
Zero-Knowledge Proofs for Mix-nets of Secret Shares and a Version

of ElGamal with Modular Homomorphism ∗

Marius-Călin Silaghi
Florida Institute of Technology

May 1, 2005

Abstract

Mix-nets can be used to shuffle vectors of shared secrets. This operation can be an important building
block for solving combinatorial problems where constraints depend on secrets of different participants. A
main contribution of this paper is to show how participants in the mix-net can provide Zero-Knowledge
proofs to convince each other that they do not tamper with the shuffled secrets, and that inverse per-
mutations are correctly applied at unshuffling. The approach is related to the proof of knowing an
isomorphism between large graphs. We also make a detailed review and comparison with rationales and
analysis of Chaum’s and Merritt’s mix-nets.

Another contribution is a (+ mod ν,×)-homomorphic encryption scheme that can be parametrized
by a public prime value ν and that is obtained from a version of ElGamal [DGS02]. This cryptosystem
allows for guarantees of security in the aforementioned mix-net. A generalization shows how to obtain
modular arithmetic homomorphic schemes from other cryptosystems.

Mix-nets offer only computational security since participants get encrypted versions of all the shares.
Information theoretically secure algorithms can be obtained using secure arithmetic circuit evaluation.
The arithmetic circuit previously proposed for shuffling a vector of size k was particularly slow. Here
we also propose a new arithmetic circuit for performing the operation in O(k2) multiplications and
requiring k−1 shared random numbers with different domains. Another contribution is to provide more
efficient arithmetic circuits for combinatorial optimization problems, exploiting recent secure primitives.
Examples are shown of how these techniques can be used in the Secure Multi-party Computation (SMC)
language [Sil04b]. SMC’s procedures for generating uniformly distributed random permutations are also
detailed.

1 Introduction

It is known that any probabilistic function on an arithmetic finite field can be securely computed using
addition/multiplication or AND/XOR logic operators on shared secrets [BOGW88]. In securely addressing
large problems, like auctions and scheduling, a major step consists in randomly selecting one out of several
possible results. This is an important problem since not only the fairness of the MPC, but also a lot of
privacy implications depend heavily on the way it is addressed. Details about the privacy implications of
the process for selecting the result are detailed in [SR04].

Here we describe computationally secure techniques for selecting randomly a solution when several
solutions are possible. This can be done with information theoretical security by using solely addi-
tion/multiplication or AND/XOR operations on secret shares [Sil04c]. Previous solutions of this type were
slow, and now we propose a faster version. The approach addressed here to select a value randomly from a
certain set is based on the concept of mix-net and yields faster algorithms.

Mix-nets were introduced by Chaum as a way to provide anonymity in an insecure Internet [Cha81]. The
term mix-net suggests a network of volunteers that mixes messages to hide their relation with the senders.

∗This version contains some additions to the version submitted on March 8, 2005. ZK-proofs for the inverse permutations
were added on April 16. Some citations are added and a section is deleted on April 30. ElGamal version with modular
homomorphism described on May 1.

1

Figure 1: Using a volunteer V1 which shuffles messages from different senders before delivering them to the
destination.

The technique relies on the trust in a set of volunteers where the collusion of all of them is required to
break the anonymity. Secrets from many volunteers are combined in a more secure secret that hides the
identity of a message sender. After we describe Chaum’s mix-nets we also pay attention to a variation by
Merritt [Mer83], very similar to what is used for secure function evaluation.

The main part of the article is then spent in describing and analyzing a mix-net that can shuffle a set
of shared secrets such that no participant can know to which of the initial secrets does an obtained secret
correspond. This technique can be used to select a random value from a set of secrets, such that the selection
is fair and nobody can know which secret was selected. [Sil04c] shows how this can be used to select a value
with certain properties (namely being a solution to a problem at hand) from a set of alternatives with secret
properties. At the end we describe some related arithmetic circuits.

2 Chaum’s Anonymity Mix-net

In an Internet where messages can be supervised and where the identity of their sender can be verified,
the accountability is expected to offer us less unsolicited email, better security and a better satisfaction in
general. However, there exist cases where anonymity of the sender is desirable. A typical case is voting
and submission of signatures for popular initiatives [KS05, SK05, AS04]. In such applications we want that
the vote/signature authors remain as anonymously as possible (and eligibility is proven using some type of
digital signature, called credentials).

Trying to provide anonymity, Chaum’s idea was to ask help from volunteers that accept to forward the
message to the destination and to remove the name of the sender (see Figure 1). If the volunteers act for
many messages simultaneously shuffling them before delivery, then (even knowing who gave messages to the
volunteers) the receiver cannot know the mapping between senders and received messages. To avoid that
the volunteers see the messages, these messages can be encrypted with the key of the destination.

Assume that sender S gives ED(m) to volunteer V1 asking delivery to the destination D. However, if V1

is coerced to reveal his secret shuffling then the anonymity is lost. A small improvement is achieved if the
sender does not give his message directly to V1 but asks an additional volunteer V2 to anonymously deliver
the message to V1 (assuming V1 knows to always deliver to D). Volunteer V2 acts for many senders and
shuffles the messages, too. The security is now based on two volunteers. To avoid that V2 can be corrupted
by D and reveal the messages directly to D together with the senders, Chaum found a way to force V2 and
D to also need V1. The idea was to perform an additional encryption of the message with a key known only
by V1, namely a cipher E1. The new message to be sent by the sender is M = E1(ED(m)). V2 and D cannot
use the message M if V1 does not decrypt it. In this way, both volunteers have to be corrupted in order
to find the mapping between senders and messages received by D. Note that in the two volunteers version
shown in Figure 2, each volunteer is specialized as either delivering all messages straight to the destination
(the case of V1), or delivering to a volunteer of the previous type (like V2 which delivers to V1).

The concept of performing several encryptions one over another is called onion due to the resemblance
between the layers of encryption around the message and the layers of an onion. The next improvement
proposed by Chaum is a way to avoid the need of specializing volunteers as being either the first or the last
on a path. Chaum did this by telling each volunteer separately for each message the identity of the next hop
on the path. Such a message has the format M2 = 〈V1||E1(D||ED(m))〉 (see Figure 3), where a||b denotes
the concatenation of a and b.

2

Figure 2: Onion: Using two specialized volunteers.

Figure 3: Onion: Using up to two unspecialized volunteers.

An additional advantage of the lack of specialization is that we can easily extend the protocol to use
three volunteers (which all need to collude with D in order for D to break the anonymity). Namely, given an
additional volunteer V3, this additional volunteer can be asked by S to be an intermediary in anonymously
handing M2 to V2. As with the introduction of V2, to avoid that V3 sends the message directly to D without
needing V2, M2 will be encrypted with a key known to V2, getting E2(M2). The next hop, V2, is also
communicated to V3. The obtained message is:

M3 = 〈V2||E2(V1||E1(D||ED(m)))〉

Since the identity of the hop to which V2 will send its message (i.e., V1) is encrypted with the key of V2,
V3 will not know the path that will be followed by the message. With three volunteers, V2 is the single one
knowing all the three hops on the path of M3.

Even more, similarly to the addition of V2 and V3 one can add as many volunteers as desired increasing
the security up to the level of volunteers needed by the sender to trust at least one of them. Given a message
Mk built to generate a path with k hops, one can set a path with k + 1 nodes by adding a new volunteer,
Vk+1, and handing him the message Mk+1 = 〈Vk||Ek(Mk)〉. One can easily verify by mathematical induction
that the message Mk that has to be sent to a volunteer Vk to make security of anonymous delivery dependent
on k volunteers V1, ..., Vk is:

Mk = 〈Vk−1||Ek−1(Vk−2||Ek−2(..., E2(V1||E1(D||ED(m)))...))〉

Often, the message is sent to Vk encrypted with Ek, both to guarantee that nobody seeing the message
learns the identity of Vk−1, and to make Vk’s procedure identical to the procedure of all other volunteers.
I.e.,

Mk = Ek(Vk−1||Ek−1(Vk−2||Ek−2(..., E2(V1||E1(D||ED(m)))...)))

Moreover, making the processing homogeneous for all volunteers makes it possible for the sender to claim
to be a volunteer himself [GRS96]. [XNJS04, AS04] proposed to use digital currency for paying servers in a
mix-net. In [JJR02], it is shown how to improve the reliability of the servers by probabilistic checking.

To avoid that the path of a message can be analyzed by routers due to reduced traffic, it is possible
to maintain a minimal traffic by generating fake messages between all volunteers, according to a Poisson
distribution. This technique combined with adding random delays in processing each received message is
sufficient to offer robustness to sniffers. To offer robustness from analysis of message sizes, the fake messages
generated should always have the size of the recent messages that would have to be forwarded (fake or
correct) [RR98, FM02].

3

Remark 1 Mix-nets are computationally expensive due to the length of the messages. Public key encryption
with growing messages can be performed with Pollig-Hellman cryptosystem. One can also use symmetric key
encryption, sending only the session key in the onion encryption:

Mk = Ek(Kk)||EKk(Vk−1||Ek−1(Kk−1)||EKk−1
(...||E1(K1)||EK1

(D||ED(m)...))

where EKi denotes symmetric encryption with the key Ki.

The usage of symmetric encryption as described in this remark is particularly useful when other data is
passed to the volunteers, such as digital coins and/or reply-path data [AS04].

3 Merritt Election Protocol

As mentioned above, Chaum’s mix-nets can be used for anonymously voting. From the perspective of voting,
some of the drawbacks of Chaum’s technique are that (a) timing analysis of vote arrival and sending can
reduce anonymity, (b) anonymity depends on the honesty of the volunteers, (c) message delivery is not
reliable.

3.1 Modifications to Chaum’s method

Let us see some solutions to the three threats observed when Chaum’s method is applied to voting:

(a) To avoid the timing analysis (especially if fake messages are not used), all the votes should be submitted
simultaneously and should arrive simultaneously. For arriving simultaneously, the last volunteer on
the chain should be the same for all messages. To avoid that this volunteer could help an attacker
based on timing and path analysis, the previous volunteer should also be the same for all messages.
The same reasoning can be applied to the cooperation between the last two volunteers and an attacker
to infer that the third volunteer should also be the same for all votes. By induction we get that all the
votes should travel using the same path, simultaneously.

(b) There is a natural bound on the anonymity that can be achieved in voting. Namely, if all participants
except one reveal their vote, then the vote of the remaining participant is revealed. In Chaum’s
approach, if all volunteers are corrupted then the anonymity is lost. Note that if all voters are also
volunteers and all messages are handled by all volunteers, then the security offered by Chaum’s method
is equal to the maximal security achievable for the problem.

(c) The fact that message delivery is not reliable comes from the fact that each volunteer can discard a
message without forwarding it, and the identity of that volunteer cannot be established without the
cooperation of all volunteers (which should be hard to get). Some approaches trying to fix this are based
on statistical tests [JJR02], or on providing incentives [XNJS04, AS04]. A more secure approach, usable
if we accept to reveal the trajectory of all messages (as in the aforementioned solution to problem (a)),
is to ask all volunteers to broadcast signed versions of the messages that they forward. Since everybody
sees the broadcast messages, everybody can detect the user that did not forward a message. Since each
participant can see and recognize the forwarded component of his own message, everybody can detect
when (if ever) his/her message is tampered with.

3.2 A simplified version of Merritt’s protocol

These solutions to the three threats mentioned above are integrated in Merritt’s election protocol [Mer83].
Several descriptions and versions of Merritt’s election protocol exist [GB96, Gen95]. Merritt’s election
protocol ensures the privacy of the relation vote-elector by reordering (shuffling) the votes. The shuffling is
obtained by a chain of permutations (each being the secret of an election center) on the encrypted votes.
Note that maximal security would require each voter to act as election center and we will assume this to be
the case.

The n election centers, A1, ..., An, are ordered in a chain (called in the following, Merritt chain). Each
Ai distributes a public key for a probabilistic public key cryptosystem, the obtained encryption function

4

being denoted Ei(m, r) where m is the plaintext and r the random value. Ai keeps corresponding private
decryption function Di, i.e., Di(Ei(m, r)) = m. Each voter Ai that submits a vote vi chooses a large
random number hi and random numbers r1,i, ..., rn,i, and computes a message y1,i to be submitted to the
first volunteer in the Merritt chain, A1:

y1,i = E1(E2(...En−1(En(vi||hi, rn,1), rn−1,i)..., r2,i), r1,i)

By vi||hi we denote the number obtained by concatenating vi and hi. The y1,j values gathered by
A1 in a vector y1 = {y1,j}j ordered according to their second index, j, are posted through the chain of
participants in order from A1 to An. Each Ai chooses a secret random permutation πi : [1..n]→[1..n].

We define the application of such a permutation on a vector as πi({xk}k∈[1..n])
def
= {xπ−1

i
(k)}k∈[1..n]. After

receiving {y1,j}j , A1 broadcasts y2 = {y2,j′}j′=πi({Di(yi,j)}j). In each subsequent hop, Ai, of the Merritt
chain, after receiving {yi,j(i−1)(k)}j(i−1)(k), it broadcasts {yi+1,j(i)(k)}j(i)(k)=πi({Di(yi,j(i−1)(k))}j(i−1)(k)). An
publishes {yn+1,j(n)}j(n) which equals {vk||hk}j(n)(k). Votes have been shuffled since the relation (j,j(n)) was
lost. Each voter Ai can check that his own vote was recorded correctly by verifying the vote that appears
in association with its random number hi. If the random numbers are sufficiently large then they can be
expected to be unique.

Example 1 Assume A1, A2, and A3 want to vote on an issue using the simplified Merritt protocol.
A1 submits to himself the vote y1,1 = E1(E2(E3(v1||h1, r3,1), r2,1), r1,1).
A2 submits to A1 the vote y1,2 = E1(E2(E3(v2||h2, r3,2), r2,2), r1,2).
A3 submits to A1 the vote y1,3 = E1(E2(E3(v3||h3, r3,3), r2,3), r1,3).

A1 builds the vector y1 = 〈y1,1, y1,2, y1,3〉, chooses the permutation π1 = 〈2, 3, 1〉 and applies it on the
decrypted elements of y1 obtaining: y2 = 〈D1(y1,2), D1(y1,3), D1(y1,1)〉
= 〈E2(E3(v2||h2, r3,2), r2,2), E2(E3(v3||h3, r3,3), r2,3), E2(E3(v1||h1, r3,1), r2,1)〉 = 〈y2,1, y2,2, y2,3〉. y2 is
broadcast signed by A1.

A2 chooses the permutation π2 = 〈1, 3, 2〉 and applies it on the decrypted elements of y2 obtaining:
y3 = 〈D2(y2,1), D2(y2,3), D2(y2,2)〉 = 〈E3(v2||h2, r3,2), E3(v1||h1, r3,1), E3(v3||h3, r3,3)〉 = 〈y3,1, y3,2, y3,3〉. y3

is broadcast signed by A2.
A3 chooses the permutation π3 = 〈3, 1, 2〉 and applies it on the decrypted elements of y3 obtaining:

y4 = 〈D3(y3,3), D3(y3,1), D3(y3,2)〉 = 〈v3||h3, v2||h2, v1||h1〉 = 〈y4,1, y4,2, y4,3〉.
A3 now publishes the votes y4 = 〈v3||h3, v2||h2, v1||h1〉. Each voter Ai looks in this vector and checks that

his hi appears associated with the submitted vote vi, meaning that the voting went correctly.

The simplified Merritt election protocol shown here has one more weakness. The problem is that An
could change a vote that she/he dislikes, and the only one observing it is the voter whose vote was changed.
If the voter complains, then its anonymity is lost. The full version of the Merritt election protocol solves
this problem

Remark 2 As it can be noticed, Merritt’s protocol is computationally expensive, mainly due to the length of
the messages. Public key encryption with growing messages can be performed with symmetric key encryption,
sending only the session key in the onion encryption:

y1,i = E1(K1)||EK1
(r1,i||E2(K2)||EK2

(r2,i||...En(Kn)||EKn(rn,i||vi||hi)...))

Remark 3 Instead of submitting the votes using onion encryption, Ak’s vote could be submitted only as
y1,k = En(vk||hk, r), where En is a (◦, •)-homomorphic encryption, for some operations ◦ and •. Then, each
participant (election center) Ai in the Merritt chain only needs to compute yi+1 = πi({yi,k •En(e◦, ri,k)}k).
Here e◦ is the identity element for the operation ◦ and ri,k is a secure random number.

After this operation the secrets are shuffled and nobody can reconstruct the permutation due to the
randomization based on the homomorphic encryption. However, if A1 colludes with An then the privacy of
the voters is lost. Nevertheless, we will see in Section 4 how a similar idea is successful for secure function
evaluation.

5

3.3 The Merritt Election Protocol

As mentioned before, one needs to make sure that the last person decrypting the votes getting out of a
mix-net cannot modify the votes without being detected by everybody. The reason why An can tamper with
the votes undetected in the simplified version is that the encryption scheme was probabilistic, meaning that
nobody other then the sender can check that the published decrypted messages correspond to the actual
ciphertexts (the randomization parameters being lost). Probabilistic encryption was needed to hide the
shuffling permutation.

An immediate fix is to add an additional layer of encryption at the end, this time with an encryption
scheme that is not probabilistic (i.e., is publicly reversible). This uses the public key E ′k of a volunteer Ak,
where Ak may or may not be one of the election centers shuffling the votes so far. During the corresponding
decryption it is useless to perform any shuffling, since such shuffling can be reconstructed by everybody.
One should either use an encryption that is not probabilistic (RSA or Rabin), or an encryption where the
randomization factor can be retrieved (as in the non-probabilistic Paillier’s scheme [Pai99]), or one can
simply send the randomization factor as an additional plaintext to enable verification.

y1,i = E1(E2(...En−1(En(E′k(vi||hi), rn,1), rn−1,i)..., r2,i), r1,i)

Everybody can reverse the last operation of Ak and can detect if Ak does not decrypt correctly the signed
message E′k(vi||hi) that he gets from An.

However, it follows that a single additional encryption layer is not enough since the new volunteer Ak
could collude with the last shuffler An to see the votes in advance and to have An tamper with them. To
increase the security, one needs to ask more than one volunteer, having an additional layer of encryption
for each of them. The maximum security is achieved if all voters are present once again in the new set of
volunteers with non-probabilistic encryption layers. That would requires all of them to cooperate in order
to tamper a known vote.

All volunteers in the newly added set of encryption layers have to broadcast the messages that they
forward, enabling everybody to detect when a message is tampered with. To enable user to prove in court
that a certain volunteer is guilty for tampering, the messages should be digitally signed. A volunteer proceeds
to do his decryption round only if all participants acknowledge that the protocol went correctly so far. Let
us now see the obtained protocol, the Merritt election protocol.

The n election centers, A1, ..., An, are ordered in a chain (the Merritt chain). Each agent Ai distributes
two public keys, one for a probabilistic encryption cryptosystem resulting in an encryption function Ei(m, r),
and a public key for a non-probabilistic encryption scheme (i.e., having a publicly reversible decryption)
resulting in an encryption function E ′i(m). Ai keeps corresponding private decryption functions Di and
D′i. Also, each Ai possesses a scheme for digital signatures, given by the function Si(m) which returns the
message together with its signature. We denote with Ui a function that takes a signed message, verifies and
removes the signature, and returns the message. Each election center Ai that sends a vote vi chooses a large
random number hi and random numbers r1,i, ..., rn,i, and computes:

y1,i = E1(E2(...En(E′1(E′2(...E′n−1(E′n(vi||hi))...)), rn,i)..., r2,i), r1,i)

The y1,j values gathered by A1 in a vector {y1,j}j , each on a position given by their second index, j,
are posted through the Merritt chain in order from A1 to An. Each Ai chooses a secret random permu-

tation πi : [1..n]→[1..n]. As in the simplified version, we also define πi({xk}k∈[1..n])
def
= {xπ−1

i
(k)}k∈[1..n].

The composition of the secret permutations of the first t participants is denoted by j (t). After receiving
{yi,j(i−1)(k)}j(i−1)(k), Ai sends to Ai+1 the shuffled vector {yi+1,j(i)(k)}j(i)(k)=πi({Di(yi,j(i−1)(k))}ji−1(k)). An
broadcasts {yn+1,j(n)}j(n) :

yn+1,j(n)(k) = E′1(E′2(...E′n−1(E′n(vj(n)(k)||hj(n)(k)))...))

At this point, values have been securely shuffled (as the relation (j,j (n)) was lost). The shuffled value
can be found immediately by an additional decryption round in the order A1→A2→...→An. A1 broad-
casts {y′

2,j(n)(k)
}j(n)(k), where y′

2,j(n)(k)
= S1(D′1(yn+1,j(n)(k))). Then, each subsequent election center

Ai, 1<i<n computes y′
i+1,j(n)(k)

= Si(D
′
i(Ui−1(y′

i,j(n)(k)
))). An broadcasts the signed votes {vj ||hj} =

Sn(D′n(Un−1(y′
n,j(n))))). Each Aj checks for the presence of its hj .

6

Example 2 Assume A1, A2, and A3 want to vote on an issue using the simplified Merritt protocol.
A1 computes y1,1 = E1(E2(E3(E′1(E′2(E′3(v1||h1))), r3,1), r2,1), r1,1).
A2 submits to A1 the vote y1,2 = E1(E2(E3(E′1(E′2(E′3(v2||h2))), r3,2), r2,2), r1,2).
A3 submits to A1 the vote y1,3 = E1(E2(E3(E′1(E′2(E′3(v3||h3))), r3,3), r2,3), r1,3).
A1 builds the vector y1 = 〈y1,1, y1,2, y1,3〉, chooses the permutation
π1 = 〈2, 3, 1〉 and applies it on the decrypted elements of y1 obtain-
ing: y2 = 〈D1(y1,2), D1(y1,3), D1(y1,1)〉 = 〈E2(E3(E′1(E′2(E′3(v2||h2))), r3,2), r2,2),
E2(E3(E′1(E′2(E′3(v3||h3))), r3,3), r2,3), E2(E3(E′1(E′2(E′3(v1||h1))), r3,1), r2,1)〉 = 〈y2,1, y2,2, y2,3〉. y2 is
sent to A2.
A2 chooses the permutation π2 = 〈1, 3, 2〉 and applies it on the decrypted elements of y2 obtain-
ing: y3 = 〈D2(y2,1), D2(y2,3), D2(y2,2)〉 = 〈E3(E′1(E′2(E′3(v2||h2))), r3,2), E3(E′1(E′2(E′3(v1||h1))), r3,1),
E3(E′1(E′2(E′3(v3||h3))), r3,3)〉 = 〈y3,1, y3,2, y3,3〉. y3 is sent to A3.
A3 chooses the permutation π3 = 〈3, 1, 2〉 and applies it on the decrypted elements of y3 obtain-
ing: y4 = 〈D3(y3,3), D3(y3,1), D3(y3,2)〉 = 〈E′1(E′2(E′3(v3||h3))), E′1(E′2(E′3(v2||h2))), E′1(E′2(E′3(v1||h1)))〉 =
〈y4,1, y4,2, y4,3〉. A3 broadcasts y4.
A1 computes and broadcasts y′2 = 〈S1(D′1(y4,1)), S1(D′1(y4,2)), S1(D′1(y4,3))〉 =
〈S1(E′2(E′3(v3||h3))), S1(E′2(E′3(v2||h2))), S1(E′2(E′3(v1||h1)))〉 = 〈y′2,1, y′2,2, y′2,3〉.
A2 computes and broadcasts y′3 = 〈S2(D′2(U1(y′2,1))), S2(D′2(U1(y′2,2))), S2(D′2(U1(y′2,3)))〉 =
〈S2(E′3(v3||h3)), S2(E′3(v2||h2)), S2(E′3(v1||h1))〉 = 〈y′3,1, y′3,2, y′3,3〉.
A3 computes and broadcasts y′4 = 〈S3(D′3(U2(y′3,1))), S3(D′3(U2(y′3,2))), S3(D′3(U2(y′3,3)))〉 =
〈S3(v3||h3), S3(v2||h2), S3(v1||h1)〉 = 〈y′4,1, y′4,2, y′4,3〉.

Each voter Ai looks in this vector, verifies the signature of A3 by computing 〈U3(y′4,1), U3(y′4,2), U3(y′4,3)〉 =
〈v3||h3, v2||h2, v1||h1〉, and checks that his hi appears associated with the submitted vote vi, meaning that the
voting was performed correctly.

Remark 4 As for the simplified Merritt protocol, onion mix-nets are very computational and memory ex-
pensive, mainly due to the length of the messages. Public key encryption with growing messages can be
performed with symmetric key encryption, sending only the session key in the onion encryption:

y1,i = E1(K1)||EK1
(r1,i||...En(Kn)||EKn(rn,i||E′1(...E′n−1(E′n(vi||hi))...))...)

3.4 Copying Votes

A remaining problem for applying the Merritt election protocol to voting is that A1 can learn Ak’s vote
by copying his message. Instead of submitting his own vote, A1 will duplicate the message of Ak. If two
identical votes have the same random number hx = hy, then Ai learns that Ak has casted the corresponding
vote, vx.

For blocking this possible attack, the participants have to stop the protocol if they detect that two
of the messages that they process are identical. However, if the encryption used has (◦, ◦)-homomorphism
property for some operator ◦, then A1 can hide the resemblance of the two messages using this homomorphism
(combining the message with a message built for random number hi and for vote e◦, i.e., the identity element
for ◦). After the end of the protocol, Ai has to find two votes with the same value and random numbers hx
and hy in the relation hx = hy ◦ hi. Ai learns that Ak’s vote is vx. The solution for blocking this attack is
to avoid encryptions with (◦, ◦)-homomorphism (like RSA, ElGamal, Rabin). Paillier encryption is robust
to this attack.

4 Mix-nets for Shuffling Shared Secrets

A probabilistic function that is expensive to evaluate on secret shares is the computation of a secret random
permutation of a set of secrets where the permutation is not known by any participant. For fairness and
privacy one prefers the permutation to be chosen with a probability given by the uniform distribution over
the set of possible permutations. Given an arithmetic structure F we denote R = log|F |(n!). For n secrets,
the total number of possible permutations is n!. To select such a permutation, a participant needs to specify
values for R variables in F . For fairness and for hiding the total permutation, each participant must be able

7

to specify such a permutation and the performed permutation has to be a composition of the permutations
proposed by each participant.

Such a function for k secrets and n participants can be defined as f : F k × FnR → F k where f(~x,~r) =
π~r(~x). π~r is a permutation defined by ~r and there are several ways to define it such that each permutation
has equal probability to be obtained. This function is an important step in securely solving combinatorial
problems that can have several solutions. A particular definition of π~r based on an arithmetic circuit is shown
in [Sil04c] and has a very high complexity of O(k!k) multiplications of shared secrets. Even if that solution
is information theoretically secure, its cost makes it prohibitive and a computationally secure approach
becomes acceptable. Here we will see such an approach based on mix-nets.

It is possible to randomize the permutation of the secrets by letting participants to jointly generate the
secret permutation. In order to destroy the visibility of the relations between the initial order on the secrets
and the resulting secrets one can exploit random joint permutations that are not known to any participant,
similar to the simplified Merritt election protocol. The attack of tampering with reconstructed secrets by the
last participant in the Merritt chain (which prompted the extension to the second round of the full version
of the Merritt election protocol) is not possible in this technique since the result consists of shared secrets
and the last participant in the chain does not get their reconstruction. The attack of duplicating a secret or
tampering with a secret using homomorphism (especially by the first participant in the Merritt chain) can
be thwarted as shown later in Section 5.

4.1 (+ mod ν, [×]2)-Homomorphic Public Encryption Schemes

An encryption scheme (EPK (m), DSK (c)) is (◦, •)-homomorphic if EPK (m1) • EPK (m2) = EPK (m1 ◦m2).
We will denote a vector a with k elements as {ai}i∈[1..k], where ai is the element at position i. Given

some group (G, ◦), let us denote by [◦]k the operation defined as:
[◦]k : Gk ×Gk → Gk; {ai}i∈[1..k][◦]k{ai}i∈[1..k] = {ai ◦ ai}i∈[1..k]

Note that Paillier encryption scheme with the public modulus µ is (+ mod µ,× mod µ2)-homomorphic.
This means that it cannot be used for summations in a predefined field (aka modulus some predefined prime
number ν). This seems not to be a problem when ν < 2 ∗ µ since the summation will still be correct.
However, this is a problem for the use of the technique in secure multiparty computations, since after adding
secret shares, the result can reveal the input parameters (as long as the reduction mod ν cannot be done in
the encrpted form).

Remark 5 In general, given a public key encryption scheme (E(m),D(c)) accepting plaintexts m from a ZZn
where n is a multiple of ν, one can create a (+ mod ν, •)-homomorphic encryption scheme (Eν(m, k), Dν(c))
defined as:
k ∈ ZZn

ν
, a secure random parameter

Eν(m, k) = E(m+ kν) and
Dν(c) = D(c) mod ν.

Such a scheme is obtained for the (+, [×]2)-homomorphic version of ElGamal [DGS02] with secret key x
and public keys p, g, h, a where p is a large prime, g is a generator or an element with a large order mod p,
h = hx mod p, and a is an element whose order n is a multiple of ν.

Our encryption is then:
Ep,g,h,a(m, r, k) = 〈am+kνhr mod p, gr〉

where m ∈ ZZν is the plaintext, k ∈ ZZ ord(a)
ν

and r ∈ ZZord(g) are random numbers.

Our decryption is:

Dp,g,x,a(〈α, β〉) = inda,p(
α

βx
mod p) mod ν

where 〈α, β〉 is a ciphertext and inda,p(c) is the discrete logarithm of c in base a mod p
Correctness and security of this scheme are guaranteed since it is a case of ElGamal. For ease of computing

the discrete logarithm at decryption, a should be chosen such that its order n is small. Also, p should be

chosen such that ν|(p−1). Given a generator b of ZZp, one can select a with order ν as a = b
ord(b)
ν mod p =

b
p−1
ν mod p.

8

Remark 6 Given an element b of ZZp with order n multiple of ν, n = tν, one can select a with order ν as

a = b
ord(b)
ν mod p = bt mod p.

Note that an element b such that b
p−1
ν 6= 1 has an order multiple of ν.

Remark 7 This same modification can be added similarly to the composite version of Diffie-
Hellman [Mah05].

4.2 Shuffling unidimensional secrets

Now we address the problem n participants A1, ..., An shuffling a vector S = 〈s1, ..., sk〉 of k shared secrets
from ZZν , using a mix-net. Each participant Ai chooses a random secret permutation πi, picked with a
uniform distribution over the set of possible permutations: πi : [1..k] → [1..k]. The shares of Ai for the
secrets in S are the vector Si = 〈s1,i, ..., sk,i〉, sj,i ∈ ZZν .

Each participant Ai chooses a pair of keys for a (+ mod ν, •)-homomorphic public encryption scheme (for
some operation •), and publishes the public key (the obtained encryption function being denoted Ei(m)).1

Ai encrypts with her own public key her shares in Si obtaining a vector ESi = 〈Ei(s1,i), ..., Ei(sk,i)〉.
The serialized encrypted vectors are then sent to A1. A1 shuffles the serialized vectors according to her
permutation π1, then passes the result to A2 which applies π2, etc., until the agent An which applies πn. An
sends each vector to the agent that originated it.

To avoid that agents get a chance to learn the final permutation by matching final shares with the
ones that they encrypted, a randomization step is also applied at each shuffling. Each participant Aj
applies a randomization step on the set of shares for each element of S, by adding corresponding shares
of zero [BOGW88]. Since operands are encrypted, to be able to perform this summation one exploits the
(+ mod ν, •)-homomorphic properties of Ei. Aj computes for each secret sk the Shamir shares of a zero,
zj,k,1, ..., zj,k,n. Then, Aj sets Ei(zj,k,i)•Ei(sk,i) as the new value of Ei(sk,i), randomizing the sharing of sk.

Example 3 Participants A1, A2, and A3 share two secrets from ZZ3, s1 = 0 and s2 = 1. s1 is shared as
〈1, 2, 0〉 and s2 as 〈0, 2, 1〉, using Shamir’s (2,3)-threshold scheme. Ai holds the ith shares of each secret. For
simplicity in this example we do not use our cryptosystem but Paillier’s, and each Ai uses the Paillier key
for n=15 (note that this is not secure).
A1 (shares 〈1, 0〉) computes v1 = 〈E1(1, 4), E1(0, 7)〉 = 〈34, 118〉.
A2 (shares 〈2, 2〉) submits v2 = 〈E2(2, 2), E1(2, 13)〉 = 〈158, 67〉 to A1.
A3 (shares 〈0, 1〉) submits v3 = 〈E3(0, 11), E1(1, 4)〉 = 〈26, 34〉 to A1.
A1 generates two sharing of 0, z1,0 = 〈0, 0, 0〉 and z1,1 = 〈1, 2, 0〉, and a random permutation π1 = 〈0, 1〉,
and computes:
v1 = π1〈34 ∗ E1(0, 7), 118 ∗ E1(1, 2)〉 = 〈34 ∗ 118, 118 ∗ 38〉 = 〈187, 209〉,
v2 = π1〈158 ∗E2(0, 11), 67 ∗ E2(2, 4)〉 = 〈158 ∗ 26, 67 ∗ 94〉 = 〈58, 223〉,
v3 = π1〈26 ∗ E3(0, 2), 34 ∗E3(0, 4)〉 = 〈26 ∗ 143, 34 ∗ 199〉 = 〈118, 16〉,
and sends them to A2.
A2 generates two sharing of 0, z1,0 = 〈2, 1, 0〉 and z1,1 = 〈1, 2, 0〉, and a random permutation π2 = 〈1, 0〉,
and computes:
v1 = π2〈187 ∗E1(2, 7), 209 ∗ E1(1, 1)〉 = π2〈187 ∗ 58, 209 ∗ 16〉 = 〈194, 46〉.
v2 = π2〈58 ∗ E2(1, 4), 223 ∗ E2(2, 7)〉 = π2〈58 ∗ 34, 223 ∗ 58〉 = 〈109, 172〉.
v3 = π2〈118 ∗E3(0, 2), 16 ∗ E3(0, 8)〉 = π2〈118 ∗ 143, 16 ∗ 107〉 = 〈137, 224〉. and sends them to A3.
A3 generates two sharing of 0, z1,0 = 〈1, 2, 0〉 and z1,1 = 〈2, 1, 0〉, and a random permutation π3 = 〈1, 0〉,
and computes:
v1 = π3〈194 ∗E1(1, 11), 46 ∗ E1(2, 13)〉 = 〈46 ∗ 67, 194 ∗ 191〉 = 〈157, 154〉.
v2 = π3〈109 ∗E2(2, 1), 172 ∗ E2(1, 14)〉 = 〈172 ∗ 209, 109 ∗ 31〉 = 〈173, 4〉.
v3 = π3〈137 ∗E3(0, 7), 224 ∗ E3(0, 2)〉 = 〈224 ∗ 143, 137 ∗ 118〉 = 〈82, 191〉.
It sends v1 to A1, v2 to A2, and decrypts v3.
A1 gets by decryption shares 〈5, 3〉 = 〈2, 0〉.
A2 gets by decryption shares 〈4, 8〉 = 〈1, 2〉.

1Note that the use of the original (+ mod µ,× mod µ2)-homomorphic Paillier scheme requires µ > (n+ 1)ν, and is not fully
secure. The use of (+ mod ν, •)-homomorphic public encryption schemes as the one we propose above is recommended.

9

1

2

3

4

5

6 2

3 4

 1

(b)(a)

Figure 4: Graphs where permutations are homomorphic: (a) a fully connected binary graph; (b) a fully
connected hyper-graph with ternary edges.

A3 gets by decryption shares 〈0, 1〉.
This is a shuffled re-sharing of the initial secrets (it happens that the permutations canceled each other and
the secrets are in their initial positions).

4.3 Shuffling multidimensional vectors

Previously we have seen how a random hidden reordering of a unidimensional vector can be obtained using
a version of the Merritt election protocol. Now we will show how one can shuffle a multidimensional space
containing multidimensional vectors of secrets, performing secret permutations on all dimensions. The vectors
may share some dimensions and the whole space has m dimensions, {1, ...,m}. The possible coordinates for
the dimension i are {1, 2, ..., di}. Additionally one can also shuffle the dimensions themselves.

Remark 8 This problem has application to the shuffling of descriptions secret for combinatorial problems
(satisfiability (SAT) problems, or constraint satisfaction (CSP) problems) where the dimensions correspond
to variables, the set of possible coordinates to the domains of these variables, and the multi-dimensional
vectors to the representation of secret predicates/constraints [Sil03].

Remark 9 Note that the dimensions can be shuffled securely only if a) all dimensions have the same number
of coordinates; and b) the hyper-graph induced by the vectors on any permutation of the dimensions is
homomorphic to the initial graph. This holds for fully connected graphs of any arity (see Figure 4).

As before, each participant Ai chooses a pair of keys for a (+, •)-homomorphic public encryption scheme
with plaintexts from ZZµ, and publishes the public key (the obtained encryption function being denoted
Ei(m)).

Assume the participants share secrets organized in k multidimensional vectors {Vi}i ∈ [1..k]. Each Vi
having ti dimensions, 〈i1, ..., iti〉, and is denoted {sivi1 ,...,viti }∀u,viu∈[1..diu]. The secrets and their shares are

in ZZν . Participant Aj has for Vi the set of secret shares {si,jvi1 ,...,viti }∀u,viu∈[1..diu]. Each participant Aj

encrypts its secret shares for all elements of each vector Vi with its own public key Ej , and submits the
obtained vectors, EVi = {Ej(si,jvi1 ,...,viti)}∀u,viu∈[1..diu], to a mix-net.

All the submissions are made to A1, the first participant in the Merritt chain. For each vector Vi, each
participant Ak generates a set of n vectors of the same size containing at each element sharing of zero,
{Zk,i,j}j∈[1..n]. Zk,i,j has the form {zk,i,jvi1 ,...,viti

}∀u,viu∈[1..diu]. Note that 〈zk,i,0vi1 ,...,viti
, ..., zk,i,nvi1 ,...,viti

〉 is a sharing

of zero. Ak also generates the secret permutations:

πk : [1..m]→ [1..m], (for variables)

l ∈ [1..m], πkl : [1..dl]→ [1..dl], (for domains)

When A1 or a subsequent Ak receives (all the elements of) all the vectors with shares for a participant Aj ,

it transforms each {Ej(si,jvi1 ,...,viti)}∀u,viu∈[1..diu] into {Ej(zk,i,jvi1 ,...,viti
) • Ej(si,jπk

i1
(vi1),...,πk

iti
(viti

)
)}∀u,viu∈[1..diu]

by applying the permutations πki on each corresponding dimension i.

10

Note that if a permutation πk is applied on dimensions (in this case all dimensions have size d), the
resulting vectors are: {Ej(zk,i,jvi1 ,...,viti

) • Ej(si,jπk(πk
i1

(vi1),...,πk
iti

(viti
))

)}∀u,viu∈[1..d]. If permutations are applied

on dimensions, then the order of the coordinates in vector Vi has to be shuffled consistently over the different
shares for the same vector (e.g., ordered by the new IDs of the dimensions). If there are several vectors, they
are shuffled with the same permutations. The order on vectors should also be shuffled in this case.

As with the shuffling of unidimensional secrets, the homomorphism of the encryption scheme ensures
that each set of shares is randomized by addition with a 0.

Example 4 Participants A1, A2, and A3 share three vectors of secrets from ZZ3 in a 2-dimensional space
(x,y), sx1 = 〈0, 1〉, sy2 = 〈2, 0〉, and sx,y3 = 〈〈1, 2〉, 〈2, 0〉〉. The two-dimensional vector sx,y shares the first
dimension with sx and the second with sy. All participants submit their encrypted shares to A1.
A1 generates permutations π1 = 〈1, 0〉 (creating new dimensions x′ and y′), and π1

1 = 〈0, 1〉, π1
2 = 〈1, 0〉, and

by shuffling and randomizing all shares of the vectors gets shares for

sy
′

1 = π1
1(sx1) = π1

1〈0, 1〉 = 〈0, 1〉,
sx
′

2 = π1
2(sy2) = π1

2〈2, 0〉 = 〈0, 2〉, and

sy
′,x′

3 = π1
1〈π1

2〈1, 2〉, π1
2〈2, 0〉〉 = 〈〈2, 1〉, 〈0, 2〉〉. These are sent shuffled to A2.

A2 generates permutations π2 = 〈0, 1〉, π2
1 = 〈1, 0〉, π2

2 = 〈0, 1〉, and by shuffling and randomizing all shares
of the vectors gets shares for

sy
′′

1 = π2
2(sy

′

1) = π2
2〈0, 1〉 = 〈0, 1〉,

sx
′′

2 = π2
1(sx

′
2) = π2

1〈0, 2〉 = 〈2, 0〉, and

sy
′′,x′′

3 = π2
2〈π2

1〈2, 1〉, π2
1〈0, 2〉〉 = 〈〈1, 2〉, 〈2, 0〉〉. These are sent to A3.

A3 generates permutations π3 = 〈1, 0〉, π3
1 = 〈1, 0〉, π3

2 = 〈0, 1〉, and by shuffling and randomizing all shares
of the vectors gets shares for

sx
′′′

1 = π3
2(sy

′′

1) = π3
2〈0, 1〉 = 〈0, 1〉,

sy
′′′

2 = π3
1(sx

′′
2) = π3

1〈2, 0〉 = 〈0, 2〉, and

sx
′′′,y′′′

3 = π3
2〈π3

1〈1, 2〉, π3
1〈2, 0〉〉 = 〈〈2, 1〉, 〈0, 2〉〉.

In this case the permutations of dimensions canceled each other and the final shuffling consists only in a
permutation of the second dimension, y.

4.4 Generating permutations uniformly distributed

Each participant in the mix-net for shuffling shares has to generate random permutations uniformly dis-
tributed over all possible permutations. The total number of possible permutations for a vector with k
values is k!. A way to generate such a permutation is to generate randomly a number in the interval
[0..k! − 1] and from this number to reconstruct the corresponding permutation. The drawback of Algo-

Algorithm 1: Generating a permutation of k values from a number x.

function PermNum(k, x)
for (i = 1; i ≤ k; i+ +) do

m = k − i!;
r[i] = bx/mc+ 1;
x = x mod m;

rithm 1 is the need to work with very large numbers. Another solution that we propose here is to generate
the permutation by construction using a simpler method. We will then show that this method generates
permutations with a uniform distribution. The method is as follows:

Theorem 1 Algorithm 2 generates permutations that are uniformly distributed over the set of possible per-
mutations.

Proof. The probability for a value x to be placed on the first position in the result vector is equal to 1/k.

11

Algorithm 2: Generating a random permutation

function GenPerm(k)
list l = [1..k];
for (i = 1; i ≤ k; i+ +) do

x=random([1..k − i+ 1]);
r[i] = l[x];
delete l[x] from list l;

Its probability to be placed on the second position is the probability of not being selected for the first
one, (k − 1)/k, multiplied with the probability of it being selected for the second 1/(k − 1). Overall, the
probability is k−1

k
1

k−1 = 1
k .

By mathematical induction, if the probability of a value x being assigned to any of the first i positions is
1/k, then the probability of it being assigned to the (i+ 1)th position is the probability of not being on the
first i positions, (k − i)/k, multiplied to the probability of it being chosen in the (i + 1)th cycle, 1/(k − i).
I.e. k−i

k
1
k−i = 1

k .
This shows that the probability of any permutation being chosen is equal, and therefore the distribution

is uniform. Q.E.D.

5 ZK IP for Shared Secret Shuffling

The attack of duplicating a secret or tampering with a secret using homomorphism (by a participant in the
Merritt chain) can be addressed with an interactive zero-knowledge proof. It is inspired from the proof of
knowledge of an isomorphism between two large graphs [GMR85, Gol04, GMW86, GMW87, Blu86].

Note that other efficient ZK proofs (e.g., non interactive zero-knowledge proofs) can be derived from the
ones below, similarly to how the techniques used for shuffling encrypted secrets are built [Nef01, Gro05].

5.1 ZK proof for knowledge of isomorphism between large graphs

Peggy needs to prove to Victor that she knows the isomorphism f between two large graphs G1 and G2 (e.g.,
to get access to some resource).

1. Peggy generates a random isomorphism f1 and computes a new graph G = f1(G1). Peggy send G to
Victor claiming that G is isomorphic to both G1 and G2.

2. Victor generates a random challenge c ∈ {0, 1} and sends it to Peggy. If c is 0 then Victor expects in
return the isomorphism between G1 and G. Otherwise he asks for the isomorphism between G2 and
G.

3. if c is 0 then Peggy sends f1 to Victor. Otherwise she sends f−1 ◦ f1.

With each iteration of this interactive proof, Victor’s doubts about Peggy knowing f decrease with 50%.

5.2 ZK proof for shuffling secret shares

A participant Aj in the Merritt chain for shuffling n vectors of k shared secrets v =
{{v1

i }i∈[1..k], ..., {vni }i∈[1..k]} (see Figure 5) can prove the correctness of his/her shuffling u =
{{u1

i }i∈[1..k], ..., {uni }i∈[1..k]} (obtained with a permutation π and summation with a vector of shares of
zero, {{z1

i }i∈[1..k], ..., {zni }i∈[1..k]}). by an interactive proof. Each step t of the interactive proof consists of:

• Aj generates a claim, i.e., an additional shuffling y = {{y1
i }i∈[1..k], ..., {yni }i∈[1..k]} (obtained with

a permutation πt and summation with a vector of shared zeros, {{z1
t,i}i∈[1..k], ..., {znt,i}i∈[1..k]}), and

sends it to the verifier.

12

6

66

6

? ?

6

π, ~z

π1, ~z1π2, ~z2

π2 ◦ π−1, ~z2−~z
(y) Claim 2 (y) Claim 1

(u) Output

(v) Input

π1 ◦ π−1, ~z1−~z

Figure 5: A participant’s Zero Knowledge proofs for shuffling shared secrets. Two claims are generated,
allowing a 75% certitude of the trust in the shuffler.

• The verifier sends a challenge c, c ∈ {0, 1}, to Aj .

• Upon the reception of the challenge c:

– If c = 0 then Aj reveals the permutation and the set of k shared zeros that translate from u to y
(namely, permutation πt ◦π−1 and the set of shared zeros {{z1

t,i−z1
i }i∈[1..k], ..., {znt,i−zni }i∈[1..k]}).

– If c = 1 then Aj reveals a permutation and the set of k shared zeros that translate from v to y
(namely, permutation πt and the set of shared zeros {{z1

t,i}i∈[1..k], ..., {znt,i}i∈[1..k]}).

Each challenge successfully answered reduces the suspicions about Aj with 50%. t such steps can be per-
formed simultaneously (to reduce suspicions 1

2t times at once).
To allow all other participants to be simultaneously convinced by a single answer by Aj to t challenges,

the challenges can be constructed using a protocol for tossing a coin over the phone. For example:

• Each of the verifiers Aj , j 6= i, commits to t guesses c1,j , ..., ct,j , where ck,j = 0 if Aj guesses the first
form and ck,j = 1 otherwise. Each verifier broadcasts his commitments.

• Everybody opens his commitments.

• Everybody computes the set of joint challenges, ct = ⊕nx=1,x6=i(ct,x).

A commitment to a bit b can be achieved as the ciphertext obtained by encrypting with AES a message
whose last bit is b, using a randomly obtained key. The commitment is opened by revealing the key and the
message yielding the ciphertext of the commitment.

Each of the shufflers that answers all t simultaneous challenges to t simultaneously published claims can be
trusted (with probability 1−1/2t). All n participants in the Merritt chain can play the IP simultaneously for
proving their corresponding operation to minimize message overhead. The memory overhead is k(t+1)n(n−1)
shares of secrets from n− 1 provers for t claims (+1 actual output), each with n shares for k secrets.

All the participants in the Merritt chain have to prove their operation to avoid any tampering with the
secrets.

Remark 10 If one only plans to protect the shares from a set of colluders knowing the identity of the secrets,
A1, then the concept of a (t, n)-threshold scheme would require the first n− t participants to provide the proof
(since n− t+ 1 colluding participants can always modify any shared secret).

5.3 ZK proof for inversion of a shuffling

A related problem is the un-shuffling. Assume that a set of participants have shuffled a vector of k shared
secrets at some prior time. Unshuffling is the problem where another vector of k shared secrets has to
be un-shuffled (using the inverse permutations). To our knowledge, this has not been addressed for the
similar problem of reversing the shuffling of encrypted secrets [Nef01, Gro05], and our solution proposed

13

6

66

6

? ?

6

?

? ?

?

?

6 6
π, ~z

π1, ~z1π2, ~z2

π2 ◦ π−1, ~z2−~z π2 ◦ π−1, ~z′2

(y) Claim 2 (y) Claim 1 (y’) Claim 2’(y’) Claim 1’

(u) Output (v’) Input’

(u’) Output’(v) Input

π−1, ~z′

π1 ◦ π−1, ~z′1π1 ◦ π−1, ~z1−~z

π2, ~z′2−~z′π1, ~z′1−~z′

Figure 6: Zero Knowledge proofs for performing an inverse shuffling. Shuffling is shown on the left and
unshuffling on the right. Two claims are generated, allowing a 75% certitude of the trust in the shuffler.

in the following can be quite straightforwardly be translated to that setting (and enriched with features
from [Nef01, Gro05]).

This problem occurs when one desires to perform different operations an some shared secrets wihout
knowing the identity of the secrets. Typically one shuffles these secrets with hidden permutations, performs
the operations on the shuffled secrets with a result potentially represented as a vector, vector that has to be
unshuffled with the reverse permutation. An example of application is the random selection: setting to 0 all
but one randomly picked (non-zero) secret.

Unshuffling is done by a procedure similar with the one for shuffling, just that each participant has to
use the inverse of the permutation employed there. Malicious participants in the mix-net could try to use a
different permutation to swap the values of some secrets. We now show how to construct a zero-knowledge
proof allowing mix-net members to prove the correctness of their actions.

We propose a technique that proves simultaneously the shuffling and the unshuffling. We denote by
{vti}i∈[1..k] the set of shares generated for At, for the secrets v1 through vk. A participant Aj in the Merritt
chain for shuffling n vectors of k shared secrets v = {{v1

i }i∈[1..k], ..., {vni }i∈[1..k]} (Input in Figure 6) and
unshuffling n vectors of k shared secrets v′ = {{v′1i }i∈[1..k], ..., {v′ni }i∈[1..k]} (Input’ in Figure 6), can prove
the correctness of his/her

• shuffling u = {{u1
i }i∈[1..k], ..., {uni }i∈[1..k]} (Output in Figure 6), obtained with a permutation π and

summation with a vector of shares of zero, {{z1
i }i∈[1..k], ..., {zni }i∈[1..k]},

• and unshuffling u′ = {{u′1i }i∈[1..k], ..., {u′ni }i∈[1..k]} (Output’ in Figure 6), obtained with a permutation
π−1 and summation with a vector of shares of zero, {{z ′1i }i∈[1..k], ..., {z′ni }i∈[1..k]}.

Each step t of the interactive proof consists of:

• Aj generates a claim, i.e.,

– an additional shuffling y = {{y1
i }i∈[1..k], ..., {yni }i∈[1..k]} (Claim t in Figure 6), obtained with a

permutation πt and summation with a vector of shared zeros, {{z1
t,i}i∈[1..k], ..., {znt,i}i∈[1..k]},

– and an additional unshuffling y′ = {{y′1i }i∈[1..k], ..., {y′ni }i∈[1..k]} (Claim t’ in Figure 6),
obtained with permutation πt ◦ π−1 and summation with a vector of shared zeros,
{{z′1t,i}i∈[1..k], ..., {z′nt,i}i∈[1..k]}, and sends them to the verifier.

• The verifier sends a challenge c, c ∈ {0, 1}, to Aj .

• Upon the reception of the challenge c:

– If c = 0 then Aj reveals the permutation and the two sets of k shared zeros that translate
from u to y and from v′ to y′ (namely, permutation πt ◦ π−1 and the two sets of shared zeros
{{z1

t,i − z1
i }i∈[1..k], ..., {znt,i − zni }i∈[1..k]} respectively {{z′1t,i}i∈[1..k], ..., {z′nt,i}i∈[1..k]}).

14

– If c = 1 then Aj reveals a permutation and the two sets of k shared zeros that translate
from v to y and from u′ to y′ (namely, permutation π−1

t and the two sets of shared zeros
{{z1

t,i}i∈[1..k], ..., {znt,i}i∈[1..k]} respectively {{z′1t,i − z′1i }i∈[1..k], ..., {z′nt,i − z′ni }i∈[1..k]}).

Each challenge successfully answered reduces the suspicions about Aj with 50%. t such steps can be per-
formed simultaneously (to reduce suspicions 1

2t times at once). Common verification by several participants
can be done as in the previous section.

5.4 Faster arithmetic circuit for shuffling vectors

An arithmetic circuit for shuffling a vector of k shared secrets was proposed in [Sil04c] and was inspired
from Algorithm 1, requiring O(k!k) multiplications. Now we propose a better arithmetic circuit based on
the Algorithm 2. Let ZZq be the field of the arithmetic circuit. We will use the secure primitives:

Equality test: δ(x) is a function returning a shared 1 when x = 0 and returning a shared 0 otherwise. A
secure implementation with a constant number of rounds is proposed in [Kil05].

Random: Random(i) is a function returning a vector ri of i shared secrets where exactly one has value
1 and all the other secrets have value 0 [Sil04c]. The index of the secret equal to 1 is generated according
to a uniform distribution over the interval [1..i]. A random number r uniformly distributed in [0..q] can
be generated in one round by having each participant Aj share a random number r[j] and compute r =∑n
j=1 r[j]. One can test that r < i by using the secure comparison in [Kil05]. If the test fails, a new random

number can be tried. Otherwise the index with value 1 is chosen as r+1, by computing ri[k] = δ(r+ 1− k).
The expected number of trials is q

i .
The Algorithm 3 performs the random permutation of a vector with k secrets. To generate k random

numbers of size increasing from 2 to k, the total expected number of trials is
∑k
i=2

q
i which is in O(q log k).

All random numbers can be generated in parallel, and several trials for each random number can be also
performed in parallel, leading to an expected number of rounds denoted Rq(i).

Algorithm 3: Permuting randomly a vector v with k shared secrets

function (v[1..k])
for i = 1 to k−1 do ri[1..k−i+1]← Random(k−i+1);

1 for i = 1 to k−1 do
v′[i] =

∑k
j=i(ri[j − i+ 1] ∗ v[j]);

for j = i+ 1 to k do
v′[j] = v[j] + ri[j − i+ 1] ∗ (v[i]− v[j]);

v[i..k]← v′[i..k];

return v[1..k];

A loop started at Line 1 in Algorithm 3 permutes the value at position i with the one at position i+ki−1,
where ki is the position of the 1 element in vector ri. All the multiplications in such a loop can be performed
in parallel, so that the whole computation (after generating the random numbers) can be performed in k
rounds. The total number of multiplications in round i is 2(k− i)+1, leading to a total number of k2−k+1
multiplications.

The remaining issue is how to perform on a vector the inverse permutation with respect to the shuffling in
Algorithm 3. A method for performing the inverse permutation is given in Algorithm 4, and simply performs
the permutations in the reverse order starting with the last round.

6 Applications

We show how the technique will be used in a few applications and exemplify the simplest ones with the
corresponding programs in the SMC programming language.

15

Algorithm 4: Inverting the permutation on vector v in Algorithm 3

function (v[1..k], r1[1..k],...,rk−1[1..2])
for i = k−1 to 1 do

v′[i] =
∑k
j=i(ri[j − i+ 1] ∗ v[j]);

for j = i+ 1 to k do
v′[j] = v[j] + ri[j − i+ 1] ∗ (v[i]− v[j]);

v[i..k]← v′[i..k];

return v[1..k];

6.1 Shuffling secrets with the SMC language

To express the problem of shuffling three secrets from three participants and revealing them in a random
order generated with fairness, the SMC program (version 1.4.2) is:

MODULUS 31

PARTICIPANTS 3

INPUTS

1 # nb. of inputs from the 1-st participant

variable, vector-size, label, type

s1 I secret Integer

1 # nb. of inputs from the 2-nd participant

s2 I secret Integer

1

s3 I secret Integer

INTERMEDIARY-INPUTS 5

main is the entry point for this program

main calls _r to create the array, and then calls the mix-net

main=SEQUENCE(_r(0),SHUFFLE(_r,3))

_r creates the array _r and returns the x-th value

_r(x)=ARRAY(_r,x,s1,s2,s3)

define the outputs

o0=_r(0)

o1=_r(1)

o2=_r(2)

OUTPUTS

3 # nb. of outputs for the 1-st participant

label revealed-value

result1 o0

result2 o1

result3 o2

3 # nb. of outputs for the 2-nd participant

result1 o0

result2 o1

result3 o2

3 # nb. of outputs for the 3-rd participant

result1 o0

result2 o1

result3 o2

16

To reveal only a randomly selected value out of the three secrets in the previous program, one only needs
to change the OUTPUTS section to:

OUTPUTS

1 # nb. of outputs for the 1-st participant

result o0

1 # nb. of outputs for the 2-nd participant

result o0

1 # nb. of outputs for the 3-rd participant

result o0

The shuffling of multidimensional vectors of secrets is implemented in SMC’s shuffling for CSPs, and is
called with SHUFFLE(CSP). In SMC each participant saves the last permutations used for shuffling and
unshuffling can be dune with a call to UNSHUFFLE(vector-name,vector-length) and UNSHUFFLE(CSP),
respectively.

The efficiency of the mix-net for secret shares depends on the key size, the number of participants and
the number of secrets. With 1024 bit keys, the mix-net for secret shares in the version 1.4.2 of SMC requires
approximatively 1 second per secret per participant (without ZK proofs). In consequence, ZK proofs with
certitude 1− 1

2t are expected to need 2t seconds per secret (t seconds for generating claims, and t for verifying
them, the cost of jointly building the challenges being negligible).

6.2 Selecting a random element out of a secret vector

One can use mix-nets of shared secrets for finding a random solution for a combinatorial problem. A
simple method (called Shuffle&Select) is to (1) first compute a secret vector v with the properties of each
alternative (i.e., potential solution) of the combinatorial problem2. (2) The vector v is shuffled with a mix-
net. (3) The first element with acceptable properties in the shuffled v is chosen using the boolean circuit
shown in Algorithm 5, CF. The CF algorithm returns a vector r containing shared secrets equal to 0 on all
positions except on the position of the first element of v that has the desired property g. (4) If identifiers of
the alternatives are among the properties stored in v then one can find the selected alternative by opening
the elements of r and then opening the identity of the only non-zero element of r.

An alternative method (called Shuffle&Select&Unshuffle) differs only starting with the fourth step. (4’) r
can be unshuffled with the UNSHUFFLE operator. In this case, opening r will implicitely reveal the identity
of the selected alternative (from the way v was built). Moreover, in this case one can compute a shared secret
containing the position of the non-zero element of r by using the boolean circuit V2S shown in Algorithm 6.

The boolean circuit CF selects the first element with a certain property g out of a vector v with k secret
shares (we described a solution based on arithmetic circuits in [Sil05]). The idea is to build a result vector
r storing a shared 1 in the position holding the selected value, and shared 0s in all other positions. An
intermediary vector of secrets h is used storing in each position the secret 1 if the selection was not yet done
(up to that index in v) and 0 otherwise. The vector r can be transformed in a shared secret.

Algorithm 5: Choose First: Select the first element of v satisfying g. Given the boolean circuit g(x)
returning 1 if x has property g and 0 otherwise, CF builds the vector r.

function CF(v, g)
h[1] = 1, r[1] = g(v[1]);
for (i = 2; i ≤ k; i++) do

h[i] = h[i−1] ∧ (1−r[i−1]);
r[i] = g(v[i]) ∧ h[i];

return r;

Another way of computing CF is with the functions r[i] = g(r[i])
∏i−1
u=1(1−g(r[u])) in ZZ2. These functions

can be efficiently evaluated in constant number of rounds with the techniques in [BIB89, CD01].

2E.g., for addressing several properties, each property can be stored in a separate vector and then the different obtained
vectors are treated simultaneously.

17

Algorithm 6: Vector to Secret: Find index of the first non-zero value in v. biti(R) and biti(j) denote the
ith bit of R and j, respectively.

function V2S(r)
foreach i = [0..blog2 kc] do

biti(R) = ⊕kj=1(biti(j) ∧ r[j]);
return R;

The approach shown in this section has immediate applicability to problems like meeting scheduling
where g is the identity function 1d simply returning the parameter and the elements of v are computed by
combining with logic AND the availability of each participant for the corresponding alternative.

6.3 Combinatorial Optimization

Here we will use a simplified but sufficiently illustrative framework for combinatorial optimization (a
more complete one appears in [SM04]). Namely, a combinatorial optimization problem has k alternatives
{ε1, ..., εk} and the participants have a secret joint estimation q(εi) for each tuple εi. Let B1 be the best
possible value of q and B2 its upper bound for an acceptable alternative.

Example 5 Assume each participant Aj can have estimating secret functions φj,u(ε), and each participant
can have either none or several such estimating functions (the set of all such functions being C). If these
functions cumulate in an additive manner to get a global estimate, then q(ε)=

∑
φ∈C φ(ε).

Minimization A solution is an alternative εi such that q(εi) is mimimized. To isolate alternatives ε whose
q(ε) equal some value, x0 (we need the minimal x0 for which there exists ε with q(ε) = x0), we use a function
p(ε, x0) defined as either:

p(ε, x0) = δ(q(ε)− x0) (1)

or:
p(ε, x0) = cmp(q(ε), x0) (2)

δ(x) is a function returning 1 when x = 0 and returning 0 otherwise. cmp(x, y) is a function returning 1
when x ≤ y and 0 otherwise. Implementations of δ(x) and of cmp(x, y) with a constant number of rounds
are proposed in [Kil05]. We denote with vj the vector computed with vj [i] = p(εi, j). A vector of secrets
{wj}j∈[Bj−1,...,B2] is computed where wj holds the value of i such that εi is the best solution with value q(εi)
between B1 and j.

wj
def
=

0 if j=B1−1
V 2S(CF (vj , 1d)) if wj−1=0
wj−1 if wj−1 6= 0

This can be computed with (for j∈[B1..B2]):

wB1−1 = 0

wj = wj−1(1− δ(wj−1)) + V 2S(CF (vj , 1d))δ(wj−1)

Optimization (minimization) consists of the following phases:

1. First the input secrets φ are shared and then shuffled through the mix-net.

2. wB2
is computed by iteratively building the secrets wj for j increasing from B1 to B2 (the shuffled

index of the selected best alternative is wB2
).

3. Compute a vector r of k shared secrets with value 1 on position wB2
and value 0 elsewhere. The circuit

for this is S2V (wB2
, k) in Algorithm 7.

18

Algorithm 7: Secret to Vector: Transform a secret s to a vector of k shared secrets with secret 1 on
position s and 0 elsewhere. See [Sil04a] for an alternative with 3k multiplications of shared secrets (of
which 2k multiplications can be computed with the constant round method of [BIB89, CD01]).

function S2V(s, k)
foreach i ∈ [1..k] do r[i] = δ(s− i);

4. Vector r is unsuffled and the index i of the solution εi is given by V2S(r).

To learn the value of q for the best alternative one should compute:

w =
∑

u∈[B1..B2]

u(1− δ(wu))δ(wu−1)

The single non-zero term in the summation defining w is for the round u where wu is for the first time
non-zero. w specifies the value q(εi) of the selected solution εi.

Maximization For maximization, the only difference is that computations of wj are done for j descending
from B2 to B1, B2 being the best value. Also, instead of Equation 2 one needs p(ε, x0) = cmp(x0, q(ε)). The
value of wj depends on wj+1 (instead of wj−1).

wj
def
=

0 if j=B2+1
V 2S(CF (vj , 1d)) if wj+1=0
wj+1 if wj+1 6= 0

This can be computed with (for j∈[B1..B2]):

wB2+1 = 0

wj = wj+1(1− δ(wj+1)) + V 2S(CF (vj , 1d))δ(wj+1)

The vector r at optimization phase 3 is computed with S2V(wB1
, k).

7 Conclusions

In this article we propose a (+ mod ν,×)-homomorphic encryption scheme that can be parametrized by a
public prime value ν and that is obtained with a restriction to the version of ElGamal proposed in [DGS02].
It has applications to a mix-net for securely shuffling shared secrets.

We have shown how participants in a mix-net for secret shares can provide Zero Knowledge proofs of the
correctness of their operation. The designed proofs should increase the confidence of all participants that
the mix-net did not tamper with the values of the secret shares, and that inverse permutations are correctly
applied. The approach is related to the proof of knowing a isomorphism between large graphs. We make a
detailed study of the rationales behind each design decision, as well as a detailed review of the major related
mix-nets. Alternative versions and implementations (e.g., used cryptosystems) are discussed with their
advantages and drawbacks. Discussions related to the usage of public-key versus symmetric-key encryptions
for mix-nets are described within the basic techniques of Chaum and Merritt. We show how the technique can
be used in the Secure Multi-party Computations (SMC) programming language and we give some examples.
The shuffling of secrets using mix-nets offers computational security. We also propose a technique based
on arithmetic circuit evaluation that is faster than previous techniques, and offers information theoretical
security.

8 Acknowledgements

We thank Jean-Sebastien Coron for his comments.

19

References

[AS04] T. Atkinson and M.-C. Silaghi. Reply-pay and hansdhaking for incentives with anonymizer
servers. Technical Report TR-FIT-16/2004, Florida Institute of Technology, Melbourne, FL,
November 2004.

[BIB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number
of rounds interaction. In 8th ACM Symposium Annual on Principles of Distributed Computing,
pages 201–209, August 1989.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. In International Congress of
Mathematicians, pages 1444–1451, 1986.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-cryptographic
fault-tolerant distributed computating. In STOC, pages 1–10, 1988.

[CD01] Ronald Cramer and Ivan Damgrd. Secure distributed linear algebra in a constant number of
rounds. In Advances in Cryptology (CRYPTO 2001), volume 2139 of LNCS, pages 119–139,
2001.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com. of
ACM, 24(2):84–88, 1981.

[DGS02] I. Damgard, J. Groth, and G. Salomonsen. Secure Electronic Voting, chapter The theory and
Implementation of an electronic voting systems. Kluwer, 2002.

[FM02] Freedman and Morris. Tarzan: a peer-to-peer anonymizing network layer. In ACM CCS’02,
2002.

[GB96] S. Goldwasser and M. Bellare. Lecture notes on cryptography. MIT, 1996.

[Gen95] R. Gennaro. 6.915 computer and network security, lecture 24, Dec 1995.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. Knowledge complexity of interactive proofs. In
Proc. of 17th STOC, pages 291–304, 1985. Earlier version: Knowledge complexity, unpublished
manuscript, (submitted to FOCS, 1984).

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographic protocol design. In FOCS, pages 174–187, Toronto, 1986.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge, 2004.

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In Applied Cryptography and
Network Security, 2005.

[GRS96] D. Goldschlag, M. Reed, and P. Syverson. Hiding routing information. In Information Hiding,
number 1174 in LNCS, pages 137–150, 1996.

[JJR02] M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by ran-
domized partial checking. In USENIX, 2002.

[Kil05] Eike Kiltz. Unconditionally secure constant round multi-party computation for equality,
comparison, bits and exponentiation. Cryptology ePrint Archive, Report 2005/066, 2005.
http://eprint.iacr.org.

[KS05] K.-R. Kattamuri and M.-C. Silaghi. Supporting debates over citizen initiatives. Technical Report
TR-FIT-3/2005, Florida Institute of Techology, Melbourne, FL, January 2005.

20

[Mah05] Ayan Mahalanobis. Diffie-hellman key exchange protocol and non-abelian nilpotent groups.
Cryptology ePrint Archive, Report 2005/110, 2005. http://eprint.iacr.org/.

[Mer83] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Inst. of Tech., Feb 1983.

[Nef01] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM conference on
Computer and Communications Security, pages 116 – 125, 2001.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Euro-
crypt’99, volume 1592 of LNCS, pages 223–238, 1999.

[RR98] Reiter and Rubin. Crowds: Anonymity for web transactions. ACM Trans. on Information and
System Security, 1(1):66–92, 1998.

[Sil03] M.-C. Silaghi. Solving a distributed CSP with cryptographic multi-party computations, without
revealing constraints and without involving trusted servers. In IJCAI-DCR, 2003.

[Sil04a] M.-C. Silaghi. Meeting scheduling system guaranteeing n/2-privacy and resistant to statistical
analysis (applicable to any DisCSP). In 3rd IC on Web Intelligence, pages 711–715, 2004.

[Sil04b] M.-C. Silaghi. Secure multi-party computation (SMC) programming language.
http://www.cs.fit.edu/ msilaghi/SMC/, 2004.

[Sil04c] Marius C. Silaghi. Secure multi-party computation for selecting a solution according to a uniform
distribution over all solutions of a general combinatorial problem. Cryptology e-print Archive
2004/333, 2004.

[Sil05] Marius-Călin Silaghi. Hiding absence of solution for a discsp. In FLAIRS’05, 2005.

[SK05] M.-C. Silaghi and K. R. Kattamuri. Publicly verifiable private credentials for citizen initiatives.
Technical Report TR-FIT-2/2005, Florida Institute of Techology, Melbourne, FL, January 2005.

[SM04] M.-C. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with privacy
enforcement. In 3rd IC on Intelligent Agent Technology, pages 531–535, 2004.

[SR04] M.-C. Silaghi and V. Rajeshirke. The effect of policies for selecting the solution of a DisCSP on
privacy loss. In AAMAS, pages 1396–1397, 2004.

[XNJS04] S. Xu, W. Nelson Jr., and R. Sandhu. Enhancing anonymity via market competition. information
assurance and security. In IEEE ITCC’04, 2004.

21

