτd(Fn) log2 q . (1)

In general, we obtain a key-length of O(mnd) for the public key — or
O(nd+1) for m = n.

For any q and d = 2, we speak about the problem of Multivariate
Quadratic equations and denote the class of corresponding polynomial vec-
tors P with MQ(Fn, Fm) (cf Figure 1 for the general case). As we will
see below, this class plays an important role for the construction of public
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key schemes based on the problem of polynomial equations in finite fields.
Therefore, we state the polynomials pi explicitly for this case:

p1(x1, . . . , xn) :=
∑

1≤j≤k≤n

γ1,j,kxjxk +
n∑

j=1

β1,jxj + α1

...

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi

...

pm(x1, . . . , xn) :=
∑

1≤j≤k≤n

γm,j,kxjxk +
n∑

j=1

βm,jxj + αm

for 1 ≤ i ≤ m, 1 ≤ j ≤ k ≤ n, and the coefficients γi,j,k, βi,j , αi ∈ F. In
the case of d = 2, we call them quadratic (γi,j,k), linear (βi,j), and constant
(αi) coefficients, respectively. For short, we write the polynomial vector
P := (p1, . . . , pm) and we have P ∈ MQ(Fn, Fm). By convention, we have
j < k for q = 2 as x2

i = xi in GF(2). For brevity, we write MQ(Fn) rather
thanMQ(Fn, Fn), i.e., if the number of variables is equal to the number of
equations.

In addition, we give the formula for the number of terms for one poly-
nomial of the MQ-problem explicitly:

τ(n) :=


1 + n + n(n−1)

2 = 1 + n(n+1)
2 if F = GF (2)

1 + n + n(n+1)
2 = 1 + n(n+3)

2 otherwise .

(2)

The above formula assumes polynomials with quadratic and linear terms
plus a constant term.

The prominent role of Multivariate Quadratic equations is easily seen
by the two following observations: first, the public key size increases with
O(mnd) — and is hence very sensitive to the degree d. Therefore, we want
d to be as small as possible. On the other hand, solving quadratic systems
is already NP-complete and also hard on average. We refer the reader to cf
[GJ79, p. 251] and [PG97, App.]. A detailed proof can be found in [Wol02,
Sect. 3.2].
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2.3 Affine Transformations

As we will see in the following sections, affine transformations play an im-
portant role in the theory of Multivariate Quadratic public key systems.
Hence, to have all necessary tools at hand in the next section, we review
some of their properties. In this context, the following proves useful:

Lemma 2.5 Let F be a finite field with q := |F| elements. Then we have∏n−1
i=0

(
qn − qi

)
invertible (n× n)-matrices over F.

Proof. We observe that we have full choice for the first row vector of our
matrix — except the zero-vector. With an inductive argument we see that
we have full choice for each consecutive row vector — except the span of the
previous row vectors. Hence, we have

(
qn − qj−1

)
independent choices for

the jth row vector. �

Next, we recall some basic properties of affine transformations over the
finite field F and its nth degree extension E.

Remark. In the remainder of this text, we denote elements of vector
spaces by small letters and elements of extension fields by capital letters,
e.g., vector x ∈ Fn but element X ∈ E.

Definition 2.6 Let MS ∈ Fn×n be an (n× n) matrix and vs ∈ Fn a vector
and let S(x) := MSx + vs. We call this the “matrix representation” of the
affine transformation S.

Definition 2.7 Moreover, let s1, . . . , sn be n polynomials of degree 1 at
most over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . .+βi,nxn +αi with 1 ≤ i, j ≤ n
and αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) a
vector over Fn. We call this the “multivariate representation” of the affine
transformation S.

Remark. The multivariate and the matrix representation of an affine
transformation S are interchangeable. We only need to identify the corre-
sponding coefficients: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the
extension field E of the transformation S.

Definition 2.8 Let 0 ≤ i < n and A,Bi ∈ E. Then we call the polyno-
mial S(X) :=

∑n−1
i=0 BiX

qi
+A the “univariate representation” of the affine

transformation S(X).
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Lemma 2.9 An affine transformation in univariate representation can be
transfered efficiently in multivariate representation and vice versa.

Proof. This lemma follows from [KS99, Lemmata 3.1 and 3.2] by a simple
extension from the linear to the affine case. �

In the remainder of this paper, we will denote the class of affine trans-
formations Fn → Fn by Aff0(Fn), and the class of linear transformations,
i.e., with the constant term equal to 0, will be denoted by Hom0(Fn) for
homomorphism. In both cases, the subscript 0 indicates that the all zero
transformation is also included in this set. Moreover, for affine and linear
transformations, we can use the matrix representation to determine if the
corresponding transformation is a bijection or not. For a bijection, the ma-
trix MS needs to have full rank. In most cases, we will use bijections in this
paper and hence, use Aff−1(Fn) and Hom−1(Fn), i.e., the class of invertible
affine and homomorphic transformations, respectively. In this context we
want to stress that (Aff−1(Fn), ◦) and (Hom−1(Fn), ◦) form groups where ◦
denotes function composition.

At some points, we will not only need affine transformations within the
same vector space, but a affine transformations S(x) : Fn → Fm with n 6= m.
We therefore extend our notation to Aff−1(Fn, Fm) and Hom−1(Fn, Fm) in
this case, respectively. Obviously, the corresponding transformations cannot
be bijective anymore, but injective in the case n < m and surjective in the
case n > m. As in the case of bijective transformations, we can use the
rank of the corresponding matrix to determine if a given transformation is
injective or surjective. Moreover, function composition is no longer defined
on these objects and hence, (Aff−1(Fn, Fm), ◦) (Hom−1(Fn, Fm), ◦) are no
groups anymore.

2.4 MQ-trapdoor

To be useful for public key cryptology, we do not only need an intractable
problem, but also a way of embedding a trapdoor into it. For the MQ-
problem as stated in Section 2.2, we are able to embed a trapdoor (S,P ′, T )
into a system of equations P, cf Figure 2. Here we have (S,P ′, T ) ∈
Aff−1(Fn) × MQ(Fn, Fm) × Aff−1(Fm) and P ∈ MQ(Fn, Fm), i.e., S is
an invertible affine transformation S : Fn → Fn and T is an invertible affine
transformation T : Fm → Fm. Moreover, P ′ is a polynomial vector as defined
in Section 2.2, i.e., all m polynomials in n variables each have degree d = 2.
In particular, we have P ′ as a function P ′ : Fn → Fm. In the remainder of
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input x

?
x = (x1, . . . , xn)

?
private: S

x′

?
private: P ′

y′

?
private: T

output y �

public:
(p1, . . . , pn)

Figure 2: Graphical Representation of the MQ-trapdoor (S,P ′, T )

this paper, we denote components of the hidden quadratic transformation P ′
by a prime ′, e.g., the variables x′1, . . . , x

′
n or the coefficients α′

i, β
′
i,j , γ

′
i,j,k for

1 ≤ i ≤ m and 1 ≤ j ≤ k ≤ n. In general, P ′ consists of non-homogeneous
polynomials, i.e., we have at least one non-zero β′

i,j and one non-zero α′
i in

this polynomial-vector.
We want to point out that the trapdoor from Figure 2 is the only one

possible: as we restricted our attention toMultivariateQuadratic equations,
we cannot have a degree higher than 2 for the public key equations. But this
implies immediately that we can have at most one degree 2 transformation
in the overall construction. Hence, all variations of Multivariate Quadra-
tic systems (cf Section 4) can only use degree one equations for the two
affine transformations S, T and some hidden invertible quadratic system of
polynomials for P ′. In particular, these two affine transformations are used
to hide the internal structure of the central equations P ′ from the eyes of an
attacker. This is necessary as we need the central map P ′ to be invertible
in contrast to the public key P alone.

Another way of “modifying” the above trapdoor is the use of several
affine transformations. However, as we saw in the previous section, this
does not help as affine transformations form a group and hence, are closed
under composition.
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2.4.1 Signature Verification

Signature verification is the same for all schemes based on the difficulty of
theMQ-problem: evaluate the polynomial vector P with a given signature
x ∈ Fn. If the result is the same as the given message vector y ∈ Fm, we
accept the signature, otherwise we reject. For short, we write y

?= P(x)
where ?= denotes comparison.

More detailed, we perform the following m checks in F:

y1
?= p1(x1, . . . , xn)
...

ym
?= pm(x1, . . . , xn)

As each polynomial has τ(n) = O(n2) coefficients (cf Section 2.2), such
an evaluation takes a total of O(mn2) multiplications and additions in the
finite field F. Strategies for fast evaluation of the public key are discussed
in [CGP01, CGP03a].

2.4.2 Signature Generation

To generate a signature using the trapdoor (S,P ′, T ), we observe that we
need to invert each individual step, i.e., we need to compute the vector
y′ := T−1(y) for given y, followed by x′ := P ′−1(y′), and finally x := S−1(x′),
cf Figure 2.

We start with the inversion of S(x): as we saw in Section 2.3, we can
write this affine transformation using an invertible matrix M ∈ Fn×n and
a vector v ∈ Fn, i.e., we have S(x) := Mx + v. Therefore, its inverse
transformation is given by S−1(x) := M−1(x − v). Similar, we can invert
the affine transformation T .

Things are more complicated for the system of polynomials P ′ as in-
version strategies differ for individual trapdoor functions, e.g., MIA, HFE,
STS, or UOV. Therefore, we will discuss the inversion strategy in the indi-
vidual sections (cf Section 3). However, we want to stress that it is enough
to find one pre-image of P to obtain a valid signature, i.e., we only need
some x′ ∈ Fn with P ′(x′) = y′ for given y′ ∈ Fm. In case P ′ : Fn → Fm

and hence P : Fn → Fm is not a surjection, we add some random bits to the
input x ∈ Fn, cf [CGP01] for an outline of this idea. In a nutshell, even a
small number of random bits, e.g., 7 bits as discussed in [CGP01], ensures
that we obtain valid signatures with a probability of 1− 2187 for any given
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message x ∈ Fn. As we will see in the next section, matters are slightly
more complicated for decryption.

2.4.3 Decryption

Decryption and signature generation are quite similar — except for the fact
that we usually need to compute all possible pre-images X ′

1, . . . , X
′
k ∈ Fn

which satisfy the equation P ′(X ′) = y′ for given y′ ∈ Fm and some k ∈ N.
Depending on the scheme used, it may happen that we do not have a unique
solution X ′ for this equation. Hence, we need a possibility to pick the
right Xi from the set of all possible solutions Q := {Xi ∈ Fn : Xi :=
S−1(X ′

i) for 1 ≤ i ≤ k}. Assuming that we decrypt a valid cipher text, we
have Q non-empty and hence, k ∈ Z : k ≥ 1.

plaintext M

?
side computation: redundancy x̃

X = (x1, . . . , xn)

?
private: S

X ′

?
private: P ′

y′

?
private: T

y �

public:
(p1, . . . , pn)

Figure 3: MQ-systems for Encryption of Message M with Ciphertext (y, x̃)

This problem has been discussed in [Pat96b] and its author suggests to
use either error-correcting codes or a cryptographically secure hash function
for this purpose. To the knowledge of the authors of this article, only hash
functions have been used so far in this context. Denote such a hash function
H(·) : Fn → {0, 1}h where h is the length of the hash string. Hence, during
encryption (see below), also the hash x̃ := H(x) is computed and then used
to pick the right Xi from the set Q by simply checking if the corresponding
hashes match, i.e., if we have H(Xi)

?= x̃. As the hash function is assumed
to be cryptographically secure, an attacker cannot use the knowledge of x̃
to gain an advantage when computing x. However, the workload of this
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procedure clearly depends on the size of the set Q: on average, we will need
to check |Q|/2 elements before finding the right Xi. Hence, Q may not be
too large in practice. As we will see below, this is a serious obstacle for
constructing a secure and efficient encryption scheme based on the MQ-
problem.

In this context, the question of the optimal length of the output of such
a hash function is also important: having the corresponding hash too short,
we may not be able to find a unique xi from the set Q. Having h too long,
we waste bandwidth. This question has been elaborated in [Dau01, Section
2.3.3]. In a nutshell, we need an 80 bit hash to have a probability of 1−2−80

for unique decryption. More general, we need h bit to have a probability of
1− 2h for unique deciphering.

Using the idea of an error correcting code on x, i.e., to encode a message
M using some code word x, and only accepting elements from Q which are
a correct codeword, does not seem to have advantages over the idea of using
hash-functions but enforces a bigger parameter n. Hence, the number of
coefficients increases and also the time for decryption or encryption. More-
over, having redundancy in the clear text is usually not a good idea as it
could be exploited in an attack. We therefore do not advise this strategy
but encourage the use of hash-functions here.

A similar strategy is padding: here, the first f < n bits of the message
vector X ∈ Fn are fixed to some values v1, . . . , vf ∈ F and only signatures
with x1 = v1, . . . , xf = vf are accepted. Here, we have the same concerns
as for methods using error correcting codes: we need a bigger parameter n
for secure schemes but may give the adversary an advantage.

2.4.4 Encryption

As discussed in the previous section, the function P ′(x′) = y′ is usually not
surjective — and consequently, neither is P(x) = y. Hence, we need to
compute some redundancy to allow unique decryption, cf Figure 3. There-
fore, encryption consists of two steps: first, we evaluate the public key and
second, we compute this redundancy x̃:

1. y := P(x)

2. x̃ := H(x)

for some hash function H(·), cf previous section. The encrypted message
now consists of the pair (y, x̃) ∈ Fm × {0, 1}h for h ∈ N being the length of
the hash-string used. In contrast to decryption, encryption is always unique
as there exists only one y ∈ Fm for any given x ∈ Fn.
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2.4.5 General Linearization Attack

Here we describe a very general attack against all public key systems which
useMultivariate Quadratic equations as their public key. To the knowledge
of the authors, it has first been described in [Pat96b, Sect. 3]. Here, we
assume that we know y, ŷ ∈ Fm and some difference ∆ ∈ Fn with ∆ =
(δ1, . . . , δn). Now we have y = P(x) and ŷ = P(x + ∆) for some unknown
vector x ∈ Fn. We subtract the two equations y = P(x) and ŷ = P(x + ∆)
component-wise, and get

yi − ŷi = pi(x1, . . . , xn)− pi(x1 + δ1, . . . , xn + δn)
= (γi,0 − γi,0) +

+γi,1(x1 − x1 − δ1) + · · ·+ γi,n(xn − xn − δn) +
+γi,1,1(x2

1 − x2
1 + 2x1δ1 − δ2

1) +
+γi,1,2(x1x2 − x1x2 − x1δ2 − x2δ1 − δ1δ2) + · · ·+
+γi,n,n(x2

n − x2
n + 2xnδn − δ2

n)
+βi,1(x1 − x1 − δ1) + . . . + βi,n(xn − xn − δn) + +αi − αi

= −γi,1δ1 − · · · − γi,nδn

+γi,1,1(2x1δ1 − δ2
1) + γi,1,2(−x1δ2 − x2δ1 − δ1δ2) + · · ·+

+γi,n,n(2xnδn − δ2
n)

−βi,1δ1 − . . .− βi,nδn

for 1 ≤ i ≤ m. This yields a system of equations linear in x1, . . . , xn. A
solution can therefore be computed in polynomial time, e.g., by Gaussian
elimination.

This attack can be avoided by padding the vector x with random el-
ements of F or by introducing a linearly resistant permutation (e.g., AES
with a publicly known key). Although we need to make sure that they are
not valid in a specific application domain, the assumptions that have to be
made for the attack are rather unlikely to be satisfied in reality.

2.5 Extension Fields Revisited

After concentrating on the use of Multivariate Quadraticpolynomials, we
move on to the multivariate representation of univariate functions. Before
doing so, we need an isomorphism between the extension field E of dimension
n over the ground field F (cf Definition 2.3) and the vector space Fn. To
this aim, we observe that all field elements a ∈ E have the form

an−1t
n−1 + · · ·+ a1t + a0 with ai ∈ F .
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In addition, we see that a vector b ∈ Fn can be represented as (b1, . . . , bn)
with bi ∈ F.

Definition 2.10 Let E be an nthdegree extension of the ground field F and
Fn the corresponding vector space. Then we call φ : E→ Fn with

φ(a) := b and bi := ai−1 for 1 ≤ i ≤ n

for a0, . . . , an−1, b1, . . . , bn ∈ F as defined above the canonical bijection be-
tween E and Fn. We also use its inverse φ−1 and have φ(φ−1(b)) = b for all
b ∈ Fn and φ−1(φ(a)) = a for all a ∈ E.

With this definition, we are now able to formally prove an important
lemma in the context ofMQ-systems.

Lemma 2.11 Let E be an extension field and F the corresponding ground
field. We have q := |F| as the number of its elements. In addition, let n be
the dimension of E over the ground field. Moreover, consider the univariate
monomial P (X) := CXqa+qb

over E for some a, b ∈ N and C ∈ E. Then
there exists a polynomial vector P ∈ MQ(Fn) which computes the same
function, i.e., ∀ W ∈ E : φ(P (W )) = P(φ(W )).

Proof. First, we decompose P (X) into two the univariate monomials
U(X) := CXqa

and V := Xqb
. Second, we observe that computing in the

ring Z/(qn − 1)Z allows us to reduce the degree of the monomials U(X), V
below qn. In particular, we can obtain obtain two integers a′, b′ ∈ Z with
0 ≤ a′, b′ < n such that U(X) = U ′(X) for U ′(X) := CXqa′

holds for all
inputs X ∈ E. The same is true for V (X) = V ′(X) with V ′(X) := Xqb′

.
Therefore, and w.l.o.g., we can assume 0 ≤ a, b < n.

Next we note that the monomials U, V are affine transformations in
univariate representation, i.e., we can apply Lemma 2.9 to obtain the corre-
sponding multivariate representations U and V. Denoting the components
of the polynomial vector U by u1, . . . , un we can now write

U(x1, . . . , xn) = φ(U(φ−1(x1, . . . , xn)))
= φ(u1(x1, . . . , xn)

+ tu2(x1, . . . , xn)
+ . . .

+ tn−1un(x1, . . . , xn))
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Similar, we obtain a mixed Fn/E-representation of the polynomial vector V.
Multiplying U ,V in E, i.e., in particular, modulo the irreducible defining
polynomial i(t), yields the corresponding Multivariate Quadratic polyno-
mials by construction. �

Remark. Instead of computing the multivariate polynomials as outlined in
the above proof, we can also use multivariate polynomial interpolation, cf
[MI88, Wol04] for details.

Corollary 2.12 For a polynomial of the form

P (X) :=
∑

0≤i,j≤D

qi+qj≤D

Ci,jX
qi+qj

with Ci,j ∈ E

with D ∈ N and D < qn, there exists a polynomial vector P ∈ MQ(Fn)
which computes the same function.

Lemma 2.13 Let F be a ground field and E an n-dimensional extension of
F. Then for the polynomial

P (X) :=
∑

0≤i≤j<n

Ci,jX
qi+qj

+
n−1∑
i=0

BiX
qi

+ A

with coefficients Ci,j , Bi, A ∈ E there exists a unique multivariate polyno-
mial vector P ∈ MQ(Fn) which computes the same function, i.e., we have
P (X) = φ−1(P(φ(X))) ∀X ∈ E.

Proof. We use Corollary 2.12 for the quadratic terms, Lemma 2.9 on
the affine part, and add up the result. �

Interestingly, the converse is also true:

Lemma 2.14 Let P ∈ MQ(Fn) be a Multivariate Quadratic system of
equations and E an n-dimensional extension of the ground field F. Then
there exists a unique univariate polynomial

P (X) :=
∑

0≤i≤j<n

Ci,jX
qi+qj

+
n−1∑
i=0

BiX
qi

+ A

with coefficients Ci,j , Bi, A ∈ E which computes the same function as P, i.e.,
we have P (X) = φ−1(P(φ(X))) ∀X ∈ E.
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Proof. We use a counting argument and will assume F 6=GF(2) for simplic-
ity. Consider all polynomials P (X) ∈ E[X] which have the above form. They
have

(
n
2

)
+n+n+1 coefficients in totals: the quadratics (coefficients Ci,j with

i 6= j), the quadratics in the same variable (coefficients Ci,i), the linear terms

(coefficients Bi) and the constant term A. Hence, there are q
n.

“
n(n+3)

2

”
+1

choices in total for these polynomials P (X). On the other hand, we know

from (2) that we have a total choice of qn.τ(n) = q
n.

“
n(n+3)

2

”
+1 for poly-

nomial vectors in MQ(Fn). In addition, Lemma 2.13 shows that each of
these polynomials P (X) has a unique multivariate representation, denoted
P(X). Moreover, both functions compute the same output for any given
input X ∈ E. This is not true for two polynomials P1(X), P2(X) ∈ E[X],
P1 6= P2 and their corresponding polynomial vectors P1,P2 ∈ MQ(Fn).
Hence, using the counting from above we are able to conclude that for each
polynomial vector P, there is one unique univariate polynomial P (X). This
completes the proof for the case F 6= GF(2).

The same proof runs through for GF(2), but we have to adjust our
counting slightly as x2

i = xi holds for 1 ≤ i ≤ n and consequently no
terms of the form Xqi+qi

in the polynomial P (X). However, the overall idea
remains the same. �

Remark. The previous lemma has already been shown in a more general
setting in [KS99, Lemma 3.3]; in this article, the proof has been simplified for
the case ofMultivariate Quadraticequations. Another proof of this lemma,
but this time restricted to the case F = GF(2), can be found in [MIHM85].
Moreover, the univariate representation of multivariate quadratic equations
can be computed efficiently: we use polynomial interpolation on a total of
O(n2) points from E, which translates to O(n3) elements from F.

Lemma 2.15 Let n ∈ N be the number of variables and m ∈ N be the
number of equations. Let P ∈ MQ(Fn, Fm) be a Multivariate Quadra-
tic system of equations. For (a) m < n and (b) m > n there exists a
univariate representation P ∈ E[X] for E being an (a) n-dimensional and
(b) m-dimensional extension of the ground field F.

Proof. Case (a): We have m < n and E an n-dimensional extension of the
ground field F and define φ : E → Fn (see above). Moreover, consider the
reduction/projection transformation R : Fn → Fm defined as

R(x1, . . . , xm, xm+1, . . . , xn) := (x1, . . . , xm)
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and its “inverse” transformation R−1 : Fm → Fn which is defined as

R−1(x1, . . . , xm) := (x1, . . . , xm, 0, . . . , 0) .

Using Lemma 2.14, we compute a polynomial P ∈ E[x] with

P (X) = φ−1(R−1(P(φ(X)))) with X ∈ E

By construction, we have

R(φ(P (φ−1(x)))) = P(x) ∀x ∈ Fn

An alternative way of writing the above statement is to replace the “inverse
reduction” R−1(X) by adding zero polynomials pm+1, . . . , pn to the mul-
tivariate function P, i.e., these polynomials are all chosen to be the zero
polynomial. This way, we obtain P : Fn → Fn and can therefore apply
Lemma 2.14 directly.
Case (b): We have m > n and E an m-dimensional extension of the ground
field F and define φ : E → Fm. Moreover, consider the reduction transfor-
mation R : Fm → Fn defined as R(x1, . . . , xn, xn+1, . . . , xm) := (x1, . . . , xn).
Using Lemma 2.14, we compute a polynomial P ∈ E[x] with

P (X) = φ−1(P(R(φ(X)))) ∀X ∈ E

By construction, this polynomial computes the required function. Moreover,
due to the definition of the reduction function R(x), the degree of P(R(x))
keeps quadratic. �

Remark. Due to their construction, both polynomials P (X) in (a) and
(b) of Lemma 2.15 are an univariate representation of the corresponding
P(x). For a fixed reduction transformation R and a fixed extension field E,
this univariate polynomial P (X) is unique by construction.

Theorem 2.16 Let n, m ∈ N and F a finite field with q := |F| elements.
Moreover, define k := max{n, m} and an extension field E := GF(qk). Then
there exists a unique univariate representation P ∈ E[X] for each multivari-
ate system of equations P ∈MQ(Fn, Fm) and vice versa.

Proof. We use lemmata 2.13, 2.14, and 2.15. �

Remark. For d the maximal degree of the multivariate equations, and
a univariate polynomial P (X) with monomials of the form Xqi1+···+qid′ with
d′ ≤ d, we are able to prove a generalisation of Lemma 2.9 by induction over
d. Similar, we can prove the converse for general polynomials P . However,
as this article concentrates on Multivariate Quadratic equations, we omit
the corresponding proofs.
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2.6 Related Problems

Although the MQ-problem is computationally hard, this is not enough for
the construction of secure public key schemes. Here, we outline two more
problems which are used in the context of these schemes.

2.6.1 Isomorphism of Polynomials

For the construction of secure public key systems based on polynomial equa-
tions over finite fields, the security of the IP-problem [Pat96b], i.e., the
difficulty to find affine transformations S ∈ Aff−1(Fn) and T ∈ Aff−1(Fm)
such that P = T ◦ P ′ ◦ S for given polynomial vectors P,P ′ is also im-
portant. In particular, the private key in such systems is usually the triple
(S,P ′, T ), cf Section 2.4, and the public key the polynomial vector P. Hence,
if the IP-problem were easy, the security of these schemes would be seriously
jeopardised. Therefore, these constructions have to make the (often not ex-
plicitly stated) assumption that the corresponding IP-problem is difficult.
If P ′ has a special structure — as it is the case for all systems based on the
difficulty of solving a system of polynomial equations over a finite field — it
is possible that the corresponding IP-problem becomes easy and the system
can be broken exploiting this weakness, cf e.g.[KS98, GC00, WBP04] for
examples of such attacks.

A discussion of the security of the general IP-problem can be found in
[Pat96b, PGC98b, GMS02, LP03]. In particular, [LP03, Per05] show that
the IP-problem with one secret, i.e., T is given or equal to the identity
transformation, can be solved easily if m ≥ n, i.e., the number of variables
does not exceed the number of variables.

2.6.2 MinRank

Let (M1, . . . ,Mk) be a sequence of k ∈ N matrices over Fn×n each. Moreover,
let r ∈ N. For the MinRank-problem, we are interested in finding a linear
combination of the above matrices, i.e., a vector λ ∈ Fk such that

Rank(
k∑

i=1

λiMi) ≤ r .

The above problem has been shown to be NP-complete when stated over
finite fields [BFS96].

In special cases, namely when the rank r is extremely small or the max-
imal rank R ∈ N of the matrices M1, . . . ,Mk is very close to n, the problem
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becomes tractable. In particular, [GC00] gives two algorithms with com-
plexity O(qr) and O(qn−R), respectively, for these two special cases. The
question if a more efficient algorithm for these cases or even the general
MinRank-problem exists remains open. A positive answer would have se-
rious implications for the security of several schemes based on the MQ-
problem as the MinRank-problem has been used in the cryptanalysis of
several systems, e.g., in [CSV93, CSV97, KS98, KS99, GC00, WBP04].

3 Basic Trapdoors

After talking about the generalMQ-problem and how to embed a trapdoor
into it, we will now consider special constructions of this trapdoor. We
start with two constructions which use only a finite field F, denoted UOV
and STS. We then move on to the two schemes MIA and HFE; both use a
ground field F and an extension field E.

3.1 Unbalanced Oil and Vinegar Schemes: UOV

The “Unbalanced Oil and Vinegar” (UOV) scheme was introduced in [KPG99],
cf [KPG03] for an extended version of this paper. UOV is a generalisation
of the original Oil and Vinegar scheme of Patarin [Pat97].

Definition 3.1 Let F be a finite field and n, m ∈ N with m < n and
α′

i, β
′
i,j , γ

′
i,j,k ∈ F. We say that the polynomials below are central equations

in UOV-shape:

pi(x′1, . . . , x
′
n) :=

n−m∑
j=1

n∑
k=1

γ′i,j,kx
′
jx

′
k +

n∑
j=1

β′
i,jx

′
j + α′

i .

In this context, the variables x′i for 1 ≤ i ≤ n−m are called the “vinegar”
variables and x′i for n−m < i ≤ n the “oil” variables. We also write o := m
for the number of oil variables and v := n −m = n − o for the number of
vinegar variables. Note that the vinegar variables are combined quadrati-
cally while the oil variables are only combined with vinegar variables in a
quadratic way. Therefore, assigning random values to the vinegar variables,
results in a system of linear equations in the oil variables which can than be
solved, e.g., using Gaussian elimination.

Moreover, Unbalanced Oil and Vinegar schemes (UOV) omit the affine
transformation T but only use S ∈ Aff−1(Fn). To fit in our framework, we
set it to be the identity transformation, i.e., we have T = id for UOV by
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definition. UOV is able to omit T as all equations have exactly the same
shape. Hence, we do not need T to hide any special structure. Moreover,
using the ideas of [WP04b, WP05] we can actually show that the transfor-
mation T could always be moved into the central equations P ′ and hence,
does not give any gain in security.

The UOV scheme can only be used for signature schemes as we need
v ≥ 2o for a secure construction. The first attack against the original OV,
i.e., with parameters o = v or n = 2m can be found in [KS98]. This attack
has been extended to UOV in [KPG99]. The latest security evaluation —
also taking Gröbner bases into account, can be found in [BWP05]. As shown
in all these papers, we have on average qv different pre-images x ∈ Fn on
average for a given vector y ∈ Fm, so decryption is by no means efficient. In
a nutshell, the most efficient attacks have a complexity of O(qv−m−1m4) =
O(qn−2m−1m4) and are due to [KPG99].

We also want to point to [WP05] for the question of equivalent private
keys: this article shows that UOV needs too much memory for its private
key as each of them is only a representative of a class of

qn
n−m−1∏

i=0

(qn−m − qi)
m−1∏
i=0

(qm − qi)

equivalent private keys. Hence, for memory efficient implementations, only
a normal form of the private key should be stored. Such a form can be
computed using the algorithm presented in the proof of [WP05, Thm. 4.6].

3.2 Stepwise Triangular Systems: STS

Another approach to obtain an invertible central map is used in step-wise
triangular systems (STS). They have been introduced in [WBP04]. As UOV,
STS are defined over a finite field F and use a special structure for the central
equations P ′ which allows easy inversion (cf Figure 4 for regular STS). Here,
the step-width (number of new variables) and the step-height (number of
new equations) is controlled by the parameter r. As usual, we use m for
the number of equations and n for the number of variables. In addition, we
denote L the number of layers, q the size of the ground field F, and r the
step-width.

Let r1, . . . , rL be L integers such that r1 + · · · + rL = n, the number of
variables, and m1, . . . ,mL ∈ N such that m1 + · · · + mL = m, the number
of equations. Here rl represents the number of new variables (step-width)
and ml the number of equations (step-height), both in step l for 1 ≤ l ≤ L.
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Step 1

8><>:
p′1 (x′

1, . . . , x
′
r)

...

p′r (x′
1, . . . , x

′
r)

...

Step l

8><>:
p′(l−1)r+1 (x′

1, . . . , x
′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr)

...

p′lr (x′
1, . . . , x

′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr)

...

Step L

8><>:
p′(L−1)r+1 (x′

1, . . . , x
′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr, . . . , x′

n−r+1, . . . , xn)
...

...

p′Lr (x′
1, . . . , x

′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr, . . . , x′

n−r+1, . . . , xn)

Figure 4: Central Equations p′i in a Regular STS Scheme

In a general step-wise Triangular Scheme (gSTS), the ml private quadratic
polynomials of each layer l, contain only the variables x′k with k ≤

∑l
j=1 rj ,

i.e., only the variables defined in all previous steps plus rl new ones. The
overall shape of the private polynomials leads to the name step-wise Tri-
angular Scheme (STS), cf Figure 4 for regular STS. We want to stress in
this context that we do not assume any specific structure for the private
polynomials p′1, . . . , p

′
m here. In particular, all coefficients γ′i,j,k, β

′
i,j , α

′
i ∈ F

may be chosen at random.
When not mentioned otherwise, we concentrate on regular STS schemes

(rSTS or STS for short) in this section to simplify explanations. For regular
STS schemes we set r1 = · · · = rN = m1 = · · · = mL, which we denote by
r. Consequently, we have n = m = Lr.

To invert a system of central equations P ′(x′) = y′ for given y′ ∈ Fm, we
exploit the step-structure: in each level l, we have qr possible vectors and
only need to keep the intermediate values (x′(l−1)r+1, . . . , x

′
lr) which satisfy

the corresponding equations

y′(l−1)r+1 = p′(l−1)r+1(x
′
1, . . . , x

′
lr)

...
y′lr = p′lr(x

′
1, . . . , x

′
lr)

for given y′(l−1)r+1, . . . , y
′
lr ∈ F. Having a bijective structure in each level

makes sure we get only one possible solution — this way, STS becomes
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particularly efficient. However, we impose some conditions on our choices
for the coefficients γ′i,j,k, β

′
i,j , α

′
i ∈ F this way. Anyway, in a signature scheme,

it is even enough if we only get one solution for the corresponding equation.
For general STS, we use the same idea but for each individual layer and
hence with a different number of equations and variables. However, observe
that the legitimate user has a workload growing with qr which implies that
this number cannot be too large if there is no special trapdoor embedded
for each layer, cf Section 6 for examples of such constructions with a special
trapdoor embedded.

After outlining both regular and general step-wise triangular schemes,
we give a brief account of constructions suggested so far. We begin with the
Birational Permutation Schemes of Shamir [Sha93]. They are regular STS
schemes with r = 1. However, as previously mentioned, they are not defined
over a (small) finite field but over a (large) finite ring. So strictly speaking,
they are no STS schemes although they are clearly related. In contrast, the
TPM (Triangle Plus Minus, [GC00]) class of Goubin and Courtois coincides
with STS for the parameters r1 = u, mL = v, m1 = · · · = mL−1 = r2 =
· · · = rL = 1, i.e., we remove u ∈ N initial layers, add v ∈ N polynomials in
the last step, and have exactly one new variable at all intermediate levels.
TPM is a subclass of STS as it is not defined over a ring but over a field,
and hence, is an example of anMQ-scheme.

Shamir’s scheme was broken shortly after its publication in [CSV93,
The95, CSV97]. The TPM scheme of Goubin and Courtois has been bro-
ken in the same paper that proposed it [GC00]. In fact, the aim of their
construction was to show that Moh’s TTM (Moh’s Tame Transformation
Method, [Moh99]) construction is weak.

The schemes RSE(2)PKC and RSSE(2)PKC, proposed by Kasahara and
Sakai, cf [KS04b, KS04a], also fall in the class of STS schemes. Both schemes
— and actually the whole STS class — have been broken in [WBP04]. The
first attack is an inversion attack which computes the message/signature
for given ciphertext/message with a workload of O(mn3Lqr + n2Lrqr), the
second is a structural attack which recovers an equivalent version of the
secret key with a workload of O(mn3Lqr + mn4) operations. Hence, for
small parameters of qr these schemes are highly insecure. Unfortunately,
this is exactly the case of STS without any extra trapdoor, so we have to
conclude that STS is broken in general.
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3.3 Matsumoto-Imai Scheme A: MIA

The scheme MIA is due to Matsumoto and Imai [IM85, MI88]. It is the first
scheme in this article which uses two different finite fields, namely a ground
field F and an extension field E.

Definition 3.2 Let E be an extension field of dimension n over the finite
field F with q := |F| elements and λ ∈ N an integer with gcd(qn−1, qλ+1) =
1. We then say that the following central equation over E is of MIA-shape:

P (X ′) := (X ′)qλ+1 .

The restriction gcd(qn−1, qλ +1) = 1 is necessary first to obtain a permuta-
tion polynomial and second to allow efficient inversion of P (X ′). This is due
to the fact that the equation h.(qλ +1) ≡ 1 (mod qn−1) has exactly one so-
lution h ∈ N with h < qn−1, as we have the previously mentioned condition
on the possible choices of the value λ. Given h, we can solve Y ′ = P ′(X ′)
as (Y ′)h = X ′[h.(qλ+1)] = X ′ by raising Y ′ to the power of h. Note that
these operations take place in the n-th dimensional extension E of the finite
field F. All in all, this approach is similar to RSA. However, the hardness
of MIA is not based on the difficulty of finding the exponent h but in the
intractability to obtain transformations S, T for given polynomial equations
P,P ′ (IP-problem, cf Section 2.6.1). As we saw in Section 2.5, the above
monomial can be expressed in terms of Multivariate Quadratic equations
and hence be used as a trapdoor for an MQ-problem, cf Lemma 2.11 and
also Theorem 2.16.

We want to note that MIA is insecure, due to a very efficient attack by
Patarin [Pat95]. Moreover, we want to point out that Geiselmann et al.
showed how to reveal the constant parts of these transformations [GSB01].
Hence, having S, T affine instead of linear does not seem to enhance the
overall security of MIA. The papers [WP04b, WP05] discuss the question of
equivalent keys for MIA and some variations.

Remark. In the paper [MI88], MIA was introduced under the name
C∗. Moreover, it used the branching modifier (cf Section 4.4) by default.
As branching has been attacked very successfully, C∗ has been used with-
out this modification for any later construction, e.g., [CGP00b, CGP02,
CGP00a, CGP03a]. However, without the branching condition, the scheme
C∗ coincides with the previously suggested “Scheme A” from [IM85]. To ac-
knowledge this historical development, we decided to use the earlier notation
and call the scheme presented in this section “MIA” for “Matsumoto-Imai
Scheme A”. As an additional benefit, the notation becomes more uniform
as all basic schemes are now named with 3 letter acronyms.
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3.4 Hidden Field Equations: HFE

After breaking MIA, Patarin generalised the underlying trapdoor to “Hidden
Field Equations” [Pat96b]. This generalisation aims at the central equations
and uses a univariate polynomial rather than a univariate monomial here.
But the basic idea of MIA, i.e., to mix a given ground field with one of its
extension fields is still used in HFE as we see in the following

Definition 3.3 Let F be a finite field with q := |F| elements, E its n-th
degree extension, and φ : E→ Fn the canonical bijection between this exten-
sion field and the corresponding vector space (cf Definition 2.10). Moreover,
let P (X) a univariate polynomial over E with

P ′(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

C ′
i,jX

′qi+qj
+

∑
0≤k≤d

qk≤d

B′
kX

′qk
+ A′

where


C ′

i,jX
qi+qj

for C ′
i,j ∈ E are the quadratic terms,

B′
kX

qk
for B′

k ∈ E are the linear terms, and
A′ for A′ ∈ E is the constant term

for i, j ∈ N and a degree d ∈ N. Now we say the central equations P ′ :=
φ ◦ P ′ ◦ φ−1 are in HFE-shape.

As the degree of the polynomial P ′ is bounded by d, this allows efficient
inversion of the equation P ′(X ′) = Y ′ for given Y ′ ∈ E and small d, cf
[Pat96b, Section 5] for an overview of possible algorithms for this problem;
in a nutshell, these algorithms depend both on the size of the dimension n of
the extension field E and the degree d of the central polynomial P . Hence,
from an efficiency point of view, both should be rather small. Moreover,
in contrast to MIA, HFE is in general no surjection, cf Section 2.4.3 for
possible ways to overcome this problem.

As for MIA, we notice that the HFE polynomial P ′(X ′) can be expressed
asMultivariate Quadratic equationsMQ(Fn) and are hence a possible cen-
tral equation, cf Section 2.5 and in particular Lemma 2.14 and Theorem 2.16.

From a cryptanalytic point of view, basic HFE are broken: an effi-
cient key inversion attack, using the MinRank-problem (cf Section 2.6.2),
has been demonstrated in [KS99]. An inversion attack which uses both
Gröbner bases and general linearization methods has been shown in [FJ03].
In [SG03] we find an attack which works better if n is not a prime, i.e., we
have splitting fields. A more detailed discussion of HFE can be found in
[Pat96b, Cou01, WP04a]. Here, [Pat96b] gives some general considerations
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of HFE after its development, e.g., a general linearization attack against all
multivariate schemes (cf Section 2.4.5), while [Cou01] summarised the situ-
ation of HFE in 2001 and also improves over the attack from [KS99]. The
latest such summary of attacks can be found in [WP04a]. In particular, this
paper outlines two versions of HFE which are secure against all known at-
tacks. Finally, [WP04b, WP05] show that HFE allow many equivalent keys
and hence, waste memory. Based on [Tol03] these articles show that from
a cryptanalytic point of view, it is possible to restrict to HFE with linear
transformations S, T ∈ Hom−1(Fn) × Hom−1(Fm) instead of affine trans-
formations S, T ∈ Aff−1(Fn) × Aff−1(Fm). They improve over [Tol03] by
showing that also Frobenius transformations and multiples in the extension
field can be used to restrict the key space even further.

3.5 Taxonomy and Preliminary Conclusions

The four trapdoors discussed above are actually all basic trapdoors known so
far. We notice that all of them are rather old: the first were MIA (1983) and
STS (1993 in Shamir’s birational permutations and 2004 in STS), followed by
HFE (1996) and UOV (1997 as OV and 1999 as UOV). Apart from UOV with
well-chosen parameters, all basic trapdoors have to be considered broken.
Unfortunately, UOV is rather inefficient in terms of signature expansion and
has a rate of 3 between m, i.e., the dimension of the message space and n,
i.e., the dimension of the signature space, i.e., it has a signature expansion
rate of 3. Moreover, UOV can not be used to construct a secure encryption
scheme. Therefore, we need to discuss some generic modifications. A nice
property of these modifiers is that they can be used in combination with
any of these basic trapdoors (see below). Moreover, we will see how it is
possible to combine several basic trapdoors to more elaboratedMQ-systems
in Section 6.

Before doing so, we build up a taxonomy to get a better view on the
different trapdoors used so far, cf Figure 5 for a graphical representation.
Using the finite fields as a first criterion, we see that MIA and HFE form the
class of “mixed field” schemes: both use the ground field F and an extension
field E to construct a trapdoor. Therefore, both are vulnerable to attacks
using Gröbner bases as these can exploit the structure of the extension
field and the rather low number of univariate monomials when compared
to a random system of equations. The same is true for the linearization
attack as discussed,e.g., in [JKJMR05]. In contrast, UOV and STS are
“single field” systems as they only use the ground field F but construct
their trapdoor using special conditions for the polynomials p′1, . . . , p

′
m: the
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Figure 5: Taxonomy of the Basic MQ-trapdoors

concept of vinegar variables for UOV and a layer- or step-structure for STS.
In both cases, the ranks of these central equations proved to be a serious
vulnerability. While it was possible for UOV to fix this problem with well-
chosen parameters, STS does not allow such an option.

At first glance, MIA is a subclass of the HFE system: while MIA uses
only one monomial, HFE uses a whole polynomial. So from a cryptanalytic
point of view, HFE is much stronger than MIA and all attacks which break
HFE will also defeat MIA. The converse is not true though. Moreover, if we
inspect both schemes closer, we see the differences: MIA uses a monomial
of a high degree, while HFE relies on the existence of efficient root finding
algorithms for polynomials — and therefore needs a much smaller degree d
than MIA. Hence, using implementation as a criterion, we kept both schemes
in different classes.

4 Generic Modification on MQ-schemes

As we saw in the previous section, most basic trapdoors are insecure. To
construct secure schemes, we therefore need “modifications” of these basic
building blocks. As we will see below, these modifications are quite generic
as we can apply them (at least in theory) to any of the above trapdoors.
However, for some schemes, there are modifications which prove more effi-
cient than for others.
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4.1 Minus method: “-”

Although this modification looks rather easy, it proves powerful to defeat
a wide class of cryptographic attacks against several MQ-schemes, includ-
ing Gröbner bases and linearization attacks. The minus method has been
introduced in [Sha93]. In this new construction, we set m̃ := m − r for
some r ∈ N and define the public key equations as P := R ◦ T ◦ P ′ ◦ S. In
this context, the function R : Fm → Fm̃ denotes a reduction or projection,
cf Section 2.5 for details. In addition, we have the affine transformations
S ∈ Aff−1(Fn), T ∈ Aff−1(Fm) and the private system ofMultivariate Qua-
dratic equations P ′ ∈ MQ(Fn, Fm). Less loosely speaking, we consider the
function R(y1, . . . , ym) := (y1, . . . , ym−r), i.e., we neglect the last r compo-
nents of the output vector (y1, . . . , yn). As a consequence, a given public key
P̂ ∈ MQ(Fn, Fm) is transfered to a new key P ∈MQ(Fn, Fm̃), cf Figure 6.

p̂1(x1, . . . , xn) ← p1(x1, . . . , xn)
...

p̂m−r(x1, . . . , xn) ← pm−r(x1, . . . , xn)

p̂m−r+1(x1, . . . , xn)
...

p̂m(x1, . . . , xn)

 discarted

Figure 6: Minus modification for P̂ being transfered to P

For MIA (or C∗), the corresponding minus variation is called C∗−− and
has been discussed in [PGC98a]. For HFE, we derive HFE-. In particular,
the attacks from [KS99, FJ03] are no longer effective against this variation.

4.2 Plus method: “+”

As the name suggests, the plus method adds equations rather than removing
them from the public key. To the knowledge of the authors, this method
has been first discussed in [Pat96b, PGC98a]. In a nutshell, the legitimate
user inserts a total of a ∈ N random quadratic equations π1, . . . , πa without
a trapdoor to the central equations. Let P̃ ∈ MQ(Fn, Fm̃) be the initial
central equations and P ′ ∈ MQ(Fn, Fm) be the new central equations. We
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have m := m̃ + a for m, m̃ ∈ N and

p′1(x
′
1, . . . , x

′
n) := p̃1(x′1, . . . , x

′
n)

...
p′m̃(x′1, . . . , x

′
n) := p̃m̃(x′1, . . . , x

′
n)

p′m̃+1(x
′
1, . . . , x

′
n) := π1(x′1, . . . , x

′
n)

...
p′m(x′1, . . . , x

′
n) := πa(x′1, . . . , x

′
n)

Following the notation earlier introduced in this article, the polynomials
p′1, . . . , p

′
m have components of the (new) central equations P ′ and p̃1, . . . , p̃m̃

and components of the (old) central polynomial vector P̃.
Initially, the plus method was suggested with three affine transforma-

tions S ∈ Aff−1(Fn), T ∈ Aff−1(Fm′
) and U ∈ Aff−1(Fm) rather than two

transformations S ∈ Aff−1(Fn), T ∈ Aff−1(Fm) as described in this article.
However, as proven in [Wol02, Section 4.6], the two methods have equal
security as the method with three affine transformations can always be ex-
pressed with two transformations and vice versa.

When it was proposed, the plus method was thought to enhance the
security of schemes like MIA or HFE. However, a more detailed cryptanal-
ysis showed that this is not the case. In addition, signature schemes have a
workload increasing with qa as only q−a of all solutions to the original prob-
lem P̃ are also a solution for the a equations (without trapdoor) π1, . . . , πa.
Hence, this method has not received much attention lately.

4.3 Subfield method: “/”

A big drawback of public key schemes based on the MQ-problem is their
rather large public key. To overcome this problem we can choose all coef-
ficients in the transformations S ∈ Aff−1(Fn) and T ∈ Aff−1(Fm) and also
the central equations P ′ ∈MQ(Fn, Fm) in a proper subfield F̃ of the ground
field F. This way, the size of both the public and the private key decrease
by a factor of log2 F̃

log2 F . For example, choosing F = GF(256) and F̃ = GF(2),
we reduce the size of all keys by 1

8 . The method works as subfields are
closed under addition and multiplication and hence, choosing all coefficients
in the components S,P ′, T of the private key in a proper subfield F̃ ensures
that the public key P := T ◦ P ′ ◦ S also has coefficients in F̃ rather than F.



4 GENERIC MODIFICATION ON MQ-SCHEMES 32

Hence, the space for storing these coefficients drops from log2 q to log2 |F̃|.
On the other hand, the message space Fn is not affected by this change as
all operations are still defined over the initial ground field F.

To the knowledge of the authors, this method was introduced in [Pat96b]
and has been used in the first version of the Sflash signature scheme [CGP00b]
as submitted to [NES]. In addition, it has been used in the context of UOV
[KPG03]. In both cases, the construction has been shown to be insecure, cf
[GM02, BWP05]. Similar conclusions for HFE have been drawn in [SG03].
All in all, we therefore strongly discourage the use of this “subfield-trick”.

4.4 Branching: “⊥”

The idea of this modification is rather old and can already be found in
[MI88]. A graphical representation using two branches with n = n1 + n2

and m = m1 + m2 for some n1, n2,m1,m2 ∈ N is shown in Figure 7. For

?

S ∈ Aff−1(Fn)

? ?
P1 ∈MQ(Fn1 , Fm1) P2 ∈MQ(Fn2 , Fm2)

?
T ∈ Aff−1(Fm)

Figure 7: MQ-trapdoor with two branches P1,P2

example in MIA, this modification gives a speed up for decryption, as we can
reduce the dimension of the extension field E from n to n1 and n2. Hence,
we are no longer confronted with a workload growing in O(nk) for some fixed
k ∈ R, k > 1, but only in O(nk

1 + nk
2) for the two smaller numbers n1 and

n2. Similar conclusions can be drawn for all other basic trapdoors.
More general, the overall computational effort is reduced by partitioning

both the polynomials p′1, . . . , p
′
m and the variables x′1, . . . , x

′
n in B ∈ N sets.

Here, we call B the branching number. All computations for the central
equations P ′ are then independently performed in these B sets. Note that
we had B = 2 in the example of Figure 7. Formalising this idea, we de-
compose the number of variables into a B-dimensional vector over N such
that n = n1 + · · · + nB. Similar, we decompose the number of equations
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into m1, . . . ,mB ∈ N such that m = m1 + · · · + mB. We use this notation
to write down the branching structure, cf. Figure 8. At first glance this

Branche 1

8><>:
y′1 = p′1 (x′

1, . . . , x
′
n1)

... with x′
i ∈ F

y′m1 = p′m1 (x′
1, . . . , x

′
n1)

...

Branche b

8><>:
y′m1+···+mb−1+1 = p′m1+···+mb−1+1 (x′

n1+···+nb−1+1, . . . , x
′
n1+···+nb

)
...

y′m1+···+mb
= p′m1+···+mb

(x′
n1+···+nb−1+1, . . . , x

′
n1+···+nb

)
...

Branche B

8><>:
y′m−mb+1 = p′m−mb+1 (x′

n−nB+1, . . . , x
′
n)

...

y′m = p′m (x′
n−nB+1, . . . , x

′
n)

Figure 8: Central Equations p′i with B branches

closely resembles the idea from STS, cf Section 3.2. However, there is an
important difference here: while STS uses the variables from the previous
layers (or “branches” for the “⊥” modification), this is not the case for the
“⊥” modification. Here, all branches are completely independent from each
other. Hence, all computations can be done in parallel, e.g., in hardware,
which allows a considerable speed-up. This was also the initial reason for
proposing this idea: having a more efficient public key scheme. Unfortu-
nately, the articles [Pat95, Pat96a] give an algorithm for separating these
branches. To the knowledge of the authors, the most efficient algorithm for
this problem has been given in [Fel01, Fel04]. It has an overall running time
of O(n6).

Hence, we strongly discourage the use of the “⊥” modification in mul-
tivariate systems — though they lead to more efficient schemes. But this
gain in efficiency is paid with a too high price on the security side.

4.5 Fixing: “f”

A similar idea to the “-” modification is the “f” modification: instead of
deleting some public key equations, we reduce the number of variables by
explicitly assigning values to the variables xn−f+1, . . . , xn for a security pa-
rameter f ∈ N. More formally, we pick a random vector (a1, . . . , af ) ∈ Ff

and partly evaluate the public key polynomials p1, . . . , pm. This way, we ob-
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tain new polynomials p̃1, . . . , p̃m which now depend on the input variables

p̃1(x1, . . . , xñ) := p1(x1, . . . , xñ, a1, . . . , af )
...

p̃m(x1, . . . , xñ) := pm(x1, . . . , xñ, a1, . . . , af )

Figure 9: Fixing Modification for two Multivariate Quadratic systems P̃ and P

x1, . . . , xñ with ñ := n− f instead of x1, . . . , xn. In Figure 9 we can see this
idea explained with an old public key P ∈ MQ(Fn, Fm) and a new public
key P̃ ∈ MQ(Fñ, Fm) and a fixed vector a ∈ Ff .

If our initial system did not have any linear or constant terms, i.e., we set
the coefficients βi,j and αi equal to zero for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can
use the zero vector (0, . . . , 0) ∈ Ff for fixing the variables xn−f+1, . . . , xn,
i.e., we have a = 0 in the above setting. This way, we do not introduce new
linear or constant terms. From a cryptographic point of view, this does not
introduce a weakness if the original idea of fixing is secure in the first place.

All in all, the idea works quite well with encryption schemes but gives
a slow down of qf for signature schemes: we only have a probability of q−f

for a signature to have the correct values for xn−f+1, . . . , xn.
After being suggested in [Cou01], there has not been much work done

on the security of this modification. In particular, it is unknown how the
running time Gröbner attacks depends on this parameter f for systems like
MIA and HFE. Therefore, the authors of this article suggest a deeper study
of the “f” modification in conjecture with these basic trapdoors before using
this modification.

4.6 Sparse Polynomials: “s”

This idea has been used both in [YC04a] and also [WC04, WHL+05] to
construct fast asymmetric schemes. In a nutshell, they use basic trapdoors
but with polynomials as sparse as possible. In particular, this means that
all known attacks against these schemes have to be taken into account very
carefully as the newly constructed polynomials only offer “on-the-edge” se-
curity.

Obviously, there is a clear benefit: instead of evaluating a total of τ(n)
terms for each hidden polynomial p′i with 1 ≤ i ≤ m, we can concentrate on
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far less terms. This saves both time and memory. In particular, inverting
these systems is now more time efficient.

However, the idea is rather new and there is not much known yet about
hidden vulnerabilities of these schemes. Therefore, we suggest to study them
in more depth before applying it to concrete schemes.

4.7 Vinegar Variables: “v”

The following modification has been introduced in the context of HFE un-
der the name HFEv in [KPG99]. There, it used a different form for the
central equations P ′. To the knowledge of the authors, this article is the
first to present the “v” modification in a more general form so it can be
used with any trapdoor. In particular, the multivariate version of vinegar
(cf Definition 4.2) has not been presented before.

Definition 4.1 Let E be a finite field with degree n′ over F, the number
of vinegar variables v ∈ N, and P’(X’) a polynomial over E. Moreover, let
(z′1, . . . , z

′
v) := sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si polynomials of

S(x) in multivariate representation. Then define the central polynomial

P ′
z′1,...,z′v

(X ′) :=
∑

0≤i,j<n

Ci,jX
′qi+qj

+
n−1∑
k=0

Bk(z′1, . . . , z
′
v)X

′qk
+ A(z′1, . . . , z

′
v)

where



Ci,jX
′qi+qj

for Ci,j ∈ E are the
quadratic terms,

Bk(z′1, . . . , z
′
v)X

′qk
for Bk(z′1, . . . , z

′
v) depending

linearly on z′1, . . . , z
′
v and

A(z′1, . . . , z
′
v) for A(z′1, . . . , z

′
v) depending

quadratically on z′1, . . . , z
′
v

Then we say the polynomial P ′
z′1,...,z′v

(X ′) is in univariate vinegar shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in
the zi at most) and A(z1, . . . , zv) is a quadratic function over F ensures that
the public key as a whole is still quadratic over F. In addition, we can obtain
a similar definition for the case of multivariate quadratic polynomials:

Definition 4.2 Let F be a finite field F, v ∈ N the number of vinegar
variables, and P ′ ∈ MQ(Fñ, Fm) a polynomial-vector over F in ñ ∈ N
input variables and with m ∈ F equations. Moreover, let (z′1, . . . , z

′
v) :=
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sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si polynomials of S(x) in multi-
variate representation. In addition we have n = ñ + v for the number of
variables. Then define the central polynomials as

p′1(x1, . . . , xñ) :=
∑

1≤j≤k≤ñ

γ′1,j,kxjxk

+
ñ∑

j=1

β′
1,j(z

′
1, . . . , z

′
v)xj + α′

1(z
′
1, . . . , z

′
v)

...
p′i(x1, . . . , xñ) :=

∑
1≤j≤k≤ñ

γ′i,j,kxjxk

+
ñ∑

j=1

β′
i,j(z

′
1, . . . , z

′
v)xj + α′

i(z
′
1, . . . , z

′
v)

...
p′m(x1, . . . , xñ) :=

∑
1≤j≤k≤ñ

γ′m,j,kxjxk

+
ñ∑

j=1

β′
m,j(z

′
1, . . . , z

′
v)xj + α′

m(z′1, . . . , z
′
v)

Here we have a new system of Multivariate Quadratic equations with only
v input variables A′ ∈ MQ(Fv, Fm) for A′ =: (α′

1, . . . , α
′
m) and a poly-

nomial vector B′ ∈ Aff0(Fv, Fmñ) with the non-standard equality B′ =:
(β′

1,1, β
′
1,2, . . . , β

′
m,ñ). Then we say the central polynomial P ′ is in multi-

variate vinegar shape.

We want to point out that the definition of the central equations P ′ is the
same as given in Section 2.2, but with a slight twist on the coefficients used:
the linear coefficients β are replaced by non-homogeneous degree 1 polyno-
mials, while the constant coefficients α are replaced by non-homogeneous
degree 2 polynomials.

Inverting the central equation P ′(X ′) = Y ′ or P ′(x′) = y′ for X ′, Y ′ ∈ E
and x, y ∈ Fn requires to invert the original trapdoor qv times. For a
signature scheme, this is not a problem as finding a solution for any of these
equations will yield a valid signature. However, for an encryption scheme,
the workload usually is too high and hence, this modification cannot be used
to obtain such a system. In any case: in conjecture with the HFE-trapdoor,
this modification does not prove efficient against the recent Gröbner attacks
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from [FJ03] as it only slightly increases the number of linear independent
monomials in P ′. In addition, there is a cryptanalysis given in [DS05a] which
shows that HFE can be broken with a workload of qv.

From a mathematical point of view, both the univariate and the mul-
tivariate variation are equivalent. This can be seen easily using the ideas
of the proof of Lemma 2.15. Hence, it depends on the underlying trapdoor
used which of the two is to be preferred.

4.8 Internal Perturbation: “i”

The idea of internal perturbation is due to Ding [Din04]. It was first used
in connection with MIA and then denoted PMI (“Perturbated Matsumoto
Imai”). One year later, the idea was extended to HFE [DS05a] and called
IPHFE (“Internal Perturbation of HFE”). In both cases, an affine subspace
of dimension w is used to add some kind of “noise” to the overall system.
The idea is similar to HFEv (cf Section 4.7), but with a slight twist: while
HFEv increases the number of input variables, internal perturbation does
not. In a nutshell, the “old” variables x′1, . . . , x

′
n are used for two purposes:

first, they span an n-dimensional vectorspace in the variables x′1, . . . , x
′
n and

second, they span an w-dimensional perturbation space. The advantage
is that such a variation is harder to cryptanalyse. In any case, “internal
perturbation” comes in two flavours:

Definition 4.3 Let P ′, P̃ ∈ MQ(Fn, Fm) be two systems of m quadratic
equations in n input variables x′1, . . . , x

′
n each. Moreover, let s(x) : Fn → Fw

be an affine transformation, e.g., represented by a vector vs ∈ Fw and a
matrix Ms ∈ Fn×w where the matrix Ms has rank w. We denote the output of
s(x) by z′ ∈ Fw, i.e., we have z′ := s(x) and call the components z′1, . . . , z

′
w.

In addition, let Π ∈ MQ(Fw, Fm) be a system of m quadratic equations in
w input variables z′1, . . . , z

′
w each with components π1, . . . , πm. Then we call

P ′ :=


p′1 := p̃1(x′1, . . . , x

′
n) + π1(z′1, . . . , z

′
w)

...
p′m := p̃m(x′1, . . . , x

′
n) + πm(z′1, . . . , z

′
w)

a multivariate internally perturbatedMultivariate Quadratic system of equa-
tions.

Definition 4.4 Let E be an n-dimensional extension field over F. More-
over, let P̂ (X ′) ∈ E[X ′] be a central equation in univariate representation
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(cf Lemma 2.14). In addition, let s(x) : Fn → Fw be an affine transfor-
mation represented by an (n × w) matrix of rank w and an w-dimensional
vector. We denote the output of s(x) by z′1, . . . , z

′
w ∈ F and we have Z :=

φ−1((z1, . . . , zw, 0, . . . , 0)). In addition, let

F (Z ′) :=
∑

0≤i≤j<n

Ĉi,jZ
′qi+qj

+
n−1∑
i=0

B̂iZ
′qi

+ Â

be a quadratic function with coefficients Ĉi,j , B̂i, Â ∈ E. Then we call

P ′(X ′, Z ′) := P̃ (X ′) + F (Z ′)

a univariate internally perturbatedMultivariate Quadratic system of equa-
tions.

As we see, in both cases the perturbation functions Π and F depend on
a rather small perturbation subspace of dimension w. In addition, we do
not require any trapdoor for these two functions but select their coefficients
at random. Hence, we expect a workload of O(qw) for inverting the new
central equation P ′. But for qw small (e.g., q = 2 and w = 4 . . . 6), this is
feasible.

At first glance, it is not obvious which of the two forms is more secure
or efficient and hence advisable for the construction of public key systems.
So we need the following

Lemma 4.5 For every multivariate internally perturbatedMultivariate Qua-
dratic system of equations, there is a univariate internally perturbatedMulti-
variate Quadratic system of equations and vice versa. Hence, both kinds of
internal perturbation are equivalent from a cryptanalytic point of view.

Proof. We use the notation from definitions 4.3 and 4.4. The overall proof
is similar to the proof of Lemma 2.15.
⇒: We start with P ′ ∈ MQ(Fn, Fm) and Π ∈ MQ(Fw, Fn). Our goal
is to compute the corresponding univariate representation of both. This
is feasible, using Theorem 2.16. By construction, we obtain an internal
perturbation function F and a univariate polynomial P ′.
⇐: As for the previous proof, we use Theorem 2.16 — but this time to
obtain a multivariate representation instead of a univariate representation.
The only question to answer is if our perturbation polynomials π1, . . . , πn

depend on all n components z′1, . . . , z
′
n of Z ′ or only on the subset z′1, . . . , z

′
w.

Theorem 2.16 does not guarantee the latter. However, we observe that the
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perturbation variables z′1, . . . , z
′
w can be expressed as R : Fn → Fw with

R(z′1, . . . , z
′
n) := (z′1, . . . , z

′
w, 0, . . . , 0), using the reduction from Lemma 2.15.

Hence, the effect of the univariate perturbation function F (Z) is equal to
φ(F (φ−1(R(s(x))))) for all input vectors x ∈ Fn. Using Theorem 2.16,
this can be rewritten as Π(R(s(x))) for some system of polynomials Π ∈
MQ(Fn, Fm). Taking the reduction R(·) “into” the polynomial functions Π
shows that they do not depend on the input variables z′w+1, . . . , z

′
n, i.e., we

have Π ∈MQ(Fw, Fm). Hence, the polynomial vector Π = (π1, . . . , πn) has
the required form. �

By now, the “i” modification has been used with MIA (multivariate
version) and HFE (univariate version). By the time of writing, we do not
see any benefit when combining it with UOV or STS. However, in mixed
schemes this may be different. We want to note that MIA has been broken
in [FGS05], using ideas from differential cryptanalysis to “denoise” the MIA
scheme from the internal perturbation.

4.9 Homogenising: “h”

Taking a fresh look at the two modifications vinegar variables (“v”, cf Sec-
tion 4.7) and internal perturbation (“i”, cf Section 4.8), we can develop a
new generic modifier. Basically, we use the ideas of vinegar variables, but
use only linear equations of degree 1 to be multiplied with the linear terms,
and homogeneous equations of degree 2 to replace the constant terms. The
overall result are homogeneous equations of degree 2, regardless of the trap-
door used. Hence, we have a way of saving a total of m(1+n) coefficients by
dropping the constant and the linear terms. As the security ofMultivariate
Quadraticequations lies in the quadratic and not the other terms, the overall
security of the corresponding does not degenerate with this modification. To
the knowledge of the authors, the “h” modification has not been proposed
before. Formally, we can write this modification as

Definition 4.6 Let F be a finite field F, h ∈ N the number of homogenising
variables, and P̃ ∈ MQ(Fñ, Fm) a polynomial-vector over F. Moreover,
let z′1, . . . , z

′
h be new variables which depend linearly on the input variables

x1, . . . , xn. The central map depends on the variables x′1, . . . , x
′
ñ for ñ ≤ n.
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Then define the central equation as

p′1(x1, . . . , xñ) :=
∑

1≤j≤k≤ñ

γ1,j,kxjxk

+
ñ∑

j=1

β′
1,j(z

′
1, . . . , z

′
h)xj + α′

1(z
′
1, . . . , z

′
h)

...
p′i(x1, . . . , xñ) :=

∑
1≤j≤k≤ñ

γi,j,kxjxk

+
ñ∑

j=1

β′
i,j(z

′
1, . . . , z

′
h)xj + α′

i(z
′
1, . . . , z

′
h)

...
p′m(x1, . . . , xñ) :=

∑
1≤j≤k≤ñ

γm,j,kxjxk

+
ñ∑

j=1

β′
m,j(z

′
1, . . . , z

′
h)xj + α′

m(z′1, . . . , z
′
h)

Here we have A′ ∈ MQ(Fv, Fm) for A′ = (α′
1, . . . , α

′
m) with A′ being ho-

mogeneous and B′ ∈ Hom−1(Fv, Fmñ) with the non-standard equality B′ =
(β′

1,1, β
′
1,2, . . . , β

′
m,ñ). Then we say the central polynomial P ′ is in multivari-

ate homogenising shape.

This definition is quite similar to the definition of the vinegar modifier (cf
Section 4.7), but with a slight twist: first, we ask for homogeneous rather
than non-homogeneous equations α′

i, β
′
i,j , and second, we did not fix the

source of the new variables z1, . . . , zh yet. Here, we may either use internal
variables (cf Section 4.8) or “external” variables (cf Section 4.7). Given
the cryptanalytic results previously achieved against the “v” modification of
HFE, we prefer the use of internal variables. The corresponding modification
will be denoted by “h”. Obviously, we have n = ñ and h ≤ n here. In
the case of external variables as for the “v” modification, we denote this
variation “h’ ” (h prime). In this case we obtain n = ñ + h as relationship
between the new, the old, and the homogenising variables. We want to stress
that we believe that internal variables are better suited for the purpose of
homogenising the public key. In addition we want to point out that the
homogenising modification only makes sense if the public key has not been
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constructed carefully not to contain any linear or constant terms. In most
cases, there is no need for this modification as it is possible to restrict the
private key accordingly. However, in cases where we need linear terms for
one reason or another, this modification proves useful to obtain a smaller
public key.

4.10 Masking: “m”

The idea of masking variables has been developed in [Wol02, sections 4.9
and 4.10]. It is basically the inverse idea to the “f” modification: instead
of reducing the number of input variables, this number is increased. This
is realized by changing the initial affine transformation to S̃ : Fn → Fñ

for n > ñ. This new transformation S̃ can be realized using a matrix
M ∈ Fñ×n of rank ñ and a vector v ∈ Fñ. This construction increases
the number of variables on costs of the number of equations. In particular,
such a system cannot be a bijection anymore. But as inverting an affine
transformation is usually much faster than inverting the central system P ′,
this modification can be used for the construction time efficientMultivariate
Quadratic systems.

The effect of this transformation is rather limited when considering, e.g.,
the attack of [KS99]. However, in attacks which mainly depend on the
number of input variables (e.g., Gröbner attacks), such a modification may
be worthwhile. However, as this modification has not been systematically
studied its security is an open problem.

5 Variations Applied

In this section we point out where the general modifiers developed in the
previous sections have been used so far for the construction of new schemes.
In particular, we will see that the main attention was focused on schemes
from the “mixed field class” in this context.

5.1 Hidden Field Equations

Hidden field equations were mainly used with the minus and the “v” modifi-
cation so far. The cryptanalysis of [KS99] becomes ineffective if any variation
is applied. However, the later work of Faugère and Joux [FJ03] proves very
efficient against HFE, HFE+, and also to some extent against HFEv. How-
ever, the method HFE- proves a very efficient way to counter this attack.
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Recently, Ding and Schmidt suggested to use the variation HFEi — they
called it IPHFE (“Internal Perturbation of HFE”). Unfortunately, there is
not much independent research known about strength of this new scheme.
However, we expect it to be secure against Gröbner attacks. Given that
MIAi (see below) has been broken rather unexpectedly, we suggest to wait
some time until using HFEi in applications.

5.2 Matsumoto-Imai Scheme A

The MIA scheme has also been used with the modifications “-” and “+”
so far. While MIA+ is rejected in [PGC98a], its variation MIA- (un-
der the name C∗−−) is considered to be secure for well chosen parame-
ter. Unfortunately, this construction does not allow encryption but only
signature schemes. In particular, MIA- is the basis for the Sflash scheme
[CGP00b, CGP02, CGP03b, CGP03a] which was recommended for special
use in the NESSIE project (cf [NES]).

The scheme MIAi has been developed in [Din04] and is there called
“Perturbed Matsumoto-Imai” (PMI). It has been broken in [FGS05], using
a differential attack.

As already outlined in Section 3.3, MIA was used in the variation MIA⊥
in the paper [MI88]. This variation has been broken in [Pat95].

5.3 Further Variations

We are not aware of any successful constructions using variations of UOV
or STS. However, it may be worthwhile to study the effect of the “f” modifi-
cation on STS and UOV — and in particular on the attacks applied against
these schemes. Similar, STS- may be worthwhile as the minus modification
could make the rank attacks difficult. On the other hand, STSi is certainly
not a good idea as this boils down increasing the number of variables in the
first layer of STS, i.e., STS and STSi are actually the same scheme. We can
draw similar conclusions for UOV. As an overall result, we see that more
research in this area may be worthwhile.

6 Mixed Schemes

In this section, we shortly outline two of the rather new schemes enhanced
TTS [YC04b] and tractable rational map [WHL+05]. Both schemes use an
STS structure as overall layout and “plug in” trapdoors of other schemes in
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the individual layers. Hence, they do not use STS in its “pure” form but
mix it with other trapdoors. This motivates the name “mixed schemes”.

6.1 Enhanced TTS

In [YC04b], Yang and Chen give several constructions of the so-called en-
hanced TTS schemes. For all these schemes, only the central equations P ′
change. We concentrate on their first proposal as all other schemes devel-
oped only vary the security parameters, but keep the same idea, i.e., using
an overall STS structure with an UOVs trapdoor in each layer. For this
construction, they use the following central polynomials, cf Figure 10. Here

p′i := x′i +
7∑

j=1

γ′i,jx
′
jx

′
8+(i+j mod 9) , for i = 8 . . . 16;

p′17 := x′17 + γ′17,1x
′
1x

′
6 + γ′17,2x

′
2x

′
5 + γ′17,3x

′
3x

′
4 + γ′17,4x

′
9x

′
16 +

+γ′17,5x
′
10x

′
15 + γ′17,6x

′
11x

′
14 + γ′17,7x

′
12x

′
13;

p′18 := x′18 + γ′18,1x
′
2x

′
7 + γ′18,2x

′
3x

′
6 + γ′18,3x

′
4x

′
5 + γ′18,4x

′
10x

′
17 +

+γ′18,5x
′
11x

′
16 + γ′18,6x

′
12x

′
15 + +γ′18,7x

′
13x

′
14;

p′i := x′i + γ′i,0x
′
i−11x

′
i−9 +

i∑
j=19

γ′i,j−18x
′
2(i−j)−(i mod 2)x

′
j +

+γ′i,i−18x0, xi +
27∑

j=i+1

γ′i,j−18x
′
i−j+19x

′
j , for i = 19 . . . 27;

Figure 10: Central Map for enhanced TTS

we have γ′i,j ∈R F random coefficients. We note that the central polynomials
do not have linear or constant random terms. As the security of the MQ-
problem lies in the quadratic part of these equations alone, this is certainly
a good idea as it saves both evaluation time and private key memory.

Having a closer look at the polynomials p′8, . . . , p
′
16 we see that they only

depend on the input variables x′1, . . . , x
′
16, and hence they form the first

layer of an STS scheme. The second layer is formed by the two polynomi-
als p′17, p

′
18, which also depend on x′17, x

′
18, and the last layer is formed by

p′19, . . . , p
′
27, which depend on all 28 input variables x′0, . . . , x

′
27.

For inverting this trapdoor, we first assign random values to x′1, . . . , x
′
7,

which gives a degree 1 system of equations in y′i = p′i for i = 8 . . . 16. Note
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that we do not always get a solution here. However, in this case we just
assign new random values to x′1, . . . , x

′
7 and try again, cf [YC04b] for more

details. Second, we notice that the polynomials p′17 and p′18 are already
linear with respect to the variables x′17 and x′18. Hence, there will always
be a solution at this stage. The final step is to assign a random value to
the variable x′0, which guarantees a solution at this level of the internal
equations, too. Hence, we see that the overall structure of enTTS follows
UOV. However, in order to speed up computations and to save memory, the
equations have been made very sparse (see Figure 10). We want to point
out that this sparsity gave some unexpected structure and hence allowed
the authors of [DY04] to break an earlier version of the scheme which was
presented in [YC04a]. The only difference between [YC04a] and [YC04b] is
a slight modification in the last block of equations, see first summation and
the missing term between the two summations:

p′i := x′i + γ′i,0x
′
i−11x

′
i−9 +

i∑
j=19

γ′i,j−18x
′
2(i−j)x

′
j +

+
27∑

j=i+1

γ′i,j−18x
′
i−j+19x

′
j , for i = 19 . . . 27;

Taking a second look at the scheme from Figure 10, we see that the
two polynomials p′17 and p′18 actually can further be classified as UOV with
two branches: while p′17 does not depend on x′18, the formula for p′18 is
independent from x′17. This is the reason that we can say enTTS uses a kind
of branching structure for these two polynomials. However, as the overall
scheme uses more an STS structure, this small branching part cannot be
used to launch the attacks mentioned in Section 4.4.

6.2 Tractable Signature Schemes

After enTTS, we move on to the tractable signature scheme from [WHL+05],
which is again a scheme with an STS structure. This time, it uses a total of
5 layers. However, the twist in comparison with a normal STS scheme lies in
the fact that computations in the different layers are done in extension fields
El for l = 2 . . . 5 rather than in the ground field F only. In the following, we
denote with “·” multiplication in the corresponding extension field and with
φl for l = 2 . . . 5 the corresponding canonical bijection (cf Definition 2.10).

First Layer. The first layer uses the variables x′1, . . . , x
′
8 as an input and

polynomials of the form p′i := x′i, i.e., we have the simplest polynomials pos-
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sible for our purpose. Moreover, we assign random values to these variables
and hence, there is no need for an extension field in this layer.

Second Layer. We have E2 = F6 and the second layer as

P ′2 := φ(φ−1(x′9, . . . , x
′
14) · φ−1(x′1, . . . , x

′
6)) +


c′1x

′
1x

′
2

c′2x
′
2x

′
3

...
c′6x

′
6x

′
7

 +


c′7x

′
3

c′8x
′
4

...
c′12x

′
8


We notice that the second layer becomes linear if the variables x′1, . . . , x

′
6

are given. In addition, we have c′1, . . . , c
′
12 ∈R F random coefficients.

Third Layer. We have E3 = F2 in the third layer

P ′3 := φ([φ−1(x′15, x
′
16)]

2)

+
(

c′13x
′
1x

′
2 + c′14x

′
3x

′
4 + . . . + c′19x

′
13x

′
14

c′20x
′
14x

′
1 + c′21x

′
2x

′
3 + . . . + c′26x

′
12x

′
13

)
+

(
c27x

′
1

c28x
′
2

)
At first glance, the new variables x′15, x

′
16 do not introduce a permutation.

However, as the above construction is only specified over fields of character-
istic 2, we have X ′2 being a bijection. Unfortunately, [WHL+05] does not go
into details how to invert this function, but assuming gcd(2, q2−1)−1) = 1
as for the parameters proposed in [WHL+05], we can use the same technique
as for the MIA trapdoor (cf Section 3.3) to invert the function Y ′ = X ′2 for
given Y ′ ∈ E3 and unknown X ′.

Again we notice that this bijection does not depend on the variables
x′1, . . . , x

′
14. Moreover, we have c′13, . . . , c

′
28 ∈R F random coefficients.

Forth Layer. We have E4 = F3 here and

P ′4 := φ(φ−1(x′17, x
′
18, x

′
19) · φ−1(x′8, x

′
9 + x′11 + x′12, x

′
13 + x′15 + x′16))

+

 c′29x
′
4x

′
16

c′30x
′
5x

′
10

c′31x
′
15x

′
16

 +

 c′32x
′
9

c′33x
′
10

c′34x
′
11


We have c′19, . . . , c

′
34 ∈R F random coefficients. Moreover, we notice that the

forth layer becomes linear if the old variables x′1, . . . , x
′
16 are given.
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Fifth Layer. We have E5 = F9 and

P ′5 := φ(φ−1(x′20, x
′
21, . . . , x

′
28)

·φ−1(x′1, x
′
2 + x′6 + x′11, x

′
3 + x′7 + x′12, x

′
4 + x′8 + x′13, x

′
5 + x′9 + x′14,

x′10 + x′14 + x′16, x
′
11 + x′15 + x′17, x

′
12 + x′16 + x′18, x

′
13 + x′17 + x′19))

+



c′35x
′
18x

′
19

c′36x
′
17x

′
13

c′37x
′
16x

′
14

c′38x
′
12x

′
13

c′39x
′
15x

′
14

c′40x
′
19x

′
12

c′41x
′
18x

′
10

c′42x
′
12x

′
6

c′43x
′
13x

′
5


+


c′44x

′
1

c′45x
′
2

...
c′52x

′
9



We have c′35, . . . , c
′
52 ∈R F random coefficients. Moreover, we notice that

this last layer becomes linear if the old variables x′1, . . . , x
′
19 are given.

As an overall result, we see that the tractable rational map signature
scheme is an instance of an STS scheme with sparse polynomials. In contrast
to the enhanced TTS from the previous sections, these polynomials are over
different extension fields rather than the ground field. Hence, these extension
fields have to be chosen carefully to allow fast multiplication and inversion.
We refer to [WHL+05] for details on these choices. Using the taxonomy
developed in this article, we see that the first and the second layer can
actually be combined to one: we few this new layer one/two as a UOV step
with x′1, . . . , x

′
6 the vinegar and x′8, . . . , x

′
14 the oil variables.

[WHL+05] claims that all known attacks have been taken into account
for this construction and it does not cover any hidden weakness. As for
enhanced TTS, we suggest to wait a while until using this construction as
the sparsity of the polynomials may open the door for previously unknown
attacks, in particular as the corresponding encryption scheme from [WC04]
has been successfully cryptanalysed in [JKJMR05], using observations on
the linearity of the overall system. Using the proofs from [JKJMR05], we
expect Gröbner attacks to have a rather low running time, too, against the
scheme from [WC04]. However, the attacks from [JKJMR05] do not extend
to [WHL+05].

The version [WHL+05] has the unfortunate property that we may not
obtain a valid signature with the first try of random variables in all cases;
we already noticed a similar behaviour for enhanced TTS, see above. To
verify that tractable rational maps have this problem, too, we observe
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that x′1 = . . . = x′8 = 0 is a valid assignment in the first layer. Now,
in the second layer, the multiplication in the extension field E2 always
yields 0. Hence, no matter which values we choose for x′9, . . . , x

′
14, we can-

not fulfil the equations y′9 = p′9, . . . , y
′
14 = p′14 for y′9, . . . , y

′
14 all non-zero.

Although the probability for such a behaviour is rather low (2−64), it is
not zero and hence, tractable rational maps do not have a constant sign-
ing time. We can draw similar conclusions for Layer 4: Assume we have
x′8 = x9 + x′11 + x′12 = x′13 + x′15 + x′16 = 0. This event happens with prob-
ability 2−24. Moreover, assume that the other terms in the corresponding
equation are non-zero. This happens with probability 1 − 2−24. Now, we
cannot compute a valid solution in the forth layer and hence, cannot find a
valid signature. Note that we do not encounter such a problem in the third
layer as we can always compute the inverse of [φ−1(x′15, x

′
16)]

2 for any given
input. In any case: both problems were independently noticed by the au-
thors of [WHL+05] who suggested the following tweak in their presentation
at PKC 2005 [Wan05]: instead of assigning random values to all variables,
they suggest to select the first 8 variables x′1, . . . , x

′
8 ∈R F∗, i.e., without the

possibility of getting 0 for any of these hidden variables. This way, they can
guarantee that for each try they obtain a valid signature. While we do not
expect security problems here, we find it to drastic a solution: just enforcing
x′1 6= 0 and x′8 6= 0 would have been enough to overcome the problem of not
obtaining a valid signature in all tries.

In any case: both mixed schemes are rather complicated to cryptanalyse
as they use very specific polynomial equations. In particular for the latter
scheme, the rational behind choosing specific structures has not been made
explicit. Hence, it is difficult for an outsider to judge if these choices are in
fact rational or not. In particular, some more explanation by the authors of
[WHL+05] would certainly help here.

6.3 Rainbow

This scheme has been suggested in [DS05b]. Following our classification, it is
an STS construction which uses an UOV trapdoor on each layer. In the first
layer, the vinegar variables are assigned randomly. In all next layers, the
vinegar variables are the variables from the previous layers. As for the two
schemes discussed above, it may happen that we do not obtain a solution
for a given set of vinegar and oil variables. As above, we simply try again
in this case.

From a security point of view, the ideas of rainbow are sound. In partic-
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ular the suggested sets of parameters in [DS05b, Sec. 2.2] take all practical
attacks into account. Here we have a ground field of size q = 256, a total
of n = 33 variables in m = 27 equations, and 4 layers. The first layer has 6
oil and 6 vinegar variables, the second and the third layers add both 5 new
(oil) variables, and the final forth layer adds additionally 11 oil variables.
The latter is due to rank attacks as discussed, e.g., in [WBP04].

There is also an improved version of Rainbow, discussed in [DS05b,
Sec. 5]. Again we have q = 256, n = 33 and m = 27. Also, the num-
ber of variables in the first and the last layer are the same. However, all
intermediate layers now only have one new variable. Hence, the number of
layers increases accordingly. This way, we always obtain a solution at these
intermediate layers. Therefore, the overall number of repetitions until we
get a valid signature drops considerably. A more detailed discussion of this
idea can also be found in Section 7.3.

7 New Schemes and Open Questions

Using the taxonomy developed in this article, we are able to derive new
schemes — not previously considered in other publications. In particular,
we want to stress that mixed schemes should kept rather simple, so it is
possible to determine the strength of the underlying trapdoors. As an overall
lesson from the schemes known so far we want to point out that a larger q
seems to allow smaller public keys: we have 71 kByte for the public key of
Quartz with q = 2 in comparison to 15.4 kB for Sflashv2 with q=128, and
8.7 kByte for enhanced TTS and tractable rational signatures with q = 256.
The reasons for this at first glance rather strange behaviour: having a large
field size q, we are able to decrease the number of variables. But given
that the public key is a function of O(n2 log2 q), we see immediately that
decreasing n in contrast to q allows us to construct schemes with smaller
public keys. However, we cannot do this endlessly: having a very large q,
we would obtain n = 1 and hence, are in the univariate rather than the
multivariate case. Therefore, a choice of q = 256 = 28 or q = 65536 = 216

seems reasonable at present. After these initial considerations, we now move
on to some concrete examples of new schemes.

7.1 MIO

When looking at the taxonomy developed in Section 3.5, we see that three
of the four schemes, namely HFE, STS, and UOV do allow — at least in
principle — odd characteristics. The situation is fundamentally different
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for MIA: by construction, it only allows even characteristic as the equation
gcd(qn − 1, qλ + 1) = 1 does not have any solution λ ∈ N otherwise for
given q, n ∈ N with odd q. To make sure that we have a full list of all
possible schemes, we develop a version of MIA which also works for odd
characteristic, called “Matsumoto-Imai odd” (MIO).

As outlined before, we cannot expect any solution for gcd(qn−1, qλ+1) =
1; the closest we get is gcd(qn − 1, qλ + 1) = 2. Hence, the inversion step in
MIO consists of two parts:

1. Using an h such that h.(qλ + 1) ≡ 2 (mod qn − 1) we compute A :=
(Y ′)h = (X ′)2 in the extension field E

2. Using a general root finding algorithm, we solve the equation (X ′)2 =
A for given A ∈ E and unknown X ′ (cf Section 3.4)

The advantage of such a scheme lies in the fact that root finding becomes
more difficult with the degree of the polynomial. Having a degree of 2, the
corresponding algorithm is more efficient. In contrast to MIA, MIO may
not be so efficient as finite fields of even characteristic are particularly well
suited for microprocessors.

From a cryptanalytic point of view, MIO offers a few minor advantages
over MIA. In particular, the cryptanalysis of [Pat95] is no longer applicable
as this paper needs that the scheme in question is a bijection. However,
the techniques developed in [FJ03] are still applicable. Hence, MIO is not
stronger than MIA. But from a mathematical point of view, it is satisfying to
have a complete list of all possible schemes, therefore, we decided to present
MIO in this section.

7.2 MIAf

The following construction is also new and we are not aware that it has
been proposed elsewhere. In a nutshell, we use the MIA construction from
Section 3.3 but evaluate f ∈ N variables x1, . . . , xf ∈ F of the public key
, i.e., we apply the “f” modification from Section 4.5. In symbols: let
P̃ ∈ MQ(Fm) the original public key, a1, . . . , af ∈R F random values, and
p1, . . . , pm the new polynomials of the public key:

p1(x1, . . . , xn) := p̃1(a1, . . . , af , x1, . . . , xn)
...

pm(x1, . . . , xn) := p̃m(a1, . . . , af , x1, . . . , xn)
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We notice that the new polynomials pi have n input variables while the
old polynomials p̃i have ñ := n − f input variables. Hence, the new public
key P is now from MQ(Fn, Fm) rather than MQ(Fm). Having qf large,
such a scheme is obviously not useful anymore for signature schemes (cf
Section 4.5). However, this variation on MIA can be used in encryption
schemes: the new conditions on the first f variables of the old polynomials
are satisfied by construction; moreover, inversion works as for the original
MIA scheme, so there is no need for the legitimate user to adjust his private
key.

Obviously, MIAf is only interesting if it cannot be attacked success-
fully. From our point of view, the most promising attacks are linearization,
Gröbner bases, and the algorithm of Meier and Tacier [CGMT02]. However,
a thorough security analysis of MIAf, including the suggestion of secure pa-
rameters, is unfortunately outside the scope of this article. The same goes
for a description of HFEf or MIOf. But assuming that MIAf is secure, these
two other schemes should be interesting for multivariate encryption schemes,
too.

7.3 STS⊥h

With this construction, we want to test the limits of the STS idea as used
already in constructions for mixed schemes, cf sections 6.1 and 6.2. In
particular, we want to see which kind of parameters we can use for secure
constructions to obtain a lower limit on the public key sizes for schemes of
this kind.

We start with noticing that the enhanced TTS class from Section 6.1
used linear terms for the new variables of the medium layer and hence,
always got a solution here regardless of the input. Similar, the tractable
rational map class uses the same trick to ensure that we always obtain a
signature for any input. We can sum up this trick under the “⊥” modifier:
each equation is independent from all other equations and hence, we can
compute the results for one variable independently from all other variables.
Next, we recall that the linear and constant terms do not give us any gain in
the security of the corresponding scheme. Therefore, to obtain smaller public
keys, we should avoid them. Actually, this idea has been outlined in the “h”
modifier. Finally, STS schemes can be attacked quite successfully both from
the highest and the lowest layer, each time using the rank. Hence, a minimal
scheme would only use two layers: one with a small rank big enough not to
allow any attack here and one with a big rank big enough not to allow any
attack from this side.
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Remark. Obviously, we can use a scheme which uses only one layer.
However, we are in the class UOV now (cf Section 7.4 for a version with
secure parameters).

Hence, the scheme we propose in this section has the following structure
for its two layers. We use the notation a ∈ N for the input variables for
the quadratic polynomials of layer 1, α ∈ N for the linear variables of layer
1. Similar, we denote with b ∈ N the input of the quadratic polynomials
of layer 2 and with β ∈ N the linear variables of layer 2. Hence, we have
b = a+α, the number of equations is m = α+β and the number of variables
is n = b+β, cf Figure 11. Here, we have πi for 1 ≤ i ≤ m being homogeneous
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′
1, . . . , x

′
b) := π1(x′1, . . . , x

′
a) + x′1x

′
a+1

p′2(x
′
1, . . . , x

′
b) := π2(x′1, . . . , x

′
a) + x′1x

′
a+2
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p′α(x′1, . . . , x

′
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′
a) + x′1x
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′
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′
b) + x′1x

′
b+β

Figure 11: STS⊥h with Two Layers

degree 2 polynomials with random coefficients. Therefore, all polynomials
p′i are homogeneous degree 2 polynomials. Hence, using S ∈ Hom−1(Fn)
and T ∈ Hom−1(Fm) for the two transformations we obtain a public key
which does not contain any linear or constant terms. So the “homogenising
modification” has already been built into the trapdoor used. Moreover,
the first layer can be inverted by assigning random values to the variables
x′1, . . . , x

′
a as we saw it, e.g., for UOV.

There are three important attacks we have to take into account for this
scheme: first, we need to make sure that the low rank attacks do not ap-
ply and hence, we need q2(a+1) ≥ C for some security parameter C. Sec-
ond, we need the high rank attacks to be inefficient. Therefore, we obtain
2qn−b+1=2β+1 ≥ C. Finally, we need to make sure that the overall construc-
tion does not fall to the attacks for schemes from the UOV class, i.e., we
need qb−β−1 ≥ C. In all cases, we omitted polynomials for the correspond-
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ing attacks as we are more interested in the overall asymptotic complexity
rather than a “close match”. Moreover, we use a security bound of C = 280

for the following constructions. Such a security bound has been suggested,
e.g., in the European NESSIE project [NES].

Now, with q = 256 = 28 the following sets of parameters allows a secure
construction: a = 4, α = 16, i.e., b = 20. Moreover, we choose β = 9 and
obtain a total of n = 29 variables and m = 20 equations. This translates
to a public key size of 8700 bytes. As we see, this is quite close to the
parameters used in enhanced TTS and rational tractable maps. However,
these construction use more than two layers and hence, obtain a higher
number of quadratic variables for the last layer. Therefore, attacks using
the UOV structure of this construction are less efficient. In any case: the
other attacks outlined in this paper did not prove efficient against this kind
of schemes and are hence omitted from the above security analysis.

Finally, we also give the parameters for q = 65536 = 216. Here we
obtain a = 2, α = 9, i.e., b = 11 and β = 4 and obtain a total of n = 15
variables and m = 13 equations. This translates to a public key size of 3120
bytes. As we saw, the previously mentioned rational to choose q rather large
helped up obtaining a smaller public key. However, as we need operations
over GF(216) now, the corresponding scheme may be less suited for smart
card implementations as low-end cards still widely use 8-bit microprocessors.
Moreover, we have to take the running time of Gröbner algorithms into
account now. Unfortunately, we are not aware of a systematic study of the
exact behaviour of Gröbner attacks and hence, have to leave the security of
the parameters proposed here as an open problem.

Using sparse polynomials for πi with 1 ≤ i ≤ m would allow faster
generation of the public key and also faster inversion. However, generating
secure sparse polynomials is outside of the scope of this article. Still, we
believe that such a modification would allow a more efficient scheme.

7.4 UOV⊥h

The starting point of this construction are [YC04a] and [DS05b]. In a nut-
shell, they solve the problem of UOV that not all tries in the private key
yield a valid signature. They do so by forcing a special matrix structure on
the oil variables: no matter which values we choose for the vinegar variables,
the oil variables always yield a matrix of full rank, and hence, we can always
compute a solution. This can be summarised under the ⊥ idea, cf previous
section.

Here, we use this idea with a slight twist, i.e., with the homogenising
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modifier. We construct the UOV trapdoor as shown in Figure 12 having

p′1(x
′
1, . . . , x

′
n) := π(x′1, . . . , x

′
v) + x′1x

′
v+1

p′2(x
′
1, . . . , x

′
n) := π(x′1, . . . , x

′
v) + x′1x

′
v+2

...
p′m(x′1, . . . , x

′
n) := π(x′1, . . . , x

′
v) + x′1x

′
v+o

Figure 12: UOV with Branching and Homogenising Modifiers

o = m and n = v + o (cf Section 3.1). By choosing x′1 ∈R F∗, i.e., non-zero,
we always obtain a valid signature. Moreover, if we choose the polynomials
π1, . . . , πm homogeneous degree 2, we obtain a central map P ′ which is also
homogeneous degree 2. So, having the two transformations S ∈ Hom−1(Fn)
and T ∈ Hom−1(Fm) linear rather than affine, we hide this internal structure
using the T -transformation and do not introduce any linear terms with the
S-transformation. As a consequence, the public key does not have linear
or constant terms and hence, we save m(n + 1) coefficients in total. The
overall scheme does still have the same security as UOV, i.e., all known
attacks apply and we need to choose the parameter accordingly.

In any case, multiplying the monomials x′1x
′v + i for i = 1 . . . o with

random coefficients γ′i,1,v+i ∈R F∗ does not improve the security of UOV⊥h:
applying the ideas developed in [WP05] we see that such coefficients would
lead to equivalent keys and are hence a waste of memory.

As for any other scheme, choosing the vinegar polynomials π1, . . . , πm

sparse rather than dense allows a speed up. Again, this is out of the scope
of this overview article.
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8 Conclusions

In this article, we introduced Multivariate Quadratic schemes and showed
how the schemes known so far can be grouped into a taxonomy of only
four basic schemes (UOV, STS, MIA, and HFE), using 10 modifiers, cf
Table 1. We see that there are far more modifiers than basic schemes. So to

Table 1: Modifiers for MQ-schemes

Symbol Long Name Page
- Minus 30
+ Plus 30
/ Subfield 31
⊥ Branching 32
f fixing 33
h homogenising 39
i internal 37
m masking 41
s sparse 34
v vinegar 35

increase the number of possibleMultivariate Quadratic schemes, we suggest
to concentrate on finding new basic trapdoors rather than new modifiers.
However, given that all known trapdoors are rather old, we are not sure if
many more basic trapdoors do exist.

In any case,Multivariate Quadratic equations can be used to construct
schemes which allow short signature sizes (in the range of 28 byte or even
128 bit for Quartz). Using the generic construction of [Gra05], we may use
anyMultivariateQuadratic scheme to obtain short signatures which depend
on the security of the underlying scheme. However, such constructions are
only necessary if we have schemes with rather small parameters as we had
in the case of Quartz: 107 bit of output for 100 bit of input. Here, the
birthday paradox for signatures becomes a problem. In general, an input
size of 160 bit and more does prevent this paradox to be of concern for
security requirements above 280.

Obviously, the taxonomy developed in this article can now be used to
obtain new and interesting schemes. However, we urge the developers of
such schemes not to combine all modifiers and trapdoors available in one
scheme but to use as few as possible: if such a scheme is well designed, it will
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withstand cryptographic attacks while a complex scheme may distract the
attention both of the cryptanalyst and the designer of the scheme from the
real weaknesses hidden in this new construction. Moreover, each designer
should make clear the rational behind the choices made. This way it becomes
much easier for the cryptographic community to evaluate the strength of the
new proposals.

Apart from this,Multivariate Quadratic equations have very nice prop-
erties when used in restricted environments and can be used as cryptographic
primitives for signing applications. By now, the existence of secure and effi-
cient encryption primitives based on theMQ-problem is an open question.
However, when we look at the authors and dates of the publications in the
bibliography, we see that more and more people get interested in this sub-
ject. Hence, we may expect such a secure encryption scheme soon.
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