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Abstract. This paper presents a duality between the classical optimally
speeded up multiplication algorithm and some “fast” reduction algo-
rithm. For this, the multiplier is represented by the unique signed digit
representation with minimal Hamming weight using Reitwiesner’s mul-
tiplier recoding algorithm. In fact, the present paper proves that this
optimal multiplier recoding technique naturally translates into a canoni-
cal modular reduction technique. Thus, the resulting reduction algorithm
is optimal with respect to its average-time complexity as well. Besides
these two new results, our proof of the transfer-theorem serves another
interesting purpose: The reason that the considered reduction algorithm
from [Sed] is so unknown might lie in the fact that it is rather un-intuitive
and no proper understanding was available so far. Therefore, our proper
mathematical derivation/explanation solves this lack of understanding.
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1 Introduction

Without doubt it is clear that the modular multiplication is the basic arith-
metical operation of today’s asymmetric cryptography, cf. [MvOV]. Therefore,
over the past three decades (i.e., since the publication of [RSA]), a substantial
amount of research has established new algorithms for the problem of modular
multiplication, cf. [Bar,Bri,Mon,Omu,WQ,Sed]. Many of such algorithms have
been proven to be very successful in practical implementations and especially
for time/area efficient hardware implementations of the modular multiplication,
cf. [NMR]. For a thorough overview of this area we refer to the many papers
contained in [KP99,KP00,KNP01,KKP02]. However, until now no theoretical



investigation of the basic main problem itself has been done so far. Namely,
dividing the modular multiplication into its comprising subproblems leaves the
two more fundamental problems of multiplication and modular reduction, which
is the basic main problem.

Indeed, starting with the papers by [Boo,Mac,Rei] the multiplication itself is
now being very well understood, cf. [Hwa,Knu,Kor,Par,Spa]. Namely, to speed
up the classical shift and add method several variants of the so called original
Booth algorithm [Boo] have been proposed by [Mac]. These may be divided
into two categories: variable shift methods and uniform shift methods. In this
paper we will be only concerned with the variable shift method as it intrinsically
leads in a natural sense to a uniquely determined optimum method. Seen from
an abstract point of view this method aims to recode a multiplier β into an
equivalent binary signed-digit (SD2) representation β̄, such that the number of
nonzero digits of β̄ is minimized. Here, the set of possible digits is {−1, 0, +1}.
Reitwiesner [Rei] proved that the minimal Hamming weight ω(β̄) of the SD2

representation for an n-bit number β is given by (n + 1)/3, on average. Here,
ω(β̄) denotes the Hamming weight of β̄, i.e., the number of non-zero digits in
the SD2 representation of β. Later, a simplified proof of this result was given
by [AW], and also a closed-form expression for the average weight of signed-
digit representations has been developed by [WH]. Reitwiesner also investigated
the uniqueness of SD2 representations. To formalize this, Reitwiesner defined an
SD2 representation (β̄n, . . . , β̄0)SD2

as canonical or in nonadjacent form, if no
two adjacent digits are nonzero. He proved that this representation is unique,
if the binary representation is viewed as padded with an initial 0. In addition,
he presented an algorithm to find this uniquely determined SD2 representation.
Moreover, Reitwiesner proved that among all SD2 representations, the canonical
form has a minimal Hammning weight. I.e., it is optimal in terms of the resulting
multiplication speedup.

On the other side, despite the development of many new reduction algo-
rithms, implicitly contained within the many new modular multiplication algo-
rithms, cf. [Bar,Bri,Mon,Omu,WQ,Sed], no theoretical analysis of the modular
reduction process itself has been done so far. This is the goal of the present pa-
per. Namely, we prove that the uniquely determined “canonical ”counterpart to
Booth’s algorithm (in Reitwiesner’s form) is the reduction algorithm due to Sed-
lak [Sed]. This is proved by establishing an isomorphism between multiplication
algorithms and reduction algorithms relying on the “shift and add/subtract”
paradigm. Hence, this reduction algorithm is also optimal in terms of necessary
“shift and add/subtract” operations, on average. While the connecting isomor-
phism might look trivial after seeing it, its proper mathematical proof never-
theless gives a substantial insight into the problem of reduction itself. Namely,
the proof reveals a rather intuitive and proper mathematical derivation of Sed-
lak’s reduction algorithm which is new and one of our contributions. Thus, the
present paper proves that Sedlak’s reduction algorithm is optimal in terms of
performance, on average. Besides, it gives a nice mathematical explanation of
Sedlak’s reduction algorithm, which was not available so far. Moreover, it solves
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the lack of understanding the reduction process itself. Namely, it shows that the
reduction process is nothing else than the dual of the multiplication process.
So far, we have not seen in the literature anywhere this interesting connection
between multiplication algorithms and reduction algorithms. Therefore, we have
the feeling that our results are an interesting contribution to the foundations of
computer science.

The paper is organized as follows. Section 2 explains our notations and def-
initions. Section 3 and Section 4 defines how we are going to see multiplication
and reduction algorithms in the rest of the paper. Also, they give important ex-
amples of our algorithm notion which are necessary for the later understanding
our paper. Section 5 presents the connecting morphism, and Section 6 shows
an explicit construction of our morphism relating to “real” algorithms. Finally,
Section 7 presents the formal Duality Theorem whose technical proof is rather
educational in understanding the reduction process itself.

2 Notation

Throughout the paper we use the following notations: We set N = {1, 2, 3, . . .}
and N0 = {0, 1, 2, . . .}. For intuition, we will also use sometimes the definitions
N := N, A := N, Z := Z and B := Z.
The set of all maps f : N → N0×{−1, 0, 1}} will be abbreviated by Map(N, N0×
{−1, 0, 1}) and Map′(N, N0 × {−1, 0, 1}) = {f ∈ Map(N, N0 × {−1, 0, 1}) :
f(x) 6= (0, 0) for finitely many x}. For f ∈ Map′(N, N0 × {−1, 0, 1}) we set
‖f‖ := max{i ∈ N : f(i) 6= (0, 0)} ∪ {0}.
For any (βn−1, . . . , β0) ∈ {0, 1}n the symbol (βn−1, . . . , β0)2 denotes the integer

β :=
∑n−1

0 βi · 2i. For (β̄n, . . . , β̄0) ∈ {−1, 0, 1}n+1 the symbol (β̄n, . . . , β̄0)SD2

denotes the integer β :=
∑n

0 β̄i · 2i. We strictly distinguish between the tuples
(. . . ) and their value (. . .)2 or (. . .)SD2

.
Moreover, `(n) denotes the bitlength of the integer |n|, i.e., 2`(n)−1 ≤ |n| < 2`(n).

3 Formal Multiplication Algorithms

A multiplication algorithm often has the following form:
input: α, β

output: α · β

Z := 0
loop

Z := Z · 2s + v · α /* for some s ∈ N0, v ∈ {−1, 0, 1}, depending on β */
endloop

return Z

We want to formalize this notion in the following way:

Definition 1. A formal multiplication algorithm for (α, β) ∈ A×B denoted by
mul ≡ ((s1, v1), . . . , (sn, vn)) is a collection of integers s1, . . . , sn ∈ N0 and signs
v1, . . . , vn ∈ {−1, 0, 1} (for some n) so that the following assignments:
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1. Z0 := 0
2. Zi+1 := Zi · 2si+1 + vi+1 · α, for i = 0, . . . , n − 1,

result in Zn = α · β. The set of all formal multiplication algorithms for (α, β) is
denoted by FMA(α,β).

Remark 1. A formal multiplication algorithm mul ∈ FMA(α,β) can be seen as
an element of Map′(N, N0 × {−1, 0, 1}), where

mul(i) =

{
(si, vi) if i ≤ n

(0, 0) if i > n

and this is the way we are going to see these objects.

Note 1. Clearly, every map f ∈ Map′(N, N0 × {−1, 0, 1}) can be interpreted as
a formal multiplication algorithm for some (α, β).

Definition 2. For any mul ∈ FMA(α,β) we define the norm of mul to be ‖mul‖
interpreted as element of Map′(N, N0 × {−1, 0, 1}).

Example 1. We define the simplest formal multiplication algorithm
mulsimple(α, β) ∈ FMA(α,β). mulsimple(α, β) = ((s1, v1), . . . , (sn, vn)) with n :=
|β| is given by s1 = s2 = · · · = sn = 0 and v1 = v2 = · · · = vn = sign(β). This is
just “adding α exactly β times”.

Example 2. The classical “double-and-add”-method is transformed into
mulclass(α, β) ∈ FMA(α,β) as follows. Let (βn−1, . . . , β0)2 be the binary rep-
resentation of |β|, then mulclass(α, β) = ((s1, v1), . . . , (sn, vn)) is given by
s1 = s2 = · · · = sn = 1 and vi = sign(β) · βi for i = 1, . . . , n.

Example 3. The “famous” Booth algorithm also can be transformed into some
formal multiplication algorithm mulBooth(α, β) ∈ FMA(α,β). This uses the repre-
sentation of a number in the signed digit notation SD2. Let β = (βn−1, . . . , β0)2
be positive, then there exist representations β̄ = (β̄n, . . . , β̄0) of β in the form
β =

∑n
i=0 β̄i · 2i, where β̄i ∈ {−1, 0, 1}. Among these there is (at least) one with

minimal Hamming weight ω(β̄). With algorithms described in [Hwa,Kor,Par,Spa]
such representations can be efficiently obtained. We fix one of these algorithms
and denote it by Booth: (βn−1, . . . , β0)2 7−→ (β̄n, . . . , β̄0). If we define

SD2 : = {0} ∪
( ∞⋃

i=0

(
{−1, 1} × {−1, 0, 1}i

))

= {(β̄n, . . . , β̄0) ∈ {−1, 0, 1}n : n ∈ N, β̄n 6= 0} ∪ {0},

then Booth can be interpreted as a map Booth: N −→ SD2 or even Booth: Z −→
SD2, with Booth(β) = −Booth(−β) for negative β. In order to define a formal
multiplication algorithm for (α, β), we need another map

step : SD2 −→ Map′(N, N0 × {−1, 0, 1});
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this is given as follows. Let β̄ = (β̄n, . . . , β̄0) ∈ SD2 with β̄n 6= 0, and let
n =: m1 > m2 > · · · > mx be such indices i for which β̄i 6= 0. Then, with
m0 := n

(si, vi) := (mi−1 − mi, β̄mi
) for i = 1, . . . , x.

If mx > 0, i.e., if β̄0 = 0, then additionally we set (sx+1, vx+1) := (mx, β̄0). This
defines the step-map. Now,

mulBooth(α, β) := step(Booth(β)).

Remark 2. Note that for β̄ = (β̄n, . . . , β̄0) ∈ SD2 and ((s1, v1), . . . , (sx, vx)) :=
step(β̄) the equality n = s1 + · · · + sx holds. Or, in other words (β̄n, . . . , β̄0) =
(v1, . . . , v2, . . . , vx−1, . . . , vx) where vi on the position of β̄n−s1−···−si

is different
from zero and all other positions are zero.

4 Formal Reduction Algorithms

We also want to formalize reduction algorithms which have a similar structure
of “shifting and adding/subtracting”.

Definition 3. A formal reduction algorithm for (ν, ζ) ∈ N × Z denoted by
red ≡ ((s1, v1), . . . , (sn, vn)) is a collection of integers s1, . . . , sn ∈ N0 and signs
v1, . . . , vn ∈ {−1, 0, 1} (for some n) so that the following assignments:

1. c := s1 + · · · + sn

2. Z0 := ζ · 2−c (computation in Q)
3. Zi+1 := Zi · 2si+1 + vi+1 · ν, for i = 0, . . . , n − 1 (computation in Q)

result in Zn = ζ mod ν. The set of all formal reduction algorithms for (ν, ζ) is
denoted by FRA(ν,ζ).

Remark 3. A formal reduction algorithm red ∈ FRA(ν,ζ) can be seen as an
element of Map′(N, N0 × {−1, 0, 1}), where

red(i) =

{
(si, vi) if i ≤ n

(0, 0) if i > n .

Note 2. Clearly, every map f ∈ Map′(N, N0 × {−1, 0, 1}) can be interpreted as
a formal reduction algorithm for some (ν, ζ).

Definition 4. For any red ∈ FRA(ν,ζ) we define the norm of red to be ‖red‖,
interpreted as element of Map′(N, N0 × {−1, 0, 1}).

Example 4. The “simple”method of reduction “subtract ν from ζ for q := b ζ
ν c

times” gives the following formal reduction algorithm ((s1, v1), . . . , (sn, vn)) =
redsimple(ν, ζ) ∈ FRA(ν,ζ). Let n := |q|, s1 = s2 = · · · = sn = 0 and v1 = v2 =
· · · = vn = −sign(ζ).
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Example 5. The “classical” equation ζ = q · ν + r for q := b ζ
ν c and 0 ≤ r < ν, or

equivalently ζ mod ν = ζ − q · ν = ζ −
∑n−1

i=0 qi2
i · ν where q = (qn−1, . . . , q0)2

gives the somewhat classical reduction redclass(ν, ζ) = ((s1, v1), . . . , (sn, vn)) ∈
FRA(ν,ζ) via s1 = s2 = · · · = sn = 1 and vi = −sign(ζ) · qn−i, for i = 1, . . . , n.

Example 6. We now want to present another important example, namely Sed-
lak’s [Sed] reduction algorithm. Due to its principle it is also known as the
so called ZDN-algorithm (2/3N = “Zwei Drittel N” in German). The ZDN-
reduction is based on the following easy mathematical observation.

Lemma 1. Let ν ∈ N and 0 6= ζ ∈ [− ν
3 , ν

3 [. Then, there exists exactly one pair
(sζ , vζ) ∈ N0 × {−1, 1}, so that again

ζ · 2sζ + vζ · ν ∈ [− ν
3 , ν

3 [.

Here, sζ is uniquely given by ζ · 2sζ ∈ [− 4
3ν,− 2

3ν[ ∪ [ 23ν, 4
3ν[ and vζ = −sign(ζ).

The proof is trivial. We additionally set (sζ , vζ) := (∞, 0) for ζ = 0.

Remark 4. Note that for all ζ ∈ [− ν
3 , ν

3 [ we have sζ ≥ 2.

The former lemma immediately leads to the ZDN-reduction due to Sedlak [Sed].

input: ν, ζ with 0 ≤ |ζ| < ν

3
· 2c for some c

output: ζ mod ν

Z := ζ · 2−c; i := 1
while c > 0 do

get (sZ , vZ) according to the lemma
if sZ > c then

(
�

si,
�

vi) := (c, 0)
else

(
�

si,
�

vi) := (sZ , vZ)
endif

Zi := Zi−1 · 2
�

si +
�

vi · ν
c := c −

�

si

i ++
endwhile

if Z < 0 then

Z := Z + ν

(
�

si,
�

vi) := (0, 1) /* end-reduction */
else

(
�

si,
�

vi) := (0, 0) /* no end-reduction */
endif return Z

This reduction algorithm generates the pairs (s̃1, ṽ1), . . . (s̃n, ṽn) ∈ N0 ×
{−1, 0, 1} for some n. Obviously, they have the following properties:

1. s̃1 ≥ 0, s̃2, . . . , s̃n−2 ≥ 2, s̃n−1 ≥ 1 and s̃n = 0.
2. ṽ1, . . . , ṽn−2 6= 0, ṽn−1 ∈ {−1, 0, 1} and ṽn ∈ {0, 1}.
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3. for i = 1, . . . , n − 1:
ṽi 6= 0 ⇒ Zi ∈ [− ν

3 , ν
3 [,

ṽi = 0 ⇒ Zi ∈ [− 2
3ν, 2

3ν[, which can happen only for i = n − 1.

Now, the formal reduction algorithm redZDN(ν, ζ) = ((s1, v1), . . . , (sn, vn)) is
defined by

(s1, v1) := (0, ṽ1)

(si, vi) := (s̃i, ṽi), for i = 2, . . . , n.

Remark 5. Note that s1 never has any effect on the reduction algorithm.

Remark 6. Assume v1 6= 0, which always holds if n > 2. Then, for c := s1 +
· · · + sn, we automatically get ζ · 2−c ∈ [− 4

3ν,− 2
3ν[ ∪ [ 23ν, 4

3ν[, by virtue of the
property 3 from above.

The ZDN-reduction can be succinctly characterized by the following lemma.

Lemma 2. Let ζ 6= 0 and red = ((s1, v1), . . . , (sn, vn)) ∈ FRA(ν,ζ), so that the
following properties are fulfilled.

1. s1 = 0, s2, . . . , sn−2 6= 0, sn−1 6= 0 and sn = 0.
2. v1, . . . , vn−2 6= 0, vn−1 ∈ {−1, 0, 1} and vn ∈ {0, 1}.
3. For i = 1, . . . , n − 1: vi 6= 0 implies Zi ∈ [− ν

3 , ν
3 [, and for i = n − 1: vi = 0

implies Zi ∈ [− 2
3ν, 2

3ν[.

Then red = redZDN(ν, ζ).

Proof. We assume n ≥ 3. Since redZDN(ν, ζ) has the properties 1 to 3 we only
have to prove the uniqueness of such a reduction. By the uniqueness properties of
Lemma 1, the values (s2, v2), . . . , (sn−2, vn−2) are unique. Clearly, s1 is unique.
Obviously v1 = −sign(ζ). Furthermore, c = s1 + · · · + sn is unique since ζ ·
2−c ∈ [− 4

3ν,− 2
3ν[ ∪ [ 23ν, 4

3ν[ has to be fulfilled. Therefore, sn−1 is given by
c − s1 − · · · − sn−2 and sn = 0 anyway. Then, the only remaining ambivalence
could be a) (vn−1, vn) = (−1, 1) versus = (0, 0) and b) (vn−1, vn) = (1, 0) versus
= (0, 1). Since Zn−2 · 2sn−1 is unique already, we have the cases:

1. If Zn−2 · 2sn−1 ∈ [− ν
3 , ν

3 [ then vn−1 = 0; otherwise Zn−1 6∈ [− 2
3ν, 2

3ν[.
2. If Zn−2 · 2sn−1 ∈ [− 2

3ν, 2
3ν[\[− ν

3 , ν
3 [ then vn−1 = 0; otherwise by (3) it has

to be Zn−1 ∈ [− ν
3 , ν

3 [ which is not possible.
3. If Zn−2 · 2sn−1 ∈ [− 4

3ν, 4
3ν[\[− 2

3ν, 2
3ν[ then vn−1 6= 0, i.e., vn−1 =

−sign(Zn−2); otherwise Zn−1 6∈ [− 2
3ν, 2

3ν[.
4. Zn−2 · 2sn−1 6∈ [− 4

3ν, 4
3ν[ is not possible.

Thus, we are done. �

The next proposition shows an easy and straightforward connection between
FRA and FMA.
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Proposition 1. Let red = ((s1, v1), . . . , (sn, vn)) ∈ FRA(ν,ζ), then the assign-
ments

1. Z0 := 0
2. Zi+1 := Zi · 2si+1 + vi+1 · ν, for i = 0, . . . , n − 1,

result in Zn = −ν · q(= (ζ mod ν) − ζ) where q = b ζ
ν c.

In other words: ((s1, v1), . . . , (sn, vn)) can be seen as an element of FMA(ν,−q).

Proof. Plugging in the equations consecutively for c = s1 + · · · + sn yields

Z0 := Z · 2−c

Z1 := Z0 · 2
s1 + v1 · ν

...

Zn := Zn−1 · 2
sn + vn · ν, for i = 0, . . . , n − 1,

meaning that Zn = x · Z + y for some x, y ∈ Z. Obviously, by definition of c we
have x = 1. If Z := ζ then by definition of the formal reduction algorithm for
(ν, ζ) we have 1 · ζ + y = ζ mod ν, hence y = (ζ mod ν) − ζ. For Z := 0 we get
the desired result. �

Finally, for this section we want to state a simple technical lemma about the
step-function and formal reduction algorithms.

Lemma 3. Let q̄ = (q̄m, . . . , q̄0) ∈ SD2 be an SD2 representation of q =
(q̄m, . . . , q̄0)SD2

∈ Z and let ((s1, v1), . . . , (sn, vn)) := step(q̄). By definition of
step it holds that v1 6= 0 and sn 6= 0. For m = s1 + · · · + sn set

1. Z0 := Z · s−m, and
2. Zi+1 := Zi · 2si+1 + vi+1 · ν, for i = 0, . . . , n − 1.

Then, for i = 1, . . . , n it holds that Zi = Z · 2−j + (q̄m, . . . , q̄j)SD2
· ν where

j = m − s1 − · · · − si = si+1 + · · · + sn.

Proof. The obvious proof is done by induction on i.

5 The connecting morphism

The above proposition gives a morphism FRA(ν,ζ) −→ FMA(ν,−bζ/νc). This is
indeed even a bijection! It shows that multiplication algorithms and reduction
algorithms are related in some way. Mathematically, this is clear by the formula
ζ = q · ν + r with q := b ζ

ν c and r := ζ mod ν. For computing the residue r we
may compute the product q · ν and then subtract it from ζ.

Theorem 1. For any (ν, ζ) ∈ N ×Z there is a bijective morphism

̂ : FMA(ν,b ζ
ν
c) −→ FRA(ν,ζ)

((s1, v1), . . . , (sn, vn)) 7−→ ((s1,−v1), . . . , (sn,−vn)).
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The straightforward proof is omitted.

Remark 7. If inv : {−1, 0, 1} → {−1, 0, 1} is given by inv(x) = −x, then the
above morphism transforms into

Map′(N, N0 × {−1, 0, 1}) −→ Map′(N, N0 × {−1, 0, 1})

f 7−→ (idN0
, inv) ◦ f

Remark 8. ̂ respects the norms ‖ · ‖ on FRA and FMA.

6 A certain construction for formal algorithms

Definition 5. We set SD+
2 := SD2 × {−1, 0, 1}.

Remark 9. Naturally SD2 ⊂ SD+
2 via β̄ 7→ (β̄, 0).

There is an evaluation function

ev : SD+
2 −→ Z

(β̄, x) = ((β̄n, . . . , β̄0), x) 7−→ ev(β̄, x) = (β̄n, . . . , β̄0)SD2
+ x,

which is surjective and certainly not injective. There exist several sections of ev.

Example 7. The binary representation bin : Z → SD2 ⊂ SD+
2 , which assigns to

every positive β its binary representation (βn−1, . . . , β0) ∈ {0, 1}n, where β =
(βn−1, . . . , β0)2. For negative integers we define bin(−β) := (−βn−1, . . . ,−β0).

Example 8. Look at Reitwiesner’s [Rei] signed digit representation of an integer
β. An element (β̄n, . . . , β̄0) ∈ SD2 with β̄ = (β̄n, . . . , β̄0)SD2

is unique with
respect to the following properties:

1. It is non adjacent, i.e., β̄i · β̄i+1 = 0, for all i.
2. The Hamming weight of (β̄n, . . . , β̄0) is minimal in the set ev−1(β).

This representation is denoted by RW: Z −→ SD2 ⊂ SD+
2 .

Now, we want to assign to every section sec: Z −→ SD+
2 of ev a formal mul-

tiplication algorithm. For this, we first have to continue the map step: SD2 −→
Map′(N, N0 × {−1, 0, 1}) to step : SD+

2 −→ Map′(N, N0 × {−1, 0, 1}). This
is done trivially. If (β̄, x) ∈ SD+

2 and step(β̄) = ((s1, v1), . . . , (sn, vn)), then
step(β̄, x) := ((s1, v1), . . . , (sn, vn), (0, x)).

Definition 6. For a section sec : Z −→ SD+
2 the formal multiplication algo-

rithm mulsec(α, β) ∈ FMA(α,β) is defined as

mulsec(α, β) = step(sec(β)).

The formal reduction algorithm redsec(ν, ζ) ∈ FMA(ν,ζ) associated to sec is given
by

redsec(ν, ζ) =
(
step

(
sec

(⌊ ζ

ν

⌋)))�
,

i.e., redsec(ν, ζ) = mulsec(ν, b ζ
ν c)̂

(
=: m̂ulsec(ν, b ζ

ν c)
)
.
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Example 9. Obviously we have mulbin(α, β) = mulclass(α, β) and redbin(ν, ζ) =
redclass(ν, ζ).

Example 10. The simple algorithms are not representable in this form, because
here we have si = 0 for all i.

Example 11. If we take Reitwiesner’s algorithm for the Booth construction from
example 3 then

mulBooth(α, β) = mulRW(α, β).

7 The Duality

Roughly speaking, the Duality Theorem states that the ZDN-reduction is the
dual to the Booth-multiplication (in Reitwiesner’s form), i.e., “redZDN(ν, ζ) =

m̂ulBooth(ν, bζ/νc)”. This is seen to be true “cum grano salis”. Namely, for tech-
nical reasons we have to adapt the Booth-multiplication at the final loop rounds.
For the pair (ν, ζ) we are constructing a derivation mul

B̃ooth
(ν, ζ/ν) of the Booth

multiplication mulBooth(ν, bζ/νc). Write ζ = q · ν + r in the following form:

– If ζ mod ν ∈ [0, 1
3ν[, then set q := b ζ

ν c, r := ζ mod ν and x = 0.

– If ζ mod ν ∈ [ 13ν, 2
3ν[ and b ζ

ν c is even, then set q := b ζ
ν c, r := ζ mod ν and

x = 0.
– If ζ mod ν ∈ [ 13ν, 2

3ν[ and b ζ
ν c is odd, then set q := b ζ

ν c+1, r := (ζ mod ν)−ν
and x = −1.

– If ζ mod ν ∈ [ 23ν, ν[, then set q := b ζ
ν c + 1, r := (ζ mod ν) − ν and x = −1.

Now, either r ∈ [− 1
3ν, 1

3ν[ or r ∈ [− 2
3ν, 2

3ν[\[− 1
3ν, 1

3ν[ but q is even. Thus, we
define

mul
B̃ooth

(
ν,

ζ

ν

)
:= step(RW(q), x).

Note that (RW(q), x) is also a section of ev.

Theorem 2. For any (ν, ζ) ∈ N × Z we have the equality of the two formal
reduction algorithms for (ν, ζ), i.e.,

redZDN(ν, ζ) = m̂ul
B̃ooth

(
ν,

ζ

ν

)
.

Proof. Let ((s1, v1), . . . , (sn, vn)) := mul
B̃ooth

(ν, ζ
ν ), then we have to show

redZDN(ν, ζ) = ((s1,−v1), . . . , (sn,−vn)).

We assume again n ≥ 3. In order to prove this equality, we may apply lemma
2 and verify the described points 1 to 3. The points 1 and 2 are clear by
the construction of step. Note that ((s1, v1), . . . , (sn−1, vn−1)) = step(q) and
(sn,−vn) = (0, 0) or (0, 1). So, we have to verify the third point of lemma 2:

a) Z1, . . . , Zn−2 ∈ [− 1
3ν, 1

3ν[,
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b) Zn−1 ∈ [− 1
3ν, 1

3ν[ if vn−1 6= 0, otherwise Zn−1 ∈ [− 2
3ν, 2

3ν[.

With (q̄m, . . . , q̄0) = RW(q) we have by virtue of lemma 3 for i = 0, . . . , n − 1
that

Zi = ζ · 2−j − (q̄m, . . . , q̄j)SD2
· ν,

for some j, where q̄j 6= 0. Since ζ = (q̄m, . . . , q̄0)SD2
· ν + r it holds that

Zi · 2
j = (q̄j−1, . . . , q̄0)SD2

· ν + r.

For a) we have to prove

−
1

3
ν · 2j ≤ r + (q̄j−1, . . . , q̄0)SD2

· ν <
1

3
ν · 2j

or better

−2j ≤ 3
( r

ν

)
+ 3 · (q̄j−1, . . . , q̄0)SD2

< 2j .

Since 3( r
ν ) ∈ [−1, 1[ or 3( r

ν ) ∈ [−2, 2[ with q even, i.e., q̄0 = 0, property a) is
implied by the next lemma 4. For b) it follows immediately, since q̄0 = vn−1. If
q̄0 = 0 then 3( r

ν ) ∈ [−2, 2[, i.e.,

−2 · 20 ≤ 3
( r

ν

)
+ 3 · 0 < 2 · 20

and if q̄0 6= 0, then by definition 3( r
ν ) ∈ [−1, 1[ and

−20 ≤ 3
( r

ν

)
+ 3 · 0 < 20,

which concludes the proof �

Lemma 4. Let (q̄n, . . . , q̄0) ∈ SD2 be nonadjacent and j ∈ 1, . . . , n so that
q̄j 6= 0. Then,

−|q̄0| − 2j + 2 ≤ 3 · (q̄j−1, . . . , q̄0)SD2
≤ 2j − 2 + |q̄0|.

Proof. The largest value for (q̄j−1, . . . , q̄0)SD2
if q̄j−1 = 0, since q̄j 6= 0, is

(0101 . . . b)SD2 of the same length, where b̄ = |q̄0|. Therefore, we have

3 · (q̄j−1, . . . , q̄0)SD2
≤ (111 · · ·1b)SD2

= (2j − 1) − (1 − b).

The left part is shown analogously. �

8 Conclusion

From this paper we have learned two things. First, we have seen that every reduc-
tion algorithm corresponds to a multiplication algorithm with the same norm,
i.e., performance. Clearly, the other direction holds as well. For multiplication
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algorithms one knows that Booth’s algorithm is the best in performance. There-
fore, the best reduction algorithm is the one which is dual to the Booth multi-
plication. On the other hand, we have presented the so called ZDN-reduction by
a proper mathematical derivation solving the lack of its intuitive/mathematical
understanding. It relies on a simple mathematical observation with respect to
reduction with – at the first moment – strange bounds. However, we proved that
this reduction is the realization of Booth’s dual. Hence, it also has an optimal
performance.
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